8,116 research outputs found

    A review of evidence on non-invasive prenatal diagnosis (NIPD) : tests for fetal RHD genotype

    Get PDF
    This report concentrates on three main areas. First and foremost, we set the background context for RhD NIPD in prenatal care. While the methodology chapter describes how the literature review was carried out and how additional information was collected, the second chapter provides an overview of the key issues associated with pregnancy of RhD negative women. We present background information based on publications from 1997 to 2006 which describe the genetic condition and its prevalence (RhD negativity) in populations, as well as the frequency of cases of sensitisation and HDN (haemolytic disease of the newborn). We also discuss current service provision for RhD negative women in a number of European countries and look at how the NIPD test might be set within current service contexts

    Cancer biomarkers, and novel techniques for detection

    Full text link
    Technologies for early detection of tumors is critical for better therapy outcome and overall change in cancer survival. These assays must be capable of detecting tumors at early stages in order to prevent metastasis of the tumor and help reduce mortality. Biological molecules can serve as markers that can indicate the presence of cancerous cells. Current biomarkers approved by the FDA include CA 125, which is a tumor associated antigen (TAA). However, the sensitivities of these TAAs is not high enough to detect at early stages of disease. Recent technologies have found that antibodies that recognize these TAAs, also known as autoantibodies, provide more sensitive means to screen for tumors. This review aims to present recent literature data relative to the field of cancer diagnosis and treatment. However, one should note that this article covers only fraction of the broad science behind this subject

    Practical approach on frail older patients attended for acute heart failure

    Get PDF
    Acute heart failure (AHF) is a multi-organ dysfunction syndrome. In addition to known cardiac dysfunction, non-cardiac comorbidity, frailty and disability are independent risk factors of mortality, morbidity, cognitive and functional decline, and risk of institutionalization. Frailty, a treatable and potential reversible syndrome very common in older patients with AHF, increases the risk of disability and other adverse health outcomes. This position paper highlights the need to identify frailty in order to improve prognosis, the risk-benefits of invasive diagnostic and therapeutic procedures, and the definition of older-person-centered and integrated care plans

    Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine.

    Get PDF
    OBJECTIVE: Circulatory shock is a life-threatening syndrome resulting in multiorgan failure and a high mortality rate. The aim of this consensus is to provide support to the bedside clinician regarding the diagnosis, management and monitoring of shock. METHODS: The European Society of Intensive Care Medicine invited 12 experts to form a Task Force to update a previous consensus (Antonelli et al.: Intensive Care Med 33:575-590, 2007). The same five questions addressed in the earlier consensus were used as the outline for the literature search and review, with the aim of the Task Force to produce statements based on the available literature and evidence. These questions were: (1) What are the epidemiologic and pathophysiologic features of shock in the intensive care unit ? (2) Should we monitor preload and fluid responsiveness in shock ? (3) How and when should we monitor stroke volume or cardiac output in shock ? (4) What markers of the regional and microcirculation can be monitored, and how can cellular function be assessed in shock ? (5) What is the evidence for using hemodynamic monitoring to direct therapy in shock ? Four types of statements were used: definition, recommendation, best practice and statement of fact. RESULTS: Forty-four statements were made. The main new statements include: (1) statements on individualizing blood pressure targets; (2) statements on the assessment and prediction of fluid responsiveness; (3) statements on the use of echocardiography and hemodynamic monitoring. CONCLUSIONS: This consensus provides 44 statements that can be used at the bedside to diagnose, treat and monitor patients with shock

    Molecular Biomarkers for Celiac Disease:Past, Present and Future

    Get PDF
    Celiac disease (CeD) is a complex immune-mediated disorder that is triggered by dietary gluten in genetically predisposed individuals. CeD is characterized by inflammation and villous atrophy of the small intestine, which can lead to gastrointestinal complaints, malnutrition, and malignancies. Currently, diagnosis of CeD relies on serology (antibodies against transglutaminase and endomysium) and small-intestinal biopsies. Since small-intestinal biopsies require invasive upper-endoscopy, and serology cannot predict CeD in an early stage or be used for monitoring disease after initiation of a gluten-free diet, the search for non-invasive biomarkers is ongoing. Here, we summarize current and up-and-coming non-invasive biomarkers that may be able to predict, diagnose, and monitor the progression of CeD. We further discuss how current and emerging techniques, such as (single-cell) transcriptomics and genomics, can be used to uncover the pathophysiology of CeD and identify non-invasive biomarkers

    Linking quantitative radiology to molecular mechanism for improved vascular disease therapy selection and follow-up

    Get PDF
    Objective: Therapeutic advancements in atherosclerotic cardiovascular disease have improved the prevention of ischemic stroke and myocardial infarction. However, diagnostic methods for atherosclerotic plaque phenotyping to aid individualized therapy are lacking. In this thesis, we aimed to elucidate plaque biology through the analysis of computed-tomography angiography (CTA) with sufficient sensitivity and specificity to capture the differentiated drivers of the disease. We then aimed to use such data to calibrate a systems biology model of atherosclerosis with adequate granularity to be clinically relevant. Such development may be possible with computational modeling, but given, the multifactorial biology of atherosclerosis, modeling must be based on complete biological networks that capture protein-protein interactions estimated to drive disease progression. Approach and Results: We employed machine intelligence using CTA paired with a molecular assay to determine cohort-level associations and individual patient predictions. Examples of predicted transcripts included ion transporters, cytokine receptors, and a number of microRNAs. Pathway analyses elucidated enrichment of several biological processes relevant to atherosclerosis and plaque pathophysiology. The ability of the models to predict plaque gene expression from CTAs was demonstrated using sequestered patients with transcriptomes of corresponding lesions. We further performed a case study exploring the relationship between biomechanical quantities and plaque morphology, indicating the ability to determine stress and strain from tissue characteristics. Further, we used a uniquely constituted plaque proteomic dataset to create a comprehensive systems biology disease model, which was finally used to simulate responses to different drug categories in individual patients. Individual patient response was simulated for intensive lipid-lowering, anti-inflammatory drugs, anti-diabetic, and combination therapy. Plaque tissue was collected from 18 patients with 6735 proteins at two locations per patient. 113 pathways were identified and included in the systems biology model of endothelial cells, vascular smooth muscle cells, macrophages, lymphocytes, and the integrated intima, altogether spanning 4411 proteins, demonstrating a range of 39-96% plaque instability. Simulations of drug responses varied in patients with initially unstable lesions from high (20%, on combination therapy) to marginal improvement, whereas patients with initially stable plaques showed generally less improvement, but importantly, variation across patients. Conclusion: The results of this thesis show that atherosclerotic plaque phenotyping by multi-scale image analysis of conventional CTA can elucidate the molecular signatures that reflect atherosclerosis. We further showed that calibrated system biology models may be used to simulate drug response in terms of atherosclerotic plaque instability at the individual level, providing a potential strategy for improved personalized management of patients with cardiovascular disease. These results hold promise for optimized and personalized therapy in the prevention of myocardial infarction and ischemic stroke, which warrants further investigations in larger cohorts

    The development of novel photonics based techniques for biomedicine

    Get PDF
    The advances in technology capable of measuring various optical properties within organic materials and tissues have paved way for potentially revolutionary methods of detecting and diagnosing diseases as well as generally monitoring health. Thus, this thesis provides a background on a number of key optical properties crucial in organic tissues and describes how such properties can currently be detected and observed.The thesis looks at a diverse selection of conditions and health-monitoring challenges to determine the effectiveness of non- and minimally invasive diagnostics. Urinary bladder cancer and a computational Monte Carlo model are described in an effort to predict the effectiveness of such diagnostics tools as well as aid in the overall detection of cancer within the organ. Beginning from porcine bladder, the model is advanced to function with human biopsy samples.Furthermore, the thesis covers cardiovascular disease (CVD), specifically pre-eclampsia.Tools used for human analysis are tested on animal CVD models and ultimately employed to display their effectiveness at monitoring diseased mice from an established murine model. The thesis also presents potential parameters vital for diagnostics purposes.Using the established parameters of interest from the above work, the thesis describes measurement of physiological (photonics based diagnostics) and psychological (reaction time assessment) effects resulting from short-term light exposure. Due to the frequency at which non natural light interacts with people on a day-to-day basis, the thesis provides a basis to further expand health-monitoring research.Finally, potential methods for assessing ocular health in the form of contact lens induced discomfort is assessed through objective analysis by photonics based techniques. The thesis also establishes a validation for the proposed approach.Ultimately, the work presented in the thesis describes how novel photonics based technologies can be effectively employed in a wide variety of biomedical diagnostics and monitoring applications, whether used alone or in conjunction with other forms of diagnostics

    Challenges associated with using extracellular vesicles as biomarkers in neurodegenerative disease

    Get PDF
    Introduction: The hunt for new biomarkers – for the diagnosis of subcategories of disease, or for the monitoring of the efficacy of novel therapeutics – is an increasingly relevant challenge in the current era of precision medicine. In neurodegenerative research, the aim is to look for simple tools which can predict cognitive or motor decline early, and to determine whether these can also be used to test the efficacy of new interventions. Extracellular vesicles (EVs) are thought to play an important role in intercellular communication and have been shown to play a vital role in a number of diseases. Areas Covered: The aim of this review is to examine what we know about EVs in neurodegeneration and to discuss their potential to be diagnostic and prognostic biomarkers in the future. It will cover the techniques used to isolate and study EVs and what is currently known about their presence in neurodegenerative diseases. In particular, we will discuss what is required for standardization in biomarker research, and the challenges associated with using EVs within this framework. Expert Opinion: The technical challenges associated with isolating EVs consistently, combined with the complex techniques required for their efficient analysis, might preclude ‘pure’ EV populations from being used as effective biomarkers. Whilst biomarker discovery is important for more effective diagnosis, monitoring, prediction and prognosis in neurodegenerative disease, reproducibility and ease-of-use should be the priorities
    • …
    corecore