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Summary

Stochastic simulation models are widely used to provide an effective and efficient

way to evaluate the behaviour of real systems. However with the stochastic and complex

nature of most real systems, the simulation models can be time consuming to execute.

Even when metamodels are developed to approximate the simulation models, estimating

an appropriate metamodel can still be computationally challenging. This thesis proposes

an additive global and local Gaussian Process model as a flexible surrogate for stochastic

simulation models. This model attempts to capture the overall global spatial trend and

the local trends of the responses separately, to enable more accurate modelling of the

surfaces that are nonstationary in both the underlying function and the stochastic noise.

The proposed additive structure of the model reduces the computational complexity in

model fitting, and allows for more efficient predictions with large data sets. Based on

the global and local structure of this model, we further integrate the model into a com-

bined global and local simulation optimization algorithm and show the performance and

properties of the algorithm. Furthermore, numerical results suggest that the proposed

optimization framework can work more efficiently than other metamodel based optimiza-

tion algorithms, especially when the search iteration progresses and the data size gets

large. Finally, a parallel version of the optimization algorithm is developed to further

reduce the computational time. A case study is presented to demonstrate the application

of our approach in a navigational safety problem.

viii



List of Tables

3.1 Error measurement of AGLGP model with different clustering tech-

niques in local regions . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2 Error measurement of AGLGP model with different region separation

techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3 Error measurement of approximation models with one-dimension test

function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4 Discontinuity measurement of AGLGP and LGP models with one-

dimension functions Test 1 and Test 2 . . . . . . . . . . . . . . . . . . 48

4.1 Overview of CGLO . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2 Average performance with 5,000 and 10,000 simulation replications . . 71

4.3 The number of objective function evaluations and optimal probability of

conflict yapproach found by each optimization algorithm . . . . . . . . . 74

4.4 The number of objective function evaluations and the deviation of the

optimal probability of conflict yapproach found by each optimization al-

gorithm to the true optimal . . . . . . . . . . . . . . . . . . . . . . . . 75

5.1 Overview of PGLO . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.2 Performance of CGLO and PGLO per iteration . . . . . . . . . . . . . 97

5.3 Average wall clock time to get a reasonable solution with a relative error

< 1% using q=1,4,8 Processors . . . . . . . . . . . . . . . . . . . . . . 99

5.4 Relative speedup of parallel optimization algorithm when using q=4,8 . 100

5.5 Average wall clock (W.C.) time and relative speedup to get a reasonable

solution with a relative error < 1% using q=1,4,8 Processors (small noise)101

ix



LIST OF TABLES

5.6 Average wall clock (W.C.) time and relative speedup to get a reasonable

solution with a relative error < 1% using q=1,4,8 Processors (large noise)102

5.7 The number of objective function evaluations and the deviation of the

optimal probability of conflict yapproach found by each optimization al-

gorithm to the true optimal . . . . . . . . . . . . . . . . . . . . . . . . 104

5.8 Number and percentage of scenarios for which each algorithm converges

to the global optimal solution with 4 processors within 5 minutes . . . . 105

x



List of Figures

3.1 Plot of function y(x) = sin(30(x−0.9)4) cos(2(x−0.9))+(x−0.9)/2,

the global, local and overall models . . . . . . . . . . . . . . . . . . . 27

3.2 The inducing points and local regions . . . . . . . . . . . . . . . . . . 28

3.3 Inducing points and local regions . . . . . . . . . . . . . . . . . . . . . 31

3.4 Test 1 function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.5 Test 2 function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.1 Initial fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2 Iteration 1 of CGLO . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.3 Iteration 2 of CGLO . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.4 g(x1, x2) function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.5 Estimated optimal value of TSSO, EQI and CGLO with CPU time of

1400s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.6 Definition of Trajectory . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.7 Probability of conflict in (a) and log transformation of probability in (b) 73

5.1 AGLGP model fit with design point selected by modified Expected Im-

provement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.2 AGLGP model fit with design point selected by pattern search . . . . . 82

5.3 mEI function and AGLGP model fit with design point selected by multi-

start pattern search . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.4 Initial fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.5 Iteration 1 for CGLO and PGLO . . . . . . . . . . . . . . . . . . . . . 96

5.6 Iteration 2 for CGLO and PGLO . . . . . . . . . . . . . . . . . . . . . 97

xi



List of Abbreviations

GP Gaussian Process

AGLGP Additive Global and LocalGaussian Process

MNEK Modified Nugget Effect Model

CGLO Reproducing Kernel Hilbert Space

EQI Expected Quantile Improvement

TSSO Two Stage Sequential Optimization

PGLO Parallel Global and Local Optimization

OCBA Optimal Computing and Budget Allocation

PS Pattern Search

RS Random Search

LOOCV Leave-One-Out Cross Validation

xii



Chapter 1

INTRODUCTION

This thesis contributes to the simulation metamodeling and optimization for stochastic

systems. In this chapter, we first provide an overview of the thesis. The background

and development of computer simulation models are introduced in Section 1.1. Section

1.2 introduces the development of metamodels. Section 1.3 briefly reviews the current

progress of simulation optimization algorithms. The objectives and the scopes of this

thesis are presented in Section 1.4 followed by the organization of this thesis in Section

1.5.

1.1 Computer Simulation Models

A computer simulation model is a computer program that attempts to simulate the be-

haviour of a specific complex system which cannot be modeled analytically or where an-

alytic solutions are unavailable. The application of computer simulation models provides

an efficient and effective way to study and analyze the characteristics of the complex

systems in scientific, economics and engineering fields, such as the electronic circuit

design problem in manufacturing industry (Currin et al., 1991), pricing the financial

products problem in financial investment (Glasserman, 2003), and the planning of main-

tenance operations for airlines (Duffuaa and Andijani, 1999). The agent-based model

is an advanced computer simulation model that simulates the actions and iterations of

autonomous agents. It has become more popular in the last few years for real world

1



1.1. COMPUTER SIMULATION MODELS

systems such as market systems and maritime transportation systems (Davidsson et al.,

2005; Bonabeau, 2002).

Computer simulation models are commonly derived as simplifications of real sys-

tems as the computer experiments conducted on computer simulation models require a

comparatively lower cost. The use of computer simulation models has several advantages

over the direct analysis of real systems:

1. Computer simulation models are usually cheaper and easier to build compared

with physical experiments. They are based on computer programs without simu-

lating on real systems.

2. Computer simulation models can be used to recognize cause and effect relation-

ships, identify the importance of different factors and predict the behaviour of a

system at unknown conditions.

Various computer simulation models can be categorized in different ways based

on the characteristics of the underlying systems, such as discrete or continuous mod-

els, static or dynamic models. Another common categorization method is to divide the

computer simulation models as deterministic and stochastic simulation models. For a

deterministic simulation model, simulation outputs are always the same for a specified

input set. In contrast, a stochastic simulation model contains randomness in the outputs

to represent uncontrollable factors just like real systems.

Deterministic simulation models have been widely used in practice due to their

convenience, especially when we are interested in the average behavior of a system or

the randomness has low impact on the system’s performance. It requires comparatively

lower cost to obtain the results given a set of inputs. Examples can be found in various

areas such as Computer Aided Engineering (CAE) and Computer Aided Design (CAD)

(see Kleijnen (2008) and Santner et al. (2003)).

Different from deterministic simulation models, stochastic simulation models in-

clude randomness in the outputs to represent the stochastic nature of real systems. For

example, some uncontrollable factors like weather and fluctuation, can bring random-

ness in the response, while in a queueing system, the arrival rate and the service time

are all random. Hence, a single simulation run is no longer sufficient for a specific in-

2



1.2. METAMODELS FOR SIMULATION MODELS

put because the stochastic simulation model will deliver different outputs over different

replications for a specific input.

1.2 Metamodels for Simulation Models

Although simulation models are widely used to provide an effective and efficient way to

evaluate the behaviour of real systems, due to the complex nature of most real systems,

the simulation models can be time consuming to execute. The computational cost of

running expensive simulation models becomes a critical issue.

To reduce the computational cost of running expensive simulation models, one com-

mon simplification is to develop metamodels (also known as surrogates or response

surface models) to approximate the outputs of simulation models. A metamodel is a

statistical model of a simulation model with a closed mathematical form that emulates

the behaviour of the simulation model. Examples of metamodels include polynomial

regression models, Gaussian Process models (also known as kriging), radial basis func-

tions (RBF), multivariate adaptive regression splines (MARS), artificial neural networks

(ANN), and support vector regression (SVR) models. Simpson et al. (2001) reviewed

the application of metamodels in engineering systems. Li et al. (2010) also provided a

comprehensive comparison of metamodels in simulation optimization. Among all these

metamodels, Gaussian Process models (also known as kriging models) (Cressie, 1993),

were first introduced into the field of design of experiments by Sacks et al. (1989) and

have become popular in recent years due to its adaptability and efficiency in model-

ing simulation outputs (Santner et al., 2003). It has also been well applied in the field

of pattern recognition and machine learning (Bishop, 2006; Rasmussen and Williams,

2006).

The use of Gaussian Process models is also a popular technique to solve and analyse

stochastic simulation models in recent years. Different from deterministic simulation

models, the randomness and complexity of stochastic simulation models raise another

critical issue that a single simulation run is no longer sufficient for a specified input

set. More simulation replications are required to estimate the expectation of stochastic

simulation outputs. Hence, stochastic simulation models require much more compu-

3



1.2. METAMODELS FOR SIMULATION MODELS

tational time to analyse than deterministic simulation models, and the application of

Gaussian Process models essentially helps to understand the behavior of stochastic

simulation models. Some of the Gaussian Process models for deterministic simulation

models (Sacks et al., 1989; Santner et al., 2003) have been successfully extended in

stochastic situations. More specifically speaking, because stochastic simulation models

can be divided into two different scenarios: homoscedastic case (with a random noise

that is assumed to be Normally, Independently and Identically distributed (NIID)) and

heteroscedastic case (with a random noise whose variance changes over the domain

space), metamodels have been developed to handle those different scenarios. For exam-

ple, the nugget effect model with homoscedastic assumption can perform well in the

homoscedastic case (Cressie, 1993), while the stochastic Gaussian Process model has

been shown to perform well in the heteroscedastic case (Ankenman et al., 2010; Yin

et al., 2011).

Estimating the stochastic Gaussian Process model, however, is a computational chal-

lenge when the data sets are large. In simulations, large datasets may be required to

analyse a nonstationary simulation model whose outputs can change dramatically over

the whole space. In optimization problems, the number of evaluation points can increase

quickly as the optimization algorithm progresses towards the optimal solution. Given the

data size of N , estimating model parameters using traditional methods like maximum

likelihood estimation and estimating the model predictors involve the inversion of a

N ×N covariance matrix, which typically requires O(N3) operations andO(N2) mem-

ory. This becomes computationally intractable when N is large. Hence, approximation

techniques are needed to apply the Gaussian Process model for large data sets (Sang and

Huang, 2012; Snelson and Ghahramani, 2007).

Gaussian Process models have also been applied to analyse the highly nonstationary

simulation models whose simulation outputs have different degrees of smoothness in

one region than another; Gaussian Process models with various covariance structures

enable more flexibility in modelling the dramatic changes over the whole space (Ras-

mussen and Williams, 2006). This non-stationarity is common in engineering systems,

and can be caused by the heteroscadestic noise of stochastic systems or a highly non-

linear response surface. The stochastic Gaussian Process model (Ankenman et al., 2010;

4



1.3. SIMULATION OPTIMIZATION

Yin et al., 2011) is able to capture the nonstationarity in the heteroscadestic noise. A

highly non-linear response surface can be found in production planning, when different

models for different components are integrated to generate finished goods. Hence, sys-

tem behaviors can differ significantly in distinctive design regions. Similarly in maritime

transportation, one measure of safety for a vessel at sea is the probability of encountering

a conflict. This measure can change drastically with the angle of turn in heavy traffic

regions. Many approaches have been proposed to address these nonstationary problems.

For example, Ba and Joseph (2012) extended the Gaussian Process model with a com-

posite covariance structure to capture the nonstationarity in the simulation model. The

nonstationarity can also be addressed by partitioning the input space into regions and

fitting separate independent stationary Gaussian Process models in each region (Kim

et al., 2005). The input space can also be partitioned by a more sophisticated Bayesian

treed structure (Gramacy and Lee, 2008). However, these approaches cannot be well

applied for stochastic simulations with heteroscedastic random noise as the random vari-

ability of stochastic responses can considerably affect the estimation of the underlying

deterministic response surfaces.

1.3 Simulation Optimization

Computer simulation models are not only helpful in studying the characteristics of

complex systems, but also widely adopted to solve optimization problems. Instead of

analytically deriving the optimal solution, multiple solutions generated by optimization

algorithms can be iteratively evaluated on computer simulation models. The combination

of simulation models and optimization algorithms is referred as simulation optimization

in the literature. This approach has been proven to be particularly effective for complex

functions, especially for black box functions. In general, decision makers target to find

a set of parameters that yield the optimal performance. The general global optimization

problem can be expressed as

min
x∈X

f(x) (1.1)

where f : X → Y ⊆ R is the deterministic objective function, andX ⊆ Rd is a compact

feasible region in Rd. The objective function f typically has no closed form and can

5



1.3. SIMULATION OPTIMIZATION

only be evaluated through an expensive and complex black-box simulation model. In

this thesis, we focus on stochastic simulation models, where f(x) cannot be obtained

directly, but rather sample observations with noise y(x) can be observed. Hence, we are

interested in solving the following problem:

min
x∈X

E(y(x)) (1.2)

Simulation optimization strategies can be divided into several categories based on

the nature of the response f and the input space X . If the input space is discrete, ap-

propriate optimization methods include direct search methods like random search and

meta-heuristics. In particular when the input space is finite and small, ranking and se-

lection is a promising strategy. On the other hand, if the input space is continuous,

gradient-based methods and metamodel-based optimization methods can be applied

(Barton and Meckesheimer, 2006).

Direct search methods call the simulator at each iteration to obtain an estimate of the

response and the search is also conducted on the simulator. Popular direct search methods

include random search and its adaptions such as COMPASS (Hong and Nelson, 2006;

Xu et al., 2010), nested partition methods (Shi and Ólafsson, 2000), pattern search and

its extension (Torczon, 1997), and other heuristic methods such as genetic algorithms

and simulated annealing approaches. Some direct search methods have been shown

to be globally convergent. A major drawback of this family of approaches, however,

is their cost when simulation runs require high computational effort. In such cases,

metamodeling based methods offer the possibility to use the information from simulation

runs to get insight about regions where simulations have not been performed yet.

If the input space is continuous, other search methods can be applied. Stochastic

gradient-based optimization methods such as stochastic approximation can use efficient

methods such as likelihood ratios, or less efficient finite-difference approximations, for

estimating the gradient of f . These methods effectively search the input space for optimal

solution without attempting to provide a global approximation of the response surface

f . However, it can fail on stochastic responses with large noise variability or when the

gradient information is computationally expensive.
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Another sensible approach for gradient-free optimization is the metamodel-based

methods. They estimate a metamodel with few simulations in the search procedure, to

quickly predict the performance at any given point in the domain space without the

need to run the simulator at every potential point. Such methods provide the information

of the entire surface to better identify the points for further simulations and locate the

optimum. Barton and Meckesheimer (2006) provided an overview of metamodel types

and the overall strategy of metamodel-based optimization methods. Response Surface

Methodology (RSM) (Kleijnen et al., 2004) is one of the most popular techniques in

this class for its ease of implementation. RSM sequentially explores small regions with

a first order and a second order linear regression model for new experimental designs.

In applying the Gaussian Process model as a surrogate for optimizing objective

functions, a sequential approach is typically applied. Jones et al. (1998) proposed a

sequential optimization method based on the Gaussian Process model. The proposed

Expected Improvement (EI) function and the Efficient Global Optimization (EGO) algo-

rithm balance the trade-off between exploration (searching the whole space for regions

that have not been explored before) and exploitation (searching around the current opti-

mal solution for better solutions) for the optimum of the deterministic simulation model.

Huang et al. (2006) extended the EGO scheme for stochastic simulation models with

homogeneous variance throughout the whole space, and proposed the Sequential Krig-

ing Optimization (SKO) method. With the nugget effect model and the augmented EI

function, the SKO method accounts for the influence of random noises, and considers

selecting and adding replications on the existing evaluated points other than searching

for new points. Picheny et al. (2013) and Quan et al. (2013) further extended EGO to

heteroscadestic case where random noises are assumed to have nonconstant variance.

The proposed Expected Quantile Improvement (EQI) by Picheny et al. (2013) is a more

general quantile-based criterion that accounts for the users risk tolerance. EQI consid-

ers the variance of the noise at un-evaluated locations when searching for a new point,

but it also requires the noise variance function to be known. The two-stage sequential

optimization (TSSO) algorithm (Quan et al., 2013) relaxes the requirement of known

variance. TSSO comprises of a search stage to determine the next evaluation point and an

allocation stage to evaluate the best optimal solution by running simulations at each eval-
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uated point according to the Optimal Computing Budget Allocation (OCBA) strategy

(Chen and Lee, 2010). By ignoring predictor uncertainty caused by random variability,

the search stage can focus on new points with low predicted response or high spatial

uncertainty, while the search stage with a minimum number of replications gives insight

for the noise variance at the new point.

As the originally proposed EI function and EGO algorithm are designed based on

Gaussian Process models, which scale poorly with the number of data points, They can

only work efficiently with a small limited computing budget. For a high nonstationary

response surface, EGO might require a sufficient amount of replications to get a rea-

sonably good solution. In this situation, EGO may not work efficiently any more as the

searching procedure (including refitting of the Gaussian Process models) becomes ex-

pensive when the number of evaluations observed gets large as the iteration progresses

to find the optimum. Hence, it motivates the derivation of a more efficient approach

applicable for more general simulation models. Other than reducing the computational

complexity for model estimation with certain approximation techniques, the algorithm

should also consider reducing the iterative refitting of Gaussian Process models.

1.4 Objectives and Scopes

As discussed in the previous sections, there are still several research gaps in the field

of simulation metamodeling and optimization, some of which can be summarized as

follows,

• Although Gaussian Process models have been shown to be a very useful meta-

model form to approximate computer simulation models, there still exists limited

work on the approximation of nonstationary Gaussian Process models in stochastic

systems. The existing ones either consider only the nonstationarity in the deter-

ministic function or consider only the nonstationarity in the heteroscedastic noise.

This form will be useful as many computer simulation models of complex sys-

tems today are highly complicated, and fast approximations of them are required

to facilitate real time decisions on those systems.
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• The existing approximation methods of Gaussian Process models for large data

sets are generally designed with a predefined covariance structure. They may

not sufficiently consider the nonstationarity, or the approximation of a complex

nonstationary covariance structure is more computationally complex.

• Metamodel-based global optimization algorithms seldom consider the computa-

tional complexity in the searching criterion. As the iteration progresses towards

the global optimum, the data size gets larger, and the searching criterion based

on the metamodel can become more expensive, especially for Gaussian Process

model based optimization algorithms.

In light of these research gaps, this thesis aims at (i) developing a fast estimated

metamodel that can be applied with large data sets and able to capture the nonstationarity

for the underlying simulation models, and (ii) developing a metamodel-based global

optimization strategy that can be applied for extensive types of simulation models. More

specifically, the objectives of this thesis are to:

• Develop a novel additive model as an approximation of the stochastic kriging

model for faster estimation and prediction with large data sets. It also provides the

flexibility to capture the nonstationarity in the underlying simulation models.

• Provide statistical properties of the additive model, and compare analytically and

numerically the performance of the predictions with different approximation mod-

els.

• Develop optimization algorithms for more general stochastic simulation models

with nonstationary response surfaces. Both the sequential and parallel optimiza-

tion strategies are considered.

The results of this work can provide some insights and improvements to the simula-

tion metamodeling and optimization in a stochastic environment. More specifically, this

work helps in improving

• The efficiency of the Gaussian Process model with large data sets.
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• The effectiveness of the Gaussian Process model for nonstationary response sur-

faces.

• The performance and efficiency of the Gaussian Process model based optimization

for stochastic simulation models.

A common issue for Gaussian process models is their poor performance when deal-

ing with high dimensional variables, as the high dimensional variables will significantly

increase the complexity of estimation for the sensitivity parameter for each dimension.

In this thesis, however, we focus on metamodeling schemes for large data sets and their

applications in optimization, for problems where the input dimensions are less than

ten. As many applications in the engineering systems (e.g. 4 dimensional welded beam

design (Rao, 1996), 3 dimensional helical compression spring (Arora, 2004) and 4 di-

mensional S2TA system (Pedrielli et al.)) have limited number of decision variables,

we only focus on these lower dimensional problems in this study.

1.5 Thesis Organization

This thesis contains six chapters. Chapter 2 gives a review of the metamodels and meta-

model based optimization methods.

In Chapter 3, the additive global and local Gaussian Process model is proposed as

the solution to general stochastic simulations with large data sets. We develop the model

on the basis of the stochastic kriging model by dividing the whole stochastic process

into a global model with a small set of inducing points to capture the global trend and

piecewise independent local models to capture the residual process from the global

model. We further allow different covariance structures for the local models to capture

the nonstationarity across the whole space. We also propose an approach to determine

the local regions, which has not been previously addressed but assumed given. Moreover,

we show several nice properties of the additive model, such as identifiability. Finally,

numerical studies are conducted to compare the performance of the proposed additive

global and local Gaussian Process model and other existing approximation methods for

large data sets.
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In Chapter 4, we further develop a simulation optimization algorithm that leverages

on the global and local structure of the additive model in Chapter 3 for a combined

iterative global and local search. The proposed combined global and local optimization

approach shares a similar framework with the Efficient Global Optimization (EGO),

but works more efficiently with a global search stage that quickly narrows down the

whole space into a promising local region and a local search stage that exploits within

the promising local region for an optimal solution. We also propose a global expected

improvement function in the global search stage to better account for the global trend

(through the global model) and the global distribution of observations (through a small

set of inducing points representing similar observations around). We then derive an

allocation strategy that intelligently allocates budget to the evaluated points for the

purpose of improving the metamodel fit and estimating the optimal solution. We analyze

the global convergence property of the combined approach and study its performance

on a test function and a practical navigational safety problem.

In Chapter 5, we further extend the combined global and local optimization algo-

rithm developed in Chapter 4 in a parallel environment. The parallel framework includes

a global search stage exploring the whole space for multiple promising local regions

through a multi-point global expected improvement function and a parallel local search

stage that selects multiple distinct points in each promising local region for simultane-

ous evaluations. We then incorporate locally convergent direct search methods for fast

exploitation around each of those selected points. The performance of the combined

global and local optimization algorithm and the parallel framework is demonstrated on

a simple one-dimensional example. The efficiency of the parallel framework is further

studied on 5 different test functions and the navigational safety problem.

Chapter 6 summarizes this work of the additive global and local Gaussian Process

model in simulation metamodeling and optimization and provides some directions for

future research.
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Chapter 2

LITERATURE REVIEW

This chapter introduces simulation metamodeling and metamodel-based simulation op-

timization. Section 2.1 briefly reviews five commonly used metamodels, and we then

focus on the more promising Gaussian Process model which is the model proposed to be

applied in the following studies, and conduct a more comprehensive review of approxi-

mate computation methods for Gaussian Process models with large data sets in Section

2.2. Finally, in Section 2.3, we look into several metamodel based approaches for global

optimization of black-box problems.

2.1 Review of Metamodels

Metamodels are built based on the data collected from target black-box simulation mod-

els to imitate their behaviours. For deterministic simulation models f(x) with the simu-

lation input x and the simulation output y = f(x), the metamodel can be mathematically

expressed by

f̂(∼) = f̂θ(∼) (2.1)

as an approximation of the simulation output, where f̂(∼) is the metamodel and θ is

the set of parameters for the metamodel (omitted for simple expression), which can

be a function of the inputs x and the observed outputs y. We Given a set of input x0,

f̂(x0) is the output of the metamodel, as a prediction for the simulation model’s output

y0 = f(x0).
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For stochastic simulation models where the simulation output is no longer determin-

istic at a given input, multiple simulation replications yj , j = 1, ..., n at a given input

x are averaged ȳ =
∑n

j=1 yj/n to estimate the expectation of the stochastic simulation

outputs. Metamodels are then developed to approximate the expectation of stochastic

simulation outputs.

2.1.1 Polynomial Regression

Polynomial regression model is the most popular and simplest metamodel that models

the relationship between inputs and outputs as a nth polynomial. Specifically with the

inputs {xi}ni=1 and the outputs {yi}ni=1, the general form of a nth degree polynomial for

one independent variable is

f̂(x) = β0 +
n∑
i=1

βix
i (2.2)

where βi is the least square coefficient selected by minimizing the mean square error. We

denote X as the matrix where the ijth element is the ith input with j degree polynomial,

i.e. (xi)
j , and the coefficients are given as

β = (XTX)−1XTy (2.3)

Polynomial regression model has been well applied in the simulation context (Klei-

jnen, 1998). Ruppert (2011) has applied the polynomial regression model in the risk

analysis and mutual fund evaluation in financial engineering. However, the polynomial

regression model describes the simulation model behaviours with one simple function,

which may show inadequacy in terms of the prediction accuracy, especially when the

complex systems have local behaviours that vary from region to region.

2.1.2 Radial Basis Functions

The standard Radial basis functions (RBF) interpolation method was first proposed

by Hardy (1971) for interpolation of scattered data, and was studied in more detail by
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Buhmann (2003). The model uses a linear combination of radially symmetric functions.

With evaluated points {xi, yi}ni=1, the RBF predictor takes the form

f̂(x) =
n∑
i=1

βiφ(‖x− xi‖) + p(x) (2.4)

where the weights {βi}ni=1 are determined by the interpolation f̂(xi) = yi. p(x) is poly-

nomial tail that depends on the choice of φ. The basis function φ can take multiple forms:

multiquadrics, thin plate splines, cubic splines, Gaussian, and inverse multiquadrics.

RBF models have been extensively studied due to their applicability in almost any

dimension. A comprehensive study of RBF models for simulation metamodeling is

conducted by Hussain et al. (2002). As a mesh-less technique, the RBF model was used

in the numerical simulation related with Partial Differential Equation (PDE) (Kansa,

1990; Larsson and Fornberg, 2003).

2.1.3 Multivariate Adaptive Regression Splines

The multivariate adaptive regression splines (MARS) (Friedman, 1991) is an expansion

of simple splines model. It is derived for flexible regression modeling of high dimen-

sional data. With no assumption for the underlying relationship between inputs and

outputs, the MARS model approximates simulation models by a forward stepwise al-

gorithm to select splines for the model followed by a backward procedure to prune the

model. The mathematical form can be written as:

f̂(x) = β0 +
M∑
k=1

βkBk(x) (2.5)

where βk is the coefficient and Bk(x) is the basis function that is represented as

Bm(x) =

Lm∏
k=1

[Sk,m(xv(k,m) − tk,m)] (2.6)

Here the training data are divided intoM separate regions. The basis functionBm(x)

is a combination of Lm functions fitted in region m. Sk,m = ±1 and tk,m is the knot

value which is defined as the endpoints of regions. xv(k,m) is the vth input variable. As

the algorithm goes forward, it updates with the truncated linear function involving a new

14



2.1. REVIEW OF METAMODELS

variable until the predefined upper limit on the number of basis functions is reached.

The backward process prunes the basis functions based on their contributions. MARS is

thoroughly compared with other metamodels in Jin et al. (2001) and Clarke et al. (2005)

in simulation applications.

2.1.4 Gaussian Process Models

Gaussian Process model is firstly known as Kriging in geostatistics field, and then

adopted for prediction in spatial statistics (Cressie, 1993) and experimental designs

(Sacks et al., 1989; Santner et al., 2003). It is reasonable to assume the simulation out-

puts yi = f(xi) and yj = f(xj) are similar if xi and xj are close to each other to get a

smooth metamodel. So it assumes all points in the domain space are spatially correlated,

following a multivariate normal distribution. For example, the simulation outputs yi and

yj follow the distribution

 yi

yj

 ∼ N

 µi

µj

 ,
 σ2 σ2R(yi, yj)

σ2R(yj , yi) σ2


 (2.7)

The correlation function R(yi, yj) can take various forms, measuring the degree of

closeness between xi and xj . For instance, the most commonly used exponential family

of correlation functions for d-dimensional inputs take the form

R(yi, yj) = exp(
d∑

h=1

θh(xi,h − xj,h)p) (2.8)

As seen in Equation (2.8), the correlation is evaluated only based on the distance be-

tween two input variables. The Gaussian Process model builds the predictor as a linear

combination of observations,

f̂(x) =

n∑
i=1

λiyi,

n∑
i

λi = 1 (2.9)

where λi is a function of the n observed points x1, ..., xn, their observations y1, ..., yn

and the correlation function R(·, ·), and is chosen to give a best linear unbiased predictor.

The Gaussian Process model also provides a unique view of prediction uncertainty with
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mean square error ŝ2(x) that is widely used in experimental design (Sacks et al., 1989)

and simulation optimization (Jones et al., 1998), where

ŝ2(x) = σ2 − r′R−1r. (2.10)

Here, r = (R(f(x), y1), R(f(x), y2), ..., R(f(x), yn)) and R is n×n correlation matrix

with (ij)th item R(yi, yj). However, the Gaussian Process model scales poorly with the

number of observations. More detailed review of its approximation schemes for large

data sets will be given in Section 2.2.

2.1.5 Artificial Neural Networks

The structure of the artificial neural networks (ANN) typically comprises of three layers:

input layer, hidden layer, and output layer. Inspired from the mechanism of human nerve

systems, each node on a layer is one neuron, and information is transformed between

layers through the connection of neurons. The general form for ANN model with d-

dimension input neurons x = {x1, · · · , xd} and one dimension output neuron follows

the form:

f̂(x) =

H∑
i=1

wih

 d∑
j=1

vijh(xi) + αi

+ β (2.11)

where h(·) is the transform function, and H is the total number of hidden neurons. αi

is the bias in ith hidden neuron, and β is the bias of the output neuron. ANN has been

commonly used in multi-disciplinary research fields. Kilmer et al. (1997) initiated ANN

as a metamodel for discrete stochastic simulation, and then it has been widely applied in

simulation metamodeling (Nasereddin and Mollaghasemi, 1999; Fonseca and Navaresse,

2002; Fonseca et al., 2003).

2.2 Review of Gaussian Process Models for Large Data Sets

The previous studies of Gaussian Process models focus on the accuracy of approximating

simulation models. However the model predictor in Equation (2.9) can become compu-

tationally intractable with a large number of observations y1 · · · , yn. This is because the
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calculation of λi involves the inversion of a n× n covariance matrix R (with each ijth

item R(yi, yj) representing the correlation between yi and yj), which typically requires

O(n3) operations and O(n2) memory and can become computationally intractable for

a large n. This has generated considerable interest in developing approximation models

for large data sets. Rasmussen and Williams (2006) provides a thorough review of ap-

proximation methods. Approximations are made either to the GP regression with fixed

parameters or to the marginal likelihood for parameter estimation. Generally, the exist-

ing approximation methods may be divided into three categories: global approximation,

localized regression, and combination of global approximation and localized regression.

We will separately review these three techniques in the following subsections.

2.2.1 Global Approximation

Global approximation methods include rank reduction and sparse approximation

(Quiñonero Candela and Rasmussen, 2005; Banerjee et al., 2008). The rank reduction

approximates the process by taking the leading terms in its Karhunen-Loève(KL)

expansion (Baker, 1977). Keeping only the first m terms will give a rank m approx-

imation. The simplest sparse approximation method is taking a subset of data as an

approximation. This is not a competitive method as it does not fully consider the spatial

uncertainty with only a part of the evaluated points. An alternative sparse approximation

scheme is to derive a predictive process conditional on a latent process over a small set

of knots (may or may not form a subset of the evaluated points). Both the rank reduction

and the sparse approximation result in an approximation of the original covariance

function R(x, x′),

R̃(x, x′) = R(x,X∗)R∗−1R(x′, X∗) (2.12)

where X∗ is the set of knots, R∗ is the covariance matrix of X∗. However, these global

approximation methods typically capture only the long lengthscale global trend of spatial

processes, leaving much of local dependencies unexplained.
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2.2.2 Local Approximation

The second category is localized regression, where model predictions are estimated based

on local neighborhoods. Local Kriging fits different Kriging models in different subre-

gions independently. Local Kriging is known for its adaptability to model nonstationary

process and its efficiency in computation. However, it suffers from discontinuities at

boundaries due to its localized independent model estimation. Park et al. (2011) pro-

posed an approach that smooths the discontinuities by adding equality constraints at the

boundaries of neighboring subregions, but additional computational time is required to

estimate the values at boundaries. Another local approximation approach is to apply the

covariance tapering, which assumes that distant pairs of observations are uncorrelated

(Furrer et al., 2006). Let R(‖x− x∗‖) denote the original covariance function. Consider

a tapering function Ktaper(‖x− x∗‖, λ), which is an isotropic correlation function that

is identically 0 whenever ‖x− x∗‖ ≥ λ. The tapered covariance function is defined as

Rtaper(‖x− x∗‖) = R(‖x− x∗‖)Ktaper(‖x− x∗‖, λ)

Sparse matrix algorithm can then be applied to realize the computational efficiency.

However, such approaches are unable to effectively capture the long lengthscale depen-

dencies, often missing the larger global trend. Recent works by Gramacy and Apley

(2014) and Gramacy and Haaland (2016) propose splitting the input domain into dif-

ferent segments where the parameters are estimated separately, enabling parallelization

in the model estimation. However accomplishing the massive parallelization may still

require large amounts of computation.

2.2.3 Combination of Global and Local Approximation

The last category combines the global approximation and the localized regression to

overcome the disadvantages of each individual method. A full scale approximation (FSA)

of covariance functions proposed by Sang and Huang (2012) approximates covariance

functions through a combination of a reduced rank approximation and a tapered residual
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approximation.

R̃(x, x′) = Q(x, x′) + (R(x, x′)−Q(x, x′)) ·Ktapper(x, x
′; γ) (2.13)

where Q(x, x′) = R(x,X∗)R∗−1R(x′, X∗) and Ktapper(x, x
′; γ) is a tapering func-

tion that decreases as ‖x− x′‖ increases and is identically 0 when ‖x− x′‖ ≥ γ. This

attempts to capture both the long lengthscale dependence and shorter lengthscale depen-

dence. As the local adjustment of FSA only captures the residual correlation of neigh-

boring points, it performs well in estimating smooth responses with strong correlation

between points. The partially independent conditional approximation (PIC) approach

(Snelson and Ghahramani, 2007) also combines a reduced rank approximation and a

locally independent residual approximation.

R̃(x, x′) = Q(x, x′) + φ(x, x′)(R(x, x′)−Q(x, x′)),

where φ(x, x′) =

 1 if x, x′ ∈ same local region

0 otherwise

The local adjustment of PIC is able to capture the correlation between points in the same

local region. The local adjustment assumed in these approaches is however still restricted

by the tapering factor and the global sensitivity parameter that controls the correlations

between the global points, as the local correlations are controlled by functions of these

parameters only. This can hinder its ability to capture the sharp changes in a high

nonstationary response.

2.3 Metamodel-based Simulation Optimization Algorithms

Metamodel can be good alternatives to simulation models to approximate the relation-

ship between inputs and outputs for black-box systems. Hence, a popular optimization

method for continuous functions is based on metamodels. With an appropriate meta-

model, we have an overview of the characteristics of black-box systems, which can be

applied to identify promising points and guide search directions. In the following sub-
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sections, several optimization algorithms that incorporate metamodels will be briefly

introduced.

2.3.1 Response Surface Methodology

Response Surface Methodology (RSM) developed by Box et al. (1987) has been ef-

fectively used in many disciplines. In this approach, polynomial models are applied to

approximate simulation models. The strategy of RSM is to sequentially explore local re-

gions by fitting a lower order polynomial model, deciding the search direction following

the steepest ascent search method, and fitting a higher order polynomial model when the

search is close to the optimal solution. First-order and second-order polynomial models

are preferred in RSM due to their simplicity and efficiency,

f1(x) = β0 +

d∑
i

βixi

f2(x) = β0 +
d∑
i

βixi +
d∑
i

βiix
2
i +

d∑
i

∑
i<j

βijxixj

where x ∈ Rd, x = {xi}di=1. However polynomial models may not be able to provide

an accurate global approximation. Due to the correlation between the high-order items

and the lower-order items, the coefficient matrix might get ill-conditioned.

2.3.2 Trust Region Methods

Trust region methods, also known as restricted step methods, were first proposed by

Celis et al. (1985). The traditional trust-region method builds a quadratic model to

approximate the true function within a trust region.

f̂(x+ d) = f(x) + d′∇f(x) +
1

2
d′Hd (2.14)

where d is the step size, ∇f(x) is the gradient of f(x), and H is the Hessian matrix

of f(x). In general, quadratic models only fit well in the neighborhood of x, which

is defined as a trust region. If the estimation is adequate, the trust region increases,
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otherwise the trust region decreases. The algorithm will solve the minimization of the

quadratic model within the trust region.

The trust region methods can be modified with other metamodels. Conn et al. (1997)

and Powell (2002, 2003) utilized the multivariate polynomial models in the trust region

framework. It is also incorporated with kriging model (Gano et al., 2006) and radial basis

functions (Wild et al., 2008). However, when applied with other metamodels where the

gradient information is not available, other informatics functions (like the trust ratio

function (Gano et al., 2006)) have to guide the search. Besides, the trust region method

is designed for unconstrained local optimization, which might get complicated when

tasked with constrained optimization or global optimization.

2.3.3 Efficient Global Optimization

Jones et al. (1998) developed the well-known Efficient Global Optimization (EGO)

that sequentially updates the kriging model with the point that maximizes the Expected

Improvement (EI) function. The general procedure is summarized as follows,

1. Run simulations at space-filling initial designs and build an initial kriging model.

2. Use cross validation to make sure the kriging model is satisfactory.

3. Find the next evaluation point that maximizes the EI function. If the maximal EI

is sufficiently small, stop.

4. Run simulations at the new selected evaluation point and update the kriging model

based on all evaluated points. And go back to Step 3.

The critical criterion in the EGO framework is the EI function, which evaluates both

the probability of improvement based on the current optimal solution and the amount of

possible improvement. The EI function is statistically formulated as

E[I(x)] = E[max[fmin − f(x), 0]]

= (fmin − f̂(x))Φ

(
fmin − f̂(x)

ŝ

)
+ ŝφ

(
fmin − f̂(x)

ŝ

)
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where f(x) is a random variable that satisfies a normal distribution N(f̂(x), ŝ2(x)), and

φ(·) and Φ(·) are the standard normal density and distribution functions respectively.

EGO has earned extensive studies in recent years due to its promising performance.

Sasena et al. (2002) claimed that EGO is sufficient and practical in engineering design

problems. Sóbester et al. (2005) proposed a weighted expected improvement for a bet-

ter control of the balance between exploration and exploitation. Kleijnen et al. (2012)

improved the kriging predictor variance through bootstrapping and extended EGO with

bootstrapped EI. However only limited research has investigated the performance of

EGO in stochastic simulations, especially with heterogeneous variance. In this research,

we also focus on the performance of EGO framework in stochastic situations.

2.3.4 Stochastic Response Surface Methods

The Stochastic Response Surface (SRS) framework was introduced by Regis and Shoe-

maker (2007) that simplifies the optimization problem of finding the next simulation

point by generating random candidate points. SRS follows a similar framework with

EGO. Different from EGO, SRS efficiently selects next evaluation points only among a

set of candidate points without evaluating all possible solutions, and it is applicable for

various metamodels and search criteria. The framework for SRS is shown below.

1. Do function evaluations at a set of space-filling initial designs.

2. Fit/update the response surface model.

3. Randomly generate candidate points

4. Select the next function evaluation point among the candidate points.

5. Do function evaluations and update the information.

This sampling framework is shown to have nice convergence properties and has wide

adaptability. It can be applied to various metamodel based optimization approaches and

search criteria (like the EI, the probability of improvement). Probability distributions

such as uniform or normal distributions can be applied to generate candidate points.
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Chapter 3

AN ADDITIVE GLOBAL AND

LOCAL GAUSSIAN PROCESS

MODEL FOR LARGE DATA

SETS

3.1 Introduction

In practice, simulation models are widely used to provide an effective and efficient

way to evaluate the behavior of real systems. However with the stochastic and complex

nature of most real systems, the simulation models can be time consuming to execute.

To facilitate the analysis and optimization of these systems, simpler approximations,

known as metamodels, that attempt to accurately capture the relationships between the

inputs and outputs of the simulation models, are often constructed with a finite number

of evaluations. A metamodel is a simplification of a simulation model. The most popular

technique used for metamodeling has been based on parametric polynomial response

surface approximations. Various other types of metamodels, like multivariate adaptive

regression splines, kriging, radial basis functions, artificial neural networks, and Support

Vector Regression (SVR), have also been proposed in recent years. Simpson et al. (2001)

reviewed the metamodel application in engineering. Li et al. (2010) also provided a
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comprehensive comparison of metamodeling approaches that can also be well applied

in simulation optimization. Among all these metamodels, the Gaussian Process model,

also known as the kriging model (Cressie, 1993), has been increasingly popular in recent

years due to its adaptability and efficiency for approximating various highly flexible and

nonlinear functional forms, and its unique statistical view of the prediction error, which

makes it more useful in simulation optimization (Jones et al., 1998; Kleijnen, 2014).

Originated from geo-statistics (Cressie, 1993), the GP model has been widely applied

in Design and Analysis of Computer Experiments (DACE) (Sacks et al., 1989; Santner

et al., 2003). Beyond the deterministic computer experiments, it has also been widely

used in the stochastic simulation through stochastic kriging model (Ankenman et al.,

2010) or the modified nugget effect model (Yin et al., 2011).

However, estimating the Gaussian Process model is a computational challenge when

the data sets are large. Examples of large data sets can be found in the field of geology,

climate or the Internet, where the data sets are updated every day and predictions or

decisions have to be made based on all the information available. In simulation, large

datasets may be encountered in experiments running on parallel processors, and also in

optimization when the number of search points increases quickly as the optimization

algorithm progresses. Given the data size of N , estimating the model parameters with

traditional methods like the maximum likelihood estimation and estimating the model

predictors involves the inversion of aN×N covariance matrix, which typically requires

O(N3) operations and O(N2) memory. This becomes computationally intractable for a

large N . As such, a desktop computer is unable to handle data sizes larger than several

hundreds. Hence, for further application of the Gaussian Process model for a larger size

of data, some approximation techniques need to be applied.

In this chapter, we leverage the benefits of a combined approach like the full scale

approximation (FSA) (Sang and Huang, 2012) method and partially independent con-

ditional (PIC) method (Snelson and Ghahramani, 2007), and develop a more general

combined model that is flexible in modeling systems whose response changes signif-

icantly across the design space. The proposed Additive Global and Local Gaussian

Process (AGLGP) model incorporates a global GP model and piecewise local GP mod-

els into an additive GP model that enables different correlation structures to be captured
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on the global and local levels, and also across different regions of the space. This enables

more flexibility in the modeling of systems whose response can dramatically change

over the design space. This non-stationarity is common in engineering systems, and

can be due to a highly non-linear response surface or the stochastic nature of systems.

For example, in production planning, when different models for different components

are integrated to generate the finished goods, the system behavior can differ greatly in

distinctive design regions. In maritime transportation, one measure of safety for a vessel

at sea is the probability of encountering a conflict, and this can change drastically with

the angle of turn in heavy traffic regions.

The general idea behind the AGLGP model is to build a global model with a small

set of inducing points to capture the global trend and build a local model to capture the

residual process from the global model. Our central contribution is to develop a model

that is computationally efficient and can capture the nonstationarity with this additive

structure. This new model structure not only helps to mitigate some of the computa-

tional issues highlighted, but also is highly flexible in capturing nonstationarity across

the domain. Different from the works in FSA and PIC, the AGLGP model explicitly

models the local residual structures independently and non-identically to enable this

flexibility. In this work, we also propose an approach to determine the local regions

which has not been previously addressed but assumed given. We further show several

nice properties of the additive model, such as identifiability. With its global and local

structure and computational efficiency, the AGLGP model can also be well suited for

simulation optimization.

This chapter is organized as follows. In the next section, we give the general ideas for

our model and proceed to derive in detail the model form and provide a method for the

generation of local regions and the estimation of inducing points. We then develop two

model estimation schemes. In Section 3.4 we discuss the identifiability of the AGLGP

model. Then in Section 3.5, the performance of the AGLGP model is numerically studied

and compared with other approximation methods like FSA and PIC.
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3.2 Model Formulation

In this section, we first provide the background of the stochastic Gaussian Process

model and give an overview of the proposed additive global and local Gaussian Pro-

cess (AGLGP) model.

3.2.1 Stochastic Gaussian Process Model Basics

The general stochastic Gaussian Process model assumes that the stochastic simulation

response can be modeled as a realization of a random process given as

y(x) = f(x) + ε(x), (3.1)

where f(x) represents the deterministic mean function of the stochastic response

(usually measured by the expectation of simulations’ performance), and ε(x) is

the random noise with mean zero and unknown variance ε(x) ∼ GP (0, σ2
ε (x)).

f(x) can be further decomposed into the process mean function µ(x) and a spa-

tial process z(x) ∼ GP (0, R(·)) with variance R(xi, xi) = σ2 and covariance

R(xi, xj) = σ2corr(xi, xj). A popular choice of corr(xi, xj) is Gaussian correlation

function that assumes corr(xi, xj , θθθ) = exp(−θ||xi − xj ||2). Here θ is the sensitivity

parameter of the correlation function. To model the dependence of σ2
ε (x) on location

x, it is further assumed that ε(x) and z(x) are independent. σ2
ε (x) can be modeled by a

spatial process (Ankenman et al., 2010; Ng and Yin, 2012). Typically, the mean function

f(x) is of the experimenter’s interest and the predictor for f(x) at any point x0 can be

expressed as

ŷ(x0) = µ(x0) + r′(R + ΣΣΣε)
−1(y − µ), (3.2)

where r is the covariance of x0 to all n observed locations, r = (R(x0, x1), R(x0, x2),

..., R(x0, xn)) and R represents the covariance between the observed points with the

(ij)th item R(xi, xj). The observations y are all n observed sample means and ΣΣΣε =

diag(σ2
ε (x1), ...σ2

ε (xn)). The predictive variance is given by

ŝ2(x0) = E(f(x0)− ŷ(x0))2 = σ2 − r′(R + ΣΣΣε)
−1r. (3.3)
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which represents the prediction uncertainty at location x0. This uncertainty depends

both on the spatial correlation and the noise variance (Ankenman et al., 2010). A similar

modified nugget effect model (MNEK) is derived in Yin et al. (2011)

3.2.2 Overview of the AGLGP model

To motivate the ideas of the AGLGP model, we take the example from Xiong et al.

(2007), where the function y(x) = sin(30(x − 0.9)4) cos(2(x − 0.9)) + (x − 0.9)/2

shown in Figure 3.1 is studied. Here we see that the function has both a large and small

scale of dependence, and the mean in the region x ∈ [0, 0.4] is much smaller than the

mean in x ∈ [0.4, 1]. To fit a single GP model with a constant mean throughout the

input region, the model will overestimate the mean and underestimate the small scale

dependence in x ∈ [0, 0.4], while underestimate the mean and overestimate the large

scale dependence in x ∈ [0.4, 1].
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True function
Overall model
Global model
Local model

Region 1 Region 2 Region 3

Figure 3.1: Plot of function y(x) = sin(30(x− 0.9)4) cos(2(x− 0.9)) + (x− 0.9)/2,
the global, local and overall models

To address this, we propose to model the function with a global model, that is devel-

oped through a small set of inducing points to capture the long lengthscale global trend

and separate local models are to capture the residual process (of shorter lengthscale) in

separate local regions (see the dotted fits in Figure 3.4). With a smaller set of inducing

points and regional local models, the computational requirements to fit the model are

greatly reduced.
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Figure 3.2: The inducing points and local regions

To adequately capture the global trend, the inducing points should sufficiently sum-

marize the observed data points and smooth out the local fluctuations to highlight the

global trend. To do so, we will carefully cluster the observed data points into groups

based on their location x and observation y and summarize these characteristics in each

group with a representative inducing point (usually the centroid of the group). Figure

3.2 illustrates this, where the boxes show the cluster groups and the centroid in each

group summarizes the observed data in the cluster. We denote the set of m inducing

points by xg = (x1
g, · · · , xmg ), where xig is a d-dimension vector xig = (xi1g , ..., x

id
g ),

and denote yg as the latent global ’observations’ at xg. These points are not observed

but summarized points of observations.

To capture the local residuals, the idea is to divide the whole design space XΩ into

K non-overlapping local regions Dk, k = 1, · · · ,K, where ∪Kk=1Dk = XΩ. Then the

set of evaluations points in each local region Dk is used to fit a local model in each

region. We denote xk
l = (x1

l , ..., x
rk
l ) to be the evaluation points in region k, where rk

is the number of evaluation points in region k, and denote the latent local residuals as

yk
l . Local residuals for all evaluation points are denoted as yl = (y1

l , · · · ,yK
l ).

3.2.3 The Development of the AGLGP Model

Based on the stochastic kriging model in Section 3.2.1, we argue that the following

model can work as a good approximation of the stochastic kriging model when the data

size gets larger. We call it an additive global and local Gaussian Process (AGLGP) model.
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The AGLGP models the stochastic simulation response at a point x as

y(x) = f(x) + ε(x) = fglobal(x) +
K∑
k=1

wkf
k
local(x) + ε(x) (3.4)

wk =

 1, x ∈ Dk

0, x /∈ Dk

Here the process mean of the stochastic response f(x) is decomposed into a global

process fglobal(x), which models the global trend andK local processes, with each local

process fklocal(x) modeling the residual process that is unexplained by fglobal(x) in local

region Dk. fglobal(x) is assumed to be a stationary GP with mean µ and covariance

function Rg(·), while fklocal(x) is assumed to be a stationary GP in local region Dk with

mean 0 and covariance function Rkl (·), where

Rg(xi, xj) = σ2corrg(xi, xj ,θ), Rkl (xi, xj) = τ2
k corr

k
l (xi, xj ,αk)

σ2 and τ2
k are the variances of the global and local processes respectively and corrg(·)

and corrkl (·) are the correlation structures of the individual processes. Furthermore,

fglobal(x) and fklocal(x) are assumed to be piecewise independent, and different local

covariance functions are allowed in different regions. This enables the flexibility to

capture the nonstationarity in the mean process. As the global model is expected to

capture the long lengthscale global trend and the local model is expected to capture the

short lengthscale residual details, it is reasonable to add constraints on the unknown

correlation parameters θ and α to satisfy 0 ≤ θ ≤ α. This will ensure a smoother

global model to capture the global trend.

As the global model fglobal(x) is a latent process modeling only the inducing points

xg, it is reasonable to assume a deterministic global model. Given the set of inducing

points xg and the global evaluations yg, the best linear unbiased global predictor at any

given point x0 can then be written as

ŷglobal(x0) = µ+ g′G−1m (yg − 1′µ), (3.5)
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where g = (Rg(x0, x
1
g), · · · , Rg(x0, x

m
g )), Gm is m × m covariance matrix with

ijth element Rg(xig, x
j
g). This global predictor interpolates yg since ŷglobal(x

j
g) =

µ+ e′i(yg − 1′µ) = yig.

With the fitted global model, we can obtain ŷglobal = (ŷglobal(x1), ..., ŷglobal(xn)).

The residuals, which capture both the residuals from the mean function and the random

noise, can then be obtained by yl = y − ŷglobal and modeled by another stochastic

kriging model ylocal =
∑K

k=1wkf
k
local(x) + ε(x). This local model captures the local

biases of the global model in each local region and the inherent stochastic noise in the

system. As we focus on stochastic simulations, y is the sample mean of the replications

taken at each evaluation point. Given K local regions D1, · · · ,DK, the local predictor

at any given point x0 is given by

ŷlocal(x0) = lk
′(Lk + ΣεΣεΣε)

−1yk
l ,∀x0 ∈ Dk, (3.6)

where lk = (Rkl (x0, x
i
l), · · · , Rkl (x0, x

rk
l )) and Lk is the covariance matrix with the

(jh)th element Rkl (xhl , x
j
l ),∀x

j
l , x

h
l ∈ xk

l . Σε = diag(σ̂2
ε (x

1
l ), ..., σ̂

2
ε (x

rk
l )), where

σ̂2
ε (x

i
l) can be estimated from the sample variance.

From Equation (3.5) and Equation (3.6), the overall AGLGP predictor can be ex-

pressed by

ŷ(x0) = ŷglobal(x0) + ŷlocal(x0)

= µ+ g′G−1m (yg − 1′µ) + lk
′(Lk + ΣεΣεΣε)

−1yk
l ,∀x0 ∈ Dk. (3.7)

As yg and yk
l are latent processes that are not observed directly, this predictor and

the predictive distribution of any input x0 can be estimated by integrating out the random

variables yg and yk
l . The details will be described in Section 3.3.

3.2.4 Selection of Inducing Points and Local Regions

In order to develop the AGLGP model in Equation (3.7), two important initial steps

have to be taken. Firstly, a smaller set of inducing points have to be determined from

the large set of evaluation points to fit the global model. Secondly, the whole space has
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to be divided into local regions for the local models. This will facilitate the estimation

of the model and enable better modeling of nonstationary responses. Two desirable

characteristics of these steps are:

• The inducing points should be generated to represent similar evaluation points

around them. The idea is to have these points sufficiently represent neighboring

observations around them and enable the capture of the long lengthscale global

trend across regions.

• Local regions are divided to provide the largest separation between observed

evaluation points. This can better approximate the assumption of independence of

the local processes across regions.

Figure 3.3: Inducing points and local regions

Figure 3.3 illustrates how the data points can be divided into smaller clusters that

are represented by an inducing point each, and how the whole two dimensional space

is divided into 3 local regions. In the following subsections, we present one particular

selection procedure where the observations are grouped through k-means, the regions

are classified by Support Vector Machine (SVM) based on the groups, and each group

of points are further clustered based on a set of contour lines to generate inducing points.

Other reasonable selection criteria such as Voronoi tessellation can also be applied.
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3.2.4.1 Partitioning the Design Space into Local Regions

Here we illustrate an approach to divide the whole design space XΩ intoK different local

regions {Dk}i=1,...,K that provides the largest separation between observations. Firstly

evaluation points x are clustered through K-means such that each cluster comprises of

a group of points xkl whose inter-point Euclidean distances are small compared with

the distances to points outside the cluster. Hence, each point in the design space XΩ is

assigned to one and only one of the discrete K clusters. The design space is thereafter

divided into K local regions Dk. To do so, we construct the boundaries through clas-

sification of the clusters with Support Vector Machine (SVM), which chooses the best

hyperplane that represents the largest separation or margin between two neighboring

clusters. For multiple local regions, we generate pairwise classifiers. Suppose that two

hyperplanes that separate two clusters of data sets xil and xjl , i 6= j with no points be-

tween them, are described by a set of points xp1 and xp2 that satisfies w · xp2 − b = 1

and w · xp1 − b = −1, where w is the normal vector to the hyperplane. Parameters

are then optimized by maximizing the distance between these two hyperplanes 2
‖w‖ ,

which is equivalent to minimizing ‖w‖ given the constraints w·x− b ≥ 1, x ∈ xil and

w·x− b ≤ −1, x ∈ xjl to ensure no data between the two hyperplanes. This approach

will create regions that have the largest separation, which achieves the desirable charac-

teristic for local regions. The k-means clustering followed by the SVM separation can

be executed quite efficiently with R or MATLAB.

3.2.4.2 Determining Inducing Points

After the evaluation points have been clustered into different local regions, we further

require a small number of inducing points to represent the points in each local region.

The set of points xkl in each local region Dk are further divided into clusters based on

their observation values yk. To do this we first determine the range of observations in the

whole space ∆y = max(y)−min(y) and a user-defined range ∆ within each cluster. To

make sure each cluster has a similar range of observations, ∆ is selected such that ∆y/∆

takes an integer. Then contour lines are drawn with an interval of ∆, i.e. L = {y|y = c}

where c ∈ {min(y),min(y) +∆, ...,max(y)−∆,max(y)}. Finally, the set of points
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settled between two neighboring contour lines ckj = {x|min(y) + ∆ × (j − 1) ≤

y(x) ≤ min(y) + ∆× j}, j = 1, · · · ,∆y/∆ are further grouped into smaller clusters.

If ∃xl /∈ ckj such that ‖xh − xk‖ > ‖xl − xh‖, ∀xh, xk ∈ ckj , xh 6= xk, ckj will

be further divided into two subclusters between xh and xk. With this, we will end up

with m subclusters c = (c1, ..., cm). The average of all the evaluation points in each

subclusters will be the inducing point value. This approach will generate inducing points

that are representative of the evaluation points in each subcluster because they are similar

in both the x and y space.

In order to determine the regions and inducing points with the above schemes, two

key inputs need to be specified, specifically the number of inducing points and the

number of regions. Here, we recommend the number of inducing points selected to

be under a hundred (for computational efficiency), and the number of local regions to

be within 10. This however has to be traded-off with the data size and the number of

parameters to be estimated as the number of parameters increases with the number of

local regions.

3.3 Model Estimation

In order to apply the AGLGP model for simulation metamodeling, a method to esti-

mate the model parameters φ = [µ, σ2,θ, τ 2,α] is required. Here, we apply the most

commonly used approach, the maximum likelihood method. The conditional likelihood

function of the observations y given xg,yg,yl can be derived as

L(φ) =
1

(2π)n/2|R|1/2
exp[(y − ŷ)′R−1(y − ŷ)], (3.8)

where R = Λ + Γ + Σε and ŷ = µ + GnmG−1m (yg − µ) + L′n(Ln + Σε)
−1yl.

yg are global observations at inducing points xg and yl are the local observations

at all observed points x. Λ and Γ represent the mean square prediction error for the

global model and local models respectively, with Λ = Gnn −G′nmG−1m Gmn,Γ =

Ln − Ln(Ln + Σε)
−1Ln. However, as yg and yl are latent variables that are not ob-

served, maximizing Equation (3.8) is not possible. Instead, the marginal likelihood of y

is used.
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We restate here the structure of the AGLGP model, where fglobal(x) is modeled as

a stationary GP with mean µ and covariance function Rg(·), while fklocal(x) is modeled

as a stationary GP in each local region Dk with mean 0 and covariance function Rkl (·).

Hence the latent variables yg and yl satisfy the following distributions

yg|xg ∼ N(µ,Gm), yl|x ∼ N(0,Ln + Σε). (3.9)

where Ln = diag{L1, · · · ,LK} is block diagonal matrix with each block Lk represent-

ing the local correlations within a local region Dk. Gm and Ln are functions of global

inducing points xg and the local regions.

In this section, we describe two estimation methods and derive their unconditional

predictive distribution at any new point x0. The first method considers both the global and

local models in a single stage that accounts for interactions between both the models, and

balances their effect. The second is a much faster two-stage estimation, which estimates

the global parameters and local parameters separately.

3.3.1 Estimating Predictive Distribution and Parameters in a One Stage

Approach

3.3.1.1 Estimating Predictive Distribution in One Stage

The unconditional predictive distribution of any input x0 can be obtained by integrating

out the latent variables yg and yl. We first observe from Equation (3.7) that the condi-

tional predictive distribution of the simulation response y0 at any evaluation point x0 is

dependent on yg and yl, and is given as

y0|x0,xg,yg,x,yl

∼ N(µ+ g′G−1m (yg − µ) + l′(Ln + Σε)
−1yl, λ+ γ + σ2

ε (x0)), (3.10)

where the mean square prediction error λ = Gnn − g′G−1m g, γ = Lnn − l′L−1n l, and

Gnn and Lnn are the global and local model variances at location x0.
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Next we note that the conditional distribution of yg given x,y can be shown to be

yg|xg,x,y ∼ N(µ+ GmQ−1m GmnK−1(y−µ),GmQ−1m Gm), (3.11)

where Qm = Gm + GmnK−1Gnm and K = Ln+Λ + Σε, Λ = diag{Gn −

GnmG−1m Gmn}, and the conditional distribution of yl given yg and y is given as

yl|xg,yg,x,y

∼ N(LnK−1{y − µ−GnmG−1m (yg−µ)},Ln − LnK−1Ln + ΣΣΣε), (3.12)

Then given a new input x0, the unconditional predictive distribution can be

obtained by integrating yg,yl from Equation (3.10). This gives y0|x0,xg,x,y ∼

N(ŷ(x0), ŝ2(x0)), where the predictive mean ŷ(x0) and predictive variance ŝ2(x0) are

ŷ(x0) =µ+ [g′Q−1m Gmn + l′(Ln + Σε)
−1LnK−1(K−GnmQ−1m Gmn)]

×K−1(y−µ), (3.13)

ŝ2(x0) =Gnn − g′(G−1m −Q−1m )g +
(1− 1′G−1m g)2

1′G−1m 1

+ Lnn − l′[ΣΣΣε + Ln]−1LnK−1Ln[ΣΣΣε + Ln]−1l (3.14)

The detailed derivation is shown in Appendix A. In the heterogeneous case where

the random error is assumed to be independent but not identical, variance information is

not available to estimate σ2
ε (x0) unless the location has been previously observed. Here

we propose to model log(σ2
ε ) as a Gaussian Process. This natural log transformation

has the nice properties of approximating normality, stabilizing variance, and ensuring

inverse transformation back to the positive scale. The details can be found in Ng and

Yin (2012).

Observing the covariance structure in more detail, suppose the full covariance

between observations y is assumed to be Gn. From Equation (3.13), the AGLGP

model approximates this with GnmG−1m Gmn + diag{Gn −GnmG−1m Gmn}+ Ln.

We see that the global reduced rank approximation GnmG−1m Gmn is only able to

capture the long lengthscale correlations, and can greatly underestimate the covariance
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Gn when the number of inducing points is small. The last two terms on the other

hand can be viewed as local adjustments to the reduced rank approximation. The

term diag{Gn −GnmG−1m Gmn} adjusts mainly the diagonal terms for the over or

underestimation of the variance and Ln captures the correlation between points in the

same local region. Different from the PIC model, whose global approximation and local

adjustment share the same set of parameters and the parameter estimation might offset

the effect of these two components, the AGLGP model is more robust in estimation by

enabling different residual correlation structures in the different local regions.

Next, we list some results and observations from two special cases.

Firstly, suppose the parameters θ, αθ, αθ, α, σ2, τ2τ2τ2 are known. We can obtain the following

theorem.

Theorem 3.1. Given the parameter values θ, α, σ2, τ2τ2τ2, the predictive mean ŷ(x0) is an

unbiased predictor of the process mean, i.e. E[ŷ(x0)− y(x0)] = 0.

The proof of this theorem is provided in the Appendix B.

Next consider a second case where m = n, xg = x and k = 1. Here we can show

the following proposition.

Proposition 3.2. When m = n, xg = x and k = 1, the global model sufficiently cap-

tures the whole process mean yglobal(x) = f(x), and the local model includes only the

random noise ylocal(x) = ε(x). Then, the predictive mean (3.13) will reduce the the

Stochastic Kriging and MNEK predictor.

The proof can be found in the Appendix C.

3.3.1.2 Estimating Parameters in One Stage

The predictive distributions derived in Equation (3.10) are given under the assump-

tion that the parameters are known. To derive the maximum-likelihood estimator of

θ, αθ, αθ, α, σ2, τ2τ2τ2, we first derive the marginal likelihood of y by integrating out yg from

Equation (3.8) to get

y|x,xg ∼ N(µ,G′mnG−1m Gmn + ΛΛΛ + Ln + ΣΣΣε) (3.15)
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Then the negative log-likelihood function which is dependent on θθθ and ααα can be shown

to be

l(θ, αθ, αθ, α, σ2, τ2τ2τ2) =
1

2
ln det R +

1

2
(y − µ̂)′R−1(y − µ̂) (3.16)

where R = G′mnG−1m Gmn + ΛΛΛ + Ln + Σε. The evaluation of this log-likelihood re-

quires calculation of the inverse and determinant of the n × n matrix R. From the

Woodbury formula, we get

[GnmG−1m Gmn + ΛΛΛ + Ln + Σε]
−1

= (I− [ΛΛΛ + Ln + Σε]
−1GnmQ−1m Gmn)[ΛΛΛ + Ln + Σε]

−1 (3.17)

where Ln is a block diagonal matrix (each block representing a local region) and Λ+Σε

is a diagonal matrix, so Ln + Λ + Σε can be inverted in blocks. Hence, the right-hand

side of Equation (3.17) involves only inversion and multiplication with a sparse n× n

block diagonal matrix ΛΛΛ + Ln + Σε as well as the inversion of a m×m matrix Qm. Al-

though there is no requirement for the blocks to be of equal size, for illustration, suppose

they all have sizeB. Thus the computational complexity of the log-likelihood calculation

is of the order O(nm2 + nB2). By using a small number m, the computational cost in

fitting the spatial model can be greatly reduced relative to the expensive computational

cost of using the original covariance function Gn, where the computational complexity

is typically of the order O(n3). Besides, the inverse of Ln + Λ + Σε shows higher

numerical stability compared with Ln + Σε, especially when the noise variance is small.

In addition, the covariance matrix can easily become ill-conditioned, for example, when

the design points are close to each other. In this case, the popular approach is to add a

nonzero nugget to the diagonal elements of the covariance matrix. Λ naturally serves

this purpose in the AGLGP model, making it numerically more stable.

To minimize the negative log-likelihood function in Equation (3.16), optimization

algorithms like the quasi-Newton methods can be applied. To address the issue of the

increasing number of parameters to estimate when input dimension increases, a further

assumption such as αih = θi + κh (assuming a constant difference κh from θi) can be

made (Ba and Joseph, 2012). We further suggest to start the algorithm from multiple

starting points to improve the convergence of these optimization methods.
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It is also noted that as the number of parameters to be optimized increases with

the number of local regions, the approximations of the Hessian matrix can become a

computational burden. However, based on our assumptions of the independence across

local regions, most of the terms in the Hessian matrix are zeros. To illustrate this, suppose

we have K local regions and each design has a dimension of d. Compared to the original

GP model whose likelihood contains only d + 1 unknown parameters, the likelihood

of AGLGP model contains (K + 1)(d + 1) unknown parameters. The Hessian matrix

of this would be a (K + 1)(d+ 1)× (K + 1)(d+ 1) matrix. From the corresponding

independence assumption across local regions, the Hessian terms ∂2l
∂αih∂αjk

= 0,∀h 6= k,

where αih, αjk represent the local parameters of input dimensions i and j in local regions

h and k. Hence, there are (K2 −K)(d+ 1)2 items in this Hessian matrix that are zeros,

improving the computation.

Although the global model is continuous and smooth throughout the input space, the

overall AGLGP model is still discontinuous at local region boundaries. The discontinu-

ities however are much smaller than with local models alone. These small discontinuities

are usually not significant for the purpose of predictions. However, if the continuity in

the overall model is required, further continuity restrictions might be required in the

parameter estimation. For example, Park et al. (2011) smoothed the discontinuities in

local models by adding extra constraints on the subregion boundaries when combining

the local predictors. However substantial computational time is required to determine

the value at the boundaries. Continuity can also be achieved by releasing the indepen-

dence assumption over non-overlapping local regions. The original matrix can instead be

partitioned into overlapping subregions and this smooths out the subregions. However,

the inverse of the new local matrix will become more computationally complex, and

the larger the overlapping areas, the more complicated the matrix inversion. Another

alternative is to constrain the local model predictors to be zero at the boundaries, and

have only the global model to dominate at the boundaries.
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3.3.2 Estimating the Predictive Distribution and Parameters with a Faster

Two Stage Approach

When estimating all the parameters in one stage through deriving the marginal likelihood,

the maximization of likelihood may be impractical due to the number of parameters. To

further improve on the computation, an alternative two stage estimation approach first

estimates the global trend model ŷg(x0) and its parameters from the marginal likelihood

of the global model (after integrating out only the latent variable yg). The predicted

residuals yl = y − ŷg for the local model are then obtained from the predictions of the

global model and the observations y. The parameters of the local model are then ob-

tained from the likelihood of the local model with the predicted residuals. This achieves

optimization of the models separately, providing only local optimal parameters for the

overall model.

First we consider the likelihood of the global model only. After we integrating out

yg, it reduces to the Sparse Gaussian Process model (Snelson and Ghahramani, 2005)

and we have the marginal likelihood as

y|xg ∼ N(µ,GnmG−1m Gmn + Λ + Σε) (3.18)

and the mean and variance of the predictive distribution at any point x0 are given as

ŷg(x0) = µ+ g′Q−1m Gmn(Λ + Σε)
−1(y − 1′µ) (3.19)

ŝ2
g(x0) = [Gnn − g′G−1m g] + g′Q−1m g (3.20)

where Qm = Gm + Gmn(Λ + Σε)
−1Gnm. Hence, as the deterministic model is as-

sumed, the global model interpolates at the inducing points to give the global trend.

However, since yg are latent variables, by integrating out yg, the global predictors can

be estimated through noisy observations y (Equation (3.19)). This noise is reflected in

the mean squared prediction error in Equation (3.20). The term in brackets in Equation

(3.20) is mean square error of the deterministic GP model, which takes a value of zero at

inducing points, but the second term in the right hand-side of Equation (3.20) is positive,

reflecting how the intrinsic noise inflates the mean squared error.
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The local models are then estimated to get the predictive local residuals. The lo-

cal residuals satisfy yl ∼ N(y − ŷg, ŝ
2
g), where y − ŷg = y − 1′µ−GnmQ−1m Gmn

(Λ + Σε)
−1(y − 1′µ). We fit a local GP model given yl and get a conditional distribu-

tion of ŷl(x0) at any given point x0 as

ŷl(x0)|yl ∼ N(l′(Ln + Σε)
−1yl, l

′(Ln + Σε)
−1l). (3.21)

The local predictive mean and the local predictive variance at any point x0 is derived as

ŷl(x0) = l′(Ln + Σε)
−1(Λ + Σε −GnmQ−1m Gmn)(Λ + Σε)

−1(y − 1′µ)

ŝ2
l (x0) = l′(Ln + Σε)

−1l

The two stage predictive mean ŷ(x0) = ŷg(x0) + ŷl(x0) and predictive variance

ŝ2(x0) = ŝ2
g(x0) + ŝ2

l (x0) are then derived as

ŷ(x0) =µ+ [g′Q−1m Gmn + l′(Ln + Σε)
−1(Λ + Σε −GnmQ−1m Gmn)]

× (Λ + Σε)
−1(y − 1′µ), (3.22)

ŝ2(x0) =[Gnn − g′G−1m g] + g′Q−1m g + l′(Ln + Σε)
−1l (3.23)

where Qm = Gm + Gmn(Λ + Σε)
−1Gnm. For the two stage estimation, we can

also express the global predictive mean by ŷg(x0) = µ̂ + g′G−1m GmnR−1(y − 1′µ̂),

where R = GnmG−1m Gmn + Λ + Σε, and the local predictive mean can be derived

as ŷl(x0) = l′(Ln + Σε)
−1yl. Similarly, we can express the global predictive mean

as a linear combination of y, where ŷg(x0) =

n∑
i=1

λiyi,
n∑
i=1

λi = 1. So E[ŷg(x0)] =

E[
n∑
i=1

λiyi] =
n∑
i=1

λiE[yi] = µ. The local predictive mean, which is a linear com-

bination of yl, can be expressed as ŷl(x0) =
n∑
i=1

δiy
i
l ,

n∑
i=1

δi = 1. So E[ŷl(x0)] =

E[

n∑
i=1

δiy
i
l ] =

n∑
i=1

δiE[yil ] = 0. Thus the overall predictive mean has E(ŷ(x0)) =

E(ŷg(x0)) + E(ŷl(x0)) = E(y(x0)), indicating that the two stage predictor is still an

unbiased predictor.
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In the two stage estimation procedure, we also derive maximum-likelihood esti-

mators (MLEs) for the unknown parameters. But differently, µ,θ, σ2 are estimated by

minimizing the negative log-likelihood function of observations while local parameters

τ 2,α are estimated by minimizing the negative log-likelihood function of local resid-

uals. Specifically, the negative log-likelihood function of µ,θ, σ2 based on the global

model can be written as

l(µ,θ, σ2) =
1

2
ln det[GnmG−1m Gmn + Λ + Σε]

+
1

2
(y − 1′µ)′[GnmG−1m Gmn + Λ + Σε]

−1(y − 1′µ)

The global parameters µ,θ, σ2 are then derived by minimizing this negative log-

likelihood function. Then, the local residuals are calculated to derive the negative

log-likelihood function of τ 2, α, where

l(τ 2, α) =
1

2
ln det[L + Σε] +

1

2
yl
′[Ln + Σε]

−1yl

and calculating the log-likelihood function of local residuals requires an order of

O(nB2). So calculating the log-likelihood function in two stage requires the same

computational complexity O(nm2 + nB2) as in one stage.

Overall, this two stage approach is computationally faster than the one stage ap-

proach as it optimizes the global and local parameters independently. The one-stage

estimation approach takes into account the interactions between global model and local

model, and there are (3K + 1)(d + 1)2 items in the Hessian matrix that needs to be

calculated. In the two stage estimation approach, only a (d+1)× (d+1) Hessian matrix

of the second-order derivative of the log-likelihood function needs to be calculated for

the global model, and the local model estimation requires additional calculation of K

(d+ 1)× (d+ 1) Hessian matrices. Hence in the iterative maximization of likelihood

function, the two stage estimation will require less than half the effort to calculate its

Hessian matrix in each iteration. This two stage estimation approach however is unable

to capture the interactions between the global and local models in the optimization of

the likelihood.
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In general, the one stage estimation approach will provide more accurate predictions

as it fully accounts for the interactions between the global and local models in its esti-

mation, and hence, a trade-off between accuracy and computational efficiency has to be

considered when selecting the estimation method.

3.4 Identifiability of the AGLGP model

An important property for an additive model to have is identifiability, especially when

each component of the model is to be applied for purposes like optimization. To show

this property of our model, we assume every possible structure of the AGLGP model is

described by parameters φ = [µ, σ2,θ, τ 2,α]. For each φ, any set of observations y

follow the multivariate normal distribution y ∼ N(µ,R(φ)), so the probability density

function for y is described by f(y,φ). Based on Koopmans and Reiersol (1950), we

define the identifiability in our framework as follows.

Definition 3.3. Two sets of parameters (structures) φ1 and φ2 are said to be observa-

tionally equivalent if f(y,φ1) = f(y,φ2) for all y in Rn.

Definition 3.4. Two sets of parameters (structures) φ1 and φ2 for the AGLGP model

are said to be observationally equivalent if µ1 = µ2 and R(φ1) = R(φ2) for all y.

Definition 3.5. A set of parameters φ0 in Φ is said to be globally identifiable if there is

no other φ in Φ which is observationally equivalent.

The covariance structures for the global and local models are given as Rg(xi, xj) =

σ2corrg(|xi − xj |,θ) and Rkl (xi, xj) = τ2
k corr

l
k(|xi − xj |,αk). Here we make the

following assumptions.

Assumption 3.6. corrg(·), corrlk(·) are not linear functions of θ and αk

Assumption 3.7. The mean µ is a function that is identifiable and independent of

[σ2
2,θ2, τ2

2,α2]

To show the AGLGP model is identifiable, we need to show µ1 = µ2 and R(φ1) =

R(φ2) are only satisfied when µ1 = µ2 and φ1 = φ2. Given the specified global and

local covariance structures, we see that R is not a function of µ. From Assumption 3.7,
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3.4. IDENTIFIABILITY OF THE AGLGP MODEL

this is equivalent to showing R(φ1) = R(φ2) is satisfied only when [σ2
1,θ1, τ1

2,α1] =

[σ2
2,θ2, τ2

2,α2]. For correlation functions satisfying Assumption 3.6, e.g., exponential

family functions, the following lemmas show that each item in the covariance matrix

R is equal for two sets of parameters φ1 and φ2 only when φ1 = φ2, and hence, by

Definition 3.5, we show identifiability.

Each item Rij can be expressed as

Rij =

 Gij + Lij , xi, xj ∈ Dk

Gij , xi ∈ Dk, xj ∈ Dh, h 6= k
, (3.24)

where

Gij =

 gi·G
−1
m g·j , i 6= j

σ2 , i = j
, Lij =

 τ2
k corr

l
k(|xi − xj |,αk) , i 6= j

τ2
k , i = j

.

The block diagonal items of R is defined by the covariances between points in the

same local region, while off the block diagonal items are the covariances between points

in different local regions. Lemma 3.8 first shows that the off block diagonal items are

the same only when the parameters are the same, and Lemma 3.9 shows similarly for

the block diagonal items.

Lemma 3.8. For all xi ∈ Dp and all xj ∈ Dq and p 6= q, the (ij)th element in

covariance matrix Rij(φ1) = Rij(φ
2) is only satisfied when σ2

1 = σ2
2 and θ1 = θ2

Lemma 3.9. Given σ2
1 = σ2

2 and θ1 = θ2, for all xi, xj ∈ Dk, Rij(φ1) = Rij(φ
2) is

only satisfied when τ2
1 = τ2

2 and α1 = α2

Theorem 3.10. Under Assumptions 3.6 and 3.7, the set of parameters of the AGLGP

model is identifiable.

The detailed proof of these lemmas are provided in the Appendix D. As shown, the

basic assumptions for piecewise independence of the local models provide the essential

conditions for identifiability.
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3.5 Numerical Experiments

In this section, numerical examples are presented to evaluate the performance of the

model. First we investigate the efficiency of the selection of the inducing points and do-

main decomposition strategies. The AGLGP model is then numerically compared with

the modified nugget effect kriging (MNEK) model (Yin et al., 2011) to study the approx-

imation accuracy, and other approximation methods including full scale approximation

method (FSA) (Sang and Huang, 2012), localized GP (LGP) model, reduced rank (RR)

approximation (Banerjee et al., 2008) and PIC (Snelson and Ghahramani, 2007).

The implementations of all methods were conducted in MATLAB. As the implemen-

tations of the other methods are not available, we wrote our own codes for PIC, FSA,

LGP and RR. Throughout the numerical analysis, we used the Gaussian covariance

function. All numerical studies were performed on a processor with quad-core 3.3 GHz

CoreTM i5 CPU and 8 GB memory.

3.5.1 Effects of Inducing Points and Local Regions on AGLGP Model Es-

timation

In the proposed AGLGP model, a set of criteria are applied to generate inducing points

and local regions. In this section, the effects of these criteria on the model estimation are

compared with the popular criteria like k-means, Voronoi tessellation and grid partition.

k-means (MacQueen, 1967) clustering technique aims to partition n observations into k

clusters in which each observation belongs to the cluster with the nearest mean. Voronoi

tessellation (Okabe et al., 2009) partitions the whole space into local regions based on

their distance to a specified set of points, which is a specific subset of the space. There

is a corresponding region for each of these points consisting of all points closer to that

point than to any other. Grid partition is one of the simplest domain decomposition

methods, which partitions the whole space into local regions by equally splitting each

decision variable.

Here we consider a simple test function y(x) = cos(100(x− 0.2))e2x + 7 sin(10x)

on [0,1] with a noise function given by ε(x) ∼ N(0, σ2
ε (x)) and the noise variance

is σ2
ε (x) = 6 + 5 sin(10x). Assume the domain space is decomposed into three local
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regions. The average mean squared error (IMSE) between the AGLGP predictor ŷ(x)

(Equation 3.7) and the signal function y(x) at N unsampled points works as the error

measurement. In each macro replication k, we have MSE(k) = 1
N

∑N
i=1(ŷ(xi) −

y(xi))
2. The average of MSEs based on M macro replications is given by

IMSE =
1

M

M∑
k=1

MSE(k) (3.25)

For a set of irregularly distributed design points, we first compare with k-means

to generate different sets of inducing points given the same local regions. As shown

in Table 3.1, given the same local regions, the AGLGP predictions with the proposed

clustering method are significantly better than with k-means at level α = 0.05. This

Table 3.1: Error measurement of AGLGP model with different clustering techniques in
local regions

AGLGP Clustering k-means

1.5329 1.6595

is because the proposed clustering technique in AGLGP model not only considers the

neighbouring locations as k-means but also considers the range of observation values to

better capture the long lengthscale global trend.

Similarly, the AGLGP predictions are compared given different local regions which

are generated by, for example, the regular grid partition, Voronoi tessellation and Sup-

port Vector Machine (SVM) (which is applied in the proposed AGLGP model estima-

tion). The IMSE is compared given both a set of space-filling designs and a set of

concentrated designs. The space-filling design is generated by Latin hypercube design

while the concentrated design is generated based on a mixture of normal distributions

0.7N(1, 0.52) + 0.3N(4, 0.52).

Table 3.2 shows that the IMSE with SVM is significantly better than with the regular

grid at α = 0.05. Although there is no significant difference between the SVM and

the Voronoi tessellation with space-filling designs, the SVM decomposition method is

significantly better than the Voronoi tessellation with concentrated designs.
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Table 3.2: Error measurement of AGLGP model with different region separation tech-
niques

SVM regular grid Voronoi

Space-filling designs 1.4981 1.5141 1.4962

Concentrated designs 6.6188 7.7606 6.9170

In general, the proposed approach to determine the local regions and inducing points

works efficiently, especially for cases with concentrated designs like sequential opti-

mization problems where the evaluated points tend to be clustered in promising local

regions.

3.5.2 Comparative Studies for the AGLGP Model

In this section, AGLGP model is numerically compared with the modified nugget effect

kriging (MNEK) model (Yin et al., 2011) and other approximation models including

full scale approximation method (FSA) (Sang and Huang, 2012), localized GP (LGP)

model, reduced rank (RR) approximation (Banerjee et al., 2008) and PIC (Snelson and

Ghahramani, 2007).

We run two different test functions with different functional variability to compare

the performance of the approximation models under different scenarios. Test 1 function

is based on an irregular function y = cos(60(x − 0.1)) exp(sin(10x)), with different

local functional variability (short lengthscale) in different regions (Figure 3.4). Test

2 function is y(x) = sin(30(x − 0.9)4) cos(2(x − 0.9)) + (x − 0.9)/2 as shown in

Figure 3.5. This function has a long overall global trend (long lengthscale), and also

local functional variation (short lengthscale).

We simulate output from these functions with three different noise level functions,

namely σ1
e = 0, σ2

e = 0.55 + 0.45 sin(10x) and σ3
e = 5.5 + 4.5 sin(10x). We take 1000

design points and 20 replications are simulated at each design point. The average mean

squared error between the predictor and the signal function at N = 1000 unsampled

points is used as the error measurement. For FSA, PIC, and RR, we chose the same

number of inducing inputs as AGLGP, which differs in each macro-replication. The
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Figure 3.4: Test 1 function
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Figure 3.5: Test 2 function

tapering scale used for FSA is 0.2, and the same number of local regions is used for PIC

and LGP as with AGLGP (equal to 5).

Table 3.3 summarizes the results. The AGLGP model and LGP model are statistically

better than the other models (at α = 0.05) for both test functions and at all levels of

noise. For Test 1 where the function exhibits only short lengthscale local variation, the

difference between all these models is not as large as the Test 2. For both test functions,

the larger the noise variance, the smaller the relative difference between these models.

In comparing the combined models, the AGLGP is able to outperform FSA and PIC as

it is better able to capture the short lengthscale variability with independent local model

parameters across the design space. Its performance is more pronounced in Test 2 where
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Table 3.3: Error measurement of approximation models with one-dimension test function

Test 1 AGLGP LGP FSA RR PIC

σ1
e = 0 8.95×10−5 8.99×10−5 0.0589 0.0981 0.0605

σ2
e = 0.55 + 0.45 sin(10x) 0.0031 0.0034 0.0951 0.1674 0.0793

σ3
e = 5.5 + 4.5 sin(10x) 0.2046 0.2049 0.2859 0.3795 0.2919

Test 2 AGLGP LGP FSA RR PIC

σ1
e = 0 6.16×10−6 4.16×10−6 0.0020 0.0077 0.0048

σ2
e = 0.55 + 0.45 sin(10x) 0.0006 0.0006 0.0028 0.0075 0.0022

σ3
e = 5.5 + 4.5 sin(10x) 0.0301 0.0295 0.0405 0.0477 0.0408

the short lengthscale variability changes irregularly across different regions of the design

space.

Furthermore, when comparing the computational times to estimate the model, the

estimation of the LGP is the fastest, requiring 4.5623 seconds, followed by RR with

8.3598 seconds. AGLGP, FSA and PIC share the similar computational time of around

12 seconds.

Although the fitting of the LGP model is faster, it suffers larger discontinuities on the

boundary as it is unable to capture correlation across local regions (off block diagonal),

while the AGLGP captures it with a reduced rank like approximation. To study the extent

of discontinuity of both models at the boundaries, we define the discontinuity measure

as the absolute difference between the predictions from neighboring local models. Table

3.4 compared the average of the discontinuities over all boundaries for AGLGP model

and LGP model. Results show that AGLGP model has smaller discontinuity for both

functions at all noise levels.

Table 3.4: Discontinuity measurement of AGLGP and LGP models with one-dimension
functions Test 1 and Test 2

Test 1 Test 2

σ1
e σ2

e σ3
e σ1

e σ2
e σ3

e

AGLGP 0.0699 0.0808 0.1450 0.0188 0.0247 0.0266

LGP 0.1093 0.1279 0.1937 0.0579 0.0755 0.1324
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3.6 Conclusions

In this chapter, we proposed an additive global and local Gaussian Process (AGLGP)

model to approximate the response surface of computer models where large data sets

are observed. The proposed AGLGP model incorporates a global model and piecewise

independent local models, which combine to capture the nonstationary features of the

simulation models. The AGLGP model was also shown to be identifiable. The numeri-

cal study illustrated the performance of AGLGP with several other approximating GP

models, and the results of AGLGP are promising. The global and local features of the

AGLGP model make it promising in solving global optimization problems, especially

in its application to combined global and local search algorithms.
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Chapter 4

COMBINED GLOBAL AND

LOCAL METHOD FOR

STOCHASTIC SIMULATION

OPTIMIZATION WITH AN

AGLGP MODEL

4.1 Introduction

The development of the AGLGP model in Chapter 3 raises the interest of its application

in optimization of stochastic simulation models. The AGLGP model is an additive

surrogate that consists of a global model that captures the global trend and local models

that capture the local residuals. With its global and local structure and computational

efficiency, the AGLGP model is also well suited for simulation optimization. In this

chapter, we develop a new optimization algorithm that leverages on the global and local

structure for a combined iterative global and local search.

Given an objective function f(x), where the design points x have a feasible region

XΩ, the general target of global optimization is to find the optimal solution x∗ that

satisfies f(x∗) = minx∈XΩ
f(x). In stochastic simulation, as the objective function can
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only be observed with noise, we are interested in solving the following problem:

min
x∈XΩ

E(y(x)) (4.1)

where y(x) are sample observations.

To solve such problems, there are generally two classes of approaches: direct meth-

ods and metamodel-based methods. Popular direct methods include adaptive random

search such as COMPASS (Hong and Nelson, 2006), nested partition (NP) methods

(Shi and Ólafsson, 2000), and other heuristic methods such as genetic algorithm and

simulated annealing approaches. These direct methods are applied directly into the sim-

ulator and the search is conducted on the simulator. COMPASS provides an efficient

method to find local optimal solutions in a stochastic environment. NP systematically

partitions the feasible region into subregions, assesses the potential of each region, and

then concentrates the computational effort in the most-promising region. Some direct

methods have been shown to be globally convergent, but they typically require a larger

number of simulations to obtain adequately good solutions.

Metamodel based methods estimate a metamodel (also known as surrogate model,

or response surface model) with few simulations in the search procedure, to quickly

evaluate the performance at any given point in the domain space without the need to

run the simulator at every potential point. Such methods provide the information of

the entire surface for better identifying the points for further simulation. The Gaussian

Process (GP) model has been used in various types of black-box optimization problems.

A review of global optimization algorithms for deterministic computer models has been

conducted by Jones (2001). The Efficient Global Optimization (EGO) algorithm (Jones

et al., 1998) is a popular and widely used algorithm that determines the next evaluation

point by maximizing the expected improvement (EI) from the current optimal solution.

Huang et al. (2006), Picheny et al. (2013), and Quan et al. (2013) further extended this

framework to stochastic simulation with homogeneous or heterogeneous variance.

Sequential Kriging Optimization (SKO) proposed by Huang et al. (2006) is adaptable

to the stochastic simulation model. With an augmented EI function, the SKO accounted

for the influence of random noise ε(x) and considered the option of adding replications
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on the existing design points other than exploration for new design points. However,

the SKO only considered the homoscedastic cases, assuming that the random noise

function has constant variability throughout the entire sample space. Picheny et al. (2013)

proposed an expected quantile improvement (EQI), taking the kriging percentile as a

measure. It works well for heterogeneous nose, but the noise variance has to be known.

Quan et al. (2013) developed a two stage sequential optimization (TSSO) framework

that can be adopted for the optimization of stochastic simulation with heterogeneous

variances. Without additional requirement for the noise variance function, the algorithm

is less computational demanding. However, all of these methods may not work efficiently

when optimizing a highly nonstationary response surface, where a large number of

evaluations might be required to get a reasonably good solution.

In this chapter, we propose a combined global and local optimization (CGLO) al-

gorithm based on the AGLGP model proposed in Chapter 3. Specifically, as the global

model in AGLGP model captures the global (long lengthscale) trend, it is useful in iden-

tifying promising regions to conduct more detailed search. Within a promising region

where the trend is low, the AGLGP model with its local information can be further used

to search more finely for a best minimum point in that region. Finally, as a local model

provides information on the residuals, it can be applied to determine the noise and bias

in each region. Our algorithm shares a similar framework with the Efficient Global Op-

timization (EGO) (Jones et al., 1998), but works more efficiently due to the global and

local features of the AGLGP model, when the number of evaluations observed gets large

as the iteration progresses to find the optimal solution.

This chapter is organized as follows. In Section 4.2, we first review the background of

the expected improvement functions. The detailed development of the CGLO algorithm

is provided in Section 4.3. Section 4.4 presents its convergence properties. Numerical

results are given in Section 4.5 and Section 4.6 followed by conclusions in Section 4.7.
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4.2 The Expected Improvement Function and the Modified

Expected Improvement Function

In surrogate-based optimization algorithms, several criteria of selecting the next evalua-

tion point such as minimizing the response, minimizing a lower bound of the response,

maximizing the probability of improvement or maximizing the expected improvement,

have been proposed (Jones, 2001). Among these criteria, the expected improvement

distinguishes itself for its ability in automatically balancing between exploration and

exploitation to efficiently find the global optimal solution. Here we review the expected

improvement function and its extensions in the stochastic case with heterogeneous noise

variance.

Jones et al. (1998) defined the improvement function at point x0 as I(x0) =

max[fmin − f(x0), 0] where fmin is the observed optimal solution. At any unsampled

point x0, the mean response f(x0) is unknown, but can be predicted with a mean f̂(x0)

and a variance ŝ2(x0), and hence the expectation is considered.

E[I(x0)] = E[max[fmin − f(x0), 0]] (4.2)

This criterion not only considers the point with lower predicted response surface, but also

with high spatial uncertainty in the response. According to Jones et al. (1998), Equation

(4.2) can be computed by

E[I(x0)] = (fmin − f̂(x0))Φ

(
fmin − f̂(x0)

ŝ(x0)

)
+ ŝ(x0)φ

(
fmin − f̂(x0)

ŝ(x0)

)
(4.3)

Quan et al. (2013) adopted the EI function to address the stochastic simulation sys-

tems with heterogeneous variance. They adopted the modified nugget effect kriging

(MNEK) model (Yin et al., 2011) and proposed the following modified expected im-

provement (mEI) to drive the sequential search for new evaluation points in the search

stage.

mEI(x) = E(max[ymin − y(x), 0]) (4.4)
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In this proposed criterion, ymin is the predicted response at the sampled point with

the lowest sample mean, and y(x) is a normal random variable with mean given by the

MNEK predictor at x as shown in Equation (3.2) and variance given by the predictors

spatial prediction uncertainty

ŝ2
z(x0) = E(f(x0)− ŷ(x0))2 = σ2 − r′R−1r. (4.5)

By ignoring predictor uncertainty caused by random variability, the mEI function as-

sumes that the observations are made with infinite precision so the same point is never

selected again. This enables the search to focus on new points in promising regions

with high predicted responses and new points that reduce the spatial uncertainty of the

metamodel.

4.3 Development of Methodology

4.3.1 General Framework of the CGLO Algorithm

The CGLO algorithm is an iterative algorithm composed of a global search stage fol-

lowed by a local search stage. The global search stage exploits the whole space globally

while the local search stage exploits within a promising region to find the optimal point

in that region. Local search here emphasizes the search in the promising local region.

The terminology is not to be confused with the search for a local solution to the opti-

mization problem here. Considering a total budget of T , in each iteration t, the budget

exhausted is denoted as Bt, where Bt = Bt,s + Bt,a. The budget Bt,s is for the local

search step to find new design points and the budget Bt,a is for the local allocation step

to allocate replications to existing design points. nmax is the maximum number of new

evaluation points at each iteration. An overview of the algorithm is given in Table 4.1.

In the next subsections, we describe Steps 3 and 4 in detail. It is worthwhile to note

that the local regions are decided based on the space-filling initial designs and are kept

constant over iterations. This is to facilitate computation by avoiding the redivision of

regions after each iteration. In optimization problems where our ultimate goal is global

optimization, most of the design points tend to end up in several clusters. If one of the
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Table 4.1: Overview of CGLO

Combined Global and Local Optimization Algorithm

Step 1: (Initialization) Run a size n0 space filling designs, with rmin replica-

tions allocated to each point. Total initial replications B0 = n0rmin.

Set t = 0.

Step 2: (Validation of overall model) Fit an AGLGP response model to the set

of sample means and variances, and use cross validation to ensure that

the AGLGP prediction is satisfactory.

While the available replications A = T −
∑t

i=0Bi > 0, t = t+ 1

Step 3: (Global Search) Generate nc candidate locations Ωg. Select a point

xg0 among Ωg based on the global model and a global criterion, and

identify the local region Dk,t, where xg0 ∈ Dk,t to conduct the local

search.

Step 4.1: (Local Search Step) While nt < nmax and A > 0,

(Fit/Update a local model) Fit or update the local model in the local

region Dk,t.

(Generate Candidate Points) Randomly generate nl candidate points

Ωl ∈ Dk,t.

(Select the Next Evaluation Point) Search for the location x∗nt
from

the candidate points Ωl based on the overall model and a local search

criterion and evaluate at x∗nt
with rmin replications.

Break Step 4.1 if a switching criterion is satisfied. end

Step 4.2: (Local Allocation Step) Decide the budget Bt,a and the allocation strat-

egy for additional evaluations among those evaluated points in Dk,t.

end

Step 5: (Return the Optimal Solution) Return the point with the lowest sample

mean.
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clusters ends up located near a boundary, and the observations in the cluster are dense, a

reasonably good model can be developed already with the information from only these

dense points without considering the correlations from the neighboring region. If how-

ever, only few points are located near the boundary, the independence assumption will

hold true. Hence, keeping local regions constant throughout the algorithm is approxi-

mately reasonable. The algorithm can also be modified to update the local regions after

Step 4.2 in each iteration.

4.3.2 Global Search Stage

In the global search in Step 3, CGLO focuses on identifying a promising local region

to focus the search. No simulation or budget is exhausted in this stage. The promising

region is identified based on the estimated global model only. The global search stage

randomly generates a set of candidate points Ωg and selects the point xg0 that maximizes

the global expected improvement among Ωg. The local region Dk where xg0 ∈ Dk will

be selected as the promising region for further local search. This sampling procedure

is similar to the Stochastic Response Surface (SRS) framework (Regis and Shoemaker,

2007).

4.3.2.1 Generation of Candidate Points

Here we provide some details on the generation of candidate points in step 3. Suppose

we generate nc candidate points as Ωg. The following condition will be imposed on the

selection of candidates. [C1] The candidate points Ωg have to be spread out across the

whole space and the size must be at least equal to the number of local regions such that

there exists at least one candidate point in each local region. Possible choices include

a Latin Hypercube design across the regions and Treed partitioning that divides up the

input space by making binary splits on the value of each variable (Breiman et al., 1984).

Based on our numerical tests, we find that an nc value of about 10k points is a reasonable

choice for a k dimensional problem.
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4.3.2.2 Global Expected Improvement

As the purpose of the global search is to quickly identify a promising local region to

concentrate the local search, we want the algorithm in this stage to explore the whole

design space for promising solutions in regions that have not been sufficiently searched

(in the hope of finding regions better than the regions that have been searched so far),

and in regions with potentially good minimum solutions.

Based on the global model which smooths out the localized features in each local

region, the predictive global trend can provide a guide towards the promising solutions in

the design space. However, as the global model is based on inducing points, the predictive

variance ŝ2
g(x) does not directly reflect the spread of the observations. Specifically, a

high ŝ2
g(x) can indicate few or no inducing points in that region. In regions where

there are no inducing points, there are no observations and hence exploration should be

done in that region, while few inducing points in a region can imply two possibilities

on the distribution of observations in that region. If the few inducing points are due

to few observations, it is worth exploring further in that region. However, if the few

inducing points are due to a large number of observations in that region being very

similar (small variability among them) and hence clustered together, thus requiring only

one inducing point to closely represent them, there is little need to further explore there

as it is highly explored with observations that are all close together. Hence, to balance the

global search, the number of observations in each region is another important indicator

to ensure a spread of observations, especially in promising regions.

In order to achieve the goals of identifying regions that are less explored and also

regions with promising low trend in this global stage to enable the local stage to pursue

more intensely, we propose to use a modified global EI function,

gEI(x) = E{max(ygmin − yg(x), 0)} · 1

1 + eni/v−5
(4.6)

where ygmin is the lowest predicted global evaluation among the current inducing points.

yg(x) is a normal random variable with mean given by ŷg(x) and variance given by ŝ2
g(x).

The first term of the product in Equation (4.6) is the EI function which has incorporated

the location of the inducing points and the global trend and represents how much a
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new point is expected to be better than the current best solution of the global model.

The second term is a factor designed to account for observations around each point that

have been aggregated away with the inducing points. It serves as a penalty for points

with many observations around it, giving diminishing returns overall for points with

increasing number of observations around it. Specifically, the factor is a logistic function

that decreases as ni increases, where ni is the number of neighbors of candidate point xic.

v is a user-defined parameter that controls the steepness of the function, which represents

how fast the gEI decreases with the increase of observations. The set of neighbors of

xic ∈ Dk is defined as B(xic) = {x ∈ xk
l : ||x−xic|| < ||x−x

j
c|| ,∀xjc ∈ Ωg∩Dk, j 6= i}.

With given ni, the larger value of v, the larger the factor. The factor approaches zero

when ni/v ≥ 10, and so a possible choice for v is v = MAX/(10nc), where MAX is

the maximum number of evaluation points allowed given the total budget and nc is the

number of global candidate points.

Overall the gEI in Equation (4.6) is consistent with our desire to have the global

stage identify regions that are promising (in terms of lesser explored and hence possess

the potential of a better solution, and lower global trend which may also yield a better so-

lution), and the point obtained by maximizing Equation (4.6) will indicate the promising

region to search more comprehensively in the local stage.

4.3.3 Local Search Stage

Next we provide the details on the local search. Once the candidate point x0
g is selected by

the global search, the local region Dk in which x0
g lies will be selected as the promising

region. The local stage then searches more intensely within this promising region for a

better solution. Here we adopt a similar approach to TSSO (Quan et al., 2013), in which

this local stage is divided into a search step to find new design points and an allocation

step to manage the random variability within this region. A budget Bt,s is allocated to

the search step and a budget Bt,a is allocated to the allocation step. We describe the

details of this local search step (Step 4.1 in Table 4.1) and local allocation step (Step 4.2

in Table 4.1) in the following subsections.
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4.3.3.1 Local Search Step

The role of this local search step is to start from the local area around the promising

point x0
g identified in the global stage and quickly progress to a better solution within

the local region. In order to achieve this, we apply the mEI criterion (Quan et al., 2013)

to sequentially select the next evaluation point,

mEI(x) = E(max[ymin − z(x), 0]), x ∈ Ωl

where ymin is the predicted response at the sampled points in the promising region

with the lowest sample mean, and z(x) is a normal random variable with mean given

by AGLGP predictor and variance given by spatial prediction uncertainty ŝ2
z = Lnn −

l′L−1n l. Here the overall AGLGP model is used as we require a more comprehensive

and accurate search within this region for a better minimum point. By ignoring predictor

uncertainty caused by random variability, the mEI assumes that the observations are

made with infinite precision so the same point is never selected again (as the local alloca-

tion step will by design address the stochastic noise). This enables the search to focus on

new points with low predicted response and new points in the less explored areas of the

local region. The point x∗ ∈ Ωl that maximizes the mEI will be simulated with rmin

replications. The candidate points Ωl are randomly generated from a normal distribution

with mean x0
g and variance σ2

n. Here, σ2
n is defined by the minimum distance between

global candidate points to make the majority of the local candidates Ωl generated within

the neighborhood of x0
g.

The local search step is sequentially repeated until a switching criterion is satisfied.

In each repetition of this local step, the candidate set of points Ωl is updated as the

search sequentially searches around the local region, and is taken to consist of normally

generated points in the neighborhood of the last point simulated x∗. The overall budget

expended in this local search step is Bt,s = nt × rmin, where nt is the number of

iterations (or points evaluated) in this search step. As nt varies from iteration to iteration

of the algorithm, nt and hence Bt,s are dynamically decided in each iteration of the

algorithm.

59



4.3. DEVELOPMENT OF METHODOLOGY

Switching Criterion Each time a new evaluation point is simulated, the local model

and ymin will be updated accordingly. The points in the local region Dk will be reclus-

tered and inducing points updated. As more new points are observed, the number of

inducing points and their values in this region can significantly change, potentially chang-

ing the global model. The switching criterion of the local stage then dynamically decides

whether to continue with the local search in the current local region or return to a global

search in the entire design space. As the global search employs the global model in the

gEI, it is reasonable to return to the global search again when either the global model

changes or the penalty factor in the gEI reduces to identify a new promising region.

To prevent selecting the same promising region in consecutive iterations, we require

the algorithm to return to the global search stage only when the number of inducing

points in the promising region increases or a maximum number of new design points

nmax that gives a smaller gEI in the current promising region than the other regions,

max
xc∈Ωg∩Dk

gEI(xc) ≤ max
xc∈Ωg∩D\Dk

gEI(xc), (4.7)

is met. This reduces the number of iterations between global and local search. The

refitting of the global model is only done when the global model or gEI changes. By

defining the switching criterion, we also limit the budget exhausted in this step to nmax×

rmin. If the remaining budget is smaller than this limit (T −
∑t−1

i=1 Bi < nmax ×

rmin), additional simulations should focus on the allocation step for finding the optimal

solution.

4.3.3.2 Local Allocation Step

The allocation step is dedicated to distribute additional simulations among sampled

points to improve the evaluation of the noisy simulations. For every evaluated point,

more simulation replications can be allocated for two purposes. Firstly, to improve the

fit of the global model (for a more efficient global search), more simulation replications

should be allocated to improve the clustering and the estimation of inducing points.

Secondly, to improve the local model estimation and the local optimal value (i.e., optimal

in the local region), more simulation replications are needed to improve the observations
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at evaluated points. In this step, we dynamically decide the budget allocated by taking

the maximum of budget allocated to each point that satisfies both the purposes.

First, to improve the clustering and estimation of inducing points within a local

region, the effect of random noise on the clustering technique has to be evaluated. An

evaluation point might get wrongly clustered based on the defined contour lines. Given

the contour lines, we define that a point is wrongly clustered if its noisy observation falls

into a different cluster from its ’best’ cluster, defined as the cluster where its true mean

value (first two terms of Equation (3.4)) falls into. To decide which evaluation point is

likely to be wrongly clustered and how much budget should be allocated to bring it to its

’best’ cluster, an evaluation criterion related to the distance to the contour lines and the

noise variance is used. This is explained by Equation (4.8) and Equation (4.9) below.

An observation with a large noise variance or a small distance to the contour lines

has a high chance of being wrongly clustered. The noise variance only decreases at the

rate of 1/
√
r when averaging over r replications, but we can be at least approximately

99.7% confident that one point xi is rightly clustered if

∆i ≥ 3σ̂2
ε (xi)/

√
Ni,v + ri (4.8)

where ∆i is its response distance to the nearest contour line, ∆i = miny∈Y |ȳ(xi)− y|,

σ̂2
ε (xi) is sample variance estimated through ri replications and Ni,v is the number of

additional simulations required for improving the cluster where the evaluation point xi

lies. Hence,Ni,v ≥ (3σ̂2
ε (xi)/∆i)

2− ri. As we do not want to allocate too much budget

without the updating information, the budget allocated to improve the clusters is limited

by a maximum number vmin. Specifically,

Ni,v =

 min{d(3σ̂2
ε (xi)/∆i)

2e − ri, vmin} for (3σ̂2
ε (xi)/∆i)

2 > 1

0 for (3σ̂2
ε (xi)/∆i)

2 ≤ 1
(4.9)

For the second purpose of improving the local optimal value, additional replications

are distributed with the goal of maximizing the probability of the correct selection of

the local optimum. The maximum number of replications for this purpose is denoted

as Bt,b. OCBA provides a rigorous way of allocating budget to identify the sampled
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point with the best response by balancing the response and noise level observed for each

point. Suppose each point xi has a sample mean given by ȳi and a sample variance

σ2
ε (xi). Then according to Theorem 3.2 provided by Chen and Lee (2010), the Approxi-

mate Probability of Correct Selection (APCS) can be asymptotically maximized when

available budget tends to infinity and when

Ni,b

Nj,b
=

(
σε(xi)/∆b,i

σε(xj)/∆b,j

)2

, i, j ∈ {1, 2, ...rk∗}, i 6= j 6= b (4.10)

Nb,b = σε(xb)

√√√√ n∑
i=1,i 6=b

(
Ni,b

σε(xi)

)2

where ȳb is the lowest sample mean in the current region, Ni,b is the number of simula-

tions allocated to point xi and Nb,b is for xb with the lowest sample mean, so
∑

iNi,b =

Bt,b. ∆b,i = ȳi − ȳb. As the focus here is on illustrating the application of the AGLGP

model in optimization, we assign constant Bt,b over iterations for simplicity. More so-

phisticated budget allocation strategies can be applied to improve the convergence rate.

Finally we have Ni = max(Ni,v, Ni,b) to satisfy the two purposes of improving

the estimation of inducing points and improving the global optimal solution in the local

region. Also Bt,a =
∑ri

j=1Nj . We note here that the allocation budget required is

dynamically decided in each iteration based on the number required to improve the

estimation of the inducing points and the number required to improve the estimation

of the local model. If the remaining budget A = T −
∑t−1

i=1 Bi − Bt,s < Bt,a, it is

reasonable to allocate the remaining budget to find the best optimal solution using the

OCBA allocation only as no additional iterations will be available to refit the global

model for global search any more.

4.4 Convergence of the CGLO Algorithm

To prove the global convergence of the CGLO algorithm, we first state the following

lemmas. Besides the condition [C1] proposed in section 4.3.2.1, we further add an

additional condition [C2] to facilitate the proof. [C2] Ωg is constant over iterations. This

enables the EI type function for the global search to be comparable across iterations as

it moves from one global candidate point to another between iterations. This adds on
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to condition [C1] described in Section 6.1 which ensures that there exists at least one

candidate point in each local region such that each region will possibly be explored.

Suppose the objective function f has a unique global optimal f∗ = f(x∗) =

minx∈XΩ
f(x) at x∗ over the whole domain XΩ. We denote evaluated points up to itera-

tion t as Xt. The global search iteratively selects xg0 among Ωg, while the local search it-

eratively selects evaluation points in the neighborhood of xg0. For xg0 ∈ Dk, the neighbor-

hood is defined as B(xg0) = {x ∈ Dk : ||x−xg0|| < ||x−xc|| ,∀xc ∈ Ωg∩Dk, xc 6= xg0}.

So ∪xc∈Ωg∩Dk
B(xc) = Dk and ∪xc∈ΩgB(xc) = XΩ.

Lemma 4.1. ∀xg ∈ Ωg, xg will be selected infinitely often (i.o.) by global search.

Proof. The global predictive mean and variance are estimated as

ŷg(x) = β0 + g′Q−1m Gmn(Λ + Σε)
−1(y − 1′β0)

ŝ2
g(x) = [Gnn − g′G−1m g] + g′Q−1m g

where ∀xg ∈ Ωg, ŝ2
g(x

g) > 0, as ŷg(x) is estimated through the noise observation y and

ŝ2
g(x

g) is inflated by the random noise. Hence,EI(xg) = E{max(ygmin−yg(x), 0)} >

0, where ygmin is the lowest predicted global evaluation among the current inducing

points. It suffices to prove for all xg ∈ Ωg and any ε > 0, gEI(xg) ≤ ε is achieved in a

finite number of iterations, because if ∃xg0 ∈ Ωg being selected finite number of times,

there exists ε1 > 0 that satisfies gEI(xg0) ≥ ε1. We note that

EI(yg(x)) =

∫ ygmin

−∞
(ygmin − yg(x))dF (yg(x))

=ŝg(x)Ψ(
ŷg(x)− ygmin

ŝg(x)
) ≤ ŝg(x)√

2π
(4.11)

where yg(x) ∼ N(ŷg(x), ŝ2
g(x)) and Ψ(t) = ψ(t) + tφ(t). ψ is the standard normal

density and φ is the standard normal distribution. Given

gEI(x) = E{max(ygmin − yg(x), 0)} · 1

1 + eni/10−5
(4.12)
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for any ε > 0, gEI(xg) ≤ ε is satisfied when its upper bound is smaller than ε. Then we

have ni is bounded from n∗i

ŝg(x)√
2π
· 1

1 + eni/10−5
≤ ε (4.13)

ni ≥ n∗i = 10

(
ln

(
ŝg(x)

ε
√

2π
− 1

)
+ 5

)
(4.14)

For any xg ∈ Ωg, gEI(xg) ≤ ε is satisfied by a finite number of iterations t∗ =∑
xgi∈Ωg

n∗i

In the next lemma, we show that since any xg ∈ Ωg is selected i.o., the points in the

neighborhood of xg will be dense by local search, and hence the set of Xt will be dense

in the whole space.

Lemma 4.2. If any x ∈ Ωg is selected infinitely often (i.o.) by global search, the set of

points observed Xt is dense in XΩ as t→∞

Proof. To prove the set of points observed Xt is dense in XΩ, it suffices to prove that

each local region Dk is dense since ∪kDk = XΩ. Based on Lemma 4.1, each global

candidate is selected infinitely often, hence each local region is allocated with infinite

budget.

As we follow the SRS framework by Regis and Shoemaker (2007) in the local

search stage, which generates candidate points from the normal distribution centered at

the last simulated point, from Theorem 1 in Regis and Shoemaker (2007), the sequence

of observed global optimizers will converge to the true global optimizer x∗t → x∗ almost

surely. Hence the observed global optimizer in each local region Dk will converge to

the true global optimizer in Dk.

Furthermore, from Theorem 1.3 in Torn and Zilinskas (1989) that is restated below,

Theorem. 1.3 (Torn and Zilinskas, 1989) Let the minimization region A be compact.

Then a global minimization algorithm converges to the global minimum of any contin-

uous function iff the sequence of trial points of the algorithm is everywhere dense in

A.

we have dense local region Dk for ∀k.
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Given Lemma 4.1, we have that each region Dk will be selected as a promising

region i.o.. In the next lemma, we show that based on Lemma 4.2, each point in Dk will

be allocated with infinite replications. Hence each point in XΩ will be allocated with

infinite replications. Then by strong law of large numbers, the average of sample means

will converge to the true mean, and we have Lemma 4.3.

Lemma 4.3. For any ε > 0, ∀x ∈ XΩ, P{|ȳt(x)− f(x)| > ε, i.o.} = 0

where ȳt(x) is the sample mean of an observed point x at iteration t.

Proof. This is equivalent to show that ∀x ∈ XΩ, rt(x)→∞ with probability 1 (w.p.1),

where rt(x) the number of replications allocated to x at iteration t. Then by strong law of

large numbers, we have Lemma 4.3. We assume a constant evaluation budget allocated

by OCBA in each iteration, so the total amount of budget will go to infinity as iteration

goes to infinity. From the results of Theorem 3.2 in OCBA (Chen and Lee, 2010), each

point will be selected as the best point i.o.. Hence rt(x)→∞ ∀x ∈ XΩ

With these lemmas, we have the main results of convergence for the CGLO algorithm.

Let ȳ∗t = minx∈Xt ȳt(x) and x∗t is the optimal solution by iteration t.

Theorem 4.4. Suppose the CGLO is used to solve the optimization problem (4.1), ȳ∗t →

f∗ and x∗t → x∗ w.p.1 as t→∞

Proof. Notice that

|ȳ∗t − f∗| = |min
x∈Xt

ȳt(x)− min
x∈XΩ

f(x)|

≤ |min
x∈Xt

ȳt(x)− min
x∈XΩ

ȳt(x)|+ | min
x∈XΩ

ȳt(x)− min
x∈XΩ

f(x)|

≤ |min
x∈Xt

ȳt(x)− min
x∈XΩ

ȳt(x)|+ max
x∈XΩ

|ȳt(x)− f(x)|

= max
x∈XΩ

|ȳt(x)− f(x)|

where the last equation follows from Lemma 4.2. Therefore, for any ε > 0,

P{|ȳ∗t − f∗| > ε, i.o.} = P{|min
x∈Xt

ȳt(x)− min
x∈XΩ

f(x)| > ε, i.o.}

65



4.5. NUMERICAL RESULTS

≤ P{max
x∈XΩ

|ȳt(x)− f(x)| > ε, i.o.}

Given Lemma 4.3, P{maxx∈XΩ
|ȳt(x) − f(x)| > ε, i.o.} = 0. We conclude ȳ∗t → f∗

w.p.1 as t→∞.

Next, we are showing f(x∗t )→ f(x∗) w.p.1 as t→∞, and hence the uniqueness of

x∗ implies x∗t → x∗ w.p.1 as t→∞. Notice that |f(x∗t )− f(x∗)| ≤ |f(x∗t )− ȳt(x∗t )|+

|ȳt(x∗t )− f(x∗)|, hence

P{|f(x∗t )− f(x∗)| > 2ε, i.o.} ≤ P{|f(x∗t )− ȳt(x∗t )|+ |ȳt(x∗t )− f(x∗)| > 2ε, i.o.}

As {|f(x∗t )− ȳt(x∗t )|+ |ȳt(x∗t )− f(x∗)| > 2ε} ⊆ {|f(x∗t )− ȳt(x∗t )| > ε}∪{|ȳt(x∗t )−

f(x∗)| > ε}, we have

P{|f(x∗t )− ȳt(x∗t )|+|ȳt(x∗)− f(x∗)| > 2ε}

≤ P{|f(x∗t )− ȳt(x∗t )| > ε}+ P{|ȳt(x∗t )− f(x∗)| > ε}.

By Lemma 4.3, we have P{|ȳt(x∗t ) − f(x∗t )| > ε, i.o.} = 0 and we have shown that

P{|ȳt(x∗t )−f(x∗)| > ε, i.o.} = 0. So we can see that P{|f(x∗t )−f(x∗)| > 2ε, i.o.} =

0 and we conclude that f(x∗t )→ f(x∗) w.p.1 as t→∞. The uniqueness of x∗ implies

x∗t → x∗

The convergence is proved under condition [C2]. When [C2] is relaxed and we allow

for random generated global candidate points Ωg across iterations, we conjecture that

the search can still be dense in the whole design space as long as for ∀x ∈ XΩ, the

neighborhoods B(x0
g) where x ∈ B(x0

g) will be selected for local search infinitely often.

4.5 Numerical Results

In this section, we illustrate the proposed CGLO algorithm, compare it with other surro-

gate optimization algorithms in both efficiency and computational time.
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4.5.1 One-dimensional Test Function (Illustration of Algorithm)

We applied the proposed algorithm to the one-dimensional example cos(100(x −

0.2)) exp(2x) + 7 sin(10x) with the noise variance function 0.2 + 0.1 sin(10x) to

further illustrate how the algorithm works. We initialize 12 design points with a Latin

Hypercube design and 3 local regions, as seen in Figure 4.1. The test function is derived

to have a global optimal solution -10.1316 at x = 0.9865 and another sub-optimal

solution -9.5799 at x = 0.4826. Hence, regions 2 and 3 are more promising regions

with lower response that should be focused on. Each design point is evaluated with

a minimum of 20 replications and 10 additional replications are allocated among the

evaluated points in the allocation step. Two iterations of the algorithm were executed

here for illustration.

Figure 4.1 also shows the estimated global model with the initial design. Even though

the estimation error of the global model is high, it correctly identifies the overall global

trend of the model, indicating region 3 with the lowest trend. As the global observations

of inducing points are not observable, we only indicate the location of inducing points

in Figure 4.1. As shown, there are 3 local regions, each with two, one and two inducing

points respectively. Based on the global model and inducing points, the gEI selects

region 2 as the promising region with lower global trend and high uncertainty (smaller

number of inducing points).
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Figure 4.1: Initial fit

After the global search stage, the local search generates sets of candidate points and

mEI is evaluated among them. In the first round of local search, the point with the

highest mEI is evaluated with rmin = 20 replications. With the new evaluated point,

the clusters and the inducing points are re-generated in region 2. The inducing points

however do not change and the gEI does not significantly decrease. Hence, another
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round of local search is conducted in this promising area with the newly generated local

candidates, andmEI is evaluated. With little change in the inducing points and gEI , the

local search is continued for another 3 rounds. After 4 new evaluated points are added in

this local region 2, the algorithm stops the local search step and executes the allocation

step where 10 additional replications are allocated to the evaluated points according

to the criterion in Section 4.3.3.2 to reduce the stochastic noise in estimation and then

return to the global search. We observe that the allocation step focused on placing more

replications at points with high noise variance or near the contour lines.

Figure 4.2: Iteration 1 of CGLO

After the first iteration, a total of 16 observations are obtained as seen in Figure 4.2.

The global model is updated, and as seen, the global model is now better able to capture

the overall trend in region 2, leaving regions 1 and 3 less explored. With region 3 having

a lower trend between [0.9,1], the global search selects region 3 as the promising region

in the next iteration. The local search is initialized at x∗g = 0.96 with a low global trend

and sparse distribution of observations around it. It follows the same local search as

iteration 1 and adds 3 more observations (Figure 4.3).
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Figure 4.3: Iteration 2 of CGLO
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In the subsequent iterations, the search swings mainly between region 2 and region

3, and stops at region 3 with an estimated relative error (based on the estimated optimum

and true optimum) of less than 1% after 9 iterations.

Overall, in this example, it is highlighted that the algorithm identifies promising

regions efficiently by global search and it is also able to search more finely for optimal

solution in that region by local search.

4.5.2 Comparative Studies with other Optimization Algorithms

In this section, we compared the CGLO algorithm with other surrogate-based optimiza-

tion algorithms. We adopt the following example from Sun et al. (2014)

max
0≤x1,x2≤100

g(x1, x2) = 10 · sin
6(0.05πx1)

2((x1−90)/50)2 + 10 · sin
6(0.05πx2)

2((x2−90)/50)2 . (4.15)

g has a global optimal of g(90, 90) = 20 and the second best local optimal is g(70, 90) =

g(90, 70) = 18.95 (see Figure 4.4). We introduce a noise term that is normally dis-

tributed with mean 0 and variance σ2
ε (x1, x2) = 3(1 + x1/100)2(1 + x2/100)2. With

limited budget, this problem requires an efficient balance between global and local search

because it has 25 local optimums and the difference between the largest and the second

largest local optimal values is quite small. By introducing a large noise variance at the

optimal area, we make the problem more challenging to solve.
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Figure 4.4: g(x1, x2) function
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Two alternative surrogate-based algorithms that apply the kriging metamodel, TSSO

(Two Stage Sequential Optimization) (Quan et al., 2013) and EQI (Expected Quantile

Improvement)(Picheny et al., 2013) are considered here. Both TSSO and EQI applied the

MENK model as the surrogate, and were developed for optimization of simulations with

heterogeneous noise. TSSO uses the OCBA allocation schemes and we select the online

allocation scheme for EQI. We use a fixed wall clock time of 1400 seconds and fixed

simulation replications of 5,000 and 10,000 for the comparison. In each comparison, all

algorithms started off with the same 40 LHS design points with 20 replications at each

design point. The number of replications for each new design point is chosen to be 10.

From Figure 4.5, we find that averaged over 30 macro-replications, the CGLO con-

verges much faster to the optimal value than the TSSO and EQI. Although the CGLO

performs poorer in the first few iterations (due to its approximation), its computational

advantages and fast convergence are quickly apparent as the iteration goes on.
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Figure 4.5: Estimated optimal value of TSSO, EQI and CGLO with CPU time of 1400s.

Even though the CGLO numerically converges faster than TSSO and EQI with lim-

ited time or number of replications, TSSO and EQI both catch up when more replications

are used. Table 4.2 shows the average distance between the observed optimal solution

and true optimal solution |∆x| and the average distance to the true optimal value |∆y| for

each of the algorithms. As shown, CGLO performs significantly better than TSSO and

EQI at α = 0.05 in terms of optimal value and optimal solutions (denoted by ∗) when

there are only 5000 replications, while there is no significant difference between the
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three algorithms when the simulation replication budget goes up to 10,000. The CGLO

algorithm, even with the AGLGP model as an approximation, was able to achieve the

level of accuracy similar to the TSSO and EQI in terms of optimal value and distance to

optimal solution.

Table 4.2: Average performance with 5,000 and 10,000 simulation replications

Number of replications 5000 10,000

Performance measure |∆x| |∆y| |∆x| |∆y|

CGLO
Average 0.6185∗ 0.2498∗ 0.5156 0.2097

Standard deviation 2.6465 0.4263 0.2643 0.1928

TSSO
Average 12.5764 0.8746 0.5166 0.2106

Standard deviation 13.3413 0.6880 0.2656 0.1931

EQI
Average 13.5894 1.1919 0.5158 0.2099

Standard deviation 14.2587 0.8992 0.2635 0.1924

Note: ∗ indicates that the value for the approach is statistically smaller than the other

approaches at α = 0.05 level.

4.6 A Navigational Safety Problem

We next test our CGLO algorithm on a maritime safety problem. We apply it on the agent

based simulator developed for the Safe Sea Traffic Assistant (S2TA) in (Pedrielli et al.).

S2TA applies a look-ahead approach with an agent based simulation model (ABM) to

detect potential conflicts/collisions and derives optimal safe paths for vessels through

heavy traffic regions. At any time point, it applies a 10 minute look ahead with its ABM

in order to determine the safety of the current trajectory and to detect potential conflicts.

If a potential conflict of high risk is detected on a pre-specified trajectory of a vessel from

A to B (see Figure 4.6), an optimizer is then called to find an alternate trajectory that

minimizes the probability of conflict within this period given the current and predicted

traffic conditions.

Although S2TA looks at several objectives (including the probability of conflict,

deviation from original trajectory) while searching for an optimal alternative route, we
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focus on the key safety objective of the probability of conflict in this example. As this

system focuses on heavy traffic regions, this response can be highly non stationary (as a

small turn can result in a very different conflict environment). Figure 4.7(a) shows this

response on one of the trajectory parameters for a vessel with 90 vessels in its proximity.

The variance of this response also differs quite a bit in the negative and positive polarity

of the turn.

New Waypoint C

θ1

v1 θ2

v2

A

B

Pre-specified Trajectory

F

Conflict Predicted

Figure 4.6: Definition of Trajectory

In this system, an alternative trajectory is then defined by its deviation from the

pre-specified trajectory. Specifically, the alternative trajectory of a vessel is defined by

a three point trajectory of A − C − B, which is characterized by the deviation angles

θ1, θ2 and the travelling speeds on each leg v1(A− C) and v2(C −B) (see Figure 4.6).

For practical reasons, the range for v1, v2 is between 1 and 15 [knots]. With positive

and negative values on the angles indicating the deviations to the left or right from the

original trajectory, θ1, θ2 are bounded between −60o to 60o, and both θ1 and θ2 are

constrained on the same polarity.

Due to the stochastic nature in the movement of surrounding vessels, to evaluate the

probability of conflict of a candidate alternate trajectory, M replications of the simula-

tor are run, and the estimate is obtained over N additional replications. With the high

nonstationarity of this response, the AGLGP model can be an appropriate surrogate for

the response, and the CGLO algorithm will then be an effective one to locate an optimal

alternate trajectory.
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Figure 4.7: Probability of conflict in (a) and log transformation of probability in (b)

As this objective ranges in [0,1], the following logistic transformation is applied,

mapping the probability to the real line,

f(x) = −ln
(

1

p(x)
− 1

)
(4.16)

while maintaining a similar variability and trend as the original probability estimate.

With the transformation, the non stationarity of the response is still high (as seen in

Figure 4.7(b)).

As the S2TA is an on board real time system, determining an alternate trajectory

needs to be fast when a conflict is detected. In this system, a 10 minute look ahead

period is applied, and a maximum of 5 minutes is allowed to obtain an optimal solution.

Fortunately, the simulator runs relatively fast and it takes 0.006 seconds to evaluate an
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alternative trajectory. In this example, relatively many evaluations can be afforded, but

may still be insufficient to comprehensively search the entire four dimensional space.

Here we test CGLO with Random Search (RS) and TSSO.

We start the system with a crowded scenario based on historical data gathered from

the Strait of Singapore. The system is run until a potential conflict is detected. At this

point, we run CGLO, RS and TSSO to obtain the best optimal alternate trajectory. A

maximum time for the search is set at 5 minutes before termination, at which point, the

final best solution is determined. To evaluate the solution obtained from each approach,

the ’optimal’ solution was obtained from an extensive enumerative evaluation, which

discretizes the solution space into 50×50 grids in both positive and negative polarity for

θ1 and θ2, and the speeds v1 and v2 in 15×15 grids and gives an estimation of minimum

probability of p∗ = 3.6165 × 10−4 at x∗ = [−57.6000,−52.8000, 5.4783, 11.7682].

The ’optimal’ solution was then compared with the solutions from the three approaches.

Table 4.3 presents numbers of evaluation points and the distances between the ’optimal’

solution ytrue and the observed best solution by the each approach yapproach.

Table 4.3: The number of objective function evaluations and optimal probability of
conflict yapproach found by each optimization algorithm

.

Approach Number of Evaluation Points ‖yapproach − ytrue‖

RS 2000 0.0019

TSSO 256 0.0117

CGLO 611 9.4876× 10−4

As the simulation runs very fast, the random search can search at 2000 design points

and identify the optimal area that is close to the true optimal location. Although none

of the approaches managed to locate the optimal solution in the limited time, as seen

from Table 4.3, both RS and CGLO perform quite well. CGLO is able to locate a safer

solution (with a 50% lower probability of conflict) than RS.

Even though the TSSO works efficiently for optimization of expensive simulations,

a large part of the time is spent on model estimation for this problem, and only 7,325

replications are simulated on 256 design points. With limited design points, the TSSO

only identifies a local optimal solution at the positive polarity. With the fast approximated
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AGLGP model and the combined searching structure, the CGLO can approximately

afford for 16,264 replications on 611 design points and find the better optimal solution

with a more extensive search.

A more extensive comparison is conducted to evaluate the solutions from 30 addi-

tional detected conflicts, and the averages obtained across the 30 conflict scenarios are

shown in Table 4.4.

Table 4.4: The number of objective function evaluations and the deviation of the optimal
probability of conflict yapproach found by each optimization algorithm to the true optimal

.

Approach Ave No. of Evaluation Points Ave ‖yapproach − ytrue‖

RS 2000 5.76× 10−3

TSSO 311 0.0189

CGLO 625 1.58× 10−3

The random search shows the nearest average distance to the true optimal location

with a more explorative search and a large number of evaluation points. The CGLO

however finds a better probability of conflict with the global information of the response

surface. The TSSO on the other hand fails to work efficiently for the problem with a

fast simulation model. The results show that there is large potential for CGLO to be

incorporated into the S2TA system to provide much faster evaluations than TSSO (and

hence, providing a more extensive search), and a better probability of conflict than RS.

These benefits can be further amplified when the ABM in S2TA is parallelized.

4.7 Conclusions

In this chapter, we proposed a combined global and local search algorithm based on the

AGLGP model. The scheme systematically searches promising regions with a global

stage and then searches more deeply into the region with the local stage. We then

derived an allocation strategy that intelligently allocates budget to the evaluated points

for the purpose of improving the metamodel fit and estimating the optimal solution. We

analyzed its global convergence and studied its performance on a test function and a

practical navigational safety problem. The results from this problem provided invaluable
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insights on the application of the CGLO and indicated further extensions of CGLO in a

parallel environment.
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Chapter 5

PARALLEL GLOBAL AND

LOCAL OPTIMIZATION WITH

AGLGP MODEL

5.1 Introduction

As discussed in Chapter 4, the CGLO algorithm is a promising metamodel-based opti-

mization algorithm. It has been shown to perform efficiently both with a limited number

of simulation replications and with a limited CPU time. When the objective function

has multiple local minima and can dramatically change over the design space, however,

even CGLO may require a large number of function evaluations (possibly thousands of

evaluation points) to get a reasonable solution. In such cases, CGLO can also become

less efficient as the number of evaluation points increases in promising local regions.

This situation becomes even worse for some real-time control systems which require

effective response to any system changes over time.

In those real-time control systems whose behaviours change dynamically, a much

faster optimization algorithm may be required because the systems need to effectively

respond to those changes with new optimal settings in a short period of time. For example,

in production scheduling, when a machine fails or a components’ delivery delays, the

system needs to respond effectively to these operational disruptions with an appropriate

rescheduling policy to ensure that the products with right quantity or quality continue
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to be produced. If the component processing time is in the order of an hour, a response

has to be quickly made within 5 minutes. In maritime transportation, the Safe Sea

Traffic Assistant (S2TA) (Pedrielli et al.) applies a look-ahead approach with an agent

based simulation model (ABM) to detect potential conflicts/collisions for vessels in

heavy traffic regions. At any point, it looks 10 minutes ahead to determine the safety of

the current trajectory and detect potential conflicts. If a potential conflict of high risk

is detected on the pre-specified trajectory of a vessel, the optimizer is called. Then the

optimizer needs to find an alternative trajectory that minimizes the probability of conflict

within 5 minutes given the current and predicted traffic conditions.

To solve such problems where response time is critical, fast optimization algorithms

like direct search methods can be applied as their speed is essential to conduct extensively

fast search. On the other hand, the global and local information in CGLO can also be very

useful and informative, especially for a large design space or highly complex functions.

This is because they can help to drive the search to the correct optimal region for highly

complex functions.

The speed of CGLO can be further improved by incorporating parallelization

techniques. In recent years, parallelization techniques have been developed for many

metamodel-based optimization methods. In particular, most existing parallelization

approaches are able to deal with the generation of multiple distinct points in each

iteration so that multiple simulation models can be evaluated simultaneously. Sóbester

et al. (2004) essentially parallelized the EGO methods (Jones et al., 1998) by generating

multiple evaluation points that have the best local maximums of the EI functions.

Ginsbourger et al. (2008) first introduced the multivariate Expected Improvement

(q-EI) and implemented it via Monte Carlo sampling. The implementation of q-EI is

further studied by Clark and Frazier (2012) and Chevalier and Ginsbourger (2013). The

multipoint sampling criteria for simultaneous evaluations have significantly reduced

the computational time in design and analysis of computer experiments (Gramacy and

Lee, 2009; Chevalier et al., 2014). In the literature of machine learning, the multivariate

parallel optimization, also known as batch Bayesian optimization, has also been widely

studied recently. For example, Desautels et al. (2012) and Contal et al. (2013) developed

a parallel Gaussian Process algorithm based on the upper and lower confidence bounds.
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The speed of CGLO can also be improved by incorporating some fast direct search

methods. Many metamodels have been used fruitfully in conjunction with direct search

methods for optimization problems with complex computer simulations. The asyn-

chronous parallel pattern search (APPS) and the treed Gaussian Process (TGP) model

are combined to generate a set of candidate locations that are queued for evaluations

(Taddy et al., 2009; Gray et al., 2007). The mesh adaptive direct search (MADS) also

uses the TGP as a surrogate and to evaluate the EI criterion (Gramacy and Digabel,

2015). Another common strategy for metamodel assisted direct search methods is to

construct a coarse metamodel in the entire design space and use it to identify promising

local regions. Then a more refined metamodel can be built in smaller local regions. It is

then possible to explore several local regions simultaneously (Booker et al., 1999). The

adaptive response surface method (ARSM) (Wang et al., 2001) disregarded regions with

large function values as predicted by a surrogate and generated experimental designs

using central composite designs (Montgomery, 1991) in the reduced region. The predic-

tive uncertainty, however, is not well considered when reducing the design space based

on the surrogate predictions. Hu et al. (2008) further extended the ARSM by using the

particle swarm optimization (PSO) to refine the sampling in the reduced region. The ap-

plication of PSO methods make it able to generate new samples according to the global

and local history information. Sun et al. (2015) combined the global and local surrogates

for fitness approximation in PSO. If any points in the population have better predictive

fitness according to the surrogate, PSO will only evaluate at those points instead of eval-

uating the whole population. This approach, however, is still a meta-heuristic method

that requires evaluation of the whole population when the surrogate fails to deliver a

better predictive fitness among the population.

In this chapter, we propose a new parallel algorithm called parallel global and local

optimization (PGLO) algorithm, which is a parallel implementation of CGLO. The

general idea of PGLO is to globally search for multiple promising local regions and

then locally generate a batch of evaluation points for simultaneous evaluations in each

promising local region. It reduces both the computational time of the searching criterion

by selecting multiple distinct evaluation points in each iteration and the computational

time of running simulation models with simultaneous evaluations. Different from the

79



5.2. DESIRED PROPERTIES OF PARALLEL SEARCH AND SAMPLING
DISTRIBUTIONS

q-EI criterion in Ginsbourger et al. (2008), PGLO first searches globally for promising

local regions with either lower global trend or few observations instead of searching

for specific evaluation points. After identifying promising local regions to focus the

search, the parallel local search is able to better exploit each promising local region

for better solutions. Although there are different configurations of parallel computing

environments, ranging from multiple-core personal computers or servers to clouds on

the Internet, here we consider the multiple-core processors on personal computer or

servers only as they are more readily available to general users. Hence it is assumed

that the time of loading simulations to different processors and transmitting data among

processors is almost negligible.

The chapter is organized as follows. In Section 5.2, we first discuss the desired prop-

erties of parallel search and evaluations. A simple one-dimension problem is then used

to illustrate these desired properties. We review the background of the components in

this approach in Section 5.3. The details of the parallel global and local search algorithm

are provided in Section 5.4. Section 5.5 presents its convergence properties. Numerical

results and conclusions are given in the following Sections 5.6 - 5.8.

5.2 Desired Properties of Parallel Search and Sampling Dis-

tributions

Although CGLO adopts the AGLGP model derived in Chapter 3 as a fast surrogate

to provide efficient predictions with large data sets, for optimization problems where

observations tend to be clustered in promising local regions, the local search can still

become computationally challenging in regions with dense observations. Hence we

expect a much faster optimization algorithm that can select multiple distinct evaluation

points in each iteration for simultaneous evaluations without refitting of the AGLGP

model after each evaluation. To achieve this, a parallel framework should at least have

the following properties,

• evaluate multiple evaluation points quickly around the current best local optimal

solution because it is likely to find better solutions around the current best one.
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• evaluate multiple evaluation points around different local optimal solutions be-

cause it better explores the whole space for a global optimal solution.

To better understand the desired properties of a parallel framework, we first look at

the following example with the noisy test function

y(x) = (2x+ 9.96)cos(13x− 0.26) + ε(x) (5.1)

where ε(x) is the noise function that is normally distributed with mean 0 and variance

σ2
ε = 4 and x ∈ [0, 1]. The test function has a local minimum at 0.2628 and a global

minimum at 0.7460. Here we adopt a single region for simple illustration starting from

7 Latin Hypercube Design (LHD) points and 10 replications at each point. The initial

AGLGP model is given in the left plot of Figure 5.1. CGLO is applied and we see from

the right plot of Figure 5.1 that the subsequent 6 more points selected by CGLO focuses

on exploiting a local optimal area. The optimization procedure can be accelerated if there

was a mechanism that could identify the local optimal area and quickly select multiple

evaluation points around it. Direct search methods can be applied to serve this purpose.

For example, by applying the pattern search method (Torczon, 1997) which selects new

evaluation points quickly from a predefined lattice in a small neighbourhood, we can

obtain a sequence of design points that focus on exploiting the same local optimal area

as CGLO does (Figure 5.2) .
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Figure 5.1: AGLGP model fit with design point selected by modified Expected Improve-
ment
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Figure 5.2: AGLGP model fit with design point selected by pattern search

Both CGLO and pattern search, however, have identified the wrong global optimal

point in the first 6 iterations because of the low observations near the local minimum on

the left. This problem could be mitigated if multiple local minimums can be identified

and exploited simultaneously. Based on the same initial fit, the mEI function is displayed

in the left panel in Figure 5.3. The two local maximums of the mEI function are selected

for simultaneous evaluations, followed by pattern search exploiting around each of the

two points. In this example, the two local maximums of the mEI function are located

around the two local minimums of the function too. In general, this will not be the case.

The maximum mEI locations can indicate areas with high spatial uncertainty but not

low (or optimal) predictions. In these cases, however, pattern search can still guide the

search towards local minimums because pattern search can continue exploiting for better

solutions. Hence, the mEI and pattern search can combine to better exploit multiple local

minimums simultaneously. As we can see in the right panel of Figure 5.3, the global

optimal solution is much improved with two series of pattern search (searching for the

two local minimums at the same time).

To get the desirable properties, here we propose the PGLO algorithm to consist of

a global search stage to identify multiple promising local regions and a parallel local

search stage searching for multiple local optimal solutions. The evaluations in the local

search stage are initialized from a set of initial points that have either low predictions or

high spatial uncertainty. In this way, multiple evaluation points from different potential
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Figure 5.3: mEI function and AGLGP model fit with design point selected by multistart
pattern search

local optimal areas are evaluated. Then, some direct search methods are applied to select

additional follow-up evaluation points to quickly exploit around each of these initial

points for better local optimal solutions. By doing so, we ensure that PGLO satisfies the

two properties for a parallel framework as described at the beginning of this section. In

Section 5.4, we explain the development of PGLO that satisfies the desirable properties

in detail. To better understand each component in PGLO, a review of the relative criteria

is first conducted in Section 5.3.

Selecting the best local maximums of the mEI function is a simple choice to select

the initial evaluation points, and a more sophisticated selection criterion q-EI is intro-

duced in Section 5.3.1. Moreover, pattern search is used as an example when deriving

the PGLO algorithm. The choice of pattern search scheme is made on the grounds of its

specific search patterns which are discussed in Section 5.3.2. It is noted that PGLO is

not restricted to the pattern search algorithm, and in fact, any direct search method can

be adopted. Within each promising local region, themEI function based on the AGLGP

model helps to explore the local region and direct search methods help to exploit for

local optimal solutions.
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5.3 Basics and Background: Multi-point Expected Improve-

ment and Pattern Search

5.3.1 Multi-point Expected Improvement

The Multi-point Expected Improvement (also called qEI) criterion to find a q batch

follow-up optimal design after n initial evaluated points was first defined in Schonlau

et al. (1998), where the generalized q-point improvement is

Ig(xn+1, · · · , xn+q) = [max(0, ymin − y(xn+1), · · · , ymin − y(xn+q))]
g (5.2)

Here g is a user-defined tuning parameter where the larger the integer power g, the more

globally the algorithm tends to search. Taking g = 1 as an example, by maximizing

the expectation of the improvement I(xn+1, · · · , xn+q), we can deliver the follow-up

designs in a batch single step as,

x∗n+1, · · · , x∗n+q = arg max
x∈Xq

qEI(x) = arg max
x∈Xq

E[I(xn+1, · · · , xn+q)] (5.3)

The computation of qEI , however, becomes intensive as q increases. Moreover, the

optimization problem in Equation (5.3) of dimension q × d requires demanding com-

putational effort. Hence some approximations (via sequential evaluation) have been

proposed. Sacks et al. (1989) first proposed the sequential approximation approach in

the design of experiments that minimizes the mean square error. This approach sequen-

tially designs one point at a time to reduce the computational burden from a single q× d

dimensional optimization to a sequence of d-dimensional optimization. Although the

effect of the sequential approach is difficult to be theoretically analyzed, this approach

has been widely and successfully applied for many computer experiments (Santner et al.,

2003; Jones et al., 1998).

Schonlau et al. (1998) sequentially optimized the q points one at a time. Once xn+1

is optimized, where x∗n+1 = argmaxE[max(0, ymin − y(xn+1))], x∗n+1 is assumed to

be ’observed’ when optimizing xn+2. When optimizing the point xn+i, the expected
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improvement is

E(I(xn+i)) = E[max(0, ymin − y(xn+i))|x∗n+1, · · · , x∗n+i−1]. (5.4)

where y(xn+i) ∼ N(ŷ(xn+i), ŝ
2
n+i−1(xn+i)). The predictive mean ŷ(xn+i) is the Gaus-

sian Process predictor (as shown in Equation (2.9)) given the initial n observations

and does not change with new selected point x∗n+1, ..., x
∗
n+i−1. The predictive variance

ŝ2
n+i−1(xn+i), on the other hand, is the mean square error (as shown in Equation (2.10))

calculated based on all ’observed’ points x∗1, ..., x
∗
n+i−1.

Ginsbourger et al. (2010) proposed to update the expected improvement E(I(xn+i))

sequentially with updated Gaussian Process model when optimizing the point xn+i,

which is given by

E(I(xn+i)) = E[max(0, ymin − y(xn+i))|yn+1, · · · , yn+i−1]. (5.5)

where y(xn+i) ∼ N(ŷn+i−1(xn+i), ŝ
2
n+i−1(xn+i)). The predictive mean ŷn+i−1(xn+i)

is the updated Gaussian Process predictor (as shown in Equation (2.9)) given all ’ob-

servations’ y1, ..., yn+i−1. However as x∗n+1, ..., x
∗
n+i−1 are not really observed, their

’observations’ yn+1, ..., yn+i−1 are unknown. Two heuristic strategies, Kriging Believer

and Constant Liar, are proposed to replace the unknown yn+1, ..., yn+i−1 by some deter-

ministic values. Kriging Believer assumes the ’observations’ are equal to the Gaussian

Process predictors, i.e. yn+1 = ŷn(xn+1), · · · , yn+i−1 = ŷn+i−2(xn+i−1), while Con-

stant Liar assumes they are all equal to a constant value, i.e. yn+1 = L, · · · , yn+i−1 = L.

The constant value L can be set as equal to the minimum of the initial n observations.

The smaller the L, the more exploitative the algorithm will be.

5.3.2 Pattern Search

In the selection of design points in each local region, pattern search algorithms, which

have been shown to perform well in small areas (Torczon, 1997), can work compu-

tationally faster than metamodel-based search criteria. Pattern search algorithms are

characterized by their meshes and polling conditions. A mesh is a lattice on which the

search for an iterate is restricted. At each iteration k, three basic steps are executed:
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1. Generate a set of trial points Qk within a mesh Mk around the current best point

xk.

2. (a) Obtain a set of function evaluations Fk from computer models. If ∃xk+1 ∈

Mk such that f(xk+1) < f(xk), the search is successful.

(b) Else, polling conditions are applied to refine the mesh. Generally the mesh

Mk+1 is obtained by halving the mesh size, i.e.Mk+1 = Mk/2. Repeat Step

1.

3. Update the best point xk+1.

Essentially, pattern search performs the search using a predefined ”pattern” of points

that are independent of objective functions f and the design points that have been ob-

served. Hence, the computational time for generating trial points is almost negligible

and the majority of the computational time is spent on function evaluations. In this way,

it efficiently exploits a small area for a local optimal solution with a shrinking mesh size,

but it may not be able to sufficiently explore the entire space.

5.4 Development of Methodology

In this section, we present the framework for a master-worker parallel global and lo-

cal optimization (PGLO) algorithm, which is a parallel version of the CGLO algorithm

proposed in Chapter 4. It is an efficient algorithm that can quickly select multiple promis-

ing local regions and focus on searching for multiple local optimal solutions in each

promising local region. Here, we assume one master processor and q available worker

processors. The details of this algorithm are introduced in the following subsection.

5.4.1 General Framework of the PGLO Algorithm

As with any metamodel-based optimization methods, we begin by fitting the AGLGP

model in Equation (3.7) from an initial set of points (typically from a space-filling

experimental design like Latin Hypercube Design (LHD)). After the initial fit, each

subsequent iteration of the algorithm is composed of a global search stage based on

the global model (Equation (3.5)) that exploits the entire space globally for several

86



5.4. DEVELOPMENT OF METHODOLOGY

promising local regions, and a local search stage based on the local model (Equation

(3.6)) that exploits within each promising local region simultaneously. Considering a

total budget of T , in each iteration t, the budget exhausted is denoted as Bt, where Bt

= Bt,s + Bt,a. The budget Bt,s is for the parallel local search stage to find new design

points (preferred as a multiplier of q) and the budget Bt,a is for the allocation stage

to allocate replications to existing design points. Here we simply assume a constant

budget Bt over iterations. nmax is the maximum number of new evaluation points at

each iteration. pmax is the maximum number of new evaluation points selected from

pattern search before refitting of the local models. An overview of the algorithm is given

in Table 5.1.

Specifically when q = 1, the global search stage in PGLO reduces to selecting

only one candidate point that maximizes the gEI function (same as the global search

stage in CGLO). The local region with the selected candidate point is then selected

as the promising local region. Different from the local search stage in CGLO, PGLO

accelerates the local search stage by incorporating pattern search as a fast alternative to

the local search step. Initialized from the candidate that maximizes the mEI function

based on the overall AGLGP model, the follow-up pattern search can either keep jumping

towards a local optimal solution with a constant large mesh size or exploiting around a

local optimal solution with a shrinking mesh size.

In the next subsection, we describe in detail Steps 3 and 4. Here, we fit the global

model and conduct the global search on the master. Then the local models are fitted

and used to select q distinct points for simultaneous evaluations on the workers. As the

multi-point global search criterion is computed based on the fast estimated global model

in Equation (3.19) with only a small number of inducing points and no simulation is

run in the global search stage, the computational time for the global search stage on the

master is much less than the local search stage on the workers.

5.4.2 Global Search Stage

In the global search stage in Step 3, PGLO focuses on identifying promising local regions

to focus the search. It randomly generates a set of candidate points Ωg and selects q points
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Table 5.1: Overview of PGLO

Parallel Global and Local Optimization Algorithm
Step 1: (Initialization) Run a size n0 space filling design, with rmin replica-

tions allocated to each point. Total initial replications B0 = n0rmin.

Set t = 0.

Step 2: (Validation of overall model) Fit an AGLGP response model to the set

of sample means and variances, and use cross validation to ensure that

the AGLGP prediction is satisfactory.

While the available replications A = T −
∑t

i=0Bi > 0, t = t+ 1

Step 3: (Global Search Stage) Generate nc candidate points Ωg. Select q points

xg1, · · · , x
g
q from Ωg based on the global model and a multi-point global

criterion. Identify the promising local regions, where xg1, · · · , x
g
q are

located. Each promising local region Dk with qk selected candidate

points is allocated with qk processors for the local search and evalua-

tion. Hence q1 + · · ·+ qK = q.

Step 4 (Parallel Local Search Stage) While nt < nmax and A > 0,

(Fit/Update local models) Fit or update the local models in all the

promising local regions.

(Generate Candidate Points) Randomly generate nl candidate points

Ωk
l independently in each promising local region Dk.

(Select the Initial Evaluation Points) In each promising local region

Dk, select qk points x1
nt
, · · · , xqknt from the candidate points Ωk

l based

on the overall model and a multi-point local search criterion. Simultane-

ously evaluate at all q selected points x1
nt
, · · · , xqnt from all promising

local regions with rmin replications on q processors. Hence the number

of observed points nt = nt + q.

(Select the Follow-up Evaluation Points by Pattern Search) Set pt = 0,

While nt < nmax and pt < pmax, the q processors continue to

evaluate at q new points from the predefined search patterns. Hence,

nt = nt + q and pt = pt + q.

Break follow-up selection if a stopping criterion is satisfied. end
end

Step 5: (Allocation Stage) Allocate Bt,a replications for additional evaluations

among all evaluated points. end
Step 6: (Return the Optimal Solution) Return the point with the lowest sample

mean.
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that maximize the multi-point global expected improvement from Ωg. Each local region

Dk with qk selected candidate points is then allocated with qk processors for parallel

local search. The generation of candidate points is similar to that in CGLO as introduced

in Section 4.3.2.1. By smoothing out the localized features in each local region, the

global search avoids putting efforts exploiting one single local region that has multiple

neighboring local optimal solutions from the start.

5.4.2.1 Multi-point Global Expected Improvement

Here we apply a multi-point global expected improvement criterion as an extension of

the gEI function in Equation (4.6). The q candidate points are selected through the

maximization of the multi-point global expected improvement (q-gEI) function , which

is defined as

q-gEI(x1, ..., xq) =E[max{(ygmin − yg(x1))+ · 1

1 + en1/v−5
,

· · · , (ygmin − yg(xq))+ · 1

1 + enq/v−5
}] (5.6)

Similar to maximizing the qEI function in Equation (5.3), maximizing Equation

(5.6) can be computationally challenging when q increases. To address this, we ap-

proximate the maximization of Equation (5.6) by selecting the q points xg1, · · · , x
g
q

sequentially through optimizing the global expected improvement in Equation (4.6). As

we expect the global expected improvement function to change with each new point

xgi , i = 1, · · · , q− 1 added, to deliver a set of distinct points spread out across the entire

space, we update the global model for each new xgi that has already been selected. To

select xgi+1 that optimizes the updated gEI function, the global model is updated given

the new ’observation’ y(xgi ) based on the Kriging Believer assumption, which assumes

the observation value y(xgi ) equals to the overall AGLGP model prediction ŷ(xgi ) in

Equation (3.7).

To ensure that q distinct candidate points are selected, if the global model does not

change after each new xgi is added, a minimum number of artificial points ñi are assumed
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to be selected around xgi by local search to affect the penalty term such that

gEI(xgi ) = E[(ygmin − yg(xgi ))
+] · 1

1 + e(ni+ñi)/v−5
≤ max

xc∈Ωg\xgi
gEI(xc), (5.7)

This is a reasonable assumption because the local search stage will help to better exploit

a promising area with a set of surrounding points around. This is also done as with

a sparse distribution of the global candidate points, each new added point xgi+1 with

maximum gEI can indicate a different local region from the previous added point xgi .

This avoids putting all effort in a single local region and allows the algorithm to spread

the searching effort in multiple local regions.

5.4.3 Parallel Local Search Stage

Next we provide the details on the parallel local search stage. Once the promising local

regions are selected by the global search, the local search stage then searches more

extensively within each promising local region for better solutions. In this stage we

first adopt a multi-point modified expected improvement function to select an initial set

of q evaluation points for simultaneous evaluations, with qk points selected from each

promising local region Dk. A follow-up pattern search is then conducted for additional

evaluation points exploiting around each of the initial q points.

5.4.3.1 Selection of Initial Evaluation Points

The role of the initial points is to start the local search from promising areas, which

have either low predictions or higher spatial uncertainty, and quickly progress to better

solutions in the local region with additional follow-up evaluation points. In order to

achieve this, we propose a multi-point modified expected improvement function as an

extension of the mEI criterion in Equation (4.4) (Quan et al., 2013). The initial qk

evaluation points in the promising local region Dk are selected by maximizing the

qk-mEI function defined as

qk-mEI(x1, ..., xqk) = E[max{(ymin − z(x1))+, ..., (ymin − z(xqk))+}] (5.8)
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where ymin is the predicted response at the sampled points in the local region Dk with

the lowest sample mean, and z(x) is a normal random variable with mean given by the

AGLGP predictor in Equation (3.7) and variance given by spatial prediction uncertainty

ŝ2
z(x) = Lnn − l′L−1n l. Instead of searching the global optimal solution for the batch

(x1, ..., xqk), we approximate it again by optimizing the qk points sequentially one at a

time with each step maximizing the mEI(x),

x∗1 = argmaxx∈Ωl
mEI(x)

= argmaxx∈Ωl
E(max[ymin − z(x), 0]), (5.9)

x∗i+1 = argmaxx∈Ωl
mEI(x)

= argmaxx∈Ωl
E(max[ymin − z(x), 0]|x∗1, ..., x∗i , y1, ..., yi). (5.10)

Here we also optimize the mEI with respect to a set of candidate points Ωl, which are

uniformly distributed in the local region (Regis and Shoemaker, 2007). To select the

optimal point x∗i+1, the local model and the mEI function are updated with the selected

points x∗1, ..., x
∗
i and their ’observations’ y1, ..., yi. We approximate the ’observations’

y1, ..., yi with the AGLGP model predictions ŷ(x1), ..., ŷ(xi) in Equation (3.7). As the

updated model variance ŝ2
z(x) = Lnn − l′L−1n+il is reduced around the selected points

x∗1, ..., x
∗
i , it avoids selecting new points near the selected ones.

5.4.3.2 Selection of Follow-up Evaluation Points

In this step, we continue the local search by selecting additional follow-up evaluation

points to quickly exploit the promising areas around each of the q initial points for better

solutions in the promising local region. To achieve this, we apply q pattern search to

quickly select q new evaluation points from the pre-defined search patterns. The pattern

search is initialized from each of the q initial points obtained as described in Section

5.4.3.1, and it is sequentially repeated with q new selected evaluation points. Although

the pattern search can move efficiently towards a local optimal solution in a small area,

it only converges at a local optimal solution. As there may exist more than one local

optimal solution in each local region, it is not desirable for the algorithm to converge

only to a local optimal solution instead of a global optimal solution in the local region.
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Hence, to avoid being trapped in a local optimal solution, we stop the pattern search

when a stopping criterion is satisfied and require the algorithm to reselect a new set

of initial points that explore the entire local region for potentially better local optimal

solutions.

Stopping Criterion In the follow-up pattern search step, the mesh size of the pattern

search can keep shrinking as the search progresses and it already identifies a local opti-

mal point, Mtk+1 = 1/2Mtk . To avoid spending unnecessary budget for unsuccessful

searches, we set a stopping criterion where we stop the pattern search when

Mtk ≤Mmin (5.11)

where Mtk is the current mesh size and Mmin is a predefined minimum mesh size

(Torczon, 1997). When one of the q pattern search stops at a local minimum before pmax

budget is exhausted in that promising local region Dk, we stop the follow-up points

selection step and require the algorithm to return to the initial points selection step to

select a new set of initial points. The local models are then updated in the promising

local regions, and new initial evaluation points are selected by maximizing the updated

mEI function to identify new promising areas.

This stopping criterion allows the pattern search to escape from the current local

optimal solution to a potentially better local optimal solution before exhausting all the

pmax budget. The new initial points can be selected with either low prediction or high

predicted mean square error. If the new initial points have low predictions, the pattern

search continues exploiting the current promising areas, and if the new initial points

have high predicted mean square error, the pattern search starts to exploit new promising

areas.

5.4.4 Allocation Stage

In this stage, we adopt an allocation strategy to evaluate the best few optimal solutions

after the local search with an additional number of replications Bt,a. The approach

adopted here is similar to the allocation procedure in CGLO. Specifically, the Optimal

Computing Budget Allocation (OCBA) approach (Chen and Lee, 2010) is adopted for all
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the already evaluated n points. Suppose each point xi has a sample mean given by ȳi and

a sample variance σ2
ε (xi). Then according to Theorem 3.2 provided by Chen and Lee

(2010), the Approximate Probability of Correct Selection (APCS) can be asymptotically

maximized (as the available budget tends to infinity) when

Ni,b

Nj,b
=

(
σε(xi)/∆b,i

σε(xj)/∆b,j

)2

, i, j ∈ {1, 2, ..., n}, i 6= j 6= b (5.12)

Nb,b = σε(xb)

√√√√ n∑
i=1,i 6=b

(
Ni,b

σε(xi)

)2

where ȳb is the lowest observed sample mean in the entire space, Ni,b is the number of

simulations allocated to point xi, and Nb,b is the number of simulations allocated to the

point xb with the lowest sample mean. Hence,
∑

iNi,b = Bt,a. ∆b,i = ȳi − ȳb. The

OCBA technique is able to allocate additional replications to the points with low sample

means and high sample variances in order to distinguish the best point from the other

competitors. With additional replications allocated at those potential optimal points, the

model estimation around those points can be further improved, which in turn can help

the global and local search criteria to make better selection in the subsequent iteration.

After the allocation stage, the sampled point with the lowest sample mean is selected as

the location of the current best response.

5.5 Convergence of the PGLO Algorithm

Under some mild conditions, the above PGLO framework can be shown to be convergent

in a probabilistic sense using a similar argument to the one in CGLO. We first show

that when there is only one processor, PGLO will converge to the unique global optimal

solution f∗ at the global optimizer x∗. Following the same arguments from CGLO, to

show this here, we need to show that the Lemma 4.2 in Chapter 4 also holds true under

the framework of PGLO.

Lemma 5.1. If any x ∈ Ωg is selected infinitely often (i.o.) by global search, the set of

points observed Xt is dense in XΩ as t→∞
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Proof. To prove that the set of points observed Xt is dense in XΩ, it suffices to prove

that each local region Dk is dense as ∪kDk = XΩ. Based on Lemma 4.1, each global

candidate is selected infinitely often, hence each local region is allocated with infinite

budget.

As we follow the SRS framework (Regis and Shoemaker, 2007) in the local search

stage, which generates candidate points from a uniform distribution in each local re-

gion, from Theorem 1 in Regis and Shoemaker (2007), the sequence of observed global

optimizer will converge to the true global optimizer x∗t → x∗ almost surely. Hence

the observed global optimizer in each local region Dk will converge to the true global

optimizer in Dk. Furthermore, from Theorem 1.3 in Torn and Zilinskas (1989) that is

restated below, we have dense local region Dk for ∀k.

Theorem. 1.3 (Torn and Zilinskas, 1989) Let the minimization region A be compact.

Then a global minimization algorithm converges to the global minimum of any contin-

uous function iff the sequence of trial points of the algorithm is everywhere dense in

A.

Hence, following Lemma 4.3 and Theorem 4.4, we have that the observed global

optimizer in the entire space will converge to the true global optimizer x∗t → x∗ and

the observed global optimal solution will converge to the true global optimal solution

ȳ∗t → f∗ w.p.1 as t→∞. Then for any q > 1, we show that the points by local search

get dense in the entire space.

Lemma 5.2. Suppose the set of points observed on each processor pi until iteration t is

Xpit , ∪qXpit is dense in XΩ as t→∞.

Proof. It is sufficient to show that the first processor delivers dense observations. In

both global and local search stage, we approximately optimize the multi-point selection

criteria by sequential optimization approach.

xg1 = argx∈Ωg
max gEI(x) = argx∈Ωg

maxE{max(ygmin− yg(x), 0)} · 1

1 + eni/v−5
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The local region which contains xg1 is selected as the promising local region, and the first

processor will be allocated to evaluate at the point x∗1 that maximizes the mEI function

in this local region, where

x∗1 = argmaxx∈Ωl
mEI(x) = argmaxx∈Ωl

E(max[ymin − z(x), 0]). (5.13)

Given Lemma 4.1 and Lemma 5.1, this processor will generate dense evaluations, and

∪qXpit is dense in XΩ as t→∞.

Hence, following the same argument in Theorem 4.4, for q > 1, PGLO also con-

verges, i.e. ȳ∗t → f∗ and x∗t → x∗ w.p.1 as t→∞.

5.6 Numerical Studies

In this section, we first numerically evaluate the effect of including a pattern search in

PGLO compared with CGLO. Then we compare the performance of the proposed PGLO

with other parallelized pattern search techniques on different test functions.

5.6.1 Comparison with CGLO

We consider a simple one-dimensional test example cos(100(x − 0.2)) exp(2x) +

7 sin(10x) with the random noise ε(x) ∼ N(0, 0.2 + 0.1 sin(10x)) to evaluate the

efficiency of the incorporated pattern search in PGLO. The performance of PGLO with

one processor q = 1 is compared with CGLO, which is based on a sequential local

model-based search criterion in local search stage.
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Figure 5.4: Initial fit

We initialize 12 design points with Latin Hypercube designs and 3 local regions, as

seen in Figure 5.4. As shown, the global optimal solution is -10.1316 at x = 0.9865
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and another sub-optimal solution is -9.5799 at x = 0.4826. Hence, regions 2 and 3

are more promising local regions with lower response that should be focused on. Each

design point is evaluated with a minimum of 20 replications. 10 additional replications

are allocated among the evaluated points in the allocation stage. Two iterations of each

algorithm were executed here for illustration.

Both CGLO and PGLO apply the same global search criterion gEI . After the global

search stage, they both identify region 2 as the promising local region. In the local search

stage of CGLO, four new evaluated points were added in this local region 2 before it

stopped the local search step and executed the allocation step. To fairly compare the

distribution of the new design points, we sequentially selected four points from pattern

search in the local search stage of PGLO.
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Figure 5.5: Iteration 1 for CGLO and PGLO

After the first iteration, a total of 16 observations are obtained as shown in Figure 5.5.

As seen, CGLO was able to explore several local optimal areas in region 2, while PGLO

with pattern search better exploited one promising area in region 2. Here, both CGLO

and PGLO managed to search region 2 well and obtained a better solution. The global

model was then updated and we see that it is now better able to capture the overall trend

in region 2, leaving regions 1 and 3 less explored. In the second iteration, the global

search stage in both algorithms was able to identify region 3 as promising and initialized

the local search from x∗1 = 1.000. They both exploited the most promising area in region
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3 with additional three design points. With these three additional points, PGLO is able

to find a better optimal solution (Figure 5.6).
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Figure 5.6: Iteration 2 for CGLO and PGLO

From Table 5.2, we can see that PGLO is able to deliver a smaller difference ∆y

between the observed optimal value and the true optimal value. This is because PGLO is

better able to exploit each promising local area with the pattern search scheme. Although

the optimal solution by PGLO has a larger distance ∆x to the true optimal solution in

iteration 1, CGLO fails to find a better solution in this iteration. An additional benefit of

PGLO is its computational efficiency. The computational time for the predefined search

patterns in the local search stage of PGLO is almost negligible while CGLO requires

some additional time for refitting of the local models in the local search stage. This effect

becomes more significant as the algorithm progresses and the number of evaluations

observed gets large.

Table 5.2: Performance of CGLO and PGLO per iteration

Algorithm
Initial Iter 1 Iter 2

∆y ∆x ∆y ∆x ∆y ∆x

CGLO 2.9118 0.0062 2.9118 0.0062 1.8344 0.0032
PGLO 2.9118 0.0062 0.6402∗ 0.5011 0.4582∗ 0.0028

Overall in this example, it is highlighted that both CGLO and PGLO identify the

promising local regions efficiently with the global search. They are also able to search
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more finely for optimal solutions in promising local regions with the local search. The lo-

cal search in CGLO automatically balances the exploration and exploitation in a promis-

ing local region with the mEI searching criterion. PGLO, on the other hand, better

exploits the specific promising areas for a better solution after it explores the whole

promising local region. Even though the local pattern search is a locally convergent

algorithm, PGLO avoids wasting budget exploiting a sub-optimal area by defining an

intelligent escape policy. By incorporating a direct search method, PGLO works more

efficiently computationally, especially for real-time control systems.

5.6.2 Comparison with Other Parallel Pattern Search Techniques

In this section, we compare the performance of PGLO (which incorporates the AGLGP

model and the efficient AGLGP model-based global and local searching criteria to drive

the local pattern search) with other parallelized pattern search techniques.

Here, we compare MultPPS-LHS, using a direct application of multistart parallel

pattern search (MultPPS) initialized with Latin Hypercube Sample (LHS), and MultPPS-

qEI, with MultPPS initialized from the multi-point expected improvement (q-EI) of

the AGLGP model. MultPPS-LHS is used as a benchmark algorithm for the direct

application of pattern search method, while MultPPS-qEI is compared to evaluate the

performance of PGLO which incorporates pattern search within a global and local search

algorithm against a single level search with q-EI. To replicate the situation of a fast

simulation model, a wait time of 0.01 seconds is added to each function evaluation. The

sequential pattern search is limited with 200 evaluations to avoid spending too much

budget in any sub-optimal areas.

The performance of a parallel optimization algorithm is measured by the wall

clock time consumed to find a reasonable solution within a specific level of accu-

racy. With known global optimum f∗, the relative error of a reasonable solution fbest,

|f∗ − fbest|/|f∗|, should be less than 1%. Another commonly used measure for the

parallel performance is the speedup, which is defined by the time required for the se-

quential optimization on one processor T (1) divided by the time required for the parallel

optimization on q processors T (q), i.e., SP = T (1)/T (q).
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First we adopt the same example in equation (4.15) (Figure 4.4). Table 5.3 presents

the average wall clock time to get a solution with a relative error |g∗− gbest|/|g∗| < 1%.

The observed global optimum gbest should at least be able to find the global optimal area

with a relative error of less than 1%. Even though the simulation runs as fast as 0.01s,

the direct application of pattern search (MultPPS-LHS) performs least efficiently for any

number of processors. Because the objective function has 25 local optimal solutions, the

MultPPS-LHS cannot explore the entire space sufficiently without global information.

However, as the number of processors increases, the MultPPS-LHS catches up with

better exploration.

Table 5.3: Average wall clock time to get a reasonable solution with a relative error
< 1% using q=1,4,8 Processors

q PGLO MultPPS-LHS MultPPS-qEI

1 210.3611 272.1705 252.2541

4 42.4318 92.1054 53.1587

8 37.0719 47.9258 39.6525

Note: This table shows, for each optimization algorithm, the average wall clock time required

for a reasonable solution to be obtained from a sample of 30 macro-replications.

In this example, MultPPS-qEI performed significantly worse with one and four pro-

cessors at α = 0.05, but there is no significant difference between PGLO and MultPPS-

qEI with 8 processors. This is because PGLO better explores the entire space in the first

several iterations with a global search stage. Instead of identifying one particular local

optimal area, the global search identifies promising local regions (which can include

multiple local optimal areas). Once a point is picked up in one local region, it reduces

the tendency to pick too many points in the same local region. Therefore, it balances

between exploiting too much in the local region and spreading out more points for ex-

ploration in more local regions. When there are eight processors, MultPPS-qEI also has

sufficient budget to explore each local region, and hence the difference becomes not

significant.
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Table 5.4: Relative speedup of parallel optimization algorithm when using q=4,8

q PGLO MultPPS-LHS MultPPS-qEI

4 4.9576 2.9565 4.7547

8 5.6790 5.7872 6.4605

Table 5.4 presents the relative speedup when q = 4 and q = 8 to evaluate the effi-

ciency of parallelization. The relative speedup measures how well a parallel algorithm

scales relatively to its serial version with additional processors. It is worth mentioning

that as different algorithms can require different wall clock times with one processor,

a larger speedup does not mean a better algorithm in absolute time. It is also problem

dependent. The results show that in this example, both PGLO and MultPPS-qEI have

significant speedup for four processors, but only achieve marginal improvement with ad-

ditional four processors (eight in total). This is because the additional processors will end

up with exploiting the same optimal area. Even though they are initialized from different

locations, different pattern search will deliver the same optimal solution. MultPPS-LHS,

on the other hand, achieves significant speedup with any additional processors because

they will help to better explore the entire space.

A more extensive comparison is conducted on four different two-dimensional mul-

timodal test functions (Surjanovic and Bingham) to evaluate the performance of the

parallel algorithms (see in Appendix E). The first three test functions, Griewank, Ackley

and Levy, consist of large global variability and small local variability. The Griewank

function has many widespread local minima, which are regularly distributed, based on

the global trend. Ackley is characterized by a nearly flat outer region with small local

variability, and a large hole at the center. Levy function changes dramatically with re-

spect to one variable but relative stable with the other. The Schwefel function is on the

other hand more complex with random bumpiness across the region. The noise variance

function differs for each function based on the scale of their variability. Here we con-

sider two levels of noise variance, the small noise variance with a maximum of 1% of

the functional variability and the large noise variance with a maximum of 10% of the

functional variability (i.e. range of the function values).
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Table 5.5: Average wall clock (W.C.) time and relative speedup to get a reasonable
solution with a relative error < 1% using q=1,4,8 Processors (small noise)

Test q
PGLO MultPPS-LHS MultPPS-qEI

W.C. Time speedup W.C. Time speedup W.C. Time speedup

Griwank

1 23.2517 - 36.6972 - 27.4897 -

4 11.2042 2.0753 30.0700 1.2204 11.6401 2.3606

8 10.4059 2.2345 28.3077 1.2964 10.5410 2.6079

Ackley

1 21.0555 - 58.9847 - 31.9155 -

4 12.8447 1.6392 25.6174 2.3059 16.2700 1.9616

8 11.8217 1.7811 21.5801 2.7333 12.2501 2.6053

Levy

1 28.4872 - 62.5031 - 37.2374 -

4 15.5415 1.8330 37.0023 1.6892 18.6369 1.9986

8 15.3431 1.8567 31.9594 1.9557 15.7109 2.3700

Schwefel

1 56.6273 - 178.3245 - 68.2456 -

4 23.6495 2.3941 57.8724 3.0814 30.2457 2.2564

8 18.6162 3.0414 32.8356 5.4308 22.1437 3.0819

Note: This table shows, for each optimization algorithm, the average wall clock time required

for a reasonable solution to be obtained from a sample of 30 macro-replications.

Table 5.5 shows the average wall clock time for each test function with small noise

variance over 30 macro-replications. Although the wall clock time of PGLO is at least as

less as the other algorithms in all scenarios, its relative speedup is not very satisfactory

on the first three test problems. In addition, the relative speedup for all these parallel

algorithms is generally poor on the first three test functions. This is because the first three

test functions have large global variability and their global trends have only one global

optimum that is significantly smaller than other local optima. Hence, by smoothing out

the small local variability with a global model, the global optimal area is easy to identify

and the addition of more processors will generally not make the search for the global

minimum faster on such problems. With such functions, the MultPPS-qEI can be as

competitive as PGLO in both wall clock time and speedup because they both focus their

computing effort in one promising local region. The last test function, which has large
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Table 5.6: Average wall clock (W.C.) time and relative speedup to get a reasonable
solution with a relative error < 1% using q=1,4,8 Processors (large noise)

Test q
PGLO MultPPS-LHS MultPPS-qEI

W.C. Time speedup W.C. Time speedup W.C. Time speedup

Griwank

1 33.1786 - 36.6972 - 32.9710 -

4 17.5062 1.8952 30.0700 1.2204 23.3297 1.4133

8 17.1770 1.9316 28.3077 1.2964 18.6146 1.7712

Ackley

1 54.7717 - 128.2356 - 59.8706 -

4 21.4285 2.5561 66.9703 2.3059 21.3066 2.8100

8 16.8121 3.2579 52.3458 2.7333 18.4025 3.2534

Levy

1 72.5785 - 150.6540 - 53.3854 -

4 23.9806 3.0266 79.5076 2.9491 33.6834 1.5849

8 14.5598 4.9849 53.3341 3.8716 25.8670 2.0638

Schwefel

1 110.8477 - 298.3565 - 148.7304 -

4 35.3226 3.1382 105.2468 2.8200 35.8572 4.1479

8 23.5690 4.7031 48.7986 5.3806 26.9884 5.5109

Note: This table shows, for each optimization algorithm, the average wall clock time required

for a reasonable solution to be obtained from a sample of 30 macro-replications.

local variability that dramatically changes over the entire space, shows similar results

as the first demonstration example in Equation (4.15) (Figure 4.4) that PGLO performs

significantly better than the rest.

Table 5.6 shows the computational performance for all these test functions with large

noise variance. As shown, the wall clock time is generally larger than the examples with

small noise. Additional replications are required for searching and evaluations with the

highly noisy response surface. However, the relative speedup for all test functions with

large noise is generally better than with small noise. This is because the availability

of multiple evaluation points and the additional evaluations improve the accuracy of

the AGLGP model in each iteration, which is helpful in determining the location of the

global optimal solution. Overall from these test functions, the performance of PGLO

is generally better than the MultPPS-LHS and at least as well as MultPPS-qEI. This
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indicates that incorporating the pattern search with a global and local metamodel struc-

ture in PGLO make it more efficient than a simple parallelized pattern search and an

only global metamodel driven pattern search when the objective functions exhibit high

nonstationarity.

5.7 A Navigational Safety Problem

We next test our PGLO algorithm on the same maritime safety problem in Chapter 4 to

find an optimal trajectory with the minimum probability of conflict. In this system, an

alternative trajectory is defined by its deviation from the pre-specified trajectory, which

is characterized by the deviation angles θ1, θ2 ∈ [−600, 600] and the travelling speeds

on each leg v1(A − C) ∈ [0, 15] and v2(C − B) ∈ [0, 15] (see Figure 4.6). Hence

the optimal trajectory is searched in the large four dimensional solution space. As this

system focuses on heavy traffic regions, this probability of conflict can be highly non

stationary (as seen in Figure 4.7).

In this example, the simulator runs as fast as 0.006 second to evaluate an alternative

trajectory and a maximum of 5 minutes is allowed to obtain an optimal solution. Even

though thousands of evaluations can be afforded in this example, this budget may still be

insufficient to comprehensively search the entire four dimensional space. As shown in

Chapter 4, the CGLO can work better than the random search and the TSSO (Quan et al.,

2013) with a smaller probability of conflict. However, none of the algorithms is able

to identify the global optimal solution within the limited computational time. Hence,

a much faster and effective searching procedure to find the global optimal solution is

required.

PGLO has the desirable characteristics to quickly and more effectively search the

entire space. With the fast estimated AGLGP model and the metamodel-based search-

ing criterion, PGLO better explores the response surface, while with the application of

pattern search, PGLO efficiently exploits the promising area for a better solution. Here

we compare PGLO with Random Search (RS) and CGLO on a single processor.

The S2TA system is run until a potential conflict is detected. At this point, we run

PGLO, RS and CGLO to obtain the optimal alternate trajectory. The solution space is
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discretized into 50 × 50 grids in both positive and negative polarity for θ1 and θ2, and

the speeds v1 and v2 in 15×15 grids, which gives an estimation of minimum probability

of p∗ = 3.6165 × 10−4 at x∗ = [−57.6000,−52.8000, 5, 11]. In PGLO, we set a

maximum of 10 alternative trajectories to be evaluated successively through each stream

of the pattern search. Due to the high nonstationarity in the response of probability,

each local region includes multiple local optimal solutions, and a maximum iteration of

pattern search avoids the local search stage from overexploiting a sub-optimal local area

before it explores the other promising local regions.

A maximum time for the S2TA system to search for the alternative trajectory with

all three algorithms is set at 5 minutes before termination, at which point, the final best

solution is determined. Table 5.7 presents the numbers of evaluation points, the distances

between the ’optimal’ solution ytrue and the observed best solution by the each approach

yapproach.

Table 5.7: The number of objective function evaluations and the deviation of the optimal
probability of conflict yapproach found by each optimization algorithm to the true optimal

.

Approach Number of Evaluation Points ‖yapproach − ytrue‖

RS 2000 0.0019

CGLO 611 9.4876× 10−4

PGLO(1) 1421 4.5247× 10−4

PGLO(4) 3894 3.6214× 10−4

As the simulation runs fast, the RS was able to search at 2000 design points and

identify an optimal solution that is close to the true optimal location. Although with one

processor, none of the approaches managed to locate the optimal solution in the limited

time, both CGLO and PGLO were able to locate a safer solution (with a 50% lower prob-

ability of conflict) than RS. As the iteration progresses, PGLO required approximately

additional 5 minutes (10 minutes in total) to identify the optimal solution, while CGLO

required additional 15 minutes (20 minutes in total) to get the optimal solution. This

shows that CGLO works less efficiently than PGLO as the data size gets larger.

In this example where the simulation runs fast, a large part of the computational time

in CGLO is spent on the computation of the model predictions and selecting next evalu-

104



5.7. A NAVIGATIONAL SAFETY PROBLEM

ation points. Hence only 611 points are evaluated to search the domain space and they

do not sufficiently identify the global optimal area. The PGLO, incorporated with a fast

pattern search, is more computationally efficient instead. It reduces the computational

time of model predictions for more simulation evaluations and better explores the entire

space with these additional simulation evaluations.

As PGLO has a parallel framework, running PGLO on the same personal computer

can fully utilize its 4 processors. We see from Table 5.7 (last row) that PGLO with 4

processors is able to locate the optimal solution within 5 minutes of time constraint.

Next, we compared the parallel realization of PGLO with RS and multi-start pattern

search on four processors. For RS, we randomly selected four points for evaluation in

each iteration. For multi-start pattern search, we initialized the pattern search from four

Latin Hypercube designs and continued the search independently on four processors.

A maximum budget of 1,000 replications was allowed in each iteration before we re-

initialized the pattern search (avoid overexploiting a sub-optimal area). The results were

averaged over 30 additional detected conflicts. With additional processors, much more

alternative trajectories could be evaluated. Thus, all the algorithms were able to identify

the global optimal area. It is assumed that the algorithm finds the global optimal solution

if the Euclidean distance between the observed optimal trajectory and the ’true’ optimal

trajectory ‖xtrue−xapproach| ≤ 5. Table 5.8 shows that among the 30 conflict scenarios,

PGLO found the most global optimal solutions.

Table 5.8: Number and percentage of scenarios for which each algorithm converges to
the global optimal solution with 4 processors within 5 minutes

Approach RS MultPPS PGLO

Percentage 12/30(40%) 19/30 (63%) 24/30 (80%)

Overall, the results show that PGLO can be better incorporated into the S2TA system

to provide a better alternative trajectory with a lower probability of conflict within the

limited response time. It distributes the computing budget to the promising local regions

more effectively and searches for new evaluation points more efficiently. This attribute

is very helpful for such real-time control systems with complex simulation models that

show high nonstationarity.
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5.8 Conclusions

In this chapter, we proposed a parallel global and local optimization algorithm by utiliz-

ing the global and local structures of CGLO. It iteratively incorporates locally convergent

direct search methods for fast exploitation and computational efficiency improvement.

We then derived a multi-point global expected improvement function that better explores

the entire space for multiple promising local regions. The performance of CGLO and

PGLO was compared on a simple one-dimensional example. The parallelization effi-

ciency of PGLO was further studied on five test functions. We also applied PGLO to

solve a practical navigational problem which aims to find the best trajectory with the

lowest probability of conflict. The results provide invaluable insights in improving the

S2TA system.
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Chapter 6

CONCLUSIONS AND FUTURE

RESEARCH

In this thesis, we investigated both the modeling and optimization problems in stochastic

simulation context. In this chapter, we conclude the study by summarizing the main

results of our research, and giving directions for possible future research.

6.1 Summary

In this thesis, we first investigated the application of Gaussian Process model in approx-

imating the response surface of computer models where large data sets are observed

in Chapter 3. We discussed the limitation of Gaussian Process model and proposed an

additive global and local Gaussian Process (AGLGP) model that is computationally

efficient and enables more flexibility in the modeling of the systems whose response

can dramatically change over the design space. This additive structure comprises of a

global model with a small set of inducing points to capture the global trend and several

local models to capture the residual process from the global model. We then proposed

an approach to determine the local regions and inducing points which have not been

previously addressed but assumed given. We proposed two model estimation methods to

obtain the predictive distribution and maximum likelihood parameter estimators; namely,

one stage estimation and two stage estimation methods. We have further shown several

nice properties of the additive model, such as identifiability. Our model was then nu-
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merically compared with other approximation methods. The results indicate that the

proposed AGLGP model is a promising method for applications in simulation systems

with nonstationarity. With its global and local structure and computational efficiency, the

AGLGP model is especially well suited for the simulation optimization.

In the following Chapter 4, we applied the AGLGP model to stochastic simulation

optimization problems. With the AGLGP model, we adopted the efficient global opti-

mization (EGO) framework and the expected improvement (EI) to allocate the comput-

ing budget for experiment designs. However, the EGO framework works less efficiently

as the iteration progresses and the number of evaluations observed gets large. We have

proposed a combined iterative global and local search framework, leveraging on the

global and local structures of the additive global and local Gaussian Process model, to

solve this problem. The proposed framework tends to identify a promising local region

in the global search stage and then search finely in the promising region in the local

search stage. We also proposed an allocation strategy that intelligently allocates budget

to the evaluated points for the purpose of improving the metamodel fit and estimating the

optimal solution. The property of global convergence was then analyzed. We tested the

proposed framework with a simple one-dimensional example, followed by comparison

with other metamodel-based optimization algorithms. The results from a more realis-

tic navigational safety problem suggested that the proposed combined global and local

optimization algorithm is a more reasonable method when optimizing a less expensive

simulation model with highly nonstationary response surface than traditional methods.

In Chapter 5, we extended the combined global and local optimization method into

a parallel environment. Although this method has been shown to perform efficiently in

many situations, in some real-time control systems whose behaviour can dynamically

change over time, a much faster optimization algorithm may be required to effectively

respond to these system changes. We proposed a parallel global and local optimization

approach that identifies multiple promising local regions in the global search stage and

parallelizes the local search in each promising local region for simultaneous evaluations.

The proposed multi-point global expected improvement function is able to better ex-

plore the entire space for multiple promising local regions before exploiting multiple

local optimal solutions in a single local region. As the design points tend to be clus-
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tered in promising local regions, the local search stage can become expensive in local

regions with dense design points. We further incorporated the pattern search for faster

exploitation to reduce the computational time of the local search stage. The global con-

vergence was then studied. We illustrated the parallel approach with several examples

and provided invaluable insights in improving the practical S2TA system.

6.2 Future Research

The current work can be extended in the following directions.

1. In Chapter 3, even though the discontinuity of the AGLGP model can be solved

by adding additional constraints between local models, the model estimation may

become more expensive. Future work includes building a smooth structure for the

AGLGP model through a dynamic or an overlapping local decomposition strategy.

2. The proposed AGLGP model focuses on improving the computational efficiency

of the model estimation with large data sets. It may not be able to handle high

input dimensions, especially when the number of local regions increases. Hence

alternative approximation methods can be explored to reduce the input dimen-

sions.

3. The optimization methods in Chapters 4 and 5 assume a constant allocation bud-

get. Developing an adaptive scheme that dynamically determines the allocation

budget for better evaluation in each iteration is worth further study for stochastic

simulation systems. For example, increasing the allocation budget over iterations

may help to improve the convergence rate.

4. In the proposed metamodeling method and optimization algorithms, Gaussian Pro-

cess model is used as the metamodel for its flexibility and its unique statistical view

of prediction error. However, comparison with other metamodels and metamodel-

based optimization algorithms are also important issues to be addressed in future

work.

5. The parallel framework in Chapter 5 aims at defining a fast searching criterion

for parallel simulations. A more comprehensive comparison with other parallel
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optimization methods is worth further study. The framework can also be further

accelerated by parallelizing the model estimation and the searching criterion.
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Appendix A

Derivation of Predictive

Distribution in Section 3.3.1.1

Integrating conditional distribution of y0 in equation (3.10) with (3.11) and (3.12)

p(y|x0,xg,x,y) =

∫∫
p(y|x0,xg,yg,yl,x,y)p(yl,yg|xg,x,y)dygdyl

=

∫∫
p(y|x0,xg,yg,yl,x,y)p(yl|xg,yg,x,y)p(yg|xg,x,y)dygdyl

∝
∫∫

exp

(
− [y − (µ+ g′G−1m (yg − µ) + l′(Ln + Σε)

−1yl)]
2

2(λ+ γ + σ2
ε )

)
× exp

(
− [yl − µl]′Σ−1[yl − µl]

2

)
p(yg|xg,x,y)dygdyl

∝
∫

exp

(
− [y − (µ+ g′G−1m (yg − µ) + l′[Σε + Ln]−1µl])]

2

2(λ+ γ + l′[Ln + Σε]−1Σ[Ln + Σε]−1l + σ2
ε )

)
× exp

(
− [yg − µg]′[GmQ−1m Gm]−1[yg − µg]

2

)
dyg

∝ exp

(
− [y − ŷ(x0)]2

2ŝ2(x0)

)

whereµg = µ+GmQ−1m GmnK−1(y − µ),µl = LnK−1{y − µ−GnmG−1m (yg−µ)}

and Σ = Ln − LnK−1Ln + ΣΣΣε. So we have p(y|x0,xg,x,y) = N(ŷ(x0), ŝ2(x0)),

where

ŷ(x0) = µ+[g′Q−1m Gmn + l′(Ln+ΣΣΣε)
−1LnK−1(K−GnmQ−1m Gmn)]K−1(y−µ)

ŝ2(x0) = Gnn − g′(G−1m −Q−1m )g + (1−1′G−1
m g)2

1′G−1
m 1

+ Lnn − l′[ΣΣΣε + Ln]−1LnK−1Ln[ΣΣΣε + Ln]−1l
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Appendix B

Proof of Theorem 3.1

For the AGLGP model, the predictive distribution derived in (3.10) gives a mean of

ŷ(x0) = µ+ [g′Q−1m Gmn + l′(Ln + ΣΣΣε)
−1LnK−1(K−GnmQ−1m Gmn)]K−1(y−µ)

(B.1)

where Qm = Gm + GmnK−1Gnm and K = Ln + Λ + Σε. The predictive mean can

also be expressed by

ŷ(x0) = µ+ [g′G−1m Gmn + l′(Ln+Σε)
−1Ln]R−1(y − µ) (B.2)

where R = G′mnG−1m Gmn + ΛΛΛ + Ln + Σ and µ̂ = 1′R−1y
1′R−11

. First we show equation

(B.1) and equation (B.2) are equivalent. From the Woodbury identity, equation (B.2)

becomes

ŷ(x0) = µ+ [g′G−1m Gmn + l′(Ln + Σε)
−1Ln](I−K−1GnmQ−1m Gmn)K−1(y − µ)

= µ+ {g′G−1m Gmn(I−K−1GnmQ−1m Gmn)

+ l′(Ln + Σε)
−1Ln(I−K−1GnmQ−1m Gmn)}K−1(y − µ)

= µ+ {g′G−1m Gmn − g′G−1m GmnK−1GnmQ−1m Gmn

+ l′(Ln + Σε)
−1LnK−1(K−GnmQ−1m Gmn)}K−1(y − µ)

= µ+ {g′(G−1m −G−1m (I−GmQ−1m ))Gmn

+ l′(Ln + Σε)
−1LnK−1(K−GnmQ−1m Gmn)}K−1(y − µ)
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= µ+ {g′Q−1m Gmn + l′(Ln + Σε)
−1LnK−1(K−GnmQ−1m Gmn)}K−1(y − µ)

which shows that equation (B.1) and equation (B.2) are equivalent. Based on equation

(B.2), ŷ(x0) is also a linear combination of y, i.e. ŷ(x0) =
n∑
i=1

λiyi,

λi =

[
1′R−1

1′R−11
+ (g′G−1m Gmn + l′[Ln + Σε]

−1Ln)R−1(1− 1′
1′R−1

1′R−11
)

]
ei

where ei = [0, 0, ..., 1︸︷︷︸
the ith element

, ..., 0, 0];
n∑
i=1

λi = 1. E[ŷ(x0)] = E[
n∑
i=1

λiyi] =

n∑
i=1

λiE[yi] = E[y(x0)].
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Appendix C

Proof of Proposition 3.2

In this case the conditional likelihood of observations y is given by

y|x,yg,x ∼ N(µ+ G′nG−1n (yg − 1′µ),Σε),

The conditional distribution of yg given y is

yg|x,y ∼ N((G−1n + Σ−1ε )−1{Σ−1ε y + G−1n 1′µ}, (G−1n + Σ−1ε )−1),

so the predictive distribution of y0 at any point x0 can be derived as

y0|x0,x,y ∼ N(ŷ(x0), ŝ2(x0)) (C.1)

where ŷ(x0) = µ+ g′(Gn + Σε)
−1(y − 1′µ) and ŝ2(x0) = Gnn− g′(Gn + Σε)

−1g.

This is equivalent to the Stochastic Kriging and MNEK predictor and variance in (3.2)

and (3.3).
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Appendix D

Proof of Identifiability in Section

3.4

Lemma 3.8. For ∀xi ∈ Dp and ∀xj ∈ Dq and p 6= q, the (ij)th element in covariance

matrix Rij(φ1) = Rij(φ
2) only satisfied when σ2

1 = σ2
2 and θ1 = θ2

Proof. Given the expression of Rij , it suffices to show that ∀xi, xj in different local

regions, Gij(σ2
1,θ1) = Gij(σ

2
2,θ2) only when θ1 = θ2 and σ2

1 = σ2
2 . We can further

simplify Gij = σ2h(|xi − xj |,θ), where h is a function of θ and Euclidean distance

between xi and xj . If there exist two set of parameters θ1 6= θ2 and σ2
1 6= σ2

2 that

satisfiesGij(σ2
1,θ1) = Gij(σ

2
2,θ2) given |xi−xj |, i.e. σ2

1h(|xi−xj |,θ1) = σ2
2h(|xi−

xj |,θ2), we have
σ2

1

σ2
2

=
h(|xi − xj |,θ2)

h(|xi − xj |,θ1)
(D.1)

Then for a different pair of evaluation point xi, xk that |xi − xj | 6= |xi − xk|, since h is

not a linear function of θ, so we have

h(|xi − xk|,θ2)

h(|xi − xk|,θ1)
6= h(|xi − xj |,θ2)

h(|xi − xj |,θ1)
(D.2)

So Gik(σ2
1,θ1) = Gik(σ

2
2,θ2) is not satisfied.

Lemma 3.9 Given σ2
1 = σ2

2 and θ1 = θ2, for ∀xi, xj ∈ Dk, Rij(φ1) = Rij(φ
2) only

satisfied when τ2
1 = τ2

2 and α1 = α2
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Proof. Given σ2
1 = σ2

2 and θ1 = θ2, we have Gij(σ2
1,θ1) = Gij(σ

2
2,θ2) everywhere.

When xi ∈ Dp, xj ∈ Dq, p = q,Rij = Gij +Lij , so we have Rij(φ1) = Rij(φ
2) only

when Lij(τ2
1 ,α1) = Lij(τ

2
2 ,α2). Now we can say that µ(φ1) = µ(φ2) and R(φ1) =

R(φ2) is only satisfied when φ1 = φ2. So the AGLGP model is identifiable.
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Appendix E

Test Functions in Section 5.6.2

40
20

0

x1
-20

Ackley function

-40-40

-20

x2

0

20

20

25

5

0

10

15

40

f(
x1

,x
2)

124



125



LIST OF PUBLICATIONS

Meng, Q., & Ng, S. H. Additive Global and Local Gaussian Process Model for Simula-

tion Metamodeling and Optimization, submitted.

Meng, Q., & Ng, S. H. Parallel global and local method for stochastic simulation opti-

mization with an AGLGP model, working paper.

Meng, Q., & Ng, S. H. (2016) Combined global and local method for stochastic simu-

lation optimization with an AGLGP model, Proceedings of the 2016 Winter Simulation

Conference, IEEE Press.

Meng, Q., & Ng, S. H. (2015) An additive global and local gaussian process model

for large data sets, Proceedings of the 2015 Winter Simulation Conference, IEEE Press,

505-516.

126


	Contents
	1 INTRODUCTION
	1.1 Computer Simulation Models
	1.2 Metamodels for Simulation Models
	1.3 Simulation Optimization
	1.4 Objectives and Scopes
	1.5 Thesis Organization

	2 LITERATURE REVIEW
	2.1 Review of Metamodels
	2.1.1 Polynomial Regression
	2.1.2 Radial Basis Functions
	2.1.3 Multivariate Adaptive Regression Splines
	2.1.4 Gaussian Process Models
	2.1.5 Artificial Neural Networks

	2.2 Review of Gaussian Process Models for Large Data Sets
	2.2.1 Global Approximation
	2.2.2 Local Approximation
	2.2.3 Combination of Global and Local Approximation

	2.3 Metamodel-based Simulation Optimization Algorithms
	2.3.1 Response Surface Methodology
	2.3.2 Trust Region Methods
	2.3.3 Efficient Global Optimization
	2.3.4 Stochastic Response Surface Methods


	3 AN ADDITIVE GLOBAL AND LOCAL GAUSSIAN PROCESS MODEL FOR LARGE DATA SETS
	3.1 Introduction
	3.2 Model Formulation
	3.2.1 Stochastic Gaussian Process Model Basics
	3.2.2 Overview of the AGLGP model
	3.2.3 The Development of the AGLGP Model
	3.2.4 Selection of Inducing Points and Local Regions
	3.2.4.1 Partitioning the Design Space into Local Regions
	3.2.4.2 Determining Inducing Points


	3.3 Model Estimation
	3.3.1 Estimating Predictive Distribution and Parameters in a One Stage Approach
	3.3.1.1 Estimating Predictive Distribution in One Stage
	3.3.1.2 Estimating Parameters in One Stage

	3.3.2 Estimating the Predictive Distribution and Parameters with a Faster Two Stage Approach

	3.4 Identifiability of the AGLGP model
	3.5 Numerical Experiments
	3.5.1 Effects of Inducing Points and Local Regions on AGLGP Model Estimation
	3.5.2 Comparative Studies for the AGLGP Model

	3.6 Conclusions

	4 COMBINED GLOBAL AND LOCAL METHOD FOR STOCHASTIC SIMULATION OPTIMIZATION WITH AN AGLGP MODEL
	4.1 Introduction
	4.2 The Expected Improvement Function and the Modified Expected Improvement Function
	4.3 Development of Methodology
	4.3.1 General Framework of the CGLO Algorithm
	4.3.2 Global Search Stage
	4.3.2.1 Generation of Candidate Points
	4.3.2.2 Global Expected Improvement

	4.3.3 Local Search Stage
	4.3.3.1 Local Search Step
	4.3.3.2 Local Allocation Step


	4.4 Convergence of the CGLO Algorithm
	4.5 Numerical Results
	4.5.1 One-dimensional Test Function (Illustration of Algorithm)
	4.5.2 Comparative Studies with other Optimization Algorithms

	4.6 A Navigational Safety Problem
	4.7 Conclusions

	5 PARALLEL GLOBAL AND LOCAL OPTIMIZATION WITH AGLGP MODEL
	5.1 Introduction
	5.2 Desired Properties of Parallel Search and Sampling Distributions
	5.3 Basics and Background: Multi-point Expected Improvement and Pattern Search
	5.3.1 Multi-point Expected Improvement
	5.3.2 Pattern Search

	5.4 Development of Methodology
	5.4.1 General Framework of the PGLO Algorithm
	5.4.2 Global Search Stage
	5.4.2.1 Multi-point Global Expected Improvement

	5.4.3 Parallel Local Search Stage
	5.4.3.1 Selection of Initial Evaluation Points
	5.4.3.2 Selection of Follow-up Evaluation Points

	5.4.4 Allocation Stage

	5.5 Convergence of the PGLO Algorithm
	5.6 Numerical Studies
	5.6.1 Comparison with CGLO
	5.6.2 Comparison with Other Parallel Pattern Search Techniques

	5.7 A Navigational Safety Problem
	5.8 Conclusions

	6 CONCLUSIONS AND FUTURE RESEARCH
	6.1 Summary
	6.2 Future Research

	Bibliography
	A Derivation of Predictive Distribution in Section 3.3.1.1
	B Proof of Theorem 3.1
	C Proof of Proposition 3.2
	D Proof of Identifiability in Section 3.4
	E Test Functions in Section 5.6.2

