2,677 research outputs found

    Semantic annotation, publication, and discovery of Java software components: an integrated approach

    Get PDF
    Component-based software development has matured into standard practice in software engineering. Among the advantages of reusing software modules are lower costs, faster development, more manageable code, increased productivity, and improved software quality. As the number of available software components has grown, so has the need for effective component search and retrieval. Traditional search approaches, such as keyword matching, have proved ineffective when applied to software components. Applying a semantically- enhanced approach to component classification, publication, and discovery can greatly increase the efficiency of searching and retrieving software components. This has been already applied in the context of Web technologies, and Web services in particular, in the frame of Semantic Web Services research. This paper examines the similarities between software components and Web services and adapts an existing Semantic Web Service publication and discovery solution into a software component annotation and discovery tool which is implemented as an Eclipse plug-in

    A Framework for Semantic Interoperability for Distributed Geospatial Repositories

    Get PDF
    Interoperable access of geospatial information across disparate geospatial applications has become essential. Geospatial data are highly heterogeneous -- the heterogeneity arises both at the syntactic and semantic levels. Finding and accessing appropriate data in such a distributed environment is an important research issue. The paper proposes a methodology for interoperable access of geospatial information based on Open Geospatial Consortium (OGC) specified standards. An architecture for integrating diverse geospatial data repositories has been proposed using service-based methodology. The semantic issues for discovery and retrieval of geospatial data over distributed geospatial services have also been proposed in the paper. The proposed architecture utilizes the ontological concepts for service description and subsequent discovery of services. An approach for semantic similarity assessment of geospatial services has been discussed

    Improving Knowledge Retrieval in Digital Libraries Applying Intelligent Techniques

    Get PDF
    Nowadays an enormous quantity of heterogeneous and distributed information is stored in the digital University. Exploring online collections to find knowledge relevant to a user’s interests is a challenging work. The artificial intelligence and Semantic Web provide a common framework that allows knowledge to be shared and reused in an efficient way. In this work we propose a comprehensive approach for discovering E-learning objects in large digital collections based on analysis of recorded semantic metadata in those objects and the application of expert system technologies. We have used Case Based-Reasoning methodology to develop a prototype for supporting efficient retrieval knowledge from online repositories. We suggest a conceptual architecture for a semantic search engine. OntoUS is a collaborative effort that proposes a new form of interaction between users and digital libraries, where the latter are adapted to users and their surroundings

    Escaping the Trap of too Precise Topic Queries

    Full text link
    At the very center of digital mathematics libraries lie controlled vocabularies which qualify the {\it topic} of the documents. These topics are used when submitting a document to a digital mathematics library and to perform searches in a library. The latter are refined by the use of these topics as they allow a precise classification of the mathematics area this document addresses. However, there is a major risk that users employ too precise topics to specify their queries: they may be employing a topic that is only "close-by" but missing to match the right resource. We call this the {\it topic trap}. Indeed, since 2009, this issue has appeared frequently on the i2geo.net platform. Other mathematics portals experience the same phenomenon. An approach to solve this issue is to introduce tolerance in the way queries are understood by the user. In particular, the approach of including fuzzy matches but this introduces noise which may prevent the user of understanding the function of the search engine. In this paper, we propose a way to escape the topic trap by employing the navigation between related topics and the count of search results for each topic. This supports the user in that search for close-by topics is a click away from a previous search. This approach was realized with the i2geo search engine and is described in detail where the relation of being {\it related} is computed by employing textual analysis of the definitions of the concepts fetched from the Wikipedia encyclopedia.Comment: 12 pages, Conference on Intelligent Computer Mathematics 2013 Bath, U

    Is question answering fit for the Semantic Web? A survey

    Get PDF
    With the recent rapid growth of the Semantic Web (SW), the processes of searching and querying content that is both massive in scale and heterogeneous have become increasingly challenging. User-friendly interfaces, which can support end users in querying and exploring this novel and diverse, structured information space, are needed to make the vision of the SW a reality. We present a survey on ontology-based Question Answering (QA), which has emerged in recent years to exploit the opportunities offered by structured semantic information on the Web. First, we provide a comprehensive perspective by analyzing the general background and history of the QA research field, from influential works from the artificial intelligence and database communities developed in the 70s and later decades, through open domain QA stimulated by the QA track in TREC since 1999, to the latest commercial semantic QA solutions, before tacking the current state of the art in open userfriendly interfaces for the SW. Second, we examine the potential of this technology to go beyond the current state of the art to support end-users in reusing and querying the SW content. We conclude our review with an outlook for this novel research area, focusing in particular on the R&D directions that need to be pursued to realize the goal of efficient and competent retrieval and integration of answers from large scale, heterogeneous, and continuously evolving semantic sources

    Sharing Human-Generated Observations by Integrating HMI and the Semantic Sensor Web

    Get PDF
    Current “Internet of Things” concepts point to a future where connected objects gather meaningful information about their environment and share it with other objects and people. In particular, objects embedding Human Machine Interaction (HMI), such as mobile devices and, increasingly, connected vehicles, home appliances, urban interactive infrastructures, etc., may not only be conceived as sources of sensor information, but, through interaction with their users, they can also produce highly valuable context-aware human-generated observations. We believe that the great promise offered by combining and sharing all of the different sources of information available can be realized through the integration of HMI and Semantic Sensor Web technologies. This paper presents a technological framework that harmonizes two of the most influential HMI and Sensor Web initiatives: the W3C’s Multimodal Architecture and Interfaces (MMI) and the Open Geospatial Consortium (OGC) Sensor Web Enablement (SWE) with its semantic extension, respectively. Although the proposed framework is general enough to be applied in a variety of connected objects integrating HMI, a particular development is presented for a connected car scenario where drivers’ observations about the traffic or their environment are shared across the Semantic Sensor Web. For implementation and evaluation purposes an on-board OSGi (Open Services Gateway Initiative) architecture was built, integrating several available HMI, Sensor Web and Semantic Web technologies. A technical performance test and a conceptual validation of the scenario with potential users are reported, with results suggesting the approach is soun

    PowerAqua: supporting users in querying and exploring the semantic web

    Get PDF
    With the continued growth of online semantic information, the processes of searching and managing this massive scale and heterogeneous content have become increasingly challenging. In this work, we present PowerAqua, an ontology basedcQuestion Answering system that is able to answer queries by locating and integrating information, which can be massively distributed across heterogeneous semantic resources. We provide a complete overview of the system including: the research challenges that it addresses, its architecture, the evaluations that have been conducted to test it and a deep discussion showing how PowerAqua effectively supports users in querying and exploring the Semantic Web content
    • 

    corecore