
A

Textual and Content-Based Search in Repositories of Web
Application Models

BOJANA BISLIMOVSKA,

Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria (DEIB)

ALESSANDRO BOZZON,

Delft University Of Technology, Software And Computer Technology Department

MARCO BRAMBILLA,

Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria (DEIB)

PIERO FRATERNALI,
Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria (DEIB)

Model-Driven Engineering relies on collections of models, which are the primary artefacts for software de-
velopment. To enable knowledge sharing and reuse, models need to be managed within repositories, where
they can be retrieved upon users queries. This paper examines two different techniques for indexing and
searching model repositories, with a focus on Web development projects encoded in a Domain Specific Lan-
guage. Keyword-based and content-based search (also known as query-by-example) are contrasted, with
respect to the architecture of the system, the processing of models and queries, and the way in which meta-
model knowledge can be exploited to improve search. A thorough experimental evaluation is conducted to
examine what parameter configurations lead to better accuracy and to offer an insight in what queries are
addressed best by each system.

Categories and Subject Descriptors: D.2.13 [Reusable Software]: Reuse models; H.3.3 [Information

Search and Retrieval]: Search process

General Terms: Algorithms, Experimentation, Design, Performance

Additional Key Words and Phrases: Information Retrieval, Web Application, Search, Domain Specific Lan-
guage

ACM Reference Format:

Bislimovska, B., Bozzon, A., Brambilla, M., Fraternali P. 2013.Textual and Content-Based Search in Repos-
itories of Web Application Models. ACM Trans. Web V, N, Article A (January YYYY), 49 pages.
DOI = 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

1. INTRODUCTION

The increased complexity and pervasiveness of software requires raising the level of
abstraction, and automating labor–intensive and error-prone tasks to increase effi-
ciency and effectiveness in software development [Mohagheghi and Dehlen 2008].

An approach that advocates software abstraction through the use of models is Model-
Driven Engineering (MDE), widely used in academia and industrial organizations

This work is partially supported by the FP7 Cubrik Integrating Project (http://www.cubrikproject.eu/)
and by the Capacities Research for SMEs project BPM4People of the Research Executive Agency of the
European Commission (http://www.bpm4people.org/)
Author’s addresses: B. Bislimovska, M. Brambilla and P. Fraternali, Dipartimento di Elettronica, Infor-
mazionee Bioingegneria (DEIB), Politecnico di Milano. P.zza Leonardo Da Vinci 32, 20133, Milano, Italy; A.
Bozzon, Web Information Systems, Delft University of Technology, Mekelweg 4, 2628 Delft, The Netherlands
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© YYYY ACM 1559-1131/YYYY/01-ARTA $10.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Politecnico di Milano

https://core.ac.uk/display/55252428?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.cubrikproject.eu/
http://www.bpm4people.org/

A:2 B. Bislimovska et al.

across different domains. MDE promotes the use of models in any engineering activity
as abstractions that provide a simplified or partial representation of reality, useful to
accomplish a task or to reach an agreement on a topic. Model-Driven Software En-
gineering specifically considers software models, i.e., abstractions of the static or dy-
namic properties of a software system. Studies demonstrate that the benefits of MDE
in industry are perceived in terms of quickly responding to change of requirements,
of streamlining communication among stakeholders [Mohagheghi and Dehlen 2008]
thanks to more accessible organizational knowledge [Hutchinson et al. 2011], and of
improving the quality of code design and test case development [Anda et al. 2006].

The adoption of MDE in academic and business organizations resulted in an increas-
ing number of models collections, stored in model repositories [France et al. 2006]. To
name but a few: the MIT Process Handbook [MIT 2012] contains over 5000 business
process model entries; the AtlanMod Metamodel Zoos [AtlanMod Group 2012] pro-
vides a collection of more than three hundred metamodels; the ReMODD repository
[ReMoDD Team 2012; France et al. 2012] is collecting case studies, models and meta-
models in different modeling languages. In the industry, several MDE tool vendors pro-
vide repositories that contain application and component models authored with their
tools: examples include the WebRatio Store [WebRatio s.r.l. 2012]; the Mendix App
Store [Mendix 2012], the CodeCharge Studio marketplace [YesSoftware, Inc. 2012],
the Genexus marketplace [Artech Consultores S.R.L. 2012], and the Outsystems
AgileNetwork component repository [Outsystems Inc. 2012].

Reuse and sharing of software requires the ability of effectively retrieving artifacts
that meet the user’s need, which is the goal of software search systems. Besides the
software repositories inside organizations, several on-line tools exemplify the state-of-
the-art in sharing and retrieving code, e.g., Google code, Snipplr, Koders, and Codase1.
In the simplest case, the user submits keywords, which are matched to the code, and
receives as a response the programs that contain the search terms. Advanced sys-
tems offer more powerful functionality: 1) expressive query languages, e.g., regular
expressions (in Google Codesearch) or wildcards (in Codase); search over syntactical
categories, like class names, method invocations, and variables (e.g., in Jexamples and
Codase); result restriction based on metadata (e.g., programming language, license
type, file and package names). In the simplest systems the result set is a plain list of
unranked hits, but more sophisticated interfaces offer classical IR-style ranking based
on term importance and frequency or even composite scores compounding number of
matches in the source code, recency of the project, number of downloads, activity rates,
and so on; for example, in SourceForge users can receive results ranked by any combi-
nation of relevance of match, activity, date of registration, and recency of last update.

Model repositories are not yet as well developed and widespread as source code
repositories. The latter enable code-level reuse and thus a reduction of development
time and costs, and may improve software quality, as novice programmers can learn
from the code produced by more experienced ones. The same advantages could be
achieved in MDE, if repositories allowed for the efficient retrieval of models relevant
to the user’s needs. Most industrial repositories offer rather elementary interfaces,
where users can only search by matching keywords against the model’s description
or explore the available content via taxonomical navigation and facets. More power-
ful approaches may foster early stage model reuse and promote the dissemination of
modeling best practices across projects and development teams: for example, a devel-
oper wishing to implement a given application requirement may find in the company’s
repository models that solve similar tasks and reuse them entirely or some design

1Sites: http://code.google.com, http://www.snipplr.com, http://www.koders.com, http://www.codase.
com

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

http://code.google.com
http://www.snipplr.com
http://www.koders.com
http://www.codase.com
http://www.codase.com

Textual and Content-Based Search in Repositories of Web Application Models A:3

pattern embedded therein. Model search approaches should exploit in more depth the
main difference between source code and models, that is, the high level, structural, and
often visual nature of a model representation. Ideally, an MDE developer should be able
not only to search models via keywords, but also to sketch the idea he has in mind in
his favorite Domain Specific Language and retrieve all models that contain a similar
design, properly ranked according to their relevance to the query. Therefore, similarity
search techniques are essential to allow developers’ needs be formulated in the same
language in which solutions are expressed.

Model search is most useful during the initial phases of application development:
the translation of software requirements into design artifacts and the transformation
of coarse design models into detailed models. In the former case, requirements can be
expressed concisely as keywords and used to find relevant models; in the latter case,
coarse design models can be used for retrieving more detailed ones.

With the notable exception of Business Process Models repositories, where re-
search has investigated similarity measures for the specific syntax and seman-
tics of process models [Mendling et al. 2007; Niemann et al. 2012; Qiao et al. 2011;
Dijkman et al. 2009], content-based search and multimodal search (e.g., keyword plus
content based search) are still not the state-of-the-practice for model repositories,
which sets the background for the research reported in this paper.

1.1. Motivating Example

To better motivate the need for search in model repositories, let us consider the sce-
nario depicted in Figure 1: Alice is a developer in a company adopting MDE for the de-
sign and implementation of Web-based information systems. Alice is currently working
on the development of a novel customer management system and she has to address
the requirement of allowing authentication of users through the OAuth2 protocol. Let’s
assume her company already had several experiences in the development of system ex-
ploiting open authentication techniques; therefore, the model repository contains some
project where this specific functionality has been designed already. Alice might be or
not be aware of such previous work, but the reuse of existing models or the adherence
to modeling patterns used in previous successful projects will facilitate her job and
improve uniformity of modeling style across the company. The goal of a model search
system is to assist Alice in the retrieval of existing, similar solutions, and thus allow
reuse and knowledge sharing.

Alice can express her information need with the textual query “authenticate user
oauth”. The search system looks up the repository and returns a list of results at the
appropriate granularity, as shown in Figure 1. The result set comprises concise pre-
views of the retrieved model fragments; for a better understanding, results are ordered
according to their relevance to the query and the parts of the model that match the
query are highlighted. Alice might want to zoom in and visualize one of the results to
better inspect the matching parts, or open the fragment in its original context. If she
finds something useful for her current task, she might import the matching parts or
the entire model in her workspace.

1.2. Goals and Contributions

The goal of this paper is to study the implications of building search systems for soft-
ware models expressed according to Domain Specific Languages, so to increase the
reuse of modeling artifacts and promote the discovery of existing design patterns and
the application of modeling best practices from previous projects. We study two dif-
ferent scenarios of model search: keyword-based search, which proceeds in continuity

2http://www.oauth.net

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

http://www.oauth.net

A:4 B. Bislimovska et al.

Alice

Models Repository

Search

authenticate user oauth

Model Repository Search UI

Retrieved: 10 Models

1. submit
query

4. select
results

M
o

d
e

l S
e

a
rc

h
 S

y
s

te
m

1
Visualize

DSL

Project 1

Project 2

Project 3

Project 1- Fragment 1 (Preview)

DSL

Project 2- Fragment 1 (Preview)

DSL

Project 1- Fragment 2 (Preview)

DSL
DSL

DSL

DSL

DSL

DSL

DSL

DSL
DSL

Import

Open

2
Visualize

Import

Open

3
Visualize

Import

Open

2. query
 repository

3. return
results

Fig. 1: Example of interaction between a developer and a search system for model
repositories: the user submits her query (1), which is applied upon the repository (2);
in turn, the repository returns the matching project fragments (3), among which the
user can select the one that fits better the new requirements (4).

with classical Information Retrieval approaches and source code search techniques;
and content-based search, which introduces the query-by-example paradigm into model
search. The illustrated research aims at addressing the following questions:

Q.1 How can we search model repositories in order to unlock their hidden value and
allow efficient reuse of models?

Q.2 How can we adapt text- and content-based search techniques to model reposito-
ries, so to exploit metamodel knowledge and improve the quality of results?

Q.3 How do text- and content-based search compare in terms of retrieval performance
under different technical configurations of their characteristic parameters?

Q.4 How do users perceive the quality of results retrieved with text- and content-based
search?

To address the above questions, the paper overviews the requirements of model
search and investigates keyword-based and content-based techniques for search of
model repositories. Keyword-based and content-based search techniques are extended
with the injection of metamodel knowledge in the search process, to test its effect on re-
trieval performance. Two approaches (text- and content-based) are implemented, con-
figured and technically evaluated on a real world collection of 341 industrial models,
with a panel of 10 queries. Models in the experimental repository are encoded in the
Web Modeling Language (WebML) [Ceri et al. 2003], a DSL for Web applications.

Performance of text- and content-based search are evaluated with two distinct ex-
periments: a technical evaluation based on a gold standard defined by experts, which
evaluates the quality of the matches, response time, and space occupation; and two
user studies, which engaged 25 MDE practitioners in the subjective evaluation of util-
ity and quality of search results. Different variants of the technical configurations of
the two systems have been evaluated and compared. The user studies examine the
relationship between the performance of the systems and the user-perceived utility of
retrieved results.

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

Textual and Content-Based Search in Repositories of Web Application Models A:5

The contributions of the paper can be summarized as follows:

C.1 We extend state-of-the-art methods for keyword-based search in order to incorpo-
rate metamodel-specific information. We show that augmenting the IR index with
metamodel knowledge leads to a performance improvement with respect to conven-
tional, metamodel-agnostic text-based IR techniques.

C.2 We implement content-based search by means of graph matching; to do so, we
extend standard techniques for sub-graph isomorphism (the A-star algorithm) by
considering a formulation of the matching score function that takes into account
metamodel-specific information. We also investigate how the locality of the match
between the query and the project graph affects performance.

C.3 We compare keyword-based and content-based search systems with respect to re-
trieval accuracy (precision and recall), ranking accuracy, and stability of the results
across different queries, using a gold dataset created by experts.

C.4 We report the results of a user study that assesses how model-driven practitioners
appreciate keyword-based and content-based search.

1.3. Outline

The rest of the paper is organized as follows: Section 2 presents the fundamentals of
search over model repositories and thus responds to question [Q.1]; Section 3 focuses
on the case study of search over Web application model repositories, thus address-
ing question [Q.2]; in particular, Section 3.1 introduces WebML, the DSL used as a
case study; Section 3.2 discusses the architecture and configuration of the keyword-
based search system; Section 3.3 focuses on the content-based search system; Section
4 presents the results of the experimental evaluation conducted on the keyword-based
and on the content-based search systems, thus addressing questions [Q.3] and [Q.4];
Section 5 discusses the related work; finally, Section 6 highlights the conclusions and
discusses the future work.

2. FUNDAMENTALS OF SEARCH FOR MODEL REPOSITORIES

In MDE, models are used to formalize requirements, structure, and behavior of the
addressed system; they comply with the syntax of a modeling language, which can be
formalized as a metamodel [Kleppe et al. 2003]. Each model element has a type (i.e., a
higher order concept) defined in the metamodel, and is related to other elements by
means of typed relationships, also defined in the metamodel. One or more concrete
syntaxes can be associated to a metamodel. The syntax can be either textual or graph-
ical and defines the way in which the models are represented concretely. Elements
and relationships in models are typically enriched with textual labels, provided by
the model developer to describe some relevant domain properties or functions of the
concept. During the development process, models are typically organized into projects,
i.e., logical containers that aggregate models and artifacts of the same system or ap-
plication domain; likewise, projects developed by the same organization are collected
in repositories.

Model repositories are accessed primarily through search, i.e., the retrieval of rele-
vant artifacts upon the expression of a user’s need.

2.1. Information Retrieval Techniques for Model Search

The search process can be schematically represented as the chain of four main steps,
as shown in Figure 2.

Starting from a repository of projects, the Content Processing transforms each model
into a format suitable for efficient indexing and effective search. The Indexing step

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6 B. Bislimovska et al.

Query

Processing
Search Indexing

Results

User Project

Repository

Content

Processing

Query

Fig. 2: Main steps of a model-driven search process.

stores the processed models into persistent data structures that contain information
amenable to search, typically encoded as index terms or as index data structures.

Users express their information needs as queries defined in a given format. Among
the available query paradigms, we focus on two specific forms: (i) Keyword-based
queries (also called text-based queries) are expressed as bag of words; users trans-
late their information need from their abstract representation (e.g., “find all the
projects that model the shopping cart operations of a book e-commerce applica-
tion”) into keywords or simplified phrases (e.g., “book shopping cart e-commerce”).
(ii) Content-based queries are expressed as model fragments; users ask the system
to “find a model like this” and thus formulate their queries in the same language in
which the targeted models are expressed. This way of searching is also called query-
by-example.

Queries are subjected to a Query Processing step, in which they undergo a transfor-
mation toward an internal format, which maps them to the same representation space
as the index. For instance, a keyword query could be transformed into a set of stemmed
words, or a model fragment could be mapped into a labeled graph.

The Search step inspects the index in order to (i) retrieve the models that match with
the user query, (ii) rank the matching models according to their relevance with respect
to the query, and (iii) return them to the user as a result set where more relevant hits
are displayed in more prominent positions.

Figure 3 expands the view of the activities contained in each of the steps summarized
in Figure 2. Activities can be metamodel-dependent, when they exploit knowledge de-
fined in the metamodel (in Figure 3 they have an input data flow from the metamodel
artifact), or metamodel-independent.

2.2. Content and Query Processing

The model search process, shown in Figure 3, requires both the repository projects
and the queries to be properly analyzed to extract information relevant for indexing
and searching. The Query Processing workflow comprises query analysis techniques
that are the same as those for projects; therefore we can limit the explanation to the
Content Processing tasks.

The Project Analysis task starts the analysis workflow by extracting general meta-
data, such as the project identifier in the collection, its name, authors, etc, useful for
result presentation. The Project Segmentation activity splits each project into smaller
units more suitable for analysis; the segmentation strategy is defined by the system
designer, and can occur: (i) manually, by identifying project by project the most mean-
ingful segmentation units; (ii) automatically based on metamodel-driven or collection-
specific rules, which may take into account model types, concepts or relationship types,
and element frequencies in the collection. For instance, UML class diagrams could be
partitioned considering as segments the bottom elements of the package hierarchy.

Each segment is processed by a Segment Analysis task, which extracts relevant
features for each model element contained in the segment, such as name, type, re-

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

Textual and Content-Based Search in Repositories of Web Application Models A:7

Project Analysis

Content Processing

Project

Repository

Index

Indexing

DSL

Metamodel

SearchQuery Processing

Models Model segments Model segment features
Segmentation Segment Analysis Linguistic Analysis

Metamodel features

Model Segment

Features

Project features

Query Analysis Linguistic Analysis
Query features

RankingMatching

Query features

User

Results

Query

Linguistic AnalysisLinguistic Analysis

Fig. 3: Architecture of a model-driven information retrieval system.

lationships with other elements, or any other property defined in the metamodel and
relevant for search purposes. The extracted textual features might be normalized by
applying metamodel-independent Linguistic Analysis transformations (e.g., language
translation, tokenization, stemming, stop-word removal, etc.).

2.2.1. Indexing. The normalized features extracted from each element are the inputs
to the Indexing step, as index documents [Manning et al. 2008]. The index stores the
project metadata, the segment-to-project mapping, and a representation of the ex-
tracted model element features, optimized for storage and search purposes. The index
can be organized according to one of the following options:

— Flat index: the index is structured as a single field which stores all the extracted
features of an index document. A flat index does not allow the representation of
model relationships, as the model structure cannot be enforced.

— Multi-field index: the index is divided into multiple fields, each storing a differ-
ent subset of the indexable information. Each field can be searched separately, i.e.,
query matching can be restricted to the selected fields. A multi-field index may be
used to encode metamodel information, by associating each field to features (e.g.,
normalized words) appearing in a distinct model concept or relation. In this way, a
query could be restricted only to selected model concepts. Furthermore, each index
field can be assigned a weight that quantifies its importance according to some a
priori knowledge (e.g., the significance of the metamodel concept associated with
the field).

— Structured index: the index is organized as a (semi) structured document (e.g.,
mapping each segment to a graph or to an XML document) so as to preserve the
relationships among model elements. Structural elements can be assigned a weight
that quantifies their importance.

Orthogonally to the adopted index structure, terms can be assigned a term weight
that reflects their significance. Increasing the index complexity, from flat to multi-field,
to structured indexes, gives more precise representations of projects and queries, to the
price of more complex storage structures, query language, and match algorithms.

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8 B. Bislimovska et al.

2.2.2. Search. The search workflow consists of two tasks. The Matching task finds the
documents in the index that match the internal representation of the user’s query. The
matching technique applied depends on the index structure. For flat and multi-field
indexes, matching occurs by verifying the presence of query terms in the index; in
structured indexes, matching verifies if the query internal representation is at least
partially contained in an indexed segment.

The Ranking task sorts the found matches with respect to their relevance to the
query, calculated as a numerical matching score. The ranking techniques also differ
according to the index structure. For flat and multi-field indexes, the score can be
calculated using text-based similarity measures such as cosine similarity or TF/IDF
[Manning et al. 2008]. For structured indexes, ranking is based on ad hoc structural
similarity metrics. More details about the latter case are provided in Section 3.3.

3. SEARCHING REPOSITORIES OF WEB APPLICATION MODELS

To make the architecture of Figure 3 concrete, it is necessary to instantiate it on a
specific set of modeling languages and query paradigms. In this paper we focus on both
text-based and content-based queries over repositories of models describing a specific
class of applications – Web applications – and on a single modeling language, i.e., the
Web Modeling Language (WebML) [Ceri et al. 2003].

3.1. The Web Modeling Language

WebML is a visual Domain Specific Language that supports the high-level spec-
ification of Web applications, from the perspectives of the composition and nav-
igation of the Web front-end, and of the data accessed by it [Ceri et al. 2000];
the language has a well-established industrial implementation and customer base
[Acerbis et al. 2007] and has inspired the standard IFML (Interaction Flow Model-
ing Language) [Brambilla et al. 2013],3 adopted in March 2013 by the OMG (Object
Management Group).4.

The choice of WebML as the target language for experimentation is motivated by
several reasons:

— the availability as the base for experimentation of a real-world industrial project
repository created by professional developers.

— The generality and interest of the modeling domain (i.e., interactive application
front-ends), in which WebML is just a representative of a family of DSLs that
comprises several other languages with a similar purpose and structure, both
in the academia (e.g., OOH [Gómez and Cachero 2003], UWE [Kraus et al. 2007],
OOHDM [Rossi and Schwabe 2008], WADE [Gómez et al. 2007]) and in the indus-
try (e.g., Rational Web Application Extension [Conallen 2000], Mendix, CodeCharge
and Outsystems); the interaction front-end modeling domain is also the subject of
an ongoing call for standardization proposals by the OMG [OMG 2011].

— The visual nature of the language, which makes it well suited to the “query by
example” paradigm of content-based search.

— The nature of the WebML metamodel, which comprises different families of con-
tainers and modeling elements, with a rich set of relationships.

The main WebML constructs are pages, units and links, organized into areas and site
views. A site view is a coherent hypertext, incorporating a well-defined set of require-
ments for a specific category of users. Site views can contain Areas, logical containers
that group pages with a homogeneous purpose and can be nested recursively. Pages are

3Interaction Flow Modeling Language (IFML):http://www.ifml.org
4Object Management Group (OMG): http://www.omg.org

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

http://www.ifml.org
http://www.omg.org

Textual and Content-Based Search in Repositories of Web Application Models A:9

Search Products

Search Products

Search Product List

Product List

(a)

<Area id="area1" name="Search Products" landmark="true"

linkVisibilityPolicy="inactive" defaultPage="page1"

landmarks="page1">

<Page id="page1" name="Search Products" landmark="true">

<ContentUnits>

<IndexUnit id="inu1" name="Products List"

sortable="true" checkable="false" />

<EntryUnit id="enu1" name="Search Product List"

linkOrder="ln1" >

<Link id="ln1" name="Search" to="inu1" type= "normal"

validate="true" automaticCoupling="true" />

</EntryUnit>

</ContentUnits>

</Page>

</Area>

(b)

>

al"

WebML Unit

Name:String

Content Unit

Single Instance

Unit

Multi Instance

Unit

Data Unit Index Unit

Entry Unit

Content UnitContent Unit

(c)

Fig. 4: Example of WebML model, (a) its XML representation (b) and an extract of the
WebML metamodel (c).

contained in areas and site views, and represent the interface elements that are actu-
ally shown to the users. Site views, areas, and pages form the coarse structure of the
front-end, which is then detailed by adding content and business logic components,
called Units. There are two main types of units: content units and operation units.
Content units are elements that express the content of a Web page, while operation
units denote operations on data or arbitrary business actions; they can be activated
as a result of navigation. Figure 4c contains an excerpt of the WebML metamodel tax-
onomy for content units: Data Units retrieve and present information about a single
object; Index Units model the presentation of ordered sets of objects; Entry Units model
Web input for data submission. Units are connected through links forming a hypertext
structure. Links allow navigating hypertext front-ends, as well as passing parameters
between units.

WebML models can be represented with a graphic notation or, equivalently, with an
XML syntax. Figure 4a depicts an excerpt of a WebML model from an e-commerce ap-
plication: the Search Products area contains a Search Products page where the user
can enter data to search for a product; the search form is denoted by the Search Prod-
uct List entry unit, while the returned product list is denoted by the Products List
index unit; the link between the Search Product List unit and the Products List unit
represents the navigation action of the user upon form submission, and it also specifies
that the parameter required to execute the product search is passed to the index unit.
Figure 4b contains the XML representation of the model fragment in Figure 4a, which
comprises also the non displayed metadata of the model elements, e.g., their internal
ID.

WebML models are designed by means of the WebRatio tool [Acerbis et al. 2007],
or by any UML editor, using the WebML MOF metamodel; WebRatio has a basic in-
memory project search facility, whereby the developer can execute keyword search
within a single project. A repository of WebML models has been recently opened
[WebRatio s.r.l. 2012], which can be browsed with an interface that organizes projects
taxonomically and with tag clouds; basic keyword search is supported, with keywords
matched in the textual description of projects.

In the rest of the paper, we explore both keyword-based search and content-based
search over WebML repositories and illustrate the techniques adopted in the indexing,
analysis, and querying processes.

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 B. Bislimovska et al.

Table I: Example of keyword-based query and top-3 results (with respective score val-
ues).

Query Manage Search Product List

Res. ID Model Score

Result 1

Manage Products

Home Manage Products

Product Details

Search Product

Product List

Product Details

Modify Product

New Product

Discount ListDelete Product

__

Product Data Categories

[?]

Create

+

Modify

+__

Product Data

Categories

[?]

Product

[?]

3.9799

Result 2

Products Area

Home Products Product Details

Product Data

Category Products
Current Offers

Product News

[?]

Categories

Category

Product List

2.2482

Result 3

Manage Offers

Offer Details

Offer Details

Modify Offer

New Offer

News

Delete Offer

__

Offer Data
Create

+

Modify

+__
Offer Data

Offer

[?]

Products

[?]

Home Offers

Categories

Product Data

Producs

[?]

2.2896

3.2. Keyword-Based Model Search

In keyword-based search, the input query consists of a bag of keywords. Each project
from the repository is transformed into a set of terms, used to form the index. Keywords
are matched against the index, and a TF/IDF based measure is used to compute the
rank of the matching elements in the result set. In the following we introduce an
illustrative example of keyword-based search, and then describe each of the system
operations in details.

3.2.1. Illustrative example. Table I presents an example of textual query on a WebML
model repository. Suppose the user is looking for a model that supports search and
management of product lists in a Web-based system. He could formulate his informa-
tion need as a keyword query like Manage Search Product List. Table I shows the top-3
results returned by our system in response to such query. Each of them consists of a
model fragment (a WebML area), with decreasing matching score. The first result is a
very relevant match, as the model fragment actually describes all the typical content
management operations (creation, deletion, and modification) and contains a form for
searching products. The subsequent matches are less precise: the second one misses
some features, such as product search and updates; the third one only occasionally
mentions products. The result set highlights the model elements that contain at least
one of the search keywords and the match score is computed based on the number of
matching and non-matching model elements.

3.2.2. Content Processing. The Project Analysis activity extracts only the project iden-
tifier, used to reference (at retrieval time) segments produced by the same project,

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

Textual and Content-Based Search in Repositories of Web Application Models A:11

Manage Products

Modify Product

Product Data

Modify Data

+__

Show Product Details

Product List

(a)

manage products

modify product

product data

modify data

show product details

product list

Area Name Field

Area Content Field

(b)

ils

ld

ield

manage|1.5 products|1.5

modify|1.2 product|1.2

product|1.0 data|1.0

modify|1.0 data|1.0

show|1.2 product|1.2 details|1.2

product|1.0 list|1.0

Area Name Field

Area Content Field

(c)

Fig. 5: Example of WebML model(a) and different text indexing techniques:
Metamodel-independent indexing (b) and metamodel-dependent indexing (c).

and the project name, used for result presentation. Segmentation is performed by us-
ing a metamodel-driven rule that considers Areas as segmentation units. Recall that
WebML areas are logical containers of pages with similar purpose, thus guaranteeing
a good degree of functional cohesion. For each resulting segment, the Segment Analy-
sis task extracts the name attribute for each area, page, unit, and link; this attribute
has a special role, because it represents an external label defined by the developer and
used by the code generator to produce the rendition of the front-end (e.g., a menu item,
a link anchor or button text, the heading of a page fragment, or a page name) and thus
carries a high relationship to the semantics of the model element it denotes, and to the
application domain where the element is applied. A reference between the extracted
term and the originating model element type is also kept, to be used later in the in-
dexing step. Finally, the Linguistic Analysis task tokenizes the text, removes highly
frequent words that bear little information, and stems the remaining words, creating
the terms to be stored in the index.

3.2.3. Indexing. To explore how the injection of metamodel information in the index
impacts the retrieval performance of keyword-based search, two types of indexing
strategies for WebML projects have been exploited, both based on a multi-field index:

— Metamodel-independent strategy: for each project, the index comprises two fields:
one field (Area Name) is reserved for the area name, and the second field (Area Con-
tent) contains the index terms extracted by the Content Processing step. An addi-
tional auxiliary field, used only for result presentation, contains the identifier of the
project to which the indexed area belongs. Figure 5a shows an example of WebML
area, and Figure 5b the corresponding indexed representation in the metamodel-
independent strategy.

— Metamodel-dependent strategy: the index field structure is the same as in the pre-
vious case, but a weight is added to each term based on the metamodel concept it
comes from. Weights are configured manually offline. We experimented with several
weight configurations, explained in Section 4. Figure 5c shows the model fragment
of Figure 5a indexed according to the metamodel-dependent strategy, where the
numerical values appended to textual terms are the applied weights.

3.2.4. Query Processing. The query is a bag of keywords, subjected to the same linguis-
tic analysis pipeline performed on the projects.

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12 B. Bislimovska et al.

3.2.5. Search. As for indexing, a metamodel-independent and a metamodel-dependent
indexing and ranking approaches are employed.

The metamodel-independent approach uses the classic TF/IDF measure of IR
[Manning et al. 2008], which combines the frequency of a query term in a document
and its inverse frequency in the document corpus, so to penalize terms that occur fre-
quently in a document and boost terms that occur rarely in the entire collection. The
total TF/IDF score for a query and a document is computed as a sum of the scores of
each query term. The total score is used to produce the ranking of the documents with
respect to a given query, with higher score documents ranking higher in the result list.

In this work we propose a metamodel-dependent extension of TF/IDF that incorpo-
rates metamodel knowledge into a new parametric weighting term mtw, as reported
in Equation 1:

score(q, d) =
∑

t∈q

√

tf(t, d) · idf(t)2 ·mtw(m, t) (1)

where:

— q is a query, d is the indexed document (a WebML Area, in our experimental setting),
and t is a term from the query q;

— tf(t, d) is the term frequency, i.e., the number of times the query term t appears in
the document d;

— idf(t) is the inverse document frequency of t, i.e., a value calculated as 1 +

log |D|
freq(t,d)+1 , which measures the informative potential of the term in the entire

document collection by calculating the ratio between the number of documents and
the frequency of the term in the considered document; as a result, rare terms in the
collection are considered more relevant than frequent ones;

— mtw(m, t) is the Model Term Weight of a term t, i.e., a metamodel-specific boosting
value that depends on the concept m containing the term t. For instance, in the
example of Figure 5c, the weight for a term t associated with a Page element is set to
be higher than the weight given to terms coming from other elements: mtw(page, t)
is set to 1.2, whereas mtw for all the others WebML concepts is set to 1.0.

3.3. Content-Based Model Search

In content-based model search, queries are expressed as model fragments, and projects
(or fragments thereof) are saved in semi-structured indexes to preserve relationships
among model elements. Models, including WebML models, can be represented conve-
niently as graphs [Grigori et al. 2010; Qiao et al. 2011], which offer an abstract repre-
sentation of the model elements and of their relationships. In the following we first
introduce an illustrative example and then show how project and query models are
indexed and queried.

3.3.1. Illustrative example. Table II shows a sample content-based query specified as
a coarse WebML model; the query expresses a draft model consisting of a page and
some operation units for searching a project by title and creating it (if not existing)
or otherwise updating it. The top-3 results are shown; each result consists of a model
fragment (a WebML area): the first one is a very precise match, where both structure
and textual information fit with the query; the subsequent matches have lower scores
because of the decreasing number of matching elements, either due to the imperfect
structural overlap of the query and project models or to mismatches in the labels of the
model elements. Note a difference with respect to the matches obtained for keyword-
based search, exemplified in Table I: in the text-based case, some matches appear only
because a label in the model element matches a keyword in the user’s query; in the

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

Textual and Content-Based Search in Repositories of Web Application Models A:13

Table II: Example of content-based query and top-3 results (with respective score val-
ues).

Query

Project Details

Project DetailsTitle

[?]

Modify

+__

Create

+
Exist

Res. ID Model Score

R1

P��ject Dictiona�j

P��ject Dictiona�j P��ject Details

F�����

���ject List

���ject Details

Exist

Title

[?]

���ject

Create

+

Modify

+__

0.906

R2

Project Dictionary

Project Dictionary Project Title Details

Filter

Project List

Title Details

Exist

Title

Create

+

Modify

+__

Client

[?]

0.847

R3

Project Dictionary

Project Dictionary Level Details

Confidentiality
Levels

Level Details

Exist

Level

Create

+

Modify

+__

0.828

content-based case, matches must adhere both to the textual content and to the struc-
ture of the query: for example, in the top result listed in Table II the Project Dictionary
area is not part of the match, even if it contains the word project that is part of the
query, because it does not correspond to any element appearing in the user’s query.

3.3.2. Content and Query Processing. The WebML models from the repository are first
split into areas, as in the case of keyword-based search described in Section 3.2. Sub-
sequently, they are translated into directed labeled graphs, according to a mapping
proposed in this work. The resulting graphs are used to build the index. Since content-
based queries are also WebML models, they can be transformed in the same way as
projects.

A WebML graph is a triple g = (N,E,L), where N is a set of nodes, E is a set of
edges, and L is a set of labels representing metadata about the nodes. Each WebML

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14 B. Bislimovska et al.

page1

enu1 inu1

Search Products
Page

Products List
Index Unit

area1

Search Products
Area

Search Product List
Entry Unit

(a)

<graphml>
 <graph edgedefault="directed">
 <node id="area1">
 <name>Search Products</name>
 <type>Area</type>
 <occurence>1</occurence>
 </node>
 <node id="page1">
 <name>Search Products</name>
 <type>Page</type>
 <occurence>3</occurence>
 </node>

 ...

 <edge id="edge inu1">
 <source>page1</source>
 <target>inu1</target>
 </edge>
 <edge id="edge link ln1">
 <source>enu1</source>
 <target>inu1</target>
 </edge>
 </graph>
</graphml>

(b)

Fig. 6: Pictorial (a) and XML (b) representations of the graph corresponding to the
WebML example of Figure 4.

element maps to a graph node, identified with the same XML ID and annotated with
its name and metamodel type. Therefore, each graph node is associated with a pair of
labels lN , lT , that represent the name and the type label of the corresponding WebML
construct. Two types of relationships between the WebML elements are mapped into
graph edges: (i) containment relationships, which connect container elements (e.g., site
views, areas and pages) with the elements they comprise; for example, a containment
relationship exists among an area and all the pages contained in it. And (ii) naviga-
tional Links, which model the navigation between pages and the functional depen-
dency (i.e., parameters) between units. For each link, an edge that connects the nodes
mapping its source and destination unit is added to the graph.

Figure 6a shows the graph representation of the WebML fragment in Figure 4a: the
Search Product area (id = area1), the Search Products page (id = page1), the Search
Product List entry unit (id = enu1) and the Products list index unit (id = inu1) are
mapped to nodes labeled with the name attribute and the type, and identified with
the same ID of the corresponding WebML elements. The edges connecting area1 and
page1, page1 and enu1, and page1 and inu1 represent containment relationships in the
original model; the edge that connects enu1 with inu1 represents the link connecting
the two units. Figure 6b shows the equivalent XML representation of the graph in
Figure 6a.

Differently from the case of keyword-based search, no linguistic analysis is per-
formed on the text extracted from the WebML model. This is justified by the mech-
anism used for query-to-project matching, described in details in Section 3.3.3, which
exploits a string similarity measure to compare graph nodes.

3.3.3. Search. As both projects and queries are represented as graphs, search is per-
formed by verifying whether the query graph is contained in a project graph. In a
query-by-example scenario, the query graph will be normally smaller than the project
graph. Therefore the goal is to find whether the query graph is a part of the project
graph; this graph matching problem can be tackled by computing subgraph isomor-

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

Textual and Content-Based Search in Repositories of Web Application Models A:15

page1 eu1

Search Products

Page

Search Product Info

Entry Unit

Fig. 7: An example of a query graph.

phism [Bunke 2000], i.e., an injective mapping that identifies a subgraph in the project
graph that has corresponding nodes and edges in the query graph, preserving the
graph structure and label equality constraints.

Subgraph isomorphism is known to be NP-complete [Cook 1971]; however, query
processing does not require finding an exact match between the query graph and a sub-
graph in the project, a case that would be very rare due to differences in model concept
naming and linking. A sufficient objective is to find a subgraph in the project graph
that is equivalent, or similar, to the query graph. Therefore, it is necessary to consider
a heuristic algorithm that matches graphs by means of an approximate measure of
similarity [Bunke 2000]. A classical solution to this problem exploits the A-star algo-
rithm and the graph edit distance similarity measure [Sanfeliu and King-Sun 1983;
Gregory and Kittler 2002; Dijkman et al. 2009], explained in the rest of this Section.

Graph edit distance. A metric that computes the similarity of two graphs is the
graph edit distance, defined as the minimum number of edit operations that trans-
form one graph into the other [Dijkman et al. 2009]. Indeed, the less transformations
are applied, the more similar two graphs are. Given a comparison graph G1 (i.e., the
query) and a compared graph G2 (i.e., the project), the graph edit distance considers
the following types of edit operations, namely:

— Node substitution: it substitutes (maps) nodes from G2 that are similar to nodes
from G1, under an externally provided notion of node similarity.

— Node insertion: it inserts non-similar nodes from G1 into G2.
— Node deletion: it deletes from G2 all non-similar nodes. A deletion from one of the

two graphs can be treated equivalently as an insertion in the other graph.
— Edge insertion/deletion: it inserts into G2 all edges that do not connect two similar

(substituted) nodes of G1; or, equivalently, it deletes from G1 all edges that do not
connect two similar nodes of G2.

To exemplify the operations of the graph edit distance, we compare the query graph
in Figure 7 with the project graph in Figure 6a. In this example, we consider that a
node from the query graph is similar to a node from the project graph iff they have
the same metamodel type and exactly the same name. A more flexible node similarity
function will be introduced in a following paragraph. The node “Search Products” of
type “Page” in the query graph is similar to the node having the same name and type
in the project graph. The other query node “Search Product Info” of type “Entry Unit”
has no similar nodes in the project; therefore, it is inserted into the project graph. All
the other nodes of the project graph are non-similar and thus deleted. Since only one
node from the query graph is similar to a corresponding node in the project graph,
the edge outgoing from it in the query graph is inserted in the project graph, and all
the four edges from the project graph are deleted. In summary, the query graph is
obtained from the project graph as a result of 1 node substitution, 1 node insertion, 3
node deletions, 1 edge insertion and 4 edge deletions.

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16 B. Bislimovska et al.

The graph edit similarity, defined in Formula 2, quantifies, in the [0, 1] range, graph
similarity by normalizing the operations considered in the graph edit distance:

GSim(G1, G2) = 1−
wnI · fnI(G1, G2) + weI · feI(G1, G2) + wnS · fnS(G1, G2)

wnI + weI + wnS

. (2)

where fnI , feI are the fractions of inserted nodes and of inserted edges, calculated
as the ratio of inserted nodes Ni (edges Ei) in both graphs with respect to the total
number of nodes (edges) in both graphs.

fnI(G1, G2) =
| Ni |

| N1 +N2 |
feI(G1, G2) =

| Ei |

| E1 + E2 |
. (3)

The values of fnI ,and feI increase as the number of non similar nodes or edges grows.
The average distance of substituted nodes fnS is defined as:

fnS(G1, G2) =
2 ·

∑

(n1,n2)
(1− sim(n1, n2))

| Ns |
. (4)

that is the sum of one minus the node similarities of all substituted nodes, normal-
ized with respect to the total number of substituted nodes in both graphs. The average
distance increases if the node pairs are less similar, and is 0 iff only identical nodes
are substituted.

Formula 2 assigns to each edit operation a cost (weight), which gives the corre-
sponding operation more or less influence on the result of the graph edit similarity
computation. The constant values wnI , wnS , and weI range in the [0,1] interval and
respectively represent the weights for node insertion, node substitution, and edge in-
sertion. A higher value for an operation increases its contribution in the calculation
of the distance between two graphs, i.e., the penalty incurred when one instance of
that operation is applied to align the query and the target graphs. Weighting more
insertion components of the graph edit distance emphasizes the dissimilarity due to
graph topology; increasing the weight of the node substitution augments the penalty
for considering equivalent nodes that do not match exactly.

As an example, the comparison of the query graph in Figure 7 with the project graph
in Figure 6a results in fnI = 4/6 = 0.67, because the total number of nodes in both
graphs is 6 and the total number of node operations (deletions and insertions) is 4,
while feI = 5/5 = 1, because the total number of edges in both graphs is 5 and the total
number of edge operations (deletions and insertions) is also 5. The average distance

of substituted nodes is fnS = 2·(1−1)
2 = 0, because the pair of substituted nodes has

similarity 1 (they are identical). If the weights for this example are chosen to be, for
example, wnI = 0.3, wnS = 0.8, and weI = 0.5, then the final graph edit similarity
between the two graphs is GSim = 1− 0.3·0.67+0.5·1+0.8·0

0.3+0.5+0.8 = 0.562.

Node similarity. A central aspect in the evaluation of the similarity of two graphs
is the calculation of the similitude of two nodes in order to determine whether they
match, i.e., they can be considered similar, and thus be substituted (since they are
interchangeable), instead of inserted. The node similarity can be computed by evalu-
ating a distance function that considers the properties of the evaluated nodes. In our
approach, differently from previous work, we adopt a distance function that considers
both the metamodel type of the model element associated with the graph node and its
textual label, as shown in Equation 5:

Dist(n1, n2) = λ · stringDist(namen1
, namen2

) + (1− λ) · typeDist(n1, n2) (5)

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

Textual and Content-Based Search in Repositories of Web Application Models A:17

Dist(n1, n2) is calculated as the weighted linear combination of two distances, where:

— stringDist is a string distance metric, normalized in the [0,1] range, quantify-
ing the similarity between the nodes’ labels; our experiments, detailed in Section
4, compared the performance of two state-of-the-art string distance metrics, re-
spectively the Levenshtein distance [Levenhstein 1966], and the n-gram distance
[Hylton 1996].

— typeDist is the distance between two concepts in the metamodel, considered as a
graph, normalized with respect to the maximum node distance in the metamodel
graph.

— The parameter λ ∈ [0, 1] determines the relative importance of the name and type
distance. λ = 0 takes into account only type contribution, while λ = 1 takes into
account only the name similarity.

To exemplify the computation of the node distance, let us consider the Search
product List and the Products List units of Figure 6a. According to the WebML
metamodel excerpt of Figure 4c, the type distance between an Entry Unit and
an Index Unit is 0.75 (because the distance between the two classes is 3
and the maximum node distance in the graph is 4), while the string distance
stringDist(“SearchProductList”, “ProductsList”), calculated using the Levenshtein
distance, is 0.58. Therefore, with λ = 0.5 the distance between the two nodes is 0.66.

Variations of the λ parameter value allow for different similarity evaluation sce-
narios. A high value of λ describes the situation in which a user considers two model
elements similar only by looking at their names. For instance, the data unit “Product”
would be considered “similar” to an index unit “Products”, even if the former displays
one object, whereas, the latter presents a list of objects. Conversely, a low value of λ
would emphasize the semantic similarity, at a metamodel level, of model elements. In
this case, an index unit “Product list” would be considered equivalent to an index unit
named, e.g., “Offer List”.

A-star algorithm. The A-star algorithm is a method to compute sub-
graph isomorphism through graph similarity [Shapiro and Haralick 1981;
Sanfeliu and King-Sun 1983]. Different variations exist; the version used in this
work follows the template described in [Messmer 1996], and then modified and
applied for searching repositories of business process models in [Dijkman et al. 2009].
Our approach is inspired to the latter work, but significantly extends it with
metamodel-aware weights, distances, and parameters, which were not considered in
the original algorithms.

The algorithm finds the optimal mapping between two graphs, using a best-first
search of the solution space (the space of all mappings between the query graph and
the project graph); it proceeds iteratively by searching the least-cost extension of a
given initial partial graph mapping until a complete graph mapping is found; cost
is computed with the graph edit similarity function, which drives the extension of
the current partial mapping into the next expanded mapping that yields the maximal
graph edit similarity between the query graph and the project graph.

The pseudo-code of ALGORITHM 1 illustrates the A-star procedure. It uses:

— the sets of nodes of the query graph (N1) and of the project graph (N2).
— A variable open, which is initialized with the set of all allowed mappings for an

initial arbitrarily selected node n1 of the query graph; the set of allowed candidate
mappings is used to expand the current partial solution; a mapping is allowed if it
contains node pairs with similarity above a given threshold, or node pairs where the
query graph node is mapped to the conventional node deletion symbol ǫ.

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18 B. Bislimovska et al.

ALGORITHM 1: A-star algorithm

Require: open← (n1, n2) | n2 ∈ N2 ∪ {ǫ}, sim(n1, n2) > threshold ∨ n2 = ǫ , for some n1 ∈ N1

while open 6= ∅ do
select map ∈ open, such that s(map) is max
open← open−map
if dom(map) = N1 then

return s(map)
else

select n1 ∈ N1, such that n1 /∈ dom(map)
for all n2 ∈ N2 ∪ {ǫ}, such that (n2 /∈ cod(map) and sim(n1, n2) > threshold) xor (n2 = ǫ)
do

map′ ← map ∪ {(n1, n2)}
open← open ∪map′

end for
end if

end while

— A variable map, which contains the current partial mapping solution having the
maximal graph edit similarity s(map); s(map) is evaluated as in Equation 2 by con-
sidering all node pairs contained in map as substituted, the remaining query nodes
as inserted, the unmapped project nodes as deleted, and counting inserted/deleted
edges accordingly.

A-star starts from an initially empty current mapping and a node n1
q in the query

graph, and creates all the possible partial mappings (n1
q, n

1i
p) from this node to every

node in the project graph. Additionally, an extra mapping with a dummy node ǫ is
created, (n1

q , ǫ), denoting the case where n1
q is deleted. The partial mapping (n1

q, n
1i∗
p)

or (n1
q, ǫ) with the maximal graph edit similarity is selected, and added to the current

candidate solution mapping. Then, the algorithm proceeds with the next node from the
query graph, and creates partial mappings with every other non-mapped node from
the project graph. At each round, the current candidate solution mapping is expanded
with the mapping of the nodes that produces the maximal graph edit similarity. The
algorithm finishes when the current candidate solution mapping contains all the nodes
from the query graph. The returned value is the maximal graph edit similarity for the
query and the project graphs.

The best case complexity of the algorithm occurs when the nodes of the project and
of the query graph have the same labels, and the query graph is an exact copy of the
project graph. Therefore, for a query graph with m nodes and a project graph with
n nodes, the best case complexity is O(n2m). The worst case occurs when the query
graph is very different from the project graph, both in terms of labels and structure; in
such a case, many edit operations are necessary to transform one graph into the other,
resulting in exponential complexity. For a query graph with m nodes and a project
graph with n nodes, the worst case complexity is O(nmn). To reduce the search space,
and limit space and memory requirements, a pruning rule is used: only nodes with
similarity greater than the threshold parameter are allowed as candidate mapping
pairs.

Let us consider the comparison of the query graph in Figure 7 and the project graph
in Figure 4, assuming a threshold for node similarity of 0.7, and the parameter λ = 0.5,
which gives equal importance to name and type similarity. In the first step, if we start
with the query node page1, this node can form two possible partial mappings:

< ("Search Products:Page","Search Products:Page") >

< ("Search Products:Page","ǫ") >

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

Textual and Content-Based Search in Repositories of Web Application Models A:19

The first pair is the mapping with the maximal graph edit similarity and thus is
selected and expanded into new partial mappings that include the second query node
enu1. The following ones are the possible mappings of cardinality 2:

< ("Search Products:Page","Search Products:Page"),
("Search Product Info:Entry Unit","Search Product List:Entry Unit") >

< ("Search Products:Page","Search Products:Page"),
("Search Product Info:Entry Unit","ǫ") >

At the second round, the algorithm selects the former complete mapping, which
has the maximal graph edit similarity, and terminates, because all query nodes are
mapped. The computed mapping specifies that in order to transform the query graph
into the project graph, both query nodes are substituted, and the project graph nodes
(“Manage Products: Area”,“Products List Index Unit”) are deleted (or equivalently
inserted into the query graph). The edge in the query graph is substituted with the
edge between the corresponding nodes in the project graph and the remaining edges
from the project graph are deleted (or equivalently inserted into the query graph).

A-star algorithm with local search. The original A-star algorithm can map query
nodes to graph nodes arbitrarily positioned throughout the project. The cost of includ-
ing in the match nodes that are far apart in the project graph is proportional to the
number of edges that must be inserted to connect such nodes; the relative contribution
of edge insertion in large graphs with many edges may be limited, and so A-star tends
to accept matches where query nodes are associated with projects nodes far apart in
the project graph. The locality of matches may impact the retrieval performance, which
raises the issue whether highly connected matches are preferable to more distributed
ones. To investigate the effects of locality constraints, we evaluate a variant of A-star,
which attempts at boosting more cohesive matches by imposing an additional con-
straint for adding a node to the current partial mapping: only those nodes that are
at the shortest distance with respect to already mapped nodes are used to extend the
current mapping.

The pseudocode of the local search variant is listed in Algorithm 2. At the beginning,
the set of partial mappings for the initial query node (n1) contains all the nodes (n2)
from the project graph with similarity to n1 greater than the threshold, plus the map-
ping with the node deletion symbol (ǫ). For every node n2 in the project graph, denoted
as graph2, the shortest path to every other node in the graph is computed using the
Dijkstra algorithm [Dijkstra 1959] and saved in the variable path set. In the next step,
the algorithm proceeds as the A-star algorithm, by selecting the partial mapping with
the maximum graph-edit similarity. Then, the partial mapping is extended: the next
query node is mapped to viable candidate project nodes; these are the project nodes
with similarity above threshold and positioned at the shortest distance, defined as the
minimum distance between an unmapped project node with similarity above threshold
and an already mapped project node. When multiple paths exist with minimal length,
all of them are considered and their source nodes treated as candidates. After identi-
fying all nodes above threshold and within minimum distance, the algorithm expands
the current mapping so to maximize the graph edit similarity and proceeds like the
normal A-star algorithm.

Notice that, since the local search constrains the candidate matches, it happens that:
(1) the number of matches computed by local A-star is smaller or equal than that of
the original A-star; and (2) A-star and local A-star differ only when there are multiple
matched node pairs between a query graph and the project graph.

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20 B. Bislimovska et al.

ALGORITHM 2: A-star algorithm with local search

Require: open← (n1, n2) | n2 ∈ N2 ∪ {ǫ}, sim(n1, n2) > threshold ∨ n2 = ǫ , for some n1 ∈ N1

for all n2 ∈ N2 do
path set← Dijkstra Shortest Path(graph2, n2)

end for
while open 6= ∅ do

select map ∈ open, such that s(map) is max
open← open−map
if dom(map) = N1 then

return s(map)
else

select n1 ∈ N1, such that n1 /∈ dom(map)
min path set← ∅
min length←∞
for all path ∈ path set do

if source(path) /∈ cod(map) then
if sim(n1, source(path)) > threshold then

if target(path) ∈ cod(map) then
if length(path) == min length then

min path set← min path set ∪ path
else

if length(path) < min length then
min path set← ∅
min path set← min path set ∪ path
min length = length(path)

end if
end if

end if
end if

end if
end for
source nodes← extract source nodes(min path set)
for all n′ ∈ source nodes ∪ ǫ do

map← map ∪ {(n1;n
′)}

open← open ∪map
end for

end if
end while

4. EXPERIMENTAL EVALUATION

In this Section we present the experiments on different model search scenarios con-
structed according to the techniques described in Section 3. We structured our ex-
periments in two parts: (1) a technical evaluation of the keyword- and content-based
systems, to analyze performance under different system configurations using quality
indicators based on a gold standard created by a panel of experts; (2) a user study,
where WebML practitioners were asked to assess how much the proposed methods
could help them reusing existing modeling artifacts. The two experiments complement
each other and provide a comprehensive assessment of the systems behavior.

4.1. Experimental setting and dataset

4.1.1. Test bed. The experiments were performed on a project repository provided by
WebRatio5; the company that develops the homonymous MDD tool for WebML and

5http://www.webratio.com

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

http://www.webratio.com

Textual and Content-Based Search in Repositories of Web Application Models A:21

IFML modeling and automatic generation of Web applications. The repository con-
tains 12 real-world WebML projects from different application domains (e.g., trouble
ticketing, human resource management, Web portals, etc.). The projects are encoded
as XML files conforming to the WebML DTD, and their domains and size are presented
in Table III. We segmented projects at the area level, which resulted in 341 areas.

The choice of exploiting a proprietary project repository is motivated from the fol-
lowing considerations: first, having access to a collection of projects built by profes-
sional modelers in real-world projects (which we publish as model graphs for further
experiments by the community); second, existing publicly accessible model repositories
proved unsuitable for realistic model search experiments because they either contain
very elementary models or do not provide full access to their content (see the Related
Work Section for further details).

Table III: Testbed repository. Project ID, domain, and number of contained areas.

Project ID Domain Number of areas

1 Administration 23
2 Human resource management 53
3 Call center web portal 56
4 Calendar management 3
5 Bank account management 58
6 E-commerce 15
7 Rent-a-car 2
8 Adminstration 30
9 Company intranet 58
10 Web portal 5
11 Candidate evaluation 24
12 Trouble ticketing 12

An evaluation set of 10 queries was built as follows: first, to ensure a good cov-
erage of all the system features that we wanted to test in the experiments and the
coherence between the evaluation set and the repository content, we defined several
exemplary models, satisfying the following properties: (i) they implemented theoretical
[Ceri et al. 2003] and real-world WebML modeling patterns; (ii) they used a broad mix
of the WebML metamodel concepts; and (iii) they were based on a vocabulary (of labels)
consistently used in the experimental project repository. Out of this initial set, a group
of three experienced WebML developers were consulted to select the 10 exemplary
models which, in their opinion, better represented the typical user need of MDD de-
velopers in their everyday activities. Finally, the exemplary models were transformed
into keyword-queries, by selecting as keywords all the significative labels; and into
content-based queries, by mapping each WebML model into a graph as explained in
Section 3.3.

4.1.2. Gold Standard Creation. The gold standard for the comparison of the retrieval
methods was constructed by manually assessing the extent to which each area in the
repository contained a model similar to those in the evaluation set; the three experts
assigned a relevance score expressed in a tertiary scale where, (i) 0 relevance means
no similarity, (ii) 1 means that some textual xor structural similarity exists, and (iii) 3
corresponds to a judgment of strong similarity (textual and structural). The final rel-
evance was calculated as the average of the three judgments, rounded to the nearest
integer. To reduce fatigue and learning bias, the evaluation task was spread over mul-
tiple days.

Figure 8 exemplifies the kind of judgements about query-area matches expressed
by evaluators. The query (Figure 8(a)) looks for an area that implements a cre-
ation/modification pattern for new/existing products; the area shown in 8(b) contains

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22 B. Bislimovska et al.

a pattern that performs the same action, but using slightly different labels. Given that
the query’s structural pattern is present in the project, and there is also a partial tex-
tual similarity (the terms product and title are present both in the query and in the
matching area), a relevance value of 3 qualifies this match. Figures 8(c) and (d) show
examples of areas where the relevance with respect to the query is 1 and 0, respec-
tively. As it can be noticed, the area with similarity 1 contains a pattern that verifies
the existence of a store in order to be created or modified. This area has only struc-
tural pattern similar to the query, and no textual similarity. Finally, the project with
similarity 0 has nothing in common with the query.

The gold standard dataset ranks for each query the areas, according to the average
relevance score of the match, breaking ties with a deterministic rule.

	
�dd� ������

���d��� �������

M� �!"

+__

C�����

+

E#�sts

���$��� %����

(a)

&'(d)*+ ,-+./0

&'(d)*+ ,-+./0
&'(d)*+ ,-+./ 1/+2-.0

345678

Title

Title Details

9:4sts

Title

;87<67=>?4@A

BB

(b)

SDGHIJ

SDGHIJ
SDGHI KIDLNOJ

QRTUVW

XUYWV

XUYWV ZVU[RT\

]^Rsts

XUYWV

`WV[UVaYbRce

ff

(c)

News Management

Home News

(d)

Fig. 8: Example of a WebML query (a), area with similarity 3 (b), area with similarity
1 (c) and area with similarity 0 (d).

The full set of queries, areas, and evaluation scores can be downloaded from the
following URL: http://webml.org/webml/modelsearch/modelsearch.html.

4.1.3. Experimental scenario. As a baseline for comparing the retrieval accuracy of both
the text-based and content-based approaches, we use randomly generated result sets.
A random result set is a sequence of areas randomly extracted from the projects in the
repository, ordered randomly. The value of each performance indicator in the baseline

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

http://webml.org/webml/modelsearch/modelsearch.html

Textual and Content-Based Search in Repositories of Web Application Models A:23

Keyword-based

search scenarios

Metamodel-

independent

experiment

Metamodel-

dependent

experiment

Structural weight

configuration

Navigational

weight

configuration

(a)

Site View

Area

Page

Unit

Link

S
tr
u
c
tu
re

N
a
v
ig
a
ti
o
n

(b)

Fig. 9: (a) Configurations for the keyword-based search scenario; (b) Classification of
WebML metamodel concepts.

case is calculated by averaging, for each query, the results of 10 random area extraction
and ranking steps.

We could not compare the performance of our implementation directly with existing
works in model search for various reasons: some works are not metamodel-aware at all,
and therefore cannot be ported to other modeling languages; some others assess their
quality upon non public data sets; and finally, others do not provide publicly available
systems to compare with.

Keyword-based search. Figure 9a summarizes the evaluation scenarios for key-
word based search. Experiments were conducted under a (i) metamodel-independent,
and a (ii) metamodel-dependent configuration. The index of the metamodel-
independent experiment contains equally weighted terms, regardless of the metamodel
type of the element of origin. Conversely, the indexes of the metamodel-dependent ex-
periments weight terms according to the category of the metamodel type of the element
where the term appears.

We categorize the five WebML model primitives relevant for matching the query
to the projects into structural and navigational. Figure 9b shows such classification:
site views, areas, and pages represent mainly modularization constructs used to group
more detailed elements; units and links embody the composition and navigation as-
pects of the user interface and denote the functions triggered by the user’s naviga-
tion. The top-down order of elements in Figure 9b follows the element containment
relations: siteviews contain areas, which in turn contain pages, which in turn contain
units, connected through links.

Assuming 1.0 as the minimum term weight, we assigned weights in the [1,2] range6.
We tested two different weight configurations as illustrated in Figure 9a. The first one,
named Structural, gives more importance to structural metamodel concepts, assign-
ing higher weights to terms associated with site views, areas and pages. The second
configuration (named Navigational) reverts the weight distribution and assigns more
weight to links and units. Table IV shows the two weight assignments used in our
experiments.

6Higher weight values would introduce too much bias in the evaluation of Equation 1, causing the relative
weight (with respect to the overall score) of the term to dominate other factors.

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24 B. Bislimovska et al.

Table IV: Keyword-based search: weight configurations for the metamodel-dependent
experiment.

Metamodel concept Structural Configuration Navigational Configuration

site view 2.0 1.0
area 1.8 1.2
page 1.5 1.5
unit 1.2 1.8
link 1.0 2.0

Content-based search. The content-based scenario tested four configuration di-
mensions: (i) the wnI (node insertion), wnS (node substitution), and weI (edge insertion)
weights of the graph edit distance operations, (ii) the parameter λ, which determines
the importance of the string distance and type distance in the node similarity function;
(iii) the string similarity function used to calculate the node similarity; and (iv) the
adoption of locality constraints in the subgraph isomorphism algorithm. In all the re-
ported experiments, after an initial set-up phase with the A-star algorithm, we fixed
to 0.6 the node similarity threshold for the pruning rule that discards non-allowed
matches, as the value proved best in all the considered settings.

The first set of experiments aimed at understanding the impact of the weights as-
signed to the graph edit distance operations, and we considered three configurations
(summarized in Table V):

— Maximal Substitution boosts the contribution of the node substitution.
— Maximal Substitution and Insertion emphasizes both insertion of nodes/edges and

their substitution.
— Maximal Insertion stresses only the insertion of nodes/edges.

Table V: Content-based search: different weight configurations.

weights Maximal substitution Maximal substitution and insertion Maximal insertion

weI 0.1 1.0 1.0
wnI 0.1 1.0 1.0
wnS 1.0 1.0 0.1

The second set of experiments examined the influence of the λ parameter in the
node similarity function. We varied the values of λ from λ = 0 to λ = 1, with step 0.25.
The λ values and corresponding experiment names are reported in Table VI: recall
that higher values of λ give more importance to name similarity w.r.t. metamodel type
similarity.

Table VI: Content-based search: different λ values.

Only type contribution λ = 0
High type contribution λ = 0.25
Intermediate type contribution λ = 0.5
Low type contribution λ = 0.75
No type contribution λ = 1.0

The third set of experiments analyzed the impact of the adopted string distance
metrics. String distance metrics are similarity functions that do not consider prior
knowledge and thus exhibit performance that is strongly related to the specific appli-
cation domain [Bilenko et al. 2003]. We compared two frequently used functions: the
Levenshtein distance [Levenhstein 1966], and the n-gram distance [Hylton 1996].

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

Textual and Content-Based Search in Repositories of Web Application Models A:25

The Levenshtein distance is a string-edit distance that, given two strings, finds the
minimal number of string edit operations that transform one string into the other, nor-
malized with the length of the longer string. For two identical strings, the Levenshtein
distance is 0, and the corresponding similarity value is 1.

The N-gram distance is a string token distance which finds the common number of n-
grams (substrings of the original string with fixed length n) for two strings, normalized
with the total number of n-grams. The N-gram distance has values in the [0,1] interval,
where 0 means no similarity, and 1 is an exact match.

Finally, the fourth set of experiments assessed the effect of applying locality con-
straints in the selection of candidate mappings in A-star. In particular, we evaluated
the original version (Algorithm 1) and the local version (Algorithm 2) of A-star.

4.2. Evaluation Metrics

Performance is evaluated using three standard information retrieval measures: (i) 11-
point interpolated average precision; (ii) Mean Average Precision (MAP); and (iii) Dis-
counted Cumulative Gain (DCG).

Precision and recall are the two most used IR evaluation measures. Precision con-
siders the fraction of retrieved documents that are relevant, regardless of the ranking,
while recall measures the fraction of relevant documents that are retrieved.

The 11-point interpolated average precision combines precision and recall by mea-
suring the best precision that can be obtained at 11 standard levels of recall (0.0,
0.1,...1.0) [Manning et al. 2008]. At each each recall level ri, the interpolated precision
is obtained as an average over the sample queries and represents the highest precision
that can be obtained for recall values rj ≥ ri. The 11-point precision value decreases
for increasing recall, as for a growing number of retrieved results, the likelihood of
irrelevant matches typically increase.

Mean Average Precision (MAP) [Manning et al. 2008] is a single figure quantification
of the average precision across recall levels and queries: for each query, the average
precision is computed as the average of the precision value obtained in the set of top-k
documents that are retrieved to get to the j-th relevant document. More precisely, if the
set of relevant documents for a query qj ∈ Q is {d1, . . . dmj

}, where mj is the number of
relevant documents, and Rjk is the ordered set of the first k ranked results, then:

MAP(Q) =
1

|Q|

|Q|
∑

j=1

1

mj

mj
∑

k=1

Precision(Rjk) (6)

When the first k positions of the result set contain no relevant documents, the precision
value in Equation 6 is 0. In our case, MAP is calculated up to the top 10 matching
projects.

Finally, the Discounted Cumulative Gain (DCG) [Järvelin and Kekäläinen 2002] is a
graded relevance measure that evaluates the ability of an IR system to retrieve highly
relevant documents at high positions in the result set. DCG considers the fact that the
lower a document is ranked in a result set, the less likely it is for such a document to
be examined by a user. DCG is computed as:

DCGp =

p
∑

i=1

2reli − 1

log2(1 + i)
(7)

where reli is the relevance of the document at the i-th rank position obtained from
the gold standard dataset evaluation.

4.3. Quantitative Evaluation

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

A:26 B. Bislimovska et al.

4.3.1. Keyword-based search. Table VII shows the values of MAP for different index-
ing structures. All index structures achieve good performance (with peak MAP value
of 81%), significantly better than the random baseline. Adding metamodel-dependent
weights to the index slightly increases the performance for the tested queries (4% MAP
increase in the best case).

Figure 10a and Figure 10b show the results of DCG and 11-point precision. Also
these measures support the conclusion that the different configurations of the index
for the textual search exhibit a comparable average behavior. Boosting the weight of
more specific elements (units and links) over high-level ones (site views, areas) pro-
vides slightly improved performance: the average performance of the navigational con-
figuration increases by 2% for DCG and 5% for 11-point precision with respect to the
structural configuration, and 7% for DCG and 3% for the 11-point precision with re-
spect to the metamodel-independent configuration.

Table VII: Keyword-based search: values of MAP

Experiment MAP

Random 0.19

Metamodel-independent 0.77
Metamodel-dependent Structural Configuration 0.78
Metamodel-dependent Navigational Configuration 0.81

Metamodel Independent

Navigational

Structural

Random

P
re
c
is
io
n

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Recall

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(a)

Metamodel Independent

Navigational

Structural

Random

D
C

G

0

1

2

3

4

5

6

7

8

9

10

Retrieved Results

1 2 3 4 5 6 7 8 9 10

(b)

Fig. 10: Keyword-based search: 11-point precision (a) and DCG (b).

Figure 11a and 11b explode Figure 10 to examine the average and median values
over the sample queries, and the upper and lower quartiles (gray area). The growth
of the DCG values slows down at higher rank positions. Since DCG depends not only
on the precision and recall but also on the rank order of the retrieved documents, the
slow down at higher ranks shows that even if relevant documents are retrieved they
are not ranked optimally, w.r.t the gold standard, when one looks at larger result sets.

The comparison of the metamodel-dependent and the metamodel-independent index
structures in Figure 11b shows that the latter exhibit an average DCG value consis-
tently higher than the median, thus indicating the presence of several outliers and,
therefore, a less uniform ranking behavior across sample queries. The distribution of
differences in the 11-point average precision graph, i.e., the gray area between the
lower and upper quartile in Figure 11a, at lower levels of recall shows that the struc-
tural setting has more performance fluctuation in finding the top matches than the
navigational one.

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

Textual and Content-Based Search in Repositories of Web Application Models A:27

ghik
ghlmik

Metamodel Independent
ghik
ghlmik

Navigational
ghik
ghlmik

Structural

P
re

c
is

io
n
 a

t
R

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Recall

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Recall

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Recall

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(a)

nopq
norspq

Metamodel Independent
nopq
norspq

Navigational
nopq
norspq

Structural

D
C

G

0

1

2

3

4

5

6

7

8

9

10

Retrieved Results

1 2 3 4 5 6 7 8 9 10

Retrieved Results

1 2 3 4 5 6 7 8 9 10

Retrieved Results

1 2 3 4 5 6 7 8 9 10

(b)

Fig. 11: Keyword-based search: average, median, lower and upper quartile of: 11-point
precision (a) and DCG (b), for Metamodel-independent, Structural, and Navigational
index configurations.

4.3.2. Content-based search. The evaluation of the content-based search first examined
the influence of the λ parameter with respect to each weight configuration in the graph
edit distance, adopting the Levenshtein string distance metric.

Table VIII summarizes the MAP values for different λ values and graph edit dis-
tance weight configurations. Figure 12a and Figure 12b respectively show the 11-point
interpolated average precision and DCG results for the various weight configurations;
each curve in one diagram corresponds to a specific value of λ.

Table VIII: Content-based search: values of MAP for different values of λ and weight
configurations in the graph edit distance.

Experiment Maximal substitution Maximal subst. & insertion Maximal insertion

Random 0.19

Only type contribution (λ=0) 0.34 0.32 0.29
High type contribution (λ=0.25) 0.56 0.34 0.24
Intermediate type contribution (λ=0.5) 0.74 0.55 0.38
Low type contribution (λ=0.75) 0.72 0.83 0.86
No type contribution (λ=1) 0.74 0.7 0.73

From Table VIII and Figure 12a and 12b, it emerges that neither the metamodel type
alone nor the element label alone are the best options for node matching. When the
Only type contribution configuration is used, the 11-point precision graphs show that,
regardless of the adopted weights configurations, very few relevant documents are
retrieved (curves show low precision values), which is confirmed by the DCG graphs
and MAP values. Adding a “touch” of metamodel type knowledge to the node similarity
function leads to better performance: the Low Type Contribution configuration (λ=0.75)
emerges in most cases as the most viable trade-off between label and metamodel type

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

A:28 B. Bislimovska et al.

λ= 0

λ= 0.25

λ= 0.50

λ= 0.75

λ= 1

Random

Maximal Sub.

λ= 0

λ= 0.25

λ= 0.50

λ= 0.75

λ= 1

Random

Maximal Sub. and Ins.

λ= 0

λ= 0.25

λ= 0.50

λ= 0.75

λ= 1

Random

Maximal Ins.

P
re

c
is

io
n
 a

t
R

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Recall

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Precision

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Precision

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(a)

λ= 0

λ= 0.25

λ= 0.50

λ= 0.75

λ= 1

Random

Maximal Sub.

λ= 0

λ= 0.25

λ= 0.50

λ= 0.75

λ= 1

Random

Maximal Sub. and Ins.

λ= 0

λ= 0.25

λ= 0.50

λ= 0.75

λ= 1

Random

Maximal Ins.

D
C

G

0

1

2

3

4

5

6

7

8

9

10

Results

1 2 3 4 5 6 7 8 9 10

Results

1 2 3 4 5 6 7 8 9 10

Results

1 2 3 4 5 6 7 8 9 10

(b)

Fig. 12: Content-based search: 11-point interpolated average precision (a) and DCG
(b) for different λ values and weight configurations (maximal substitution, maximal
substitution and insertion, and maximal insertion).

information (up to 13% better than No type contribution and up to 57% better than
Only type contribution in the MAP table).

The greater relative importance of element names over types in the best performing
case is explained by the occurrence of false positive matches: overemphasizing meta-
model types quickly leads to cases in which some project graph nodes representing a
modeling concept present in the query (e.g., a given type of operation on data) are con-
sidered similar and thus matched to project nodes that operate on content unrelated
to the query.

The DCG graphs (Figure 12b) suggest a correlation between the value of λ and the
graph edit distance weight configuration policy. The spread among the curves at differ-
ent values of λ is very limited for the Maximal Node Substitution configuration, and
more sensible for the other two configurations. This shows that Maximal Node Sub-
stitution, which gives importance only to node substitution operations (i.e., similarity
depends on finding as many “right” model elements as possible, and not, or less, on
how the model elements are arranged or on missing model elements), makes the rank
order of results less sensitive to the name-type tradeoff in the node similarity metrics,
but for the case of λ=0 which remains dominated in all weight configuration policies.
Symmetrically, the policies that emphasize node/edge insertions (Maximal substitu-
tion and insertion and Maximal insertion) achieve better MAP figures, but the rank-
ings they produce are more sensitive to the tuning of λ. A possible interpretation of
this phenomenon is that the Maximal substitution and insertion and the Maximal in-
sertion policies, which penalize node and edge insertions in graph similarity, require
the “right” node similarity function, to compensate the fact that even slight topological
differences (e.g., differences in containment and linking, or missing model elements)
in the query and the project model can push a relevant match down in the result list

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

Textual and Content-Based Search in Repositories of Web Application Models A:29

tuvw
tuxyvw

Maximal Sub.

First Quartile

Last Quartile

Mean
Median

Maximal Sub. Ins.

Last Quartile

First Quartile

Mean
Median

Maximal Ins.

First Quartile

Last Quartile

P
re

c
is

io
n
 a

t
R

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Recall

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Recall

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Recall

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(a)

Last z{|}~���

��}�~ z{|}~���

��|�
����|�

Maximal Sub.

Last z{|}~���

��}�~ z{|}~���

��|�
����|�

Maximal Sub. Ins.

Last z{|}~���

��}�~ z{|}~���

��|�
����|�

Maximal Ins.

D
C

G

0

1

2

3

4

5

6

7

8

9

10

Retrieved Results

1 2 3 4 5 6 7 8 9 10

Retrieved Results

1 2 3 4 5 6 7 8 9 10

Retrieved Results

1 2 3 4 5 6 7 8 9 10

(b)

Fig. 13: Content-based search: average, median, and lower and upper quartile of 11-
point precision (a) and DCG (b), with λ = 0.75

Max. Sub.

Max. Sub. Ins.

Max. Ins.

Random

Levenshtein Dist.
Max. Sub.

Max. Sub. Ins.

Max. Ins.

Random

2-gram Dist.
Max. Sub.

Max. Sub. Ins.

Max. Ins.

Random

3-gram Dist.

P
re

c
is

io
n
 a

t
R

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Recall

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Precision

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Precision

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(a)

Max. Sub.

Max. Sub. Ins.

Max. Ins.

Random

Levenshtein Dist.
Max. Sub.

Max. Sub. Ins.

Max. Ins.

Random

2-gram Dist.
Max. Sub.

Max. Sub. Ins.

Max. Ins.

Random

3-gram Dist.

D
C

G

0

1

2

3

4

5

6

7

8

9

10

Results

1 2 3 4 5 6 7 8 9 10

Results

1 2 3 4 5 6 7 8 9 10

Results

1 2 3 4 5 6 7 8 9 10

(b)

Fig. 14: Content-based search: 11-point interpolated average precision (a) and DCG (b)
for of Levensthein, 2-gram, and 3-gram string distances (λ = 0.75)

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

A:30 B. Bislimovska et al.

(and hence, the DCG curves for “wrong” λ values are more separated from the curve at
the “right” value λ=0.75).

Figure 13 shows the average, median, and lower and upper quartile for 11-point
precision and DCG curves. It confirms the performance improvement obtained when
considering insertion operations, because in both the 11-point precision and DCG the
distribution of differences shows less variations with respect to the Maximal Node Sub-
stitution configuration. However, Figure 13 also shows that the distribution of results
is wider than the one shown in Figure 10 for keyword-based search; this means that
the performance of the content-based scenario varies more across the sample queries.

Table IX: Content-based search: values of MAP for different string distance metrics.

Experiment Maximal substitution Maximal substitution and insertion Maximal insertion

Levenshtein distance 0.72 0.83 0.86
2-gram distance 0.72 0.75 0.78
3-gram distance 0.60 0.63 0.59

String similarity function comparison. Figure 14 shows the third experiment with
content-based search, which evaluates the adoption of different string similarity func-
tions. We set λ to 0.75 (Low type contribution) and evaluated the Levenshtein distance
and the N-gram distance under the three graph edit distance configurations. The best
results are obtained when using the Levenshtein distance. N-gram distance was tested
for 2-grams and 3-grams. With respect to the Levenshtein distance, 2-grams respec-
tively decrease the 11-point precision and DCG, for an average of 22% and 13%, while
3-grams decrease, on average, the 11-point precision by 43% and the DCG by 32%.
Noteworthy, the three graph edit configurations perform consistently with both the
Levenshtein and the n-gram distances, as the Maximal Insertion configuration outper-
forms the others. The performance behavior of each string distance metric is further
confirmed by the MAP results reported in Table IX.

In summary, the best performance in both precision and ranking is obtained for a
moderate metamodel type contribution in node similarity evaluation (Low type con-
tribution a.k.a λ=0.75), Levenshtein distance for name similarity, and weight assign-
ment configurations that appraise both node similarity and model topology. Therefore,
textual similarity remains fundamental to achieve good results also in content-based
search, but metamodel-dependent information and the topology of the query must be
exploited to retrieve more relevant results and sort them in a more proper order.

4.3.3. Content-based search with locality constraints. As a last experiment, we compared
content-based search with and without locality constraints for candidate mapping
nodes. For both the original A-star and A-star with locality constraints we set λ to 0.75
(Low type contribution) and used Levenshtein distance in the node similarity function.
Table X reports the MAP values for A-star and A-star with locality constraints. Figures
15 and 16 chart the 11-point precision and DCG curves. As can be noted in the above
mentioned results, the application of locality constraints slightly worsens on average
the performance of content-based search. Inspection of results reveals the following
behavior:

— Locality constraints prevent the selection of disconnected matching nodes. This pro-
motes in the result set matches with patterns that conform to the majority of the
elements in the query and penalizes matches with projects that, although topically
relevant, contain only partial reusable patterns scattered in different places of the

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

Textual and Content-Based Search in Repositories of Web Application Models A:31

Max. Sub.

Max. Sub. Ins.

Max. Ins.

Random

Local Search

P
re

c
is

io
n
 a

t
R

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Recall

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

(a)

D
C

G

0

1

2

3

4

5

6

7

8

9

10

Results

1 2 3 4 5 6 7 8 9 10

(b)

Fig. 15: Content-based search: 11-point interpolated average precision (a) and DCG (b)
with locality constraints (λ = 0.75, Levensthein distance)

����
������

Maximal Sub.

First Quartile

Last Quartile

Mean
Median

Maximal Sub. Ins.

Last Quartile

First Quartile

Mean
Median

Maximal Ins.

First Quartile

Last Quartile

P
re

c
is

io
n
 a

t
R

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Recall

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Recall

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Recall

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

(a)

Last ��������

����
������

Maximal Sub.

Last ��������

����� ��������

����
������

Maximal Sub. Ins.

Last ��������

����� ��������

����
������

Maximal Ins.

����� ��������

D
C

G

0

1

2

3

4

5

6

7

8

9

10

Retrieved Results

1 2 3 4 5 6 7 8 9 10

Retrieved Results

1 2 3 4 5 6 7 8 9 10

Retrieved Results

1 2 3 4 5 6 7 8 9 10

(b)

Fig. 16: Content-based search: average, median, and lower and upper quartile of 11-
point precision (a) and DCG (b), with λ = 0.75, Levenshtein distance, and locality con-
straints.

model. This effect, in our experimental query panel and project repository, tends to
favor local A-star.

— Some queries that perform well with A-star worsen their performance when locality
of matching is applied, because the relevant results end up having less matching
nodes, which lowers their rank score and thus diminishes their separation from not
so relevant results; then it may happen that a less relevant result overcomes a more
relevant one in the result list. This behavior tends to favor the original A-star.

— The two abovementioned effects compensate each other, with a slight predominance
of the cases where locality worsens the performance.

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

A:32 B. Bislimovska et al.

Table X: Content-based search: MAP values of for A-star algorithm with local search.

Experiment Maximal substitution Maximal substitution and insertion Maximal insertion

A-star 0.72 0.83 0.86
A-star + locality constraint 0.70 0.72 0.77

Content-Based

Keyword-basedQ
u

e
ry

 T
im

e
 (

m
s
)

10

100

1000

10000

Index Size (% of documents in the index)

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Fig. 17: Comparison of response time at varying number of indexed projects for
keyword-based search and content-based search.

4.3.4. Query Execution Time. The last quantitative experiment compares the perfor-
mance of the keyword-based and content-based search approaches with respect to re-
sponse time required for query execution. All the experiments have been conducted on
a machine equipped with Intel dual Core Processor 2.4GHz, 6GB RAM, and Windows
7 (64-bit) operating system; the reported values are averaged over 10 executions.

Figure 17 shows the query execution time for all the 10 queries considered in
the experiments with respect to the index size. As expected, content-based search
is considerably slower than keyword-based search, which executes in quasi-constant
time. Despite the exponential complexity of graph matching, the content-based ap-
proach shows a quasi-linear correlation with respect to the index size for the con-
sidered repository, a result that confirms one of the findings of our previous works
[Bislimovska et al. 2011b]. Notice that no query execution optimization (including op-
timized indexing of the repository) has been adopted during experiments and therefore
we expect a wide range of possibilities for improving the performance of the content-
based system.

4.4. User Study

The evaluation reported in Section 4.3 compared the results of the keyword- and
content-based search systems with a gold data set constructed manually by experts
and aimed at assessing the ability of each system to extract models similar to the user
need, under the notion of structural and topical similarity provided by the experts.
To evaluate the user-perceived utility of both systems during a development task, we
conducted a controlled study organized in two distinct sessions, with the help of 25
industrial software developers (7 females and 18 males). Participants were volunteers
with at least one project developed using WebML, engaged as follows:

— First, users had to fill-in a pre-experiment questionnaire, to provide demographic
information and self-assess their experience with WebML on a 3-point Likert scale,

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

Textual and Content-Based Search in Repositories of Web Application Models A:33

ranging from 1 (novice) to 3 (expert). Of the 25 participants, 9 evaluated themselves
as expert, 9 as practitioner, and 7 as novice.

— Before the start of the study, participants watched a video tutorial showing how to
perform two different evaluations, described next.

— Next, users accessed an ad hoc Web application and performed the actual evalua-
tion7.

— Finally, users filled-in a post-experiment questionnaire, where they could provide
feedback in free text format.

A pool of 10 tasks, defined in collaboration with the WebML experts and inspired to
the development of the exemplary models used for the gold standard creation, was
exploited in the user study. The following is an example of such tasks:

Assume you have to design a new Web application for the management of
an e-commerce system. One of the requirements is the management of the
sales operation; specifically, the site should contain a Web page devoted to the
search of products in the catalogue; upon submission of the search conditions,
the same page should show the list of products matching the user query. You
want to identify existing projects (or fragments thereof) that can be reused to
fulfill this requirement.

Given a task description, the queries representing it in textual and WebML format
were defined and respectively submitted to the keyword-based and to the content-
based system, set-up in their best configuration (the Metamodel-dependent Naviga-
tional configuration for keyword search and the Maximal Insertion with λ = 0.75 and
Levenshtein string similarity for content-based search, as discussed in Section 4.3).
Results of query processing were collected and used for building the user evaluations
described in the following sections.

4.4.1. User Study 1: single system evaluation. The first session elicited the users’s judge-
ment on the utility for reuse of each result computed by one of the two systems. Given
a task such as the one exemplified above, users were presented the top-5 results, with-
out disclosing which system they originated from. Users had to assess each result
using a tertiary scale, where: (i) 0 meant not useful for reuse, (ii) 1 meant partially
useful, and (iii) 3 meant very useful. Figure 18 shows the interface created for per-
forming the User Study 1; it contains the task description and one result at a time,
with commands for zooming the model, evaluating it, and scrolling to the other re-
sults of the top-5 result set. Each user evaluated the result sets of 10 tasks, assigned
by mixing an equal number of responses to keyword- and content-based queries. To
reduce learning bias and fatigue, the experiment was designed using a graeco-latin
square scheme [Street and Street 1987; Joho 2011], with system type (keyword-based
and content-based) and task as dependent variables. To minimize the impact of prior
experience in WebML projects, tasks were assigned to participants randomly. To re-
duce bias due to the rank position, the order of presentation of results in the interface
was random.

For each system, task, and result position, votes were averaged to calculate a global
DCG curve for the keyword- and content-based systems, reported in Figure 19. Figure
20 shows the DCG curves, broken down task-by-task. Note that the DCG curves deter-
mined with the User Study 1 compare the result sets produced by the search systems
with the best ordering of results emerging from the user’s votes based on the perceived
reusability of the project fragments with respect to the task description; conversely,

7The evaluation system is available for reviewers’ consideration at http://webml.org/webml/modelsearch/
modelsearch-evaluation.jsp.

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

http://webml.org/webml/modelsearch/modelsearch-evaluation.jsp
http://webml.org/webml/modelsearch/modelsearch-evaluation.jsp

A:34 B. Bislimovska et al.

Fig. 18: User Study 1: Interface of the evaluation system.

the DCG curves previously shown in Section 4.3 compare the results calculated by the
system under multiple configurations with the gold standard created by the experts,
who evaluated the technical quality of matches based on the degree of textual and/or
structural relevance of the WebML area.

Content-Based

Keyword-based

D
C

G

0

1

2

3

4

5

Retrieved Results

1 2 3 4 5

Fig. 19: User Study 1: DCG curves averaging the user evaluations (top-5 results).

4.4.2. User Study 2: system to system comparison. The second user study focused on the
direct comparison of the top-5 result sets produced by the keyword- and content-based
search systems. The experiment complements the first user study by including in the
evaluation also the ranking performance of the two systems. To this end, we designed
a pairwise comparison task, with the intent of reducing the cognitive effort that oth-
erwise would be required for the separate evaluation of two ranked sets of models; the
face-to-face appraisal of whole result sets supports not only the judgement about the
relevance of the retrieved models, but also the direct comparison of the order in which
these are presented. Given a task, users reviewed two result sets and indicated the
one that in their opinion was globally more useful in terms of reuse, considering both
the utility of the returned results, and their ranking positions. Figure 21 shows the

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

Textual and Content-Based Search in Repositories of Web Application Models A:35

Content-Based

Keyword-Based
D

C
G

2

4

6

8

Task 1

1 2 3 4 5

Task 2

1 2 3 4 5

Task 3

1 2 3 4 5

Task 4

1 2 3 4 5

Task 5

1 2 3 4 5

Content-Based

Keyword-Based

D
C

�

2

4

6

8

Task �
1 2 3 4 5

Task �
1 2 3 4 5

Task �
1 2 3 4 5

Task 9

1 2 3 4 5

Task 10

1 2 3 4 5

Fig. 20: User study 1: Task-by-task DCG curves (top-5 results).

evaluation interface developed for the second experiment: the description of the task
is shown in the middle of the page, with the two result sets to be compared placed at
its left and right. Figure 22 reports the direct comparison of the preferences for one
system or the other, task by task.

Fig. 21: User Study 2: Interface of the evaluation system.

4.4.3. Analysis of Results. Coherently with the gold standard evaluation, both user
studies show that the content-based search system provides, on average, better re-
sults than the keyword-based system, which suggests a correlation between the per-
formance of a retrieval system and the user-perceived utility for reuse.

The DCG curves of Figure 19 show values similar to the ones described in Section
4.3, but with higher values for the content-based system; the histogram of Figure 22
show that the result lists produced by the content-based system have been preferred
60% of the times. Further analysis can be done by considering the task-by-task perfor-
mance in Figure 20 and 22. The former shows how well the ordering of the result set
of a single system adheres to the preferences expressed by the users; the latter shows,

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

A:36 B. Bislimovska et al.

Content-Based

Keyword-Based

%
 o

f
p

re
fe

re
n

c
e

s
0

0.2

0.4

0.6

0.8

User Tasks

1 2 3 4 5 6 7 8 9 10

Fig. 22: User Study 2: Task-by-task preferences for the two systems.

task-by-task, which system the users preferred, when confronted simultaneously with
the result sets produced by both ones. Four situations emerge:

— Content-based search is better for Task 1, Task 2, Task 6 and Task 9. Note that
in Task 1 keyword- and content-based search get an equal share of preference in
the direct comparison of result sets, but the DCG curve shows that the ordering of
results is closer to the user’s judgement for content-based search. Figure 23a reports
an example of content-based query in this class: it expresses an object management
pattern (distinct pages for the creation, modification, and deletion of instances) over
the document entity. The better performance of content search is due to the nature of
the query, which exploits a very characteristic design pattern and thus benefits from
the match computed using graph similarity. Conversely, the corresponding keyword-
based query contains rather frequent words (“document” occurs 81 times in the
repository, “create” occurs 112 times, “modify” occurs 127 times, and “delete” occurs
118 times), which do not produce selective matches in the text retrieval system.

— Keyword search is better for Task 3 (depicted in Figure 23b) and Task 4. In this
case the selectivity of textual terms dominates the characteristics of the structural
pattern. For instance, for Task 3 the total number of occurrences of the term “de-
fault” in the repository is 5, while the term “subject” occurs 9 times. The specificity
of these terms, which are rare in the repository, makes the keyword-based search
more selective than the content-based counterpart, even if the content-based query
exhibits a fairly articulated model. The greater number of preferences obtained by
Task 4 in the second user study is justified by visual bias in the comparison of result
sets (see point (2) below), which diminishes the perceived utility of the retrieved set
of results.

— Comparable results for Task 7, Task 8 and Task 10. In this case both systems ex-
hibit a comparable performance, with no clear winner or discordance between the
direct comparison of results sets and the appreciation of each result in isolation. As
an example, Figure 23c shows Task 10, which features a fairly complex structural
model and good keyword selectivity (terms such as “dictionary”, 44 occurrences, and
“contract”, 5 occurrences).

— No satisfactory results are retrieved for Task 5 (shown in Figure 23d), which ex-
presses a need formulated either as a model fragment with rather general structure
and labels or as a bag of keywords having low selectivity. In such a case, both A-star
graph matching and TF-IDF text matching do not perform well, as no distinctive
feature of the query allows for high-confidence retrieval.

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

Textual and Content-Based Search in Repositories of Web Application Models A:37

Document Management

New Document

Keyword Query

Delete Document

Modify Document Document Details

Document ListDocument Data

Modify

+__

Content Based Query

Manage Modify Delete New Document Data Details List

(a) Task 9: good content-based search

Modify User

Modify User

User List

User List

Modify User Data

Modify

+__

Subject

Default Group

Keyword Query

Content Based Query

Modify User Data List Default Group Subject

(b) Task 3: good keyword search

Dictionary

Contracts

Contract Type Delete Dictionary

__

Contract Type

Keyword Query

Content Based Query

Delete Dictionary Contract Type

(c) Task 10: equivalent keyword and
content search

Client Management

Make calls Manage Clients

Keyword Query

Content Based Query

Make Call Manage Client

(d) Task 5: no satisfactory re-
sults

Fig. 23: Example of task with a) good performance in content-based search, b) good per-
formance in keyword-based search, c) equivalent performance, and d) unsatisfactory
overall performance.

Further analysis of the results of the two user studies, also confirmed by the feed-
back provided by the users, show that:

(1) In some cases (e.g., Task 1, Task 2, Task 6, and Task 8) the main contribution to
the utility of the result set is due only to a very relevant top-1 result, as shown by
the DCG curve starting at the highest value for x=1 (i.e., 3) and then flattening out.
In this case, the system retrieves a very good match to either the keyword-based or
the content-based query, but then the other results are judged much less useful.

(2) Some other tasks (Task 4 and Task 9) instead retrieve results that are perceived
as good all over the result set, as shown by a steadily increasing DCG curve both
in keyword-based and content-based search. In the direct comparison of the result
sets, users tend to assign higher preference to content-based results though, even
when the precision and order of the result set is judged better for keyword-based
search (this is the case of Task 4). Post-experiment comments from the users sug-
gest that the favorable perception for content-based search is influenced not by the
relevance per se of the result, but by a visual bias induced from the highlight of
the matching elements. Content-based search results match mostly elements that
appear visually also in the content-based query and in its neighborhood, whereas

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

A:38 B. Bislimovska et al.

keyword-based search matches all elements that contain at least one keyword. In
the abovementioned tasks, it was easier for the users to appreciate the reusability
of the content-based result than of the keyword-based one, which had many high-
lighted elements and resulted confusing.

(3) Another factor that blurs the perceived differentiation between keyword- and
content-based search is the size of the returned model element. Tasks like Task 7,
Task 8, and Task 10 happen to match well with rather large WebML areas, making
it more difficult for the users to perceive the utility for reuse.

4.5. Discussion

4.5.1. Relevance of Metamodel information. Overall, the results of the experimental eval-
uation show that the inclusion of metamodel-dependent information in the model-
search process is beneficial for performance; this is demonstrated both in the keyword-
based search system, where the evaluated Metamodel-dependent strategies outper-
form the Metamodel-independent one, and in the content-based search system, where
the injection of metamodel information in the node similarity function provided a con-
siderable performance boost. However, in keyword-based search the very simple ap-
proach of extracting the text content from projects and indexing it with off-the-shelf
IR tools still yields acceptable results (MAP = 0.77). This responds to the research
question [Q.2] presented in Section 1.2.

4.5.2. Keyword- Vs. Content-Based Search. We compare keyword-based search and
content-based search in their most performing settings, respectively the metamodel-
dependent navigational configuration and the Low type contribution, maximal inser-
tion configuration that uses Levenshtein distance.

The MAP values suggest that content-based search (MAP = 0.86) is overall more
precise than keyword-based search (MAP = 0.81); however, results from 11-point in-
terpolated average precision show that the best keyword-based experiment at recall =
0 slightly outperforms content-based search, as the former features a precision of 1.
Content-based search provides better precision for (0.1, 0.2, 0.3) recall levels (up to 30%
of relevant projects); for greater recall levels the keyword-based search consistently
outperforms content-based search. A similar performance profile resulted from the
first experiment of the user study, where the DCG curves resulting from the evalu-
ation of the top-5 results show that, on average, the content-based system is perceived
as performing slightly better for reuse purposes.

Therefore, we might conclude that, in the evaluated setting, content-based search
is suitable for applications where precision matters the most. On the other hand,
keyword-based search can prove suitable in applications where recall is important
(e.g., recommendation systems). Obviously, these considerations must be taken with
care, because comparing information retrieval results across diverse systems and
query paradigms can only give a coarse indication of the respective capabilities.
The quantitative experiment over gold data and the user study respectively respond
to the research questions [Q.3] and [Q.4] presented in Section 1.2.

4.5.3. Search system design guidelines. The user study revealed possible sources of cog-
nitive bias that may alter the perception of the utility of the retrieved results, even
if they are relevant from a technical standpoint (i.e., they do contain the queried key-
words or model fragment). These results suggest two recommendations for the design-
ers of model search systems:

— Project segmentation: project segments (WebML areas in the case of our experi-
ments) should be semantically meaningful as potential units of reuse and have
comparable size.

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

Textual and Content-Based Search in Repositories of Web Application Models A:39

— Matching results highlight: keyword-based search may be an interesting tool to
recall more potentially relevant matches than content-based search, but it suffers
from the visual overhead induced by the matches of many model elements of dif-
ferent types. As a possible countermeasure, the interface should support commands
for toggling the highlight of selected metamodel types. In this way, the user could
selectively turn on the highlight for the type of model element he is looking for (e.g.,
only for pages, or units of a given kind), exploiting metamodel information also for
the visualization of results.

4.5.4. Project design guidelines. As a final remark, the findings about the performance
of model-based search systems can be read also as recommendations for project de-
velopers and DSL designers. In general, using selective and precise textual labels for
model elements is the first best practice to consider; given the importance of the text
match component in both keyword- and content-based search, using scarcely descrip-
tive labels and omitting comments to model elements obviously degrades search. Most
of the reviewed projects contained no comments associated with model areas, pages,
and meaningful patterns, even if this feature is supported by WebML and WebRatio.
Another best practice is the adherence to standardized design patterns: many func-
tions (e.g., the interfaces for performing CRUD operations on data, composition and
sending of messages, and so on) can be modeled in standard ways, but the projects
exhibited a lot of semantically equivalent but slightly different variants for doing the
same thing. This (not so necessary) variability impacts the calculation of the graph
edit distance, which is sensitive to link and containment topology. Last, DSLs that are
designed to be extensible and incorporate third-party components, like WebML, should
care for preserving the precision of the metamodel: a good classification taxonomy of
custom components can help the metamodel type part of the node matching function
of content-based search.

4.6. Threats to Validity

The paper provides two main contributions: an approach for applying metamodel-
based search to model repositories; and a concrete experiment over a repository of
models conforming to a specific DSL, namely WebML. While the former contribution is
general, the latter, especially the quantitative results from the experiments, is relevant
for the WebML case and cannot be directly generalized to other languages. However,
the discussed method for studying the configurations of the search systems and for
tuning their parameters can be reused. Also, as discussed in Section 3.1, WebML is
a representative of a family of languages for interactive application modeling, which
is also being proposed for standardization by the OMG. This makes the experiments
described in the paper, although not directly portable to other DSLs, potentially useful
for supporting the evaluation of search system in other languages for model-driven
interactive application development.

While it would have been good to evaluate the system on multiple or larger reposito-
ries, finding realistic and sufficiently rich datasets has been challenging. Indeed, mod-
els are the core asset of MDE companies, which are therefore reticent to share them.
Anyway, the repository we have been able to collect contains a considerable amount of
model artifacts (a total of 19,246 searchable elements have been counted) and covers
a wide spectrum of application domains. Based on the user feedback and on our em-
pirical assessment of the repository, we think that the obtained results are accurately
describing the system behavior for the WebML modeling language.

Another potential threat comes from the quality of the testbed and of the gold stan-
dard. We applied all the known techniques for reducing the bias of evaluators and we
were not included in the set of experts evaluating the data. The same care has been

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

A:40 B. Bislimovska et al.

applied to the definition and execution of the user study. While the projects in the
repository could not be chosen (they were provided by WebRatio), the selection of the
queries for the experiments was performed based on various language and dataset ob-
jective characteristics, to minimize the introduction of bias from our side. The selected
number of tasks (10) has been deemed a reasonable compromise between the effort
required for constructing the gold standard and the coverage of several aspects of the
DSL and of typical design patterns that we observed in the provided repository.

The result of the user study could have been influenced by the number and exper-
tise of the involved participants. However we believe that number of involved users
(25) suffices for a meaningful evaluation, while the levels of expertise were fairly dis-
tributed.

Finally, a last factor that could have influenced the user study is the user interface
we built for the purpose. This interface may have introduced exogenous complexity to
the evaluated variables, e.g., due to factors such as the limitations of a browser-based
interface, the system response time, the cognitive load associated with a new inter-
face, time pressure, and the kind of interaction commands allowed. To minimize the
impact of such factors, we provided equal training to all the participants, and did not
pose a time limit for the execution of the evaluations. However, as we have commented
in Section 4.4, model-driven search surely poses challenges in the system interface de-
sign, related to model complexity and size and highlight of matches, which we consider
interesting future research directions to explore.

5. RELATED WORK

The problem of searching relevant artifacts in software repositories has been exten-
sively studied in many academic works and widely adopted by the community of devel-
opers. This Section provides analysis of the state-of-the-art, classifying it by the type
of retrieved software artifacts, i.e., components, source code and models. Furthermore,
it associates our contribution with our previous works on model search.

Component Search. Searching software components from software libraries in an
effective way for their reuse is an important research problem [Goguen et al. 1996].
One of the earlier proposed approaches is Agora [Seacord et al. 1998],a component
search engine, which automatically generates and indexes a worldwide database of
software products, classified by component model, allowing users to search for com-
ponents by specifying the properties of its interface. Merobase 8 is an online tool
for finding software components through simple text-based search, lookup capabil-
ity and API search. The work in [Ben Khalifa et al. 2008] presents a structural and
behavioral based technique for retrieval of software components, considering their
heterogeneity, such as the domain, abstraction level and the underlying technology.
[Platzer and Dustdar 2005] investigates the discovery and analysis of Web services
using a vector space search engine to index descriptions of existing services.

Source Code Search. The need for searching source code for improving the process
of software development and supporting software reuse resulted in emergence of sev-
eral on-line tools and research works that implement and explore this problem. Some
examples of existing on-line tools for sharing and retrieving source code are Google
code, Snipplr, Koders, and Codase9. As explained in [Bozzon et al. 2010],the most ba-
sic solution is the case where queries in form of keyword(s) are simply matched to
the code and the results are the exact locations where the keyword(s) appear in the
matched code snippets. However, online tools allow advanced search by using reg-

8http://www.merobase.com
9Sites: http://code.google.com, http://www.snipplr.com, http://www.koders.com, http://www.codase.
com

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

http://www.merobase.com
http://code.google.com
http://www.snipplr.com
http://www.koders.com
http://www.codase.com
http://www.codase.com

Textual and Content-Based Search in Repositories of Web Application Models A:41

ular expressions (Google Codesearch), wildcards (Codase); supporting search of spe-
cific syntactical categories, like class names, method invocations, variable declarations
(Jexamples and Codase); making the search more specific by indicating fixed set of
metadata (e.g., programming language, license type, file and package names). Source
code online tools also have to consider a way to compute a relevance score between
the query and the matched source code, and present the corresponding results to the
user [Bozzon et al. 2010]. Regarding this aspect, some approaches retrieve a list of
matches without providing ranking, while others implement IR-style ranking using
the standard TF/IDF measure, or ranking which besides the matches with the source
code takes into account the project properties such as recency of the project, number
of downloads, activity rates etc.

Research works for source code search are based on IR techniques
[Frakes and Nejmeh 1987; McMillan et al. 2012] and techniques which em-
ploy the source code structure in the search [Bajracharya et al. 2009;
Holmes and Murphy 2005]. Sourcerer [Bajracharya et al. 2009] is an infrastruc-
ture which provides foundation for building source code search engines and tools by
sustaining large-scale indexing and analysis of open source code by exploiting the code
structural information. [Holmes and Murphy 2005] describes a method for locating
relevant code in an example repository by heuristically matching the structure of the
code under development to the example code. Exemplar [McMillan et al. 2012] is an
approach for finding highly relevant software projects from large archives of applica-
tions by using information retrieval and program analysis techniques. Sniff (Snippet
for Free-From queries) [Chatterjee et al. 2009] is a Java code search technique which
allows free-form queries in natural language for obtaining a set of relevant code
snippets by combining API documentation with publicly available Java code. The
work in [McMillan et al. 2011] describes Portfolio, a source code search system that
provides retrieval and visualization of functions, and supports the analysis of chains
of dependencies of the retrieved functions with the help of navigation and association
models.

Model search. Model search approaches are not so abundant as those based on
code retrieval, but a few systems have been described recently. Moogle is a model
search engine that uses UML or Domain Specific Language (DSL) metamodels to
create indexes for evaluation of complex queries [Lucrédio et al. 2010]. The work in
[Gomes et al. 2004] stores UML artifacts in a central knowledge base, classifies them
with WordNet terms and extracts relevant items exploiting WordNet classification
and Case-Based Reasoning. The query represents a partial UML model and it may
contain UML packages, classes or interfaces. Unlike our approach, Moogle supports
only text queries which are refined by specifying the type of the desired model ele-
ment to be returned, while [Gomes et al. 2004], is limited to UML model queries where
the name of every model element is classified into a specific context synset (WordNet
cognitive synonym)category. The techniques proposed in [Akehurst and Bordbar 2001]
and [Calı̀ et al. 2012] do not use IR or graph matching techniques but rely on query
languages for UML models. [Akehurst and Bordbar 2001] uses the detailed semantics
of UML and OCL with additional extensions for querying UML models. Calı̀ et al.
[Calı̀ et al. 2012] study the problem of answering queries over UML class diagrams
by relating it to the problem of query answering under guarded Datalog±, a power-
ful Datalog-based language for ontological modeling, in order to verify whether an
instance of a system modeled by the UML class diagram satisfies a specific prop-
erty. WISE [Shao et al. 2009] is a search engine that allows querying workflow hierar-
chies using keywords. CORE [Fernández et al. 2006], a tool for Collaborative Ontology
Reuse and Evaluation, determines which ontologies from an ontology repository most
appropriately describe a set of terms, by applying similarity measures.

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

A:42 B. Bislimovska et al.

The work [Mendling et al. 2007] analyzes similarity between process model behav-
iors, defined in terms of causal footprint. This raises the level of abstraction of the
models and thus allows comparison of models specified in different languages (but still
within the domain of business processes). Similarity is calculated with a vector model
that considers nodes, look back links, and look ahead links of the causal footprints as
features. Our work instead compares retrieval techniques based on purely textual rep-
resentations and on graph representations upon which graph similarity is computed.

Other approaches define extensions of OCL (Object Constraint Language) for allow-
ing queries over complex model repositories: for instance, [Kling et al. 2011] propose
MoScript, a textual language for model querying and management. With MoScript,
users can write scripts containing queries and manipulation instructions (e.g., trans-
formations on sets of models) upon models and store them back in the repository. While
the approach is metamodel-independent, the user is left in charge of writing complex
OCL-like queries that only retrieve exact, non-ranked models. Our approach departs
quite radically from the mentioned ones, as none of these systems considers query-by-
example scenarios, and most of them require the usage of a query language for the
specification of the query that is not suitable for end users.

Graph-based model search. Several approaches perform content-based search re-
lying on graph matching. The work in [Grigori et al. 2010] introduces a BPEL ranking
platform for service discovery employing graph matching, which finds a set of service
candidates satisfying user requirements and ranks them using a behavioral similarity
measure. Another behavioral similarity measure for artifact-oriented business pro-
cesses, using the Petri Net notation, is proposed in [Liu et al. 2012] and is based on
artifacts and their lifecycles, which reflect the behavior of a business process. Zhuge
et al. [Zhuge 2002] implement an approximate matching approach based on SQL-like
queries on ontology repositories. The focus is on reuse, based on a multi-valued pro-
cess specialization relationship. Three similarity metrics for querying business process
models are presented in [Dijkman et al. 2011]: label matching similarity, structural
similarity, which considers the topology of models, and behavioral similarity, which
focuses on the causal relations in models. The same authors propose a structural sim-
ilarity approach in [Dijkman et al. 2009], which computes similarity of business pro-
cess models, encoded as graphs, by using four different graph matching algorithms:
a greedy algorithm, an exhaustive algorithm with pruning, a process heuristic algo-
rithm, and the A-star algorithm. Although the graph-based part of our work is inspired
by the abovementioned approaches, the existing works are restricted to queries over
BPM models, which have a simpler syntax and semantics than a DSL for interactive
application front-ends modeling. [Niemann et al. 2012] discusses a technique for pro-
cess models retrieval based on clustering of related pairs, which combines semantic,
string-based, and an hybrid metric for comparing process models. The related cluster
pairs are then used to compute the overall process similarity. The main differences
with respect to our work is the focus on business processes and the use of comparison
mainly based on node labels rather than on structural information.

The works in [Kunze and Weske 2010; Qiao et al. 2011; Jin et al. 2011] present two-
step approaches for graph-based search of Business Process Models repositories by
applying filters to narrow the search space, and then performing graph matching on
the filtered candidates only. [Kunze and Weske 2010] discusses an indexing approach
for business process models based on metric trees (M-Trees), and a similarity metric
based on the graph edit distance. The work in [Jin et al. 2011] introduces a structural
technique for efficient retrieval of BPM models represented as Petri nets, with the
help of an edge-based index which filters promising candidates, followed by a similar-
ity computation of Maximum Common Edge Subgraph for the candidates that passed
the filter. A two-level business process clustering and retrieval method that combines

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

Textual and Content-Based Search in Repositories of Web Application Models A:43

language modeling and structure matching is proposed in [Qiao et al. 2011]. The first
level clustering is based on topic similarity, while the second-level clustering consid-
ers the detailed structure of processes within a cluster, and groups them according
to their structural similarities using a graph-partition approach. In comparison to the
graph-based part of our work, these approaches are limited to business process models,
and they introduce filtering as another step in the processing to achieve more efficient
search, which might be explored as a future direction in the graph-based search of
models.

Other content-based approaches. Other approaches use specific algorithms for
similarity search. The work in [Syeda-Mahmood et al. 2005] uses domain-independent
and domain-specific ontologies for retrieving Web services from a repository by enrich-
ing their descriptions with semantic associations. A framework for model querying in
the business process modeling phase, enabling reuse, support of the decision making,
and querying of the model guidelines is presented in [Markovic et al. 2008].

Other approaches exploit domain knowledge, also in terms of ontologies, for formu-
lating the queries; however, these approaches are typically bound to one specific kind
of models (e.g., business process models). The work [Belhajjame and Brambilla 2011]
proposes a query by example approach that relies on ontological description of business
processes, activities, and their relationships, which can be automatically built from the
workflow models themselves. The work [Kiefer et al. 2007] proposed the use of seman-
tic business processes and offer an approximate query engine based on iSPARQL to
perform the process retrieval task and to find inter-organizational matching between
business partners. With respect to our work, these techniques leverage on semantic de-
scriptions of the models. This means that models need to be enriched with annotations
from ontologies for improving the retrieval performance.

Our previous work. The results described in this paper are rooted in our
previous work on model search. The early work [Bozzon et al. 2010] defined the
problem of searching over DSL repositories and proposed a technical architecture
for the case of keyword-based model retrieval; no evaluation with a gold stan-
dard for the keyword-based retrieval system was reported yet. The subsequent
works [Bislimovska et al. 2011b; Bislimovska et al. 2011a] introduced the approach of
content-based search, supported with the A-star algorithm, and reported a preliminary
evaluation of results with a limited ground truth dataset compiled by the authors.

To the best of our knowledge, our work is the first one that systematically com-
pares keyword-based and content-based search for models expressed in a Domain
Specific Language, providing insight on the interplay between configuration param-
eters of the search engines, the structure of the modeling language, and the nature
of the user’s queries. Our approach to keyword-based search is inspired by informa-
tion retrieval techniques and it is related to works like [Lucrédio et al. 2010]. With
respect to this work, we focus on the comparison with content-based search and
thus adopt a rather straightforward approach to indexing and search, which uses
only the knowledge present in the text content and in the metamodel. The exten-
sion to a semantically richer treatment of the domain knowledge, e.g., for term ex-
pansion and domain-driven clustering of projects, can be easily envisioned for our
approach. As for the content-based search, our approach mostly draws inspiration
from graph-based works in the context of business process models, most notably,
[Dijkman et al. 2009; Dijkman et al. 2011]. With respect to BPM-oriented content-
based search, DSL-oriented search shares the mix of label and structural knowledge
exploited in indexing and searching, but must cope with a richer language syntax and
semantics, which we have considered in the design of parameter configurations.

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

A:44 B. Bislimovska et al.

6. CONCLUSIONS

In this paper we have addressed the problem of designing search systems for reposito-
ries of projects in a model-driven Web application development environment. We have
contrasted two major approaches for the implementation of search: keyword-based
and content-based. Extensive experimentation has been conducted with a sample of
10 queries against a real-world repository of 341 WebML areas, for which a gold stan-
dard set has been constructed that embodies what experts consider good responses to
both keyword-based and content-based queries. Experiments have shown that even
traditional text indexing techniques can deliver good performance for keyword-based
queries, but adding metamodel knowledge to the index can improve accuracy. For
content-based search, the conclusion is that matching the textual content of project
is still important, but the system benefits from an appropriate injection of metamodel
knowledge regarding both the types of the elements and the structure and topology of
models. Furthermore, content-based search results exhibited greater variability and
dependency on the queries than keyword-based results.

We underline once more that these results have been gathered in the context of
a mid-scale experiment and cannot be generalized in an absolute way. They provide
insight about what expert WebML modelers consider suitable queries and responses
and about the way in which two different classes of information retrieval systems can
be configured to respond to the expectations of these searchers. Nonetheless, we believe
that the results presented in this work provide a number of interesting observations
about the usage of keyword-based and content-based techniques for model search and
therefore respond to the research questions we initially defined in Section 1.2.

Future work will develop along several complementary lines:

— On the search systems side, both keyword-based and content-based approaches will
be further explored. The keyword-based approach will be expanded with a better ex-
ploitation of semantics and domain knowledge, both at query time (e.g., by means of
keyword expansion), and at indexing time (e.g., by means of text feature extraction
and project topical clustering). The content-based approach also lends itself to sev-
eral investigation directions: other graph similarity functions and graph matching
algorithms exist that could be profitably compared to the approach presented in this
paper.

— On the usage of metamodel information, several additional options for embodying
such knowledge in the search system can be evaluated. Besides using metamodel
knowledge to segment projects and to influence the matching and ranking of the IR
system, it is also possible to use it for mining relevant information from the project
repository, such as term distribution, and for automating concept weighting based
on the analysis of concept centrality in the collection of model element graphs.

— On the Web engineering side, it would be interesting to proceed with the analy-
sis of other DSLs, and to compare search techniques for general purpose (notably,
UML) and domain specific languages. We also plan to investigate how the intro-
duction of explicit reuse-oriented constructs, e.g., WebML reusable modules, alters
the structure of projects and the modeling style of developers, and thus impacts
content-based search.

— On the evaluation side, we are building a system for large scale evaluation with “ex-
pert crowds”. The CrowdSearch platform [Bozzon et al. 2012] is a general-purpose
task crowdsourcing system that can be used to design user studies and deploy them
on top of open social networks and/or closed groups. We plan to formulate as crowd
tasks several types of search result evaluation questions, so to gather a large scale
collection of queries and expert-validated result relevance scores, exploiting both

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

Textual and Content-Based Search in Repositories of Web Application Models A:45

open groups (e.g., LinkedIn MDE groups) and closed communities (e.g., the WebRa-
tio developers network).

REFERENCES

ACERBIS, R., BONGIO, A., BRAMBILLA, M., AND BUTTI, S. 2007. Webratio 5: An eclipse-based case tool for
engineering web applications. In ICWE, L. Baresi, P. Fraternali, and G.-J. Houben, Eds. Lecture Notes
in Computer Science Series, vol. 4607. Springer, 501–505.

AKEHURST, D. H. AND BORDBAR, B. 2001. On querying uml data models with ocl. In Proceedings of the 4th
International Conference on The Unified Modeling Language, Modeling Languages, Concepts, and Tools.
Springer-Verlag, London, UK, 91–103.

ANDA, B., HANSEN, K., GULLESEN, I., AND THORSEN, H. 2006. Experiences from introducing uml-based
development in a large safety-critical project. Empirical Software Engineering 11, 4, 555–581.

ARTECH CONSULTORES S.R.L. Last accessed August 2012. Genexus Marketplace.
http://marketplace.genexus.com.

ATLANMOD GROUP. Last accessed August 2012. AtlanMod Zoos. http://www.emn.fr/z-info/atlanmod/
index.php/Zoos.

BAJRACHARYA, S., OSSHER, J., AND LOPES, C. 2009. Sourcerer: An internet-scale software repository. In
Search-Driven Development-Users, Infrastructure, Tools and Evaluation, 2009. SUITE ’09. ICSE Work-
shop on. 1–4.

BELHAJJAME, K. AND BRAMBILLA, M. 2011. Ontological description and similarity-based discovery of busi-
ness process models. International Journal of Information System Modeling and Design (IJISMD) 2,
47–66.

BEN KHALIFA, H., KHAYATI, O., AND GHEZALA, H. 2008. A behavioral and structural components retrieval
technique for software reuse. In Advanced Software Engineering and Its Applications, 2008. ASEA 2008.
134–137.

BILENKO, M., MOONEY, R., COHEN, W., RAVIKUMAR, P., AND FIENBERG, S. 2003. Adaptive name match-
ing in information integration. Intelligent Systems, IEEE 18, 5, 16–23.

BISLIMOVSKA, B., BOZZON, A., BRAMBILLA, M., AND FRATERNALI, P. 2011a. Content-based search of
model repositories with graph matching techniques. In Proceedings of the 3rd International Workshop
on Search-Driven Development: Users, Infrastructure, Tools, and Evaluation. SUITE ’11. ACM, New
York, NY, USA, 5–8.

BISLIMOVSKA, B., BOZZON, A., BRAMBILLA, M., AND FRATERNALI, P. 2011b. Graph-based search over web
application model repositories. In Proceedings of the 11th international conference on Web engineering.
ICWE’11. Springer-Verlag, Berlin, Heidelberg, 90–104.

BOZZON, A., BRAMBILLA, M., AND CERI, S. 2012. Answering search queries with crowdsearcher. In Pro-
ceedings of the 21st international conference on World Wide Web. WWW ’12. ACM, New York, NY, USA,
1009–1018.

BOZZON, A., BRAMBILLA, M., AND FRATERNALI, P. 2010. Searching Repositories of Web Application Mod-
els. International Conference on Web Engineering, 1–15.

BRAMBILLA, M., BONGIO, A., BUTTI, S., FRATERNALI, P., KLING, W., MOLTENI, E., AND SEIDEWITZ,
E. 2013. Interaction Flow Modeling Language (IFML). Standardization specification ptc/2013-03-08,
Object Management Group (OMG), http://www.omg.org/spec/IFML/. March.

BUNKE, H. 2000. Graph matching: Theoretical foundations, algorithms, and applications. In International
Conference on Vision Interface. 82–88.

CALÌ, A., GOTTLOB, G., ORSI, G., AND PIERIS, A. 2012. Querying uml class diagrams. In Proceedings of
the 15th International Conference on Foundations of Software Science and Computational Structures
(FOSSACS 2012). Lecture Notes in Computer Science Series, vol. 7213. Springer, Tallinn, Estonia, 1–
25.

CERI, S., FRATERNALI, P., AND BONGIO, A. 2000. Web Modeling Language (WebML): a modeling language
for designing Web sites. Computer Networks 33, 1, 137–157.

CERI, S., FRATERNALI, P., BONGIO, A., BRAMBILLA, M., COMAI, S., AND MATERA, M. 2003. Designing
data-intensive Web applications. Morgan Kaufmann Publisher.

CHATTERJEE, S., JUVEKAR, S., AND SEN, K. 2009. Sniff: A search engine for java using free-form queries. In
Proceedings of the 12th International Conference on Fundamental Approaches to Software Engineering:
Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2009. FASE
’09. Springer-Verlag, Berlin, Heidelberg, 385–400.

CONALLEN, J. 2000. Building Web applications with UML. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA.

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

http://www.emn.fr/z-info/atlanmod/index.php/Zoos
http://www.emn.fr/z-info/atlanmod/index.php/Zoos

A:46 B. Bislimovska et al.

COOK, S. A. 1971. The complexity of theorem-proving procedures. In Proceedings of the third annual ACM
symposium on Theory of computing. STOC ’71. ACM, New York, NY, USA, 151–158.

DIJKMAN, R., DUMAS, M., AND GARCÍA-BAÑUELOS, L. 2009. Graph matching algorithms for business
process model similarity search. In Proceedings of the 7th International Conference on Business Process
Management. BPM ’09. Springer-Verlag, Berlin, Heidelberg, 48–63.

DIJKMAN, R., DUMAS, M., VAN DONGEN, B., KÄÄRIK, R., AND MENDLING, J. 2011. Similarity of business
process models: Metrics and evaluation. Inf. Syst. 36, 2, 498–516.

DIJKSTRA, E. W. 1959. A note on two problems in connexion with graphs. Numerische Mathematik 1, 1,
269–271.

FERNÁNDEZ, M., CANTADOR, I., AND CASTELLS, P. 2006. CORE: A tool for collaborative ontology reuse and
evaluation. In Proceedings of the 4th Int. Workshop on Evaluation of Ontologies for the Web (EON’06),
at the 15th Int. World Wide Web Conference (WWW’06). Edinburgh, UK. Citeseer.

FRAKES, W. B. AND NEJMEH, B. A. 1987. Software reuse through information retrieval. SIGIR Forum 21, 1-
2, 30–36.

FRANCE, R., BIEMAN, J., AND CHENG, B. H. C. 2006. Repository for model driven development (remodd).
In Proceedings of the 2006 international conference on Models in software engineering. MoDELS’06.
Springer-Verlag, Berlin, Heidelberg, 311–317.

FRANCE, R., BIEMAN, J., MANDALAPARTY, S., CHENG, B., AND JENSEN, A. 2012. Repository for model
driven development (remodd). In Software Engineering (ICSE), 2012 34th International Conference on.
IEEE Press, 1471 –1472.

GOGUEN, J., NGUYEN, D., MESEGUER, J., ZHANG, D., AND BERZINS, V. 1996. Software component search.
Journal of Systems Integration 6, 1, 93–134.

GOMES, P., PEREIRA, F. C., PAIVA, P., SECO, N., CARREIRO, P., FERREIRA, J. L., AND BENTO1, C. 2004.
Using wordnet for case-based retrieval of uml models. AI Communications 17, 1, 13–23.

GÓMEZ, J., BIA, A., AND PÁRRAGA, A. 2007. Tool support for model-driven development of web applications.
IJITWE 2, 3, 65–78.

GÓMEZ, J. AND CACHERO, C. 2003. Information Modeling for Internet Applications. Idea Group Publishing,
Hershey, PA, USA, Chapter OO-H Method: Extending UML to Model Web Interfaces, 144–173.

GREGORY, L. AND KITTLER, J. 2002. Using graph search techniques for contextual colour retrieval. Struc-
tural, Syntactic, and Statistical Pattern Recognition, 193–213.

GRIGORI, D., CORRALES, J. C., BOUZEGHOUB, M., AND GATER, A. 2010. Ranking bpel processes for service
discovery. IEEE Transactions on Services Computing 3, 178–192.

HOLMES, R. AND MURPHY, G. C. 2005. Using structural context to recommend source code examples. In
ICSE ’05: Proceedings of the 27th international conference on Software engineering. ACM, New York,
NY, USA, 117–125.

HUTCHINSON, J., ROUNCEFIELD, M., AND WHITTLE, J. 2011. Model-driven engineering practices in indus-
try. In Proceedings of the 33rd International Conference on Software Engineering. ICSE ’11. ACM, New
York, NY, USA, 633–642.

HYLTON, J. 1996. Identifying and merging related bibliographic records. Ph.D. thesis, MASSACHUSETTS
INSTITUTE OF TECHNOLOGY.

JÄRVELIN, K. AND KEKÄLÄINEN, J. 2002. Cumulated gain-based evaluation of ir techniques. ACM Trans.
Inf. Syst. 20, 422–446.

JIN, T., WANG, J., AND WEN, L. 2011. Efficient retrieval of similar business process models based on struc-
ture. On the Move to Meaningful Internet Systems: OTM 2011, 56–63.

JOHO, H. 2011. Diane kelly: Methods for evaluating interactive information retrieval systems with users -
foundation and trends in information retrieval, vol 3, nos 1-2, pp 1-224, 2009, isbn: 978-1-60198-224-7.
Inf. Retr. 14, 2, 204–207.

KIEFER, C., BERNSTEIN, A., LEE, H. J., KLEIN, M., AND STOCKER, M. 2007. Semantic process retrieval
with iSPARQL. In ESWC. 609–623.

KLEPPE, A. G., WARMER, J., AND BAST, W. 2003. MDA Explained: The Model Driven Architecture: Practice
and Promise. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

KLING, W., JOUAULT, F., WAGELAAR, D., BRAMBILLA, M., AND CABOT, J. 2011. Moscript: A dsl for querying
and manipulating model repositories. In SLE, A. M. Sloane and U. Aßmann, Eds. Lecture Notes in
Computer Science Series, vol. 6940. Springer, 180–200.

KRAUS, A., KNAPP, A., AND KOCH, N. 2007. Model-driven generation of web applications in uwe. In MDWE
(2008-05-30), N. Koch, A. Vallecillo, and G.-J. Houben, Eds. CEUR Workshop Proceedings Series, vol.
261. CEUR-WS.org.

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

Textual and Content-Based Search in Repositories of Web Application Models A:47

KUNZE, M. AND WESKE, M. 2010. Metric trees for efficient similarity search in large process model repos-
itories. In Business Process Management Workshops, M. zur Muehlen and J. Su, Eds. Lecture Notes in
Business Information Processing Series, vol. 66. Springer, 535–546.

LEVENHSTEIN, V. 1966. Binary codes capable of correcting deletions, insertions, and reversals. In Soviet
Physics-Doklady. Vol. 10.

LIU, H., LIU, G., WANG, Y., AND LIU, D. 2012. A novel behavioral similarity measure for artifact-oriented
business processes. Technology for Education and Learning, 81–88.

LUCRÉDIO, D., DE M. FORTES, R., AND WHITTLE, J. 2010. MOOGLE: A model search engine. Model Driven
Engineering Languages and Systems, 296–310.

MANNING, C. D., RAGHAVAN, P., AND SCHÜTZE, H. 2008. Introduction to Information Retrieval. Cambridge
University Press.

MARKOVIC, I., PEREIRA, A., AND STOJANOVIC, N. 2008. A framework for querying in business process
modelling. In Proceedings of the Multikonferenz Wirtschaftsinformatik (MKWI), Munchen, Germany.

MCMILLAN, C., GRECHANIK, M., POSHYVANYK, D., FU, C., AND XIE, Q. 2012. Exemplar: A source code
search engine for finding highly relevant applications. Software Engineering, IEEE Transactions on. To
appear.

MCMILLAN, C., GRECHANIK, M., POSHYVANYK, D., XIE, Q., AND FU, C. 2011. Portfolio: finding relevant
functions and their usage. In Proceedings of the 33rd International Conference on Software Engineering.
ICSE ’11. ACM, New York, NY, USA, 111–120.

MENDIX. Last accessed August 2012. The Mendix App Store. https://appstore.mendix.com.

MENDLING, J., VAN DONGEN, B. F., AND VAN DER AALST, W. M. P. 2007. On the degree of behavioral
similarity between business process models. In EPK. 39–58.

MESSMER, B. 1996. Efficient graph matching algorithms for preprocessed model graphs. Ph.D. thesis, Uni-
versity of Bern, Switzerland.

MIT. Last accessed August 2012. MIT process handbook. http://ccs.mit.edu/ph/.

MOHAGHEGHI, P. AND DEHLEN, V. 2008. Where is the proof? - a review of experiences from applying mde
in industry. In Proceedings of the 4th European conference on Model Driven Architecture: Foundations
and Applications. ECMDA-FA ’08. Springer-Verlag, Berlin, Heidelberg, 432–443.

NIEMANN, M., SIEBENHAAR, M., SCHULTE, S., AND STEINMETZ, R. 2012. Comparison and retrieval of
process models using related cluster pairs. Computers in Industry.

OMG. 2011. Interaction Flow Modeling Language (IFML) Request For Proposal. http://www.omg.org/cgi-
bin/doc?ad/11-12-06.

OUTSYSTEMS INC. Last accessed August 2012. The Agilenetwork Component Store.
https://www.outsystems.com/NetworkSolutions/Home.aspx.

PLATZER, C. AND DUSTDAR, S. 2005. A vector space search engine forweb services. In ECOWS ’05: Pro-
ceedings of the Third European Conference on Web Services. Web Services, 2005. ECOWS 2005. Third
IEEE European Conference on, 62+.

QIAO, M., AKKIRAJU, R., AND REMBERT, A. 2011. Towards efficient business process clustering and re-
trieval: combining language modeling and structure matching. Business Process Management, 199–214.

REMODD TEAM. Last accessed August 2012. ReMoDD The Repository for Model-Driven Development.
http://www.cs.colostate.edu/remodd/v1/.

ROSSI, G. AND SCHWABE, D. 2008. Modeling and implementing web applications with OOHDM. In Web
Engineering: Modelling and Implementing Web Applications, G. Rossi, O. Pastor, D. Schwabe, and
L. Olsina, Eds. Human-Computer Interaction Series. Springer, London, Chapter 6, 109–155.

SANFELIU, A. AND KING-SUN, F. 1983. A distance measure between attributed relational graphs for pattern
recognition. IEEE transactions on systems, man, and cybernetics 13, 3, 353–362.

SEACORD, R. C., HISSAM, S. A., AND WALLNAU, K. C. 1998. Agora: A search engine for software compo-
nents. IEEE Internet Computing 2, 6, 62–70.

SHAO, Q., SUN, P., AND CHEN, Y. 2009. Wise: A workflow information search engine. In Proceedings of the
2009 IEEE International Conference on Data Engineering. ICDE ’09. IEEE Computer Society, Washing-
ton, DC, USA, 1491–1494.

SHAPIRO, L. AND HARALICK, R. 1981. Structural descriptions and inexact matching. Pattern Analysis and
Machine Intelligence, IEEE Transactions on 5, 504–519.

STREET, A. P. AND STREET, D. J. 1987. Combinatorics of Experimental Design. Oxford University Press.

SYEDA-MAHMOOD, T., SHAH, G., AKKIRAJU, R., IVAN, A.-A., AND GOODWIN, R. 2005. Searching service
repositories by combining semantic and ontological matching. In Proceedings of the IEEE International
Conference on Web Services. ICWS ’05. IEEE Computer Society, Washington, DC, USA, 13–20.

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

http://www.cs.colostate.edu/remodd/v1/

A:48 B. Bislimovska et al.

WEBRATIO S.R.L. Last accessed August 2012. The WebRatio Store. http://store.webratio.com.

YESSOFTWARE, INC. Last accessed August 2012. CodeCharge Marketplace.
http://www.codecharge.com/marketplace.

ZHUGE, H. 2002. A process matching approach for flexible workflow process reuse. Information & Software
Technology 44, 8, 445–450.

Received August 2012; revised February 2013; accepted September 2013

ACM Transactions on the Web, Vol. V, No. N, Article A, Publication date: January YYYY.

	Introduction
	Motivating Example
	Goals and Contributions
	Outline

	Fundamentals of Search for Model Repositories
	Information Retrieval Techniques for Model Search
	Content and Query Processing
	Indexing
	Search

	Searching Repositories of Web Application Models
	The Web Modeling Language
	Keyword-Based Model Search
	Illustrative example
	Content Processing
	Indexing
	Query Processing
	Search

	Content-Based Model Search
	Illustrative example
	Content and Query Processing
	Search

	Experimental Evaluation
	Experimental setting and dataset
	Test bed
	Gold Standard Creation
	Experimental scenario

	Evaluation Metrics
	Quantitative Evaluation
	Keyword-based search
	Content-based search
	Content-based search with locality constraints
	Query Execution Time

	User Study
	User Study 1: single system evaluation
	User Study 2: system to system comparison
	Analysis of Results

	Discussion
	Relevance of Metamodel information
	Keyword- Vs. Content-Based Search
	Search system design guidelines
	Project design guidelines

	Threats to Validity

	Related Work
	Conclusions

