49 research outputs found

    Survey of Consistent Network Updates

    Get PDF
    Computer networks have become a critical infrastructure. Designing dependable computer networks however is challenging, as such networks should not only meet strict requirements in terms of correctness, availability, and performance, but they should also be flexible enough to support fast updates, e.g., due to a change in the security policy, an increasing traffic demand, or a failure. The advent of Software-Defined Networks (SDNs) promises to provide such flexiblities, allowing to update networks in a fine-grained manner, also enabling a more online traffic engineering. In this paper, we present a structured survey of mechanisms and protocols to update computer networks in a fast and consistent manner. In particular, we identify and discuss the different desirable update consistency properties a network should provide, the algorithmic techniques which are needed to meet these consistency properties, their implications on the speed and costs at which updates can be performed. We also discuss the relationship of consistent network update problems to classic algorithmic optimization problems. While our survey is mainly motivated by the advent of Software-Defined Networks (SDNs), the fundamental underlying problems are not new, and we also provide a historical perspective of the subject

    Safe Update of Hybrid SDN Networks

    Get PDF
    The support for safe network updates, i.e., live modification of device behavior without service disruption, is a critical primitive for current and future networks. Several techniques have been proposed by previous works to implement such a primitive. Unfortunately, existing techniques are not generally applicable to any network architecture, and typically require high overhead (e.g., additional memory) to guarantee strong consistency (i.e., traversal of either initial or final paths, but never a mix of them) during the update. In this paper, we deeply study the problem of computing operational sequences to safely and quickly update arbitrary networks. We characterize cases, for which this computation is easy, and revisit previous algorithmic contributions in the new light of our theoretical findings. We also propose and thoroughly evaluate a generic sequence-computation approach, based on two new algorithms that we combine to overcome limitations of prior proposals. Our approach always finds an operational sequence that provably guarantees strong consistency throughout the update, with very limited overhead. Moreover, it can be applied to update networks running any combination of centralized and distributed control-planes, including different families of IGPs, OpenFlow or other SDN protocols, and hybrid SDN networks. Our approach therefore supports a large set of use cases, ranging from traffic engineering in IGP-only or SDN-only networks to incremental SDN roll-out and advanced requirements (e.g., per-flow path selection or dynamic network function virtualization) in partial SDN deployments

    Efficient Synthesis of Network Updates

    Full text link
    Software-defined networking (SDN) is revolutionizing the networking industry, but current SDN programming platforms do not provide automated mechanisms for updating global configurations on the fly. Implementing updates by hand is challenging for SDN programmers because networks are distributed systems with hundreds or thousands of interacting nodes. Even if initial and final configurations are correct, naively updating individual nodes can lead to incorrect transient behaviors, including loops, black holes, and access control violations. This paper presents an approach for automatically synthesizing updates that are guaranteed to preserve specified properties. We formalize network updates as a distributed programming problem and develop a synthesis algorithm based on counterexample-guided search and incremental model checking. We describe a prototype implementation, and present results from experiments on real-world topologies and properties demonstrating that our tool scales to updates involving over one-thousand nodes

    A survey of trends and motivations regarding Communication Service Providers' metro area network implementations

    Full text link
    Relevance of research on telecommunications networks is predicated upon the implementations which it explicitly claims or implicitly subsumes. This paper supports researchers through a survey of Communications Service Providers current implementations within the metro area, and trends that are expected to shape the next-generation metro area network. The survey is composed of a quantitative component, complemented by a qualitative component carried out among field experts. Among the several findings, it has been found that service providers with large subscriber base sizes, are less agile in their response to technological change than those with smaller subscriber base sizes: thus, copper media are still an important component in the set of access network technologies. On the other hand, service providers with large subscriber base sizes are strongly committed to deploying distributed access architectures, notably using remote access nodes like remote OLT and remote MAC-PHY. This study also shows that the extent of remote node deployment for multi-access edge computing is about the same as remote node deployment for distributed access architectures, indicating that these two aspects of metro area networks are likely to be co-deployed.Comment: 84 page

    Hybrid SDN Evolution: A Comprehensive Survey of the State-of-the-Art

    Full text link
    Software-Defined Networking (SDN) is an evolutionary networking paradigm which has been adopted by large network and cloud providers, among which are Tech Giants. However, embracing a new and futuristic paradigm as an alternative to well-established and mature legacy networking paradigm requires a lot of time along with considerable financial resources and technical expertise. Consequently, many enterprises can not afford it. A compromise solution then is a hybrid networking environment (a.k.a. Hybrid SDN (hSDN)) in which SDN functionalities are leveraged while existing traditional network infrastructures are acknowledged. Recently, hSDN has been seen as a viable networking solution for a diverse range of businesses and organizations. Accordingly, the body of literature on hSDN research has improved remarkably. On this account, we present this paper as a comprehensive state-of-the-art survey which expands upon hSDN from many different perspectives

    Timed Consistent Network Updates

    Full text link
    Network updates such as policy and routing changes occur frequently in Software Defined Networks (SDN). Updates should be performed consistently, preventing temporary disruptions, and should require as little overhead as possible. Scalability is increasingly becoming an essential requirement in SDN. In this paper we propose to use time-triggered network updates to achieve consistent updates. Our proposed solution requires lower overhead than existing update approaches, without compromising the consistency during the update. We demonstrate that accurate time enables far more scalable consistent updates in SDN than previously available. In addition, it provides the SDN programmer with fine-grained control over the tradeoff between consistency and scalability.Comment: This technical report is an extended version of the paper "Timed Consistent Network Updates", which was accepted to the ACM SIGCOMM Symposium on SDN Research (SOSR) '15, Santa Clara, CA, US, June 201

    Time4: Time for SDN

    Full text link
    With the rise of Software Defined Networks (SDN), there is growing interest in dynamic and centralized traffic engineering, where decisions about forwarding paths are taken dynamically from a network-wide perspective. Frequent path reconfiguration can significantly improve the network performance, but should be handled with care, so as to minimize disruptions that may occur during network updates. In this paper we introduce Time4, an approach that uses accurate time to coordinate network updates. Time4 is a powerful tool in softwarized environments, that can be used for various network update scenarios. Specifically, we characterize a set of update scenarios called flow swaps, for which Time4 is the optimal update approach, yielding less packet loss than existing update approaches. We define the lossless flow allocation problem, and formally show that in environments with frequent path allocation, scenarios that require simultaneous changes at multiple network devices are inevitable. We present the design, implementation, and evaluation of a Time4-enabled OpenFlow prototype. The prototype is publicly available as open source. Our work includes an extension to the OpenFlow protocol that has been adopted by the Open Networking Foundation (ONF), and is now included in OpenFlow 1.5. Our experimental results show the significant advantages of Time4 compared to other network update approaches, and demonstrate an SDN use case that is infeasible without Time4.Comment: This report is an extended version of "Software Defined Networks: It's About Time", which was accepted to IEEE INFOCOM 2016. A preliminary version of this report was published in arXiv in May, 201

    Inter-flow consistency: novel SDN update abstraction for supporting inter-flow constraints

    Get PDF
    Software Defined Networks (SDN) are opening a new era in the world of networking by decoupling the data plane and control plane. With the centralized control plane, updating the networks become much more convenient to the network operators. However, due to the distributed nature of the data plane, people fail to avoid transitional states of SDN during network updates. The transitional states may be a combination of the old and the new network configurations, which may lead to incorrectness in forwarding behaviors and security vulnerabilities. This thesis complements the large body of consistent update mechanisms of SDN by proposing a novel network update abstraction, inter-flow consistency, which can guarantee certain relationships and constraints among different flows during network updates. To the best of our knowledge, we are the first to study the update consistency abstraction among different flows. We propose an update scheduling algorithm based on dependency graphs, a data structure revealing dependency among different update operations and network elements, in order to guarantee two basic inter-flow consistency, spatial isolation and version isolation. Also, we implement a prototype system with a Mininet OpenFlow network and Ryu SDN controller to evaluate the performance of our approach
    corecore