715 research outputs found

    Shifting Data Collection from a Fixed to an Adaptive Sampling Paradigm

    Get PDF
    For domains where data are difficult to obtain due to human or resource limitations, an emphasis is needed to efficiently explore the dimensions of information spaces to acquire any given response of interest. Many disciplines are still making the transition from brute force, dense, full factorial exploration of their information spaces to a more efficient design of experiments approach; the latter being in use successfully for many decades in agricultural and automotive applications. Although this transition is still incomplete, groundwork must be laid for incorporating the next generation of algorithms to adaptively explore the information space in response to data collected, as well as any resulting empirical models (i.e., metamodels). The methodology in the present work was to compare metamodel quality using a fixed sampling technique compared to an adaptive sampling technique based on metamodel variance. In order to quantify metamodeling errors, a delta method was used to provide quantitative model variance estimates. The present methodology was applied to a design space with an air-breathing engine performance response. It was shown that competitive metamodel quality with lower associated error could be achieved for an adaptive sampling technique for the same level of effort as a fixed, a priori sampling technique

    Probabilistic Metamodels for an Efficient Characterization of Complex Driving Scenarios

    Full text link
    To validate the safety of automated vehicles (AV), scenario-based testing aims to systematically describe driving scenarios an AV might encounter. In this process, continuous inputs such as velocities result in an infinite number of possible variations of a scenario. Thus, metamodels are used to perform analyses or to select specific variations for examination. However, despite the safety criticality of AV testing, metamodels are usually seen as a part of an overall approach, and their predictions are not questioned. This paper analyzes the predictive performance of Gaussian processes (GP), deep Gaussian processes, extra-trees, and Bayesian neural networks (BNN), considering four scenarios with 5 to 20 inputs. Building on this, an iterative approach is introduced and evaluated, which allows to efficiently select test cases for common analysis tasks. The results show that regarding predictive performance, the appropriate selection of test cases is more important than the choice of metamodels. However, the choice of metamodels remains crucial: Their great flexibility allows BNNs to benefit from large amounts of data and to model even the most complex scenarios. In contrast, less flexible models like GPs convince with higher reliability. Hence, relevant test cases are best explored using scalable virtual test setups and flexible models. Subsequently, more realistic test setups and more reliable models can be used for targeted testing and validation.Comment: 10 pages, 14 figures, 1 table, associated dataset at https://github.com/wnklmx/DSIO

    Thematic issue on evolutionary algorithms in water resources

    Get PDF
    Special Issue on Evolutionary Algorithms.H.R. Maier, Z. Kapelan, J. Kasprzyk, L.S. Matot

    On the Value of Quality Attributes for Refactoring Model Transformations Using a Multi-Objective Algorithm

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/152454/1/QMOOD_for_ATL__Copy_.pd

    From examples to knowledge in model-driven engineering : a holistic and pragmatic approach

    Full text link
    Le Model-Driven Engineering (MDE) est une approche de développement logiciel qui propose d’élever le niveau d’abstraction des langages afin de déplacer l’effort de conception et de compréhension depuis le point de vue des programmeurs vers celui des décideurs du logiciel. Cependant, la manipulation de ces représentations abstraites, ou modèles, est devenue tellement complexe que les moyens traditionnels ne suffisent plus à automatiser les différentes tâches. De son côté, le Search-Based Software Engineering (SBSE) propose de reformuler l’automatisation des tâches du MDE comme des problèmes d’optimisation. Une fois reformulé, la résolution du problème sera effectuée par des algorithmes métaheuristiques. Face à la pléthore d’études sur le sujet, le pouvoir d’automatisation du SBSE n’est plus à démontrer. C’est en s’appuyant sur ce constat que la communauté du Example-Based MDE (EBMDE) a commencé à utiliser des exemples d’application pour alimenter la reformulation SBSE du problème d’apprentissage de tâche MDE. Dans ce contexte, la concordance de la sortie des solutions avec les exemples devient un baromètre efficace pour évaluer l’aptitude d’une solution à résoudre une tâche. Cette mesure a prouvé être un objectif sémantique de choix pour guider la recherche métaheuristique de solutions. Cependant, s’il est communément admis que la représentativité des exemples a un impact sur la généralisabilité des solutions, l'étude de cet impact souffre d’un manque de considération flagrant. Dans cette thèse, nous proposons une formulation globale du processus d'apprentissage dans un contexte MDE incluant une méthodologie complète pour caractériser et évaluer la relation qui existe entre la généralisabilité des solutions et deux propriétés importantes des exemples, leur taille et leur couverture. Nous effectuons l’analyse empirique de ces deux propriétés et nous proposons un plan détaillé pour une analyse plus approfondie du concept de représentativité, ou d’autres représentativités.Model-Driven Engineering (MDE) is a software development approach that proposes to raise the level of abstraction of languages in order to shift the design and understanding effort from a programmer point of view to the one of decision makers. However, the manipulation of these abstract representations, or models, has become so complex that traditional techniques are not enough to automate its inherent tasks. For its part, the Search-Based Software Engineering (SBSE) proposes to reformulate the automation of MDE tasks as optimization problems. Once reformulated, the problem will be solved by metaheuristic algorithms. With a plethora of studies on the subject, the power of automation of SBSE has been well established. Based on this observation, the Example-Based MDE community (EB-MDE) started using application examples to feed the reformulation into SBSE of the MDE task learning problem. In this context, the concordance of the output of the solutions with the examples becomes an effective barometer for evaluating the ability of a solution to solve a task. This measure has proved to be a semantic goal of choice to guide the metaheuristic search for solutions. However, while it is commonly accepted that the representativeness of the examples has an impact on the generalizability of the solutions, the study of this impact suffers from a flagrant lack of consideration. In this thesis, we propose a thorough formulation of the learning process in an MDE context including a complete methodology to characterize and evaluate the relation that exists between two important properties of the examples, their size and coverage, and the generalizability of the solutions. We perform an empirical analysis, and propose a detailed plan for further investigation of the concept of representativeness, or of other representativities
    corecore