20,414 research outputs found

    Search Trajectory Networks of Population-based Algorithms in Continuous Spaces

    Get PDF
    We introduce search trajectory networks (STNs) as a tool to analyse and visualise the behaviour of population-based algorithms in continuous spaces. Inspired by local optima networks (LONs) that model the global structure of search spaces, STNs model the search tra-jectories of algorithms. Unlike LONs, the nodes of the network are not restricted to local optima but instead represent a given state of the search process. Edges represent search progression between consecutive states. This extends the power and applicability of network-based models to understand heuristic search algorithms. We extract and analyse STNs for two well-known population-based algorithms: particle swarm optimi-sation and differential evolution when applied to benchmark continuous optimisation problems. We also offer a comparative visual analysis of the search dynamics in terms of merged search trajectory networks

    Using Centroidal Voronoi Tessellations to Scale Up the Multi-dimensional Archive of Phenotypic Elites Algorithm

    Get PDF
    The recently introduced Multi-dimensional Archive of Phenotypic Elites (MAP-Elites) is an evolutionary algorithm capable of producing a large archive of diverse, high-performing solutions in a single run. It works by discretizing a continuous feature space into unique regions according to the desired discretization per dimension. While simple, this algorithm has a main drawback: it cannot scale to high-dimensional feature spaces since the number of regions increase exponentially with the number of dimensions. In this paper, we address this limitation by introducing a simple extension of MAP-Elites that has a constant, pre-defined number of regions irrespective of the dimensionality of the feature space. Our main insight is that methods from computational geometry could partition a high-dimensional space into well-spread geometric regions. In particular, our algorithm uses a centroidal Voronoi tessellation (CVT) to divide the feature space into a desired number of regions; it then places every generated individual in its closest region, replacing a less fit one if the region is already occupied. We demonstrate the effectiveness of the new "CVT-MAP-Elites" algorithm in high-dimensional feature spaces through comparisons against MAP-Elites in maze navigation and hexapod locomotion tasks

    A Global Optimisation Toolbox for Massively Parallel Engineering Optimisation

    Full text link
    A software platform for global optimisation, called PaGMO, has been developed within the Advanced Concepts Team (ACT) at the European Space Agency, and was recently released as an open-source project. PaGMO is built to tackle high-dimensional global optimisation problems, and it has been successfully used to find solutions to real-life engineering problems among which the preliminary design of interplanetary spacecraft trajectories - both chemical (including multiple flybys and deep-space maneuvers) and low-thrust (limited, at the moment, to single phase trajectories), the inverse design of nano-structured radiators and the design of non-reactive controllers for planetary rovers. Featuring an arsenal of global and local optimisation algorithms (including genetic algorithms, differential evolution, simulated annealing, particle swarm optimisation, compass search, improved harmony search, and various interfaces to libraries for local optimisation such as SNOPT, IPOPT, GSL and NLopt), PaGMO is at its core a C++ library which employs an object-oriented architecture providing a clean and easily-extensible optimisation framework. Adoption of multi-threaded programming ensures the efficient exploitation of modern multi-core architectures and allows for a straightforward implementation of the island model paradigm, in which multiple populations of candidate solutions asynchronously exchange information in order to speed-up and improve the optimisation process. In addition to the C++ interface, PaGMO's capabilities are exposed to the high-level language Python, so that it is possible to easily use PaGMO in an interactive session and take advantage of the numerous scientific Python libraries available.Comment: To be presented at 'ICATT 2010: International Conference on Astrodynamics Tools and Techniques

    Global parameter identification of stochastic reaction networks from single trajectories

    Full text link
    We consider the problem of inferring the unknown parameters of a stochastic biochemical network model from a single measured time-course of the concentration of some of the involved species. Such measurements are available, e.g., from live-cell fluorescence microscopy in image-based systems biology. In addition, fluctuation time-courses from, e.g., fluorescence correlation spectroscopy provide additional information about the system dynamics that can be used to more robustly infer parameters than when considering only mean concentrations. Estimating model parameters from a single experimental trajectory enables single-cell measurements and quantification of cell--cell variability. We propose a novel combination of an adaptive Monte Carlo sampler, called Gaussian Adaptation, and efficient exact stochastic simulation algorithms that allows parameter identification from single stochastic trajectories. We benchmark the proposed method on a linear and a non-linear reaction network at steady state and during transient phases. In addition, we demonstrate that the present method also provides an ellipsoidal volume estimate of the viable part of parameter space and is able to estimate the physical volume of the compartment in which the observed reactions take place.Comment: Article in print as a book chapter in Springer's "Advances in Systems Biology
    corecore