111,392 research outputs found

    MORPH: A Reference Architecture for Configuration and Behaviour Self-Adaptation

    Full text link
    An architectural approach to self-adaptive systems involves runtime change of system configuration (i.e., the system's components, their bindings and operational parameters) and behaviour update (i.e., component orchestration). Thus, dynamic reconfiguration and discrete event control theory are at the heart of architectural adaptation. Although controlling configuration and behaviour at runtime has been discussed and applied to architectural adaptation, architectures for self-adaptive systems often compound these two aspects reducing the potential for adaptability. In this paper we propose a reference architecture that allows for coordinated yet transparent and independent adaptation of system configuration and behaviour

    Planning as Optimization: Dynamically Discovering Optimal Configurations for Runtime Situations

    Full text link
    The large number of possible configurations of modern software-based systems, combined with the large number of possible environmental situations of such systems, prohibits enumerating all adaptation options at design time and necessitates planning at run time to dynamically identify an appropriate configuration for a situation. While numerous planning techniques exist, they typically assume a detailed state-based model of the system and that the situations that warrant adaptations are known. Both of these assumptions can be violated in complex, real-world systems. As a result, adaptation planning must rely on simple models that capture what can be changed (input parameters) and observed in the system and environment (output and context parameters). We therefore propose planning as optimization: the use of optimization strategies to discover optimal system configurations at runtime for each distinct situation that is also dynamically identified at runtime. We apply our approach to CrowdNav, an open-source traffic routing system with the characteristics of a real-world system. We identify situations via clustering and conduct an empirical study that compares Bayesian optimization and two types of evolutionary optimization (NSGA-II and novelty search) in CrowdNav

    Embodied Artificial Intelligence through Distributed Adaptive Control: An Integrated Framework

    Full text link
    In this paper, we argue that the future of Artificial Intelligence research resides in two keywords: integration and embodiment. We support this claim by analyzing the recent advances of the field. Regarding integration, we note that the most impactful recent contributions have been made possible through the integration of recent Machine Learning methods (based in particular on Deep Learning and Recurrent Neural Networks) with more traditional ones (e.g. Monte-Carlo tree search, goal babbling exploration or addressable memory systems). Regarding embodiment, we note that the traditional benchmark tasks (e.g. visual classification or board games) are becoming obsolete as state-of-the-art learning algorithms approach or even surpass human performance in most of them, having recently encouraged the development of first-person 3D game platforms embedding realistic physics. Building upon this analysis, we first propose an embodied cognitive architecture integrating heterogenous sub-fields of Artificial Intelligence into a unified framework. We demonstrate the utility of our approach by showing how major contributions of the field can be expressed within the proposed framework. We then claim that benchmarking environments need to reproduce ecologically-valid conditions for bootstrapping the acquisition of increasingly complex cognitive skills through the concept of a cognitive arms race between embodied agents.Comment: Updated version of the paper accepted to the ICDL-Epirob 2017 conference (Lisbon, Portugal

    mRUBiS: An Exemplar for Model-Based Architectural Self-Healing and Self-Optimization

    Full text link
    Self-adaptive software systems are often structured into an adaptation engine that manages an adaptable software by operating on a runtime model that represents the architecture of the software (model-based architectural self-adaptation). Despite the popularity of such approaches, existing exemplars provide application programming interfaces but no runtime model to develop adaptation engines. Consequently, there does not exist any exemplar that supports developing, evaluating, and comparing model-based self-adaptation off the shelf. Therefore, we present mRUBiS, an extensible exemplar for model-based architectural self-healing and self-optimization. mRUBiS simulates the adaptable software and therefore provides and maintains an architectural runtime model of the software, which can be directly used by adaptation engines to realize and perform self-adaptation. Particularly, mRUBiS supports injecting issues into the model, which should be handled by self-adaptation, and validating the model to assess the self-adaptation. Finally, mRUBiS allows developers to explore variants of adaptation engines (e.g., event-driven self-adaptation) and to evaluate the effectiveness, efficiency, and scalability of the engines

    Towards adaptive multi-robot systems: self-organization and self-adaptation

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.The development of complex systems ensembles that operate in uncertain environments is a major challenge. The reason for this is that system designers are not able to fully specify the system during specification and development and before it is being deployed. Natural swarm systems enjoy similar characteristics, yet, being self-adaptive and being able to self-organize, these systems show beneficial emergent behaviour. Similar concepts can be extremely helpful for artificial systems, especially when it comes to multi-robot scenarios, which require such solution in order to be applicable to highly uncertain real world application. In this article, we present a comprehensive overview over state-of-the-art solutions in emergent systems, self-organization, self-adaptation, and robotics. We discuss these approaches in the light of a framework for multi-robot systems and identify similarities, differences missing links and open gaps that have to be addressed in order to make this framework possible

    Supporting adaptiveness of cyber-physical processes through action-based formalisms

    Get PDF
    Cyber Physical Processes (CPPs) refer to a new generation of business processes enacted in many application environments (e.g., emergency management, smart manufacturing, etc.), in which the presence of Internet-of-Things devices and embedded ICT systems (e.g., smartphones, sensors, actuators) strongly influences the coordination of the real-world entities (e.g., humans, robots, etc.) inhabitating such environments. A Process Management System (PMS) employed for executing CPPs is required to automatically adapt its running processes to anomalous situations and exogenous events by minimising any human intervention. In this paper, we tackle this issue by introducing an approach and an adaptive Cognitive PMS, called SmartPM, which combines process execution monitoring, unanticipated exception detection and automated resolution strategies leveraging on three well-established action-based formalisms developed for reasoning about actions in Artificial Intelligence (AI), including the situation calculus, IndiGolog and automated planning. Interestingly, the use of SmartPM does not require any expertise of the internal working of the AI tools involved in the system

    A survey of QoS-aware web service composition techniques

    Get PDF
    Web service composition can be briefly described as the process of aggregating services with disparate functionalities into a new composite service in order to meet increasingly complex needs of users. Service composition process has been accurate on dealing with services having disparate functionalities, however, over the years the number of web services in particular that exhibit similar functionalities and varying Quality of Service (QoS) has significantly increased. As such, the problem becomes how to select appropriate web services such that the QoS of the resulting composite service is maximized or, in some cases, minimized. This constitutes an NP-hard problem as it is complicated and difficult to solve. In this paper, a discussion of concepts of web service composition and a holistic review of current service composition techniques proposed in literature is presented. Our review spans several publications in the field that can serve as a road map for future research

    A State of the Art of Governance Literature on adaptation to climate change. Towards a research agenda

    Get PDF
    This report provides a state-of-the-art overview of governance literature on adaptation strategies. What has recent research taught us on adaptation from the perspective of governance and to what research agenda does this lead? This report is structured as followed. Firstly, it will be argued why adaptation is a matter of governance. Secondly, the research methods for the literature study will be outlined. Thirdly, the results of the literature study will portray the findings in terms of the themes and foci with, respectively, environmental studies, spatial planning and development studies, and public administration studies. Finally, a comparative analysis of these findings will lead to a research agenda for future research on governance of adaptatio
    • …
    corecore