781 research outputs found

    Fog-supported delay-constrained energy-saving live migration of VMs over multiPath TCP/IP 5G connections

    Get PDF
    The incoming era of the fifth-generation fog computing-supported radio access networks (shortly, 5G FOGRANs) aims at exploiting computing/networking resource virtualization, in order to augment the limited resources of wireless devices through the seamless live migration of virtual machines (VMs) toward nearby fog data centers. For this purpose, the bandwidths of the multiple wireless network interface cards of the wireless devices may be aggregated under the control of the emerging MultiPathTCP (MPTCP) protocol. However, due to the fading and mobility-induced phenomena, the energy consumptions of the current state-of-the-art VM migration techniques may still offset their expected benefits. Motivated by these considerations, in this paper, we analytically characterize and implement in software and numerically test the optimal minimum-energy settable-complexity bandwidth manager (SCBM) for the live migration of VMs over 5G FOGRAN MPTCP connections. The key features of the proposed SCBM are that: 1) its implementation complexity is settable on-line on the basis of the target energy consumption versus implementation complexity tradeoff; 2) it minimizes the network energy consumed by the wireless device for sustaining the migration process under hard constraints on the tolerated migration times and downtimes; and 3) by leveraging a suitably designed adaptive mechanism, it is capable to quickly react to (possibly, unpredicted) fading and/or mobility-induced abrupt changes of the wireless environment without requiring forecasting. The actual effectiveness of the proposed SCBM is supported by extensive energy versus delay performance comparisons that cover: 1) a number of heterogeneous 3G/4G/WiFi FOGRAN scenarios; 2) synthetic and real-world workloads; and, 3) MPTCP and wireless connections

    A Survey on Handover Management in Mobility Architectures

    Full text link
    This work presents a comprehensive and structured taxonomy of available techniques for managing the handover process in mobility architectures. Representative works from the existing literature have been divided into appropriate categories, based on their ability to support horizontal handovers, vertical handovers and multihoming. We describe approaches designed to work on the current Internet (i.e. IPv4-based networks), as well as those that have been devised for the "future" Internet (e.g. IPv6-based networks and extensions). Quantitative measures and qualitative indicators are also presented and used to evaluate and compare the examined approaches. This critical review provides some valuable guidelines and suggestions for designing and developing mobility architectures, including some practical expedients (e.g. those required in the current Internet environment), aimed to cope with the presence of NAT/firewalls and to provide support to legacy systems and several communication protocols working at the application layer

    Client-based and Cross-layer Optimized Flow Mobility for Android Devices in Heterogeneous Femtocell/Wi-Fi Networks*

    Get PDF
    AbstractThe number of subscribers accessing Internet resources from mobile and wireless devices has been increasing continually since i-mode, the first mobile Internet service launched in 1999. The handling and support of dramatic growth of mobile data traffic create serious challenges for the network operators. Due to the spreading of WLAN networks and the proliferation of multi-access devices, offloading from 3G to Wi-Fi seems to be a promising step towards the solution. To solve the bandwidth limitation and coverage issues in 3G/4G environments, femtocells became key players. These facts motivate the design and development of femtocell/Wi-Fi offloading schemes. Aiming to support advanced offloading in heterogeneous networks, in this paper we propose a client-based, cross-layer optimized flow mobility architecture for Android devices in femtocell/Wi-Fi access environments. The paper presents the design, implementation and evaluation details of the aforementioned mechanisms

    On the design of a native Zero-touch 6G architecture

    Get PDF
    The complexity of envisioned 6G telecommunication networks requires an intrinsically intelligent architecture designed to autonomously adapt to dynamics with end-to-end zero-touch service automation operations. Motivated by this vision, this paper tries to formulate concepts and solution aspects towards designing a native Zero-touch 6G architecture. Our discussion concentrates around three main pillars, i.e. (i) introducing Machine Learning (ML) models in the core design of the 6G architecture as native functions rather than add-on model solutions; (ii) distributing 6G functionality to different components up to the extreme edge; to (iii) leverage technology leaps enabling, e.g., the use of multi-access technologies and peer-topeer communications besides the standard cellular connectivity and other centralised functionalit

    Experimental analysis of connectivity management in mobile operating systems

    Get PDF
    We are immerse in a world that becomes more and more mobile every day, with ubiquitous connectivity and increasing demand for mobile services. Current mobile terminals support several access technologies, enabling users to gain connectivity in a plethora of scenarios and favoring their mobility. However, the management of network connectivity using multiple interfaces is still starting to be deployed. The lack of smart connectivity management in multi interface devices forces applications to be explicitly aware of the variations in the connectivity state (changes in active interface, simultaneous access from several interfaces, etc.). In this paper, we analyze the present state of the connection management and handover capabilities in the three major mobile operating systems (OSes): Android, iOS and Windows. To this aim, we conduct a thorough experimental study on the connectivity management of each operating system, including several versions of the OS on different mobile terminals, analyzing the differences and similarities between them. Moreover, in order to assess how mobility is handled and how this can affect the final user, we perform an exhaustive experimental analysis on application behavior in intra- and inter-technology handover. Based on this experience, we identify open issues in the smartphone connectivity management policies and implementations, highlighting easy to deploy yet unimplemented improvements, as well as potential integration of mobility protocols.This work has been partially supported by the European Community through the CROWD project, FP7-ICT-318115.Publicad
    • …
    corecore