
c© 2015 Weijie Liu

INTER-FLOW CONSISTENCY: NOVEL SDN UPDATE ABSTRACTION
FOR SUPPORTING INTER-FLOW CONSTRAINTS

BY

WEIJIE LIU

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2015

Urbana, Illinois

Advisers:

Professor Roy H. Campbell
Assistant Professor Rakesh Bobba

ABSTRACT

Software Defined Networks (SDN) are opening a new era in the world of net-

working by decoupling the data plane and control plane. With the centralized

control plane, updating the networks become much more convenient to the

network operators. However, due to the distributed nature of the data plane,

people fail to avoid transitional states of SDN during network updates. The

transitional states may be a combination of the old and the new network

configurations, which may lead to incorrectness in forwarding behaviors and

security vulnerabilities.

This thesis complements the large body of consistent update mechanisms

of SDN by proposing a novel network update abstraction, inter-flow consis-

tency, which can guarantee certain relationships and constraints among dif-

ferent flows during network updates. To the best of our knowledge, we are

the first to study the update consistency abstraction among different flows.

We propose an update scheduling algorithm based on dependency graphs, a

data structure revealing dependency among different update operations and

network elements, in order to guarantee two basic inter-flow consistency, spa-

tial isolation and version isolation. Also, we implement a prototype system

with a Mininet OpenFlow network and Ryu SDN controller to evaluate the

performance of our approach.

ii

To my parents and sister, for their love and support.

iii

ACKNOWLEDGMENTS

This thesis would not be possible without the support and help of many people.

First of all, I would like to thank my advisor, Roy H. Campbell, for his

support, patience and trust. He offered me with research assistantship during

the two years of my master program. He is the most friendly professor I

have met in UIUC and always ready to help with my problems. He gave my

lots of insight suggestions about how to find my research topic, improve my

algorithms and analyze the experiment results.

Second, I would like to thank co-advisor Rakesh Bobba and Sibin Mohan.

We work in the same research team for my thesis project. I can always get

variable advice from them when I got stuck in the project. We met nearly

every week and they contributed a lot in finding the research topic, designing

the approach and conducting the experiments.

Last but not least, I would like to thank my lab mates, Smruti Padhy, Devin

Akman, Shane Rogers and Faraz Faghri. They helped me set up the environ-

ment for my system development and experiments. Also, I want to Wenxuan

Zhou, who is a phd candidate in UIUC. She gave my a lot of suggestions on

how to design and conduct the experiments.

iv

TABLE OF CONTENTS

LIST OF TABLES . vi

LIST OF FIGURES . vii

CHAPTER 1 INTRODUCTION . 1
1.1 Network Update . 1
1.2 Software Defined Networking 2
1.3 SDN Update Consistency . 3
1.4 Inter-flow Consistency . 4

CHAPTER 2 INTER-FLOW CONSISTENCY PROBLEM 6
2.1 Spatial Isolation . 6
2.2 Version Isolation . 7

CHAPTER 3 SYSTEM MODEL AND APPROACH 10
3.1 Dependency Graph . 10
3.2 Approaches for Inter-flow Consistency 11
3.3 Dependency Graph Construction Algorithm 16
3.4 Scheduling Algorithm . 18

CHAPTER 4 SYSTEM IMPLEMENTATION 22

CHAPTER 5 EVALUATION . 25
5.1 Experiment Setup . 25
5.2 Experiment Results . 26

CHAPTER 6 RELATED WORK . 35
6.1 Update Consistency of Traditional Networks 35
6.2 Update Consistency Theory of SDN 35
6.3 Update Consistency of Software Defined DCN and WAN . . . 37

CHAPTER 7 CONCLUSION . 39

REFERENCES . 40

v

LIST OF TABLES

3.1 Update Operations for Figure 2.1 12
3.2 Update Operations for Figure 2.2 13

vi

LIST OF FIGURES

2.1 An example for spatial relationship of flows 7
2.2 An example for temporal relationship of flows 8

3.1 Dependency Graph from Figure 2.1 11
3.2 Dependency Graph from Figure 2.2 14

4.1 System Architecture . 24

5.1 Cumulative Distribution of Per Flow Update Time with Dif-
ferent Update Percentages . 28

5.2 Average Update Time (standard error) with Different Up-
date Percentages . 29

5.3 Average Number of Rules Installed (standard error) with
Different Update Percentages 29

5.4 Cumulative Distribution of Per Flow Update Time with Dif-
ferent Update Percentages and Straggling Switches 30

5.5 Average Update Time (standard error) with Different Up-
date Percentages and Straggling Switches 31

5.6 Number of Flows of Class II with Heuristic Algorithm and
All-2-Controller Method . 31

5.7 Experimental Results with Different Values of VI Set Size
and VI Percentage . 32

5.8 Cumulative Distribution of Per Flow Update Time with Dif-
ferent Update Percentages and Spatial Isolation 33

5.9 Average Update Time (standard error) with Different Up-
date Percentages and Spatial Isolation 34

5.10 Number of Update Operations and Spatial Isolation Pairs . . . 34

vii

CHAPTER 1

INTRODUCTION

1.1 Network Update

Networking is the most significant technological foundation for the Internet,

mobile computing, and cloud computing. Networks are dynamic. Network

infrastructure and data flows are evolving constantly. Network operators need

to reconfigure their networks frequently to support dynamic access control,

traffic engineering, security updates, and infrastructure maintenance and up-

dates among other things. All of these updates need to be carefully planned

and performed in order to minimize the transitional network state which might

cause disruptions, e.g., broken links, incorrect access control, traffic congestion

and packet loops.

The problems of reconfiguring networks is well documented. For example,

according to a statistics from a major VPN service provider in [1], 80% of

Provider Edge routers’ (PE) “failures” are caused by planned network update

for maintenance. In a commercial Internet network, 58% of router failures

happen in the maintenance window from 10 pm to 6 am and most of these

failures are due to network updates for maintenance. According to [2], network

operators often need to perform large-scale Interior Gateway Protocols (IGPs)

reconfiguration which may result in significant traffic losses and it is very

difficult for them to understand the interactions between updated and non-

updated devices. Another study in [3] shows that Border Gateway Protocol

(BGP) updates account for up to 30% packet-loss for two minutes or more

during a routing change. All of these examples indicate the significance of a

careful, safe and efficient plan for network updates.

However, it is extremely difficult to guarantee that all these problems men-

tioned above will not happen during network updates in traditional networks,

where data and control are transmitted over a common fabric and control is

distributed. Lots of research efforts seek solutions in this area [1, 2, 3, 4]. But

1

each of these focus on one specific network protocol, e.g., OSPF and BGP, with

a limited set of properties, e.g., packet loss, congestion and forwarding loops.

Also, all of these solutions are heavyweight and can make network systems

much more complicated. Thus, network innovations are required to support a

general, safe and efficient framework for network updates.

1.2 Software Defined Networking

Software Defined Networking (SDN) [5], a novel networking architecture, de-

couples the control plane from the data plane. SDN changes the way we

view the networks and brings network operators lots of benefits in building

various network applications, e.g., virtual machine migrations [6], traffic engi-

neering [4], access control [7] and server load balancing [8].

The decoupling of the control plane and data plane provides great flexibility

to network management and maintenance. For example, in the traditional

networking, if a network administrator would like to deploy a new routing

protocol in his network, he has to configure his switches or routers one by

one. Then the data plane runs the distributed routing algorithm to set up

the forwarding state of the network. Now with SDN, he just needs to write

a piece of software running on the SDN controller; then the controller will

send messages to the devices in the data plane to establish the forwarding

routes. This also can avoid the converge time of the traditional distributed

algorithms and increases the service provisioning speed. Second, SDN simpli-

fies the data plane because there is no need for the switches of data plane to

support the existing large set of complicated network protocols. The only two

basic requirements for SDN switches are: (1) communication with the con-

troller; (2) forwarding, modifying or dropping packets according to the flow

table, an entity in SDN switches that defines the forwarding behaviors of the

switches. Moreover, with a standardized interface between control plane and

data plane, SDN can enhance network security using promising solutions like

network middlebox, network monitoring and network verification [7, 9]. For

example, it is very convenient for the SDN controller to redirect traffic to a

newly deployed middlebox and to query the flow forwarding rules along with

flow statistics of a switch.

SDN has challenges in security and reliability. First of all, the centralized

2

management afforded by the SDN controller is a double-edge sword. The con-

troller is a single point of failure and offers an attack surface [10]. Second,

lack of security mechanisms for the communications between the control and

data plane might give rise to various attacks, e.g., deny-of-service (DoS) and

man-in-the- middle. Using TLS/SSL between the control plane and data plane

is an option; but it also has obvious weaknesses, e.g., a self-signed certificate

or a compromised certificate authority. Third, SDN control plane provides

northbound interface for network applications. However, there is no guaran-

tee that control logic of one application will not contradict the others. Even

though each individual control application runs correctly with the enforce-

ment of security policies, the combination of the control logic from multiple

applications might cause abnormality, e.g., forwarding loop, traffic black hole

and forwarding inconsistency. [11] prioritizes network applications to resolve

the contradiction and [12] presents an OpenFlow development framework to

provide security modules on which control applications can be built.

OpenFlow [5] is a widely used standard of SDN that defines the functions

of the control plane and data plane as well as the interactions between the

two planes. In OpenFlow, the switch has one or more flow tables containing

flow forwarding rules that describe how to handle certain incoming data flows.

Each entry in a flow table or so-called a forwarding rule at least contains three

fields: (1) Packet Header, which defines the flow processed with this rule, (2)

Action, which defines how to process the packets matching the packet header,

and (3) Statistics, which records the statistics of the matching packets, e.g.,

the number of packets, the bytes of the flow and the time since the last packet

matched the packet header. Also, Openflow defines a security communication

channel between the controller and the switches. An OpenFlow controller is

able to add, remove or modify the entries in flow tables as well as to query the

statistics of the switches. A large range of network device manufacturers, e.g.,

HP, Cisco, Arista and Brocade, have produced switches supporting OpenFlow.

1.3 SDN Update Consistency

Even with SDN in place, there is no guarantee regarding the correctness of

traffic flows and network state during the update process [13, 14] even when

the initial configuration and final configuration are verifiably correct. This

3

is because even though SDN provides a centralized place, namely, the net-

work controller to manage and update the network, the controller itself has

to distribute the configuration to switches and routers that are distributed.

As such without additional mechanisms configuration changes are not syn-

chronous across the network infrastructure. Lack of consistency during the

network update process can not only adversely impact the stability and avail-

ability of the network (by causing transient black holes and loops) but also its

security. For example, incorrect routing of packets during network transition

may cause packets to go around a security middlebox such as a firewall or a

network intrusion detection system and create a security hole.

Early work addressing this problem [14] proposed two correctness abstrac-

tions for network updates in SDNs: per-packet and per-flow consistency. Per-

packet consistency means that each packet in the network will be processed

either by the old configuration or the new one but never a mixture of the two.

Per-flow consistency generalizes per-packet consistency and guarantees that

each flow in the network will be processed by the old configuration or the new

one, but not the mixture of the two. This work also proposed mechanisms

to implement these update abstractions based on the OpenFlow [5] protocol.

Since then a lot of research effort has gone into network systems that can guar-

antee update correctness for different application scenarios building on these

two update abstractions.

1.4 Inter-flow Consistency

In this thesis we argue that per-packet and per-flow consistency alone are not

sufficient for meeting requirements imposed by security and reliability. Most

networks have multiple flows and there are often cases where we would like to

preserve some relationships among the flows during network updates to main-

tain security and reliability. Per-packet and per-flow consistency abstractions

do not account for the relationships between flows and are thus not sufficient

to meet such security and reliability requirements. For instance, in control

networks of power systems, it is desirable to separate certain critical real-time

control flows from engineering flows, i.e., ensure that they never share a link,

for reliability of real-time operations. Similarly, it is desirable to isolate two

flows from each other if one is a back-up flow for the other. As another exam-

4

ple, in data centers it may be necessary to separate flows belonging to tenants

from competing organizations to provide security isolation required by SLAs.

Another common scenario is where a (distributed) application imposes a

relationship among network flows that needs to be preserved during the update

process. Stateful firewalls are one example of application where their correct

operation can depend on relationship between flows. In such cases, processing

flow updates using per-packet or per-flow consistency may lead to a state of

the network that is a combination of old configuration for some flows and new

configuration for others leading to unexpected results, i.e., forwarding loops,

packet loss and incorrect application execution [15].

In this thesis, we argue for a novel update abstraction, namely, inter-flow

consistency that accounts for relationships and constraints among different

flows is needed to address this problem. We present two special cases of inter-

flow consistency, namely spatial consistency and version consistency, and de-

sign algorithms based on dependency graphs of [16] to achieve inter-flow con-

sistency during SDN updates. While we primarily motivate the need for such

an abstraction through security and reliability requirements the abstraction

and the proposed mechanisms are generally applicable.

5

CHAPTER 2

INTER-FLOW CONSISTENCY PROBLEM

Inter-flow consistency for updates is a guarantee that specified inter-flow con-

straints are preserved during network updates. While there can be many kinds

of inter-flow constraints that are needed, we discuss two specific types in this

work that are motivated by security and reliability requirements: 1) Spatial

Isolation and 2) Version Isolation.

2.1 Spatial Isolation

Spatial isolation represents the requirement that certain flows are not allowed

to share a link or a switch before, during and after an update for security

and/or reliability reasons. For instance, if a flow has certain reliability require-

ments (it carries control messages in a power grid substation) then sharing links

on its path with another flow that carries, say debugging or engineering traffic,

may result in problems for the former flow. For instance, if there is a surge in

information being sent over the engineering flow because of say some firmware

upgrades then we don’t want critical control messages suffering delays and/or

dropped packets. Other examples could include situations where hackers could

try to use information about their own flows (e.g., round-trip times or packet

loss rates) to infer details about the critical flows. In our work, we assume

that the original flow configurations were consistent with these requirements

and the new, updates flows will also satisfy them. The problem arises during

the transitional states. Hence, we need mechanisms to ensure that the spatial

isolation requirements are satisfied at all points during the update phase.

Consider the simple example in Figure 2.1. Figure 2.1(a) shows a network

with 4 switches and two flows, f1 and f2. Lets assume that flows f1 and f2 are

not allowed to share a same link; in order words, f1 and f2 should demonstrate

spatial isolation properties. In this example, each the flow consumes 5 units of

bandwidth while the bandwidth of each link is 10 units. Originally, f1 passes

6

(a) original state (b) target state

Figure 2.1: An example for spatial relationship of flows

through the link, S1S4, and f2 passes through S1S2 and S2S4. Now if we are to

update the network to a new state (shown in Figure 2.1(b)) so that f2 passes

through S1S4 and f1 passes through links S1S3 and S3S4. It is clear that the

old as well as the new configurations of this network can guarantee spatial

isolation. However, due to the asynchronous nature of flow updates we might

have a transitional state where f2 is updated before f1. In that case, both the

two flows pass through the same link, S1S4, for some finite time violating the

inter-flow consistency requirements. Thus, update mechanism must guarantee

that the spatial relationships (if any) between any two flows is preserved during

the update process.

2.2 Version Isolation

Version isolation means that packets from different related flows cannot be

processed by two different versions of flow rules during its passage through

the network. This can happen because the network updates for certain flows

have not been completed before they start routing packets. Imagine a scenario

with 2 flows, A and B; let the states of Flow A before and after an update be

RA1 and RA2, respectively. Let the states of Flow B before and after an update

as RB1 and RB2, respectively. The network can have RA1RB1 or RA2RB2, but

not RA1RB2 or RA2RB1 at any point in time. We refer to this as version

isolation.

7

(a) original state

(b) target state

Figure 2.2: An example for temporal relationship of flows

An example is shown in Figure 2.2, which is a revised version of a case

in [15]. H1 and H2 represent two hosts each of which sends out a flow (f1

and f2, respectively). Each flow consumes 5 units of bandwidth while the

bandwidth of each link is 10 units. There are two ingress switches, I1 and I2,

with a controller, C. Both of the switches are connected to a server running

a packet-inspection application. At first, both of the two hosts send some

verification packets to the inspector (shown in Figure 2.2(a)). After inspection,

the application can ask the controller to modify the rules in the two switches

so that the two hosts can communicate with each other through I1 and I2

8

(shown in Figure 2.2(b)). However, the forwarding rules in the two switches

may be not updated at the same time. Imagine that if the rules of f2 have been

updated and f2 is forwarded to H1; but the updates of the rules for f1 have not

been finished yet. Receiving packets from H2, H1 might think that the packet

inspection is completed and then transmits normal application packets other

than verification packets to H2. However, since the rules of f1 have not been

updated yet, these packets will be forwarded to the inspector–an unexpected

outcome. Hence, we need to guarantee that new configurations and old ones

should not exist at the same time for the two flows. Note that while this

can be rare, an extreme case of version isolation is one where all the flows in

the network require version isolation. That is, all the packets in the network

should be processed by either the initial flow rule configuration or the target

flow rule configuration but not a mix. If it is assumed that the initial and final

flow configurations are designed to satisfy necessary inter-flow constraints then

in this extreme case version isolation implies inter-flow consistency.

2.2.1 Assumptions

In this thesis, we assume that there always exists a correct order of update

operations. This correct order can preserve bandwidth guarantees, spatial

isolation and version isolation during network updates. Admittedly, this as-

sumption may be violated in real world, e.g., by adding elephant flows to a

network that already faces significant congestion, deadlocks among different

flows – each of which holds a link and waits for others’ links. We may integrate

existing solution [16] to relax these assumptions but this deadlock-resolving

technique is beyond the scope of the thesis.

9

CHAPTER 3

SYSTEM MODEL AND APPROACH

3.1 Dependency Graph

In order to represent the dependency among update operations and network

elements, e.g., link bandwidths and routing paths, we use dependency graphs

[16] as the model of the updates. A dependency graph represents update op-

erations, resources and paths as well as the dependencies among them. In the

original version of dependency graph [16], there are 3 types of nodes: resource

nodes, operation nodes and path nodes. Resource nodes (shown in rectangles)

represent the resources in the network, e.g., link capacity and memory space

of a switch. The number in a resource node represents the amount of available

resources of that node. Operation nodes (shown in circles) represent addition,

deletion, or modification of a forwarding rule. Path nodes (shown in triangles)

represent a group of operations and resources related to a certain path.

A dependency graph has directed edges of different types. The edges from

an operation node A to another operation node B means that B can not be

scheduled before A completes. The edges between resource nodes and opera-

tion nodes represent a resource dependency. An edge from a resource node to

an operation node represents that the operation needs this amount of available

resource. An edge from an operation node to a resource node represents that

this amount of resource will be freed by that operation. Similarly, an edge

from a path node to a resource node represents a certain amount of resource

will be freed by the deletion of that path. An edge from a resource node to a

path node represents the addition of that path will consume a certain amount

of resource. The edges between operation nodes and path nodes represent the

proper schedule order of the two. An edge from a path node to an operation

node represents that operation cannot be scheduled until that path is removed.

An edge from an operation node to a path node represents a path cannot be

used until that operation completes.

10

Figure 3.1: Dependency Graph from Figure 2.1

3.2 Approaches for Inter-flow Consistency

3.2.1 Spatial Isolation

In order to represent the flow spatial isolation relationships, we define a new

type of node, mutex nodes (represented using diamonds) that capture the

isolation requirements between different flows. The concept of a mutex is orig-

inated from the resource mutex in operating systems, i.e., mutex is available

only when no one occupies it. A mutex node can be considered as a special

resource node. We only have edges between path nodes and mutex nodes. An

edge from a mutex node to a path node means that that path cannot be used

until the mutex is freed. An edge from a path node to a mutex node means

that the mutex will be released after the update of that path.

For example, We can generate the dependency graph shown in Figure 3.1

for the schedule problem in Figure 2.1. First, we need to calculate the update

operations shown in Table 3.1 by comparing the old network state and the

new one. Path Node p1 represents the path of f1 before updates while p2

represent that of f2 before updates; p3 and p4 represent the path of f1 and f2

after updates, respectively. There is a common link between p1 and p4; thus,

there is a mutex node representing the common link, S1S4, between p1 and p4.

11

The edge from Node p1 to S1S4 means after updates f1 will not pass through

the link, S1S4. The edge from Node S1S4 to p4 means that after B’s updates

f2 will pass through S1S4. In Figure 3.1, with topological sorting, it is clear

that a proper update schedule is first to update p1 and then to update p4. A

valid order of the update operations is a→ b→ c→ d.

Table 3.1: Update Operations for Figure 2.1

ID Entity Update Operation

a S3 Add: forward f1 to S4

b S1 Modify: forward f1 to S3

c S1 Modify: forward f2 to S4

d S2 Delete rules of f2

3.2.2 Version Isolation

We adopt a forward-to-controller update approach [17] to deal with version

isolation. Imagine a situation where we have a set of several flows with version

isolation requirement. We called this set as Version Isolation Set. The forward-

to-controller method goes as follows: first, we pick one flow as f0 among those

with version isolation requirement, and forward the others in that set to the

controller for storage. Then we update the flow rules of all the flow; during

this time, all the flows except f0 are forwarded to the controller. After all

updates are completed, the controller transmits the cached packets into the

network. The intuition behind this approach is that we choose one flow at first

and forward all the other flows in the version isolation set to the controller so

that the flows with new rules will not be mixed with those with old rules in

the network. When the packets buffered in the controller are transmitted back

into the network, all of the flows are already processed with the new rules. As

an example, we can use the updates in Figure 2.2 to generate a dependency

graph shown in Figure 3.2 with version isolation. First, we need to calculate

the update operations shown in Table 3.2 by comparing the old network state

and the new one. Then we can generate the dependency graph in Figure 3.2(a).

The two arrows between p3 and p4 means that the corresponding two flows are

required to be updated with version isolation. It is clear that we fail to find

the topological order of the operations in 3.2(a) because of the existence of a

12

loop. Based on the forward-to-controller update approach [17], we can first

transmit the packets of f2 to the controller and then update the rules of f1

and f2. Then the controller transmits the traffic of f2 back to I2. During this

process, even though f1 gets updated before f2, there is no f2 packet processed

by the old rules while f1 has been updated. The operations e and g represent

the action of sending f2 to controller and transmitting it back to the network,

respectively.

A revised dependency graph is shown in Figure 3.2(b). A new operation, e,

is added with many edges from e to the other operations related to the two

paths. It means that the system should first forward f2 to the controller before

the rules are updated. This can prevent any packet loss due to updates. The

other new operations, f and g, are added. The directions are from b, d and

p4 to f , which means that only after new rules are installed can we replay

the packets of f2 back to our network. One of the valid sequence of update

operations is e→ a→ b→ c→ d→ f → g.

Table 3.2: Update Operations for Figure 2.2

ID Entity Update Operation

a I2 Add: forward f1 to H2

b I1 Modify: forward f1 to I2

c I1 Add: forward f2 to H1

d I2 Modify: forward f2 to I1

e I2 Modify: forward f2 to C

f I2 Delete the rule of forwarding f2 to C

g C forward all the cached traffic of f2 to I1

3.2.3 Flow Classification

Imagine a situation where we have multiple flow sets, each of which contains

multiple flows of version isolation. We should carefully schedule the ordering

of flows to be updated. For example, an input with two sets, F1 = {f1, f2}
and F2 = {f1, f3} means that, at any point of time, f1 and f2 are allowed

to be both processed by the old forwarding rules, or both processed by the

new ones. But the situation where one is processed by the old rules while the

other is processed by the new rules is forbidden. The constraint between f1

13

(a) original dependency graph

(b) revised dependency graph

Figure 3.2: Dependency Graph from Figure 2.2

and f3 is similar. However, since f2 and f3 are not in the same set, there is

no constraint of version isolation between them. Thus, we can find out a valid

update sequence: firstly, forward f1 to the controller; secondly, update all the

rules; last, send buffered packets of f1 back to the network.

We can formalize this problem as a classification problem. Let F = {f1, f2,
f3, ..., fn} is the set of all the n flows in the network and fi denotes one flow.

Fj denotes a set of version isolation, where Fj ⊆ F and Fj 6= ∅. The problem

is to classify all the n flows into two classes, Class I and Class II. Let c1 and c2

denote the flow set of Class I and Class II, respectively. c1 represents the flows

updated without being sent to the controller. c2 represents the flows which

14

should be forwarded to the controller and then sent back to the network. For

version isolation, we should guarantee that if |c1| > 1, any two flows in c1 are

not in the same Fj. In order to minimize the amount of traffic forwarded to the

controller, the goal of our solution to this classification problem is to minimize

the sum of the rate of the flows in c2. We design a greedy algorithm (shown

in Algorithm 1) to solve this classification problem. First, c1 = ∅ and c2 = ∅.
Put all the flows which are not included in any Fj into c1. Then c2 = F − c1.

Second, we define the penalty factor, pi, of fi:

pi =
∑

rj − ri (3.1)

where rj is the rate of fj, a flow which is in the same version isolation set

with fi and we sum the rates of all fj in any Fj. ri is the rate of fi. The

intuition is that if we classify fi in Class I, we will increase the aggregated

rate of flows forwarded to the controller by
∑

rj − ri. Then we sort all the

flows in c2 in the ascending order of their penalty factors. Third, for each flow,

f ∈ c2, move it from c2 to c1 if and only if there isn’t a flow f ′ in c1 such that

f ′ and f are in the same Fj.

Algorithm 1 ClassifyFlows(F , Fj, j = 1, 2, ...,m)

Require: F : a set of all the flows
Require: Fj, j = 1, 2, ...,m: m sets of flows with version isolation

1: c1 ← all the flows in F but not in Fj, j = 1, 2, ...,m
2: c2 ← F − c1
3: Sort flows in c2 in penalty factor’s ascending order
4: for each flow, f , in c2 do
5: shouldMoveF lag ← TRUE
6: for each flow, f ′, in c1 do
7: if f ′ and f are in the same Fj then
8: shouldMoveF lag ← FALSE
9: break

10: end if
11: end for
12: if shouldMoveF lag == TRUE then
13: c2 ← c2 − f
14: c1 ← c1 + f
15: end if
16: end for
17: return c1, c2

The correctness of Algorithm 1 is shown in Proof 3.2.3

15

Proof. Without loss of generality, imagine that two flows, f1 and f2, have the

constraint of version isolation.

Case I: Both of f1 and f2 are classified in c2, which means that both of the

two flows are buffered in the controller and then they will be sent back into

the network. According to our schedule algorithm, only after all the update

operations complete can the buffered packets be sent back into the network.

Thus, after leaving the controller, both of f1 and f2 will be processed with

new forwarding rules.

Case II: f1 and f2 are classified differently. Without loss of generality, assume

f1 classified in c1 while f2 in c2. Before f2 is sent back to the network, it is

uncertain that f1 is processed by the original configuration or the new. But

there are no f2’s packets in the network. Also, it is clear that when buffered

packets of f2 are sent back into the network from the controller, all the updates

of f1 and f2 are finished. Thus, they will be processed with new forwarding

rules.

Last but not least, Algorithm 1 eliminates the possibility that both of f1 and

f2 are classified in c1. Thus, our algorithm can guarantee version isolation.

3.3 Dependency Graph Construction Algorithm

Algorithm 2 presents the process of constructing the dependency graph for

inter-flow consistency. First, we use Algorithm 1 to classify the flows into

two classes, Class I and Class II. Then different algorithms are utilized to

construct different dependency graphs for the two classes. Last but not least,

we need to add mutex nodes and some directed edges to represent the isolation

constraints.

3.3.1 Basic Dependency Graph

Algorithm 3 shows the basic algorithm of dependency graph construction for

flows that will not be forwarded to the controller. First, we create resource

nodes in the graph. Second, by comparing the old and new paths of each

flow, we can calculate the necessary update operations. Then edges are added

between two nodes to represent the path-resource relationship or operation-

resource relationship. Function CreateEdges((s1, d1), (s2, d2), ..., (sn, dn)) cre-

16

Algorithm 2 ConstructGraph(F , N0, N1, Cs, Cv)

Require: F : the flows whose forwarding rules to be updated
Require: N0: the original network states of F
Require: N1: the new network states of F
Require: Cs: constraint set of spatial isolation
Require: Cv: constraint set of version isolation

1: F1, F2 ← ClassifyF lows(F, Cv)
2: G1 ← ConstructGraphForClass1(F1, N0, N1)
3: G2 ← ConstructGraphForClass2(F2, N0, N1)
4: AddV ersionIsolationEdges(G1, G2, Cv)
5: G← G1

⋃
G2

6: AddMutexNodes(G, Cs)
7: return G

ates an edge from each element in si to each element in di, respectively. A

floodgate operation is the update operation which will change the forwarding

direction of a flow from the old path to the new one. It acts as the water

floodgate changing water flows’ directions in the real world. Generally speak-

ing, we should first perform the adding operations to establish the new path

and then perform the floodgate operation. Only after the direction of the flow

is changed by the floodgate operation, can we delete all the forwarding rules

of the old path.

Algorithm 3 ConstructGraphForClass1(F , N0, N1)

Require: F : the flows whose forwarding rules to be updated
Require: N0: the original network states of F
Require: N1: the new network states of F

1: G← ∅
2: for each link, l, in N0 and N1 do
3: Create a resource node, v, representing l and its remaining capacity
4: end for
5: for each f in F do
6: p0 ← the old path of f in N0

7: Create edges from p0 to each related resource node
8: p1 ← the new path of f in N1

9: Create edges from each related resource node to p1
10: of ← the floodgate operation of p0 and p1
11: O0 ← the operations for removing p0
12: O1 ← the operations for creating p1
13: CreateEdges((of , p0), (p1, of), (p0, O0), (O1, p1))
14: end for
15: return G

17

3.3.2 Dependency Graph for Inter-flow Constraints

For flows’ spatial isolation, it is clear that we should create mutex nodes be-

tween two isolated paths which might occupy the same resource. On the other

hand, it is much more tricky to guarantee flows’ version isolation. In a nutshell,

we first use traditional method in Algorithm 3 to construct the subgraph for

flows in Class I, which are not forwarded to the controller; then we construct

the subgraph for flows in Class II with Algorithm 5. Last, we need to use

Algorithm 6 to create edges between flows in Class I and Class II enforcing

version isolation. In Algorithm 5, we add an operation node, om, which for-

wards all the relevant flows to the controller. Edges are created from om to

other operations of the relevant flows. After all the new forwarding rules are

installed, we delete the rules of om and then retransmit the cached traffic into

the network.

Algorithm 4 AddMutexNodes(G, C)

Require: G: the original dependency graph
Require: C: spatial constraints

1: for each constraint c in C do
2: for each common resource, r, shared by the flows specified by c do
3: Create one mutex node, rm
4: Create an edge from the old path node occupying the common re-

source to rm
5: Create an edges from rm to the new path node which will occupy the

common resource after updates
6: end for
7: end for
8: return G

3.4 Scheduling Algorithm

We revise the previous scheduling algorithm [16] with considerations for inter-

flow relationships. Because the dependency graphs represent the dependency

relationships between update operations, the simple idea behind the scheduling

algorithm is that the operations cannot be scheduled until they satisfy two

conditions: 1) they have no ancestor nodes that are operation nodes, and 2)

the necessary resource are available. With the scheduling algorithm, we can

18

Algorithm 5 ConstructGraphForClass2(F , N0, N1)

Require: F : the flows in Class II
Require: N0: the original network states of F
Require: N1: the new network states of F

1: G← ∅
2: for each link, l, in N0 and N1 do
3: Create a resource node, v, representing l and its remaining capacity
4: end for
5: for each f in F do
6: p0 ← the old path of f in N0

7: Create edges from p0 to each related resource node
8: p1 ← the new path of f in N1

9: Create edges from each related resource node to p1
10: Of ← the operations including floodgate operation of p0 and p1, removing

p0, creating p1
11: om ← the operation for forwarding f to the controller
12: od ← the operation to delete the rule of forwarding f to the controller
13: or ← the operation for the controller to replay f onto the network
14: CreateEdges((om, p0), (om, Of), (Of , od), (p1, od), (od, or))
15: end for
16: return G

Algorithm 6 AddVersionIsolationEdges(G1, G2, C)

Require: G1: the dependency graph for flows in Class 1
Require: G2: the dependency graph for flows in Class 2
Require: C: version isolated constraints

1: for each isolation set, s, in C do
2: for each flow f of Class 2 in s do
3: for each other flow fother in s do
4: if fother in Class 1 then
5: Add an Edge from om of f to of of fother
6: Add an Edge from of of fother to od of f
7: else if fother in Class 2 then
8: Add an Edge from om of f to od of fother
9: end if

10: end for
11: end for
12: end for

19

divide the updates schedule into different rounds. In each rounds, we can

schedule several update operations.

Another more fine-grained question is about the update order of the oper-

ations within one round. We adopt the same critical-path method as in [16].

In a classical DAG using nodes to represent several jobs in a project, a node’s

critical-path length (CPL) is the maximal value among the distances from this

node to other nodes. In order to minimize the total completion time, we tend

to schedule the job with the largest CPL first. In our dependency graph, we

assign weights to the nodes: the weight w of an operation node is 1 while

weights of resource, mutex and path nodes are 0. With this, we can calculate

the CPL for each node i [16] recursively:

CPLi = wi + max
j∈children(i)

CPLj (3.2)

After sorting the nodes with their CPLs in decreasing order, in each round of

scheduling, we greedily schedule the operation nodes based on this order. The

scheduling algorithm are shown in Algorithm 7. We leverage the dependency

graph to divide the updates into several rounds; in each round we schedule the

available operations in CPL decreasing order. Available operations are oper-

ations that have no ancestor operation nodes and can gain enough resources

for updates. The correctness of Algorithm 7 is based on the assumption in

Section 2.2.1 that there is a correct scheduling order of updates. In other

words, there is no deadlock in the dependency graph. Thus, in each round,

we can always schedule some operations and reduce the number of nodes in

the graph. The algorithm will not result in infinite loops. After one round

of scheduling, we need to update the resource capacity and delete scheduled

operation nodes in the dependency graph. Also, we need to wait a certain

time threshold between two rounds for the completion of the operations in the

last round. We use average Round-Trip Time (RTT) as the time threshold in

our implementation.

20

Algorithm 7 ScheduleUpdates(G)

Require: G: the dependency graph
1: Calculate CPL for every node in G
2: Sort the operation nodes in the decreasing order of CPL and get a sorted

order L
3: while G 6= ∅ do
4: for each operation node Oi ∈ L do
5: if Oi has no ancestor operation nodes and can get the necessary re-

source for updates then
6: Schedule Oi

7: end if
8: end for
9: Delete scheduled operation nodes and corresponding path nodes as well

as their edges
10: Delete resource nodes and mutex nodes without edges
11: Update the available amount in resource nodes
12: Wait for a time threshold for all scheduled operations to finish
13: end while

21

CHAPTER 4

SYSTEM IMPLEMENTATION

We implemented a prototype system as the middle layer between SDN ap-

plications and the control plane. The system architecture is shown in Figure

4.1. We used OpenFlow 1.3 as the SDN protocol and Ryu [18] version 3.20

as the controller. Ryu is an open-source and component-based controller with

lots of well-documented, developer-friendly APIs. Our system accepts the net-

work states from the upper network application and then use Ryu’s APIs to

add, modify or remove forwarding rules in the data plane. The prototype is

implemented with more than 3000 lines of Python code.

There are 6 modules in the system. Update Operation Generator is the

module that accepts the input network states from the applications. A net-

work state contains the packet header information defining each flow in the

network along with the routing paths of the flows. Update Operation Gener-

ator compares the new network state with the existing old network state and

then generates the update operations we need to perform, i.e., add, modify or

remove a forwarding rule in a switch, in order to change the network from the

old state to the new one. After that, it sends all these necessary operations to

the Dependency Graph Constructor.

Dependency Graph Constructor (DGC) use Algorithm 2 to construct the

dependency graph. It needs 3 kinds of information as input. First, DGC

needs the information of all the update operations from Update Operation

Generator. Second, in order to correctly generate resource nodes, DGC needs

to fetch the topology information from a module called Network Information

Base. Last but not least, the user needs to provide scripts showing the con-

straints across different flows so that DGC can generate a dependency graph

to represent these constraints.

With the dependency graph from DGC, Update Scheduler (US) runs Algo-

rithm 7 to perform the update operations round by round. With the signal

from US, a Ryu application called Rule Installer calls Ryu’s OpenFlow APIs

22

to send OpenFlow messages to the switches. On top of Ryu, there is a built-

in application called “switches” which provides topology information to the

Network Information Base.

23

Figure 4.1: System Architecture

24

CHAPTER 5

EVALUATION

5.1 Experiment Setup

We used Mininet [19] as our evaluation framework and created a traditional

3-level tree topology to evaluate the performance of our system on top of

Ryu. There is 1 core switch with 5 aggregation switches linked to it. Each

aggregation switch is linked to 5 ToR switches. There are 2 hosts connecting

to each ToR switch and each host generate 20 flows each with a bandwidth

of 0.5 KB/s in each experiment. The number of flows is derived from some

studies of data centers [20,21].

We have a default setting including basic 3 parameters for each experiment

and change one parameter each time to study its influence of network up-

dates. The 3 parameters are: (1) Update Percentage, the percentage of flows

to be updated out of total 1000 flows; (2) Version Isolation Percentage, the

percentage of flows with version isolation out of all the flows to be updated;

(3) Version Isolation Set Size, the number of flows in a version isolation set.

The default value of update percentage and version isolation percentage are

20% and 30%, respectively. The default value of version isolation set size is a

set, {2, 4, 6, 8}, which means that a version isolation set will be randomly

generated with the size of 2, 4, 6 or 8. In each experiment, we emulate the sce-

narios of the communication in VM migration and run a shortest path routing

application to generate the old and new network configuration. For instance,

in the old network configuration, VM A in host 1 communicates with VM B

in host 2. After the VM migration, VM B is in another host but with the

same IP address and we need to update the forwarding rules in the network

to preserve the communication between VM A and B.

In terms of version isolation, we randomly generated version isolation sets

showing some flows should be updated with version isolation. In terms of

spatial isolation, we also randomly generated the spatial isolation constraints

25

among different flows. But in order to generate a more practical scenario, any

two flows, fi and fj, in spatial isolation sets must meet the following condition:

(1) fi and fj are spatially isolated in both the old network configuration and

the new network configuration; (2) there is at least one common link between

the old route of fi and the new route of fj, or the old route of fj and the new

route of fi.

We also implement the basic dependency graph approach in Dionysus [16]

as the base line. Please note that we only use the algorithm for tunnel network

from Dionysus; thus, our results can’t be considered as the full evaluation of

the performance of Dionysus. VI is short for version isolation. SI is short for

spatial isolation and DG is short for the dependency graph approach.

5.2 Experiment Results

5.2.1 Update Percentage in Version Isolation

Update percentage is the percentage of flows to be updated during one ex-

periments. It directly influences the workload of the network updates. In our

experiments, we changed the update percentage from 10% to 30% to study its

effect on our system.

Figure 5.1 shows the cumulative distribution of the per flow update time

with different update percentages. Update time of a flow means the elapsed

time between the time updates begin and the time that the update operations

of that flow are completely performed. In our approach with version isolation,

there are two categories of flows. One category are the flows that are not

in any version isolation sets while the other category are those with version

isolation constraints. From Figure 5.1, we can see that the distributions of

flows without version isolation in our approach are very close to those in the

basic dependency graph. From Figure 5.2, the average update time of flows

without version isolation constraints in our approach is at most 10.6% and

at least 4.4% more than that in basic dependency graph under the 5 update

percentages. Two approaches use the same graph structure to schedule the

flows without isolation. The difference in update time is caused by the flows

forwarded to the controller, which slows down the processing of the controller.

On the other hand, the average update time of flows with version isolation

26

constraints in our approach is at most 29.8% and at least 15.6% more than

that in basic dependency graph. The reasons for this difference is: (1) flows

in Class II are forwarded to the controller; (2) flows in Class II have extra

operations, namely forwarding to the controller, removing this forwarding-to-

controller rule and retransmission from the controller. Figure 5.3 shows that

the average numbers of rules installed in our approach are about 14% more

than those in basic dependency graph.

5.2.2 Version Isolation with Straggling Switches

According to [16], the update time of some switches may be 10 to 100 times

more than average. We call these switches as “straggling switches”. Also, in

the study of Google’s wide area SDN [22], the 99th percentile of switch update

time can be 5 times more than the median. Thus, we conducted experiments

with 6 straggling switches (out of total 31 switches) and each straggling switch

has 200 ms delay, which means that the elapsed time between the time when

a straggling switch receives an OpenFlow update message and the time when

the new forwarding rule is installed is 200 ms.

From Figure 5.4, we can see that the cumulative distributions of the non-

isolation flows in our approach and basic dependency approach are almost

the same. That is because the overheads caused by our approach is trivial

when compared to the delay time of the switches. The CDF curves are stair-

like because the update time is mainly decided by the number of scheduling

rounds containing straggling switches. The number of “stairs” of the curves

of non-isolation and isolation flows are 3 and 4, respectively. Because the

maximum CPL in Section 3.4 of the two dependency graphs are exactly 3

and 4, respectively.

From Figure 5.5, we can see that the average update time of non-isolation

flows of our approach is very close to that of basic dependency graph. The

difference percentages are 2.9%, 3.1%, 4.9%, 3.6% and 2.4%, respectively. On

the other hand, the average update time of the isolation flows is at least 33%

more than that of non-isolation flows. This represents the trade-off between

version isolation guarantee and update time.

27

Per Flow Update Time (ms)
0 25 50 75 100 125 150 175 200 225 250

C
u

m
u

la
ti
v
e

 P
ro

b
a

b
ili

ty

0

0.2

0.4

0.6

0.8

1

Basic DG
VI DG w/o isolation
VI DG with isolation

(a) Update Percentage = 10%

Per Flow Update Time (ms)
0 25 50 75 100 125 150 175 200 225 250

C
u

m
u

la
ti
v
e

 P
ro

b
a

b
ili

ty

0

0.2

0.4

0.6

0.8

1

Basic DG
VI DG w/o isolation
VI DG with isolation

(b) Update Percentage = 15%

Per Flow Update Time (ms)
0 25 50 75 100 125 150 175 200 225 250

C
u

m
u

la
ti
v
e

 P
ro

b
a

b
ili

ty

0

0.2

0.4

0.6

0.8

1

Basic DG
VI DG w/o isolation
VI DG with isolation

(c) Update Percentage = 20%

Per Flow Update Time (ms)
0 25 50 75 100 125 150 175 200 225 250

C
u

m
u

la
ti
v
e

 P
ro

b
a

b
ili

ty

0

0.2

0.4

0.6

0.8

1
Basic DG
VI DG w/o isolation
VI DG with isolation

(d) Update Percentage = 25%

Per Flow Update Time (ms)
0 25 50 75 100 125 150 175 200 225 250

C
u

m
u

la
ti
v
e

 P
ro

b
a

b
ili

ty

0

0.2

0.4

0.6

0.8

1
Basic DG
VI DG w/o isolation
VI DG with isolation

(e) Update Percentage = 30%

Figure 5.1: Cumulative Distribution of Per Flow Update Time with Different
Update Percentages

28

Update Percentage (%)
10 15 20 25 30

A
v
g

 F
lo

w
 U

p
d

a
te

 T
im

e
 (

m
s
)

0

20

40

60

80

100

120

140

160

180
Basic DG
VI DG w/o isolation
VI DG with isolation

Figure 5.2: Average Update Time
(standard error) with Different
Update Percentages

Update Percentage (%)
10 15 20 25 30

N
u

m
b

e
r

o
f

R
u

le
s
 I

n
s
ta

lle
d

0

200

400

600

800

1000

1200

1400

1600

Basic DG
VI DG

Figure 5.3: Average Number of Rules
Installed (standard error) with
Different Update Percentages

5.2.3 VI Set Size and VI Percentage

In order to study the impacts of Version Isolation Set Size and Version Iso-

lation Percentage, with default update percentage as 20%, we change Version

Isolation Set Size from 2 to 10 and Version Isolation Percentage from 10%

to 90%. All the values in Figure 5.7(a), Figure 5.7(b) and Figure 5.7(c) are

shown with standard error. Figure 5.7(a) shows that the average per-flow up-

date time of the basic dependency graph approach with different values of the

two parameters changes within 5.7 ms, which is only 0.4% of the average of

per-flow update time. That is because the basic dependency graph doesn’t

consider version isolation constraints. Figure 5.7(b) and Figure 5.7(c) share

the same trend: per flow update time increases as Version Isolation Set Size

and Version Isolation Percentage increase. Figure 5.7(d) shows the difference

between the graph construction time of our approach and basic dependency

graph approach. 19 out of all the 25 difference value in graph construction

time accounts for more than 50% of the differences between the update time

per non-isolation flow of our approach and basic dependency graph approach.

Figure 5.7(e) represents the numbers of difference of update rules between the

two approaches. With a smaller version isolation set size, the increasing speed

of the number of extra rules is slower. That is because if the number of flows

in the version isolation sets is larger, then the probability of having common

flows among different sets is larger; and it is less likely for our classification

algorithm to classify some flow as the one not forwarded to the controller.

29

Per Flow Update Time (ms)
0 100 200 300 400 500 600 700 800 900 1000

C
u

m
u

la
ti
v
e

 P
ro

b
a

b
ili

ty

0

0.2

0.4

0.6

0.8

1

Basic DG
VI DG w/o isolation
VI DG with isolation

(a) Update Percentage = 10%

Per Flow Update Time (ms)
0 100 200 300 400 500 600 700 800 900 1000

C
u

m
u

la
ti
v
e

 P
ro

b
a

b
ili

ty

0

0.2

0.4

0.6

0.8

1

Basic DG
VI DG w/o isolation
VI DG with isolation

(b) Update Percentage = 15%

Per Flow Update Time (ms)
0 100 200 300 400 500 600 700 800 900 1000

C
u

m
u

la
ti
v
e

 P
ro

b
a

b
ili

ty

0

0.2

0.4

0.6

0.8

1

Basic DG
VI DG w/o isolation
VI DG with isolation

(c) Update Percentage = 20%

Per Flow Update Time (ms)
0 100 200 300 400 500 600 700 800 900 1000

C
u

m
u

la
ti
v
e

 P
ro

b
a

b
ili

ty

0

0.2

0.4

0.6

0.8

1

Basic DG
VI DG w/o isolation
VI DG with isolation

(d) Update Percentage = 25%

Per Flow Update Time (ms)
0 100 200 300 400 500 600 700 800 900 1000

C
u

m
u

la
ti
v
e

 P
ro

b
a

b
ili

ty

0

0.2

0.4

0.6

0.8

1

Basic DG
VI DG w/o isolation
VI DG with isolation

(e) Update Percentage = 30%

Figure 5.4: Cumulative Distribution of Per Flow Update Time with Different
Update Percentages and Straggling Switches

30

Update Percentage (%)
10 15 20 25 30

A
v
g
 F

lo
w

 U
p
d
a
te

 T
im

e
 (

m
s
)

0

100

200

300

400

500

600

700
Basic DG
VI DG w/o isolation
VI DG with isolation

Figure 5.5: Average Update Time
(standard error) with Different
Update Percentages and
Straggling Switches

VI Percentage (%)
10 30 50 70 90

N
u
m

b
e
r

o
f
C

la
s
s
 I
I
F

lo
w

s

0

20

40

60

80

100

120

140

160

180
Heuristic Algorithm
All To Controller

Figure 5.6: Number of Flows of
Class II with Heuristic Algorithm
and All-2-Controller Method

5.2.4 Classification Algorithm

Figure 5.6 shows the number of flows of class II with our heuristic algorithm,

Algorithm 1, and the all-2-controller method. The latter is a naive method

that forwards all version isolation flows to the controller during a network

update. With version isolation percentage in 10%, 30%, 50%, 70% and 90%,

the number of flows of Class II with Algorithm 1 is 19.5%, 20.4%, 21.9%,

22.5% and 23.3% less than that with the all-2-controller method, respectively.

5.2.5 Spatial Isolation

For spatial isolation, there is no version isolation constraints and we change

the update percentage in our experiments. In Figure 5.8, we can see that the

cumulative distribution curves of non-isolation flows of the two approaches are

similar because there is no flow forwarded to the controller, which means zero

overhead on the controller side. The differences of average update time for

non-isolation flows are all less than 1% shown in Figure 5.9. This indicates

that we can utilize alternative approaches (e.g., adding mutex nodes in spatial

isolation) instead of the heavyweight forward-2-controller approach to avoid

overheads of non-isolation flows. The isolation provided by the lightweight al-

ternative approaches, e.g., spatial isolation in this example, is a weaker variant

of version isolation.

31

90
70

VI percent

50
30

102

4

Size of Isolation Set

6

8

160

140

120

100

80

60

40

20

0
10

A
v
g
 F

lo
w

 U
p
d
a
te

 T
im

e
 (

m
s
)

(a) Average Flow Update Time with Basic
DG

90
70

VI percent

50
30

102

4

Size of Isolation Set

6

8

140

120

100

80

60

40

20

0

160

10

A
v
g

 F
lo

w
 U

p
d

a
te

 T
im

e
 (

m
s
)

(b) Average Non-isolation Flow Update
Time with VI DG

90
70

VI percent

50
30

102

4

Size of Isolation Set

6

8

160

140

120

100

80

60

40

20

0
10

A
v
g

 F
lo

w
 U

p
d

a
te

 T
im

e
 (

m
s
)

(c) Average Isolation Flow Update Time
with VI DG

90
70

VI percent

50
30

102

4

Size of Isolation Set

6

8

0

10

20

50

40

30

10

D
if
fe

re
n

c
e

 o
f

D
G

 C
o

n
s
tr

u
c
ti
o

n
 T

im
e

 (
m

s
)

(d) Difference of Construction DG Time

90
70

VI percent

50
30

102

4

Size of Isolation Set

6

8

0

50

100

150

200

250

300

350

400

10D
if
fe

re
n

c
e

 o
f

N
u

m
 o

f
U

p
d

a
te

 R
u

le
s

(e) Difference of Number of Update
Rules

Figure 5.7: Experimental Results with Different Values of VI Set Size and VI
Percentage

32

Per Flow Update Time (ms)
0 25 50 75 100 125 150 175 200 225 250

C
u

m
u

la
ti
v
e

 P
ro

b
a

b
ili

ty

0

0.2

0.4

0.6

0.8

1

Basic DG
SI DG w/o isolation
SI DG with isolation

(a) Update Percentage = 10%

Per Flow Update Time (ms)
0 25 50 75 100 125 150 175 200 225 250

C
u

m
u

la
ti
v
e

 P
ro

b
a

b
ili

ty

0

0.2

0.4

0.6

0.8

1

Basic DG
SI DG w/o isolation
SI DG with isolation

(b) Update Percentage = 15%

Per Flow Update Time (ms)
0 25 50 75 100 125 150 175 200 225 250

C
u

m
u

la
ti
v
e

 P
ro

b
a

b
ili

ty

0

0.2

0.4

0.6

0.8

1

Basic DG
SI DG w/o isolation
SI DG with isolation

(c) Update Percentage = 20%

Per Flow Update Time (ms)
0 25 50 75 100 125 150 175 200 225 250

C
u

m
u

la
ti
v
e

 P
ro

b
a

b
ili

ty

0

0.2

0.4

0.6

0.8

1

Basic DG
SI DG w/o isolation
SI DG with isolation

(d) Update Percentage = 25%

Per Flow Update Time (ms)
0 25 50 75 100 125 150 175 200 225 250

C
u

m
u

la
ti
v
e

 P
ro

b
a

b
ili

ty

0

0.2

0.4

0.6

0.8

1
Basic DG
SI DG w/o isolation
SI DG with isolation

(e) Update Percentage = 30%

Figure 5.8: Cumulative Distribution of Per Flow Update Time with Different
Update Percentages and Spatial Isolation

33

Update Percentage (%)
10 15 20 25 30

A
v
g
 F

lo
w

 U
p
d
a
te

 T
im

e
 (

m
s
)

0

20

40

60

80

100

120

140

160

180
Basic DG
SI DG w/o isolation
SI DG with isolation

Figure 5.9: Average Update Time
(standard error) with Different
Update Percentages and Spatial
Isolation

Update Percentage (%)
5 10 15 20 25 30 35

N
u

m
b

e
r

o
f

S
p

a
ti
a

l
Is

o
la

ti
o

n

0

30

60

90

120

150

180

210

240

N
u

m
b

e
r

O
f

R
u

le
s
 I

n
s
ta

lle
d

0

200

400

600

800

1000

1200

1400

1600
Number of Spatial Isolation
Number Of Rules Installed

Figure 5.10: Number of Update
Operations and Spatial Isolation
Pairs

34

CHAPTER 6

RELATED WORK

6.1 Update Consistency of Traditional Networks

Francois et al. [1] uses an encapsulation scheme to reduce the loss of connec-

tivity when network maintenance shuts down the peer links of eBGP. Raza et

al. [4] introduces Graceful Network State Migration (GNSM) problems, where

the goal is to find out a sequence of network update operations progressively

changing the initial network configuration to the final network configuration

such that the overall performance disruption is minimized. They propose a

dynamic programming method to find out the optimal solution of small-scale

GNSM problem and utilize Ants Colony Optimization to solve this problem

of a large scale. Vanbever et al. [2] studies several update scenarios of the

commonly used link-state Interior Gateway Protocols (IGP) and creates an

algorithm to find out a strict operation sequence that can avoid IP transit

service outages. Francois et al. [23] incrementally modify the metric of links

to transit the original network configuration to the targeted network configu-

ration so that each step of the updates is loop-free. All of these works focus on

a single routing protocol, e.g., BGP and IGP and simple properties, e.g., loop

freedom and connectivity. Also, the distributed algorithms in these works are

no longer suitable for the centralized control plane in the SDN world.

6.2 Update Consistency Theory of SDN

SDN opens a new era of networking by decoupling the control plane and data

plane [5]. With the advent of SDN, many works provide solutions for network

verification. NetPlumber in [24] presents an efficient verification tool based on

Header Space Analysis (HSA) for incremental compliance checking. Veriflow

in [9] also provides fast network-wide invariants checking based on a concept of

35

equivalence class. However,they focus on verification in the configured network

states without considering the transitional states caused by SDN updates.

Reitblatt et al. in the seminal work [14] provide the first formal foundation

for network updates through the abstractions of per-packet and per-flow con-

sistency in SDNs and propose a two-phase method to enforce such consistency

abstractions. It also reveals security vulnerabilities in SDN due to inconsistent

updates. The scope of our work is show that the abstractions proposed in [14]

are not sufficient to address many common security and reliability needs. We

propose a new complementary abstraction for network updates and our solu-

tion naturally guarantees the per-packet consistency.

Noyes et al. [25] proposed a tool for synthesizing network updates automat-

ically while satisfying a specified collection of invariants during the transition.

The constraints can be specified as linear temporal logic formulas (LTL) for-

mulas. While this approach is more generic and can in theory support a range

of inter-flow constraints, it is very expensive – updates synthesis is in the

order of ten minutes versus hundred milliseconds in our case. Further, that

work does not specifically focus on inter-flow constraints but rather on basic

reachability constraints such loop freedom.

McGeer [26] proposed an update protocol that provides per-packet consis-

tency and a weak form of per-flow consistency with the additional goal of

conserving switch rule space. Our proposed update approach for version iso-

lation is very similar to the update approach proposed in [26] albeit with very

different goals. McGeer’s approach is for per-packet consistency and our ap-

proach considers the constraints across different flows. Another important

distinction is that we re-transmit the original packets back into the network at

the source whereas the approach in [26] sends the stored packets directly to the

destinations. That approach of sending directly to the destination may break

application functionality, especially related to security. For instance, if there

was a requirement that certain flows should be routed through a middlebox

such as a firewall than this requirement would be violated.

Katta et al. [27] point out the high space overhead in the two-phase method

and propose to divide the update schedule into multiple rounds. This method

trades update time for switch memory space. However, it is just a multi-

round version of [14] and doesn’t consider other factors such as network link

bandwidths and constraints across different flows. Our solution has the same

advantage of [27] to divide the overall update operation sequence into several

36

rounds in order to save the switch memory space. Also, our solution considers

the bandwidths and inter-flow constraints.

Mahajan and Wattenhofer [13] highlight the dependency among update op-

erations at different switches and introduces Directed Acyclic Graph (DAG)

as the data structure to represent the dependency among update operations.

It also develops an algorithm for loop-free guarantees during SDN updates.

Its DAG method can be considered as the theoretical foundation of [16] and

our solution.

Ghorbani and Godfrey [15] point out the insufficiency for per-packet and

per-flow update consistency abstractions and argue for newer update abstrac-

tions to account for end application level semantics. Our proposed inter-flow

consistency provides a framework to account for end application semantics in

a generic way. Our version isolation consistency in particular addresses the

needs for some of the applications identified in [15]. However, the coverage

and limitations of the proposed update abstraction in terms of addressing the

needs of various application classes need to be further explored.

6.3 Update Consistency of Software Defined DCN and

WAN

ZUpdate by Liu et al. [28] studies the congestion problem during Date Center

Networks (DCNs) updates. It models this problem as a linear programming

problem and develops a novel algorithm with the help of a linear programming

solver to apply updates in an effective congestion-free manner without any as-

sumptions about the timing and sequence of updates at individual switch.

Both of physical switch experiments and large-scale simulations present that

zUpdate can effectively perform zero-loss updates of DCNs. However, this

mechanism only considers congestion during network updates. It fails to guar-

antee other significant update properties, e.g., connectivity, loop-freedom and

inter-flow constraints addressed by our solution.

Hong et al. [29] deals with the packet loss problem in current Wide Area

Networks (WANs). It develops a system called SWAN that may rate limit the

rate of flows in intermediate phase if the paths in the network cannot carry

all the traffic. Between consecutive phases, it utilizes linearly programming

technique to compute a congestion-free update plan. Both real-world experi-

37

ments and simulations indicates that SWAN can carry 60% more traffic than

the current mechanisms. However, SWAN only considers the static metrics of

the networks and doesn’t take into consideration the dynamic performance of

the switches. Therefore, it fails to effectively handle the practical scenarios

with switches of unknown dynamic performance fluctuation.

Jin et al. [16] first presents a solution for dynamic update scheduling and

builds a concrete system, Dionysus, using a greedy topological-sorting schedule

algorithm based on dependency graphs and critical path length (CPL). Our

solution is based on Dionysus. Dionysus dynamically calculates the congestion-

free update plan and limits the rate of flows when it encounters deadlocks in

the topological-sorting algorithm. But Dionysus only considers the per-packet

constraints. Our works further extends Dionysus to support update constraints

across multiple flows.

38

CHAPTER 7

CONCLUSION

Network updates may take a network into a transitional state that consists

of a mix of old and new network configurations. Such transitional states may

result in inconsistency of forwarding behaviors and consequently lead to secu-

rity vulnerabilities. Decoupling control plane and data plane, Software Defined

Networks (SDN) bring great capacities to network operator for more conve-

nient and faster network management. Lots of research efforts have been paid

for consistent SDN updates. However, existing network update abstractions

for SDNs are not sufficient to meet security and reliability requirements that

impose constraints across multiple flows.

To address this, we argue for a novel update abstraction, inter-flow con-

sistency, that accounts for relationships and constraints among flows during

network updates. We focus on two specific types of inter-flow consistency,

spatial isolation and version isolation. To enforce the two isolation properties,

we build a dynamic update scheduling algorithm with dependency graphs. We

use the controller to buffer certain flow packets and create a greedy algorithm

to minimize the buffer overheads. A prototype system on top of Ryu controller

is developed and a Mininet OpenFlow network is utilized for performance eval-

uation.

Experimental results show that the update time of non-isolation flows in our

approach is similar to that in the basic dependency graph method. Moreover,

with straggling switches or spatial isolation constraints, the update time of

non-isolation flows in the two approaches are very close. For isolation flows, our

approach guarantees their isolation constraints with the price of larger update

time and additional forwarding rules installed. Furthermore, we change the

number of flows in a version isolation constraint and the percentage of flows

with version isolation to study their impacts on update performance. The

results of update performance show linear growth over the parameter range

tested.

39

REFERENCES

[1] P. Francois, O. Bonaventure, B. Decraene, and P.-A. Coste, “Avoiding
disruptions during maintenance operations on bgp sessions,” Network and
Service Management, IEEE Transactions on, vol. 4, no. 3, pp. 1–11, 2007.

[2] L. Vanbever, S. Vissicchio, C. Pelsser, P. Francois, and O. Bonaven-
ture, “Seamless network-wide igp migrations,” ACM SIGCOMM Com-
puter Communication Review, vol. 41, no. 4, pp. 314–325, 2011.

[3] C. Labovitz, A. Ahuja, A. Bose, and F. Jahanian, “Delayed internet rout-
ing convergence,” ACM SIGCOMM Computer Communication Review,
vol. 30, no. 4, pp. 175–187, 2000.

[4] S. Raza, Y. Zhu, and C.-N. Chuah, “Graceful network state migrations,”
IEEE/ACM Transactions on Networking (TON), vol. 19, no. 4, pp. 1097–
1110, 2011.

[5] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation in
campus networks,” ACM SIGCOMM Computer Communication Review,
vol. 38, no. 2, pp. 69–74, 2008.

[6] D. Erickson, G. Gibb, B. Heller, D. Underhill, J. Naous, G. Appenzeller,
G. Parulkar, N. McKeown, M. Rosenblum, M. Lam et al., “A demonstra-
tion of virtual machine mobility in an openflow network,” 2008.

[7] Z. A. Qazi, C.-C. Tu, L. Chiang, R. Miao, V. Sekar, and M. Yu, “Simple-
fying middlebox policy enforcement using sdn,” in Proceedings of the ACM
SIGCOMM 2013 conference on SIGCOMM. ACM, 2013, pp. 27–38.

[8] D. Levin, A. Wundsam, B. Heller, N. Handigol, and A. Feldmann, “Log-
ically centralized?: state distribution trade-offs in software defined net-
works,” in Proceedings of the first workshop on Hot topics in software
defined networks. ACM, 2012, pp. 1–6.

[9] A. Khurshid, W. Zhou, M. Caesar, and P. Godfrey, “Veriflow: Verify-
ing network-wide invariants in real time,” ACM SIGCOMM Computer
Communication Review, vol. 42, no. 4, pp. 467–472, 2012.

40

[10] D. Kreutz, F. Ramos, and P. Verissimo, “Towards secure and dependable
software-defined networks,” in Proceedings of the second ACM SIGCOMM
workshop on Hot topics in software defined networking. ACM, 2013, pp.
55–60.

[11] P. Porras, S. Shin, V. Yegneswaran, M. Fong, M. Tyson, and G. Gu, “A
security enforcement kernel for openflow networks,” in Proceedings of the
first workshop on Hot topics in software defined networks. ACM, 2012,
pp. 121–126.

[12] S. Shin, P. A. Porras, V. Yegneswaran, M. W. Fong, G. Gu, and M. Tyson,
“Fresco: Modular composable security services for software-defined net-
works.” in NDSS, 2013.

[13] R. Mahajan and R. Wattenhofer, “On consistent updates in software de-
fined networks,” in Proceedings of the Twelfth ACM Workshop on Hot
Topics in Networks. ACM, 2013, p. 20.

[14] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and D. Walker, “Ab-
stractions for network update,” in Proceedings of the ACM SIGCOMM
2012 conference on Applications, technologies, architectures, and protocols
for computer communication. ACM, 2012, pp. 323–334.

[15] S. Ghorbani and B. Godfrey, “Towards correct network virtualization,”
in Proceedings of the second ACM SIGCOMM workshop on Hot topics in
software defined networking. ACM, 2014.

[16] X. Jin, H. H. Liu, R. Gandhi, S. Kandula, R. Mahajan, M. Zhang, J. Rex-
ford, and R. Wattenhofer, “Dynamic scheduling of network updates,” in
Proceedings of the 2014 ACM conference on SIGCOMM. ACM, 2014,
pp. 539–550.

[17] S. Ghorbani, C. Schlesinger, M. Monaco, E. Keller, M. Caesar, J. Rex-
ford, and D. Walker, “Transparent, live migration of a software-defined
network,” Technical report, CS UIUC, 2013. www. cs. illinois. edu/˜ ghor-
ban2/papers/lime, Tech. Rep.

[18] “Ryu controller,” http://osrg.github.io/ryu/, accessed: 2014-11-01.

[19] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: rapid
prototyping for software-defined networks,” in Proceedings of the 9th ACM
SIGCOMM Workshop on Hot Topics in Networks. ACM, 2010, p. 19.

[20] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat,
“Hedera: Dynamic flow scheduling for data center networks.” in NSDI,
vol. 10, 2010, pp. 19–19.

41

[21] “Estimating the number of tcp sessions per host,” http://blog.ipspace.
net/2013/10/estimating-number-of-tcp-sessions-per.html, accessed:
2015-4-22.

[22] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu et al., “B4: Experience with a
globally-deployed software defined wan,” in ACM SIGCOMM Computer
Communication Review, vol. 43, no. 4. ACM, 2013, pp. 3–14.

[23] P. Francois, M. Shand, and O. Bonaventure, “Disruption free topology
reconfiguration in ospf networks,” in INFOCOM 2007. 26th IEEE Inter-
national Conference on Computer Communications. IEEE. IEEE, 2007,
pp. 89–97.

[24] P. Kazemian, M. Chan, H. Zeng, G. Varghese, N. McKeown, and
S. Whyte, “Real time network policy checking using header space analy-
sis.” in NSDI, 2013, pp. 99–111.

[25] A. Noyes, T. War, P. Černý, and N. Foster, “Toward synthesis of network
updates.” in Proceedings of Workshop on Synthesis (SYNT), July 2013.

[26] R. McGeer, “A safe, efficient update protocol for OpenFlow networks,”
in Proceedings of HotSDN, 2012.

[27] N. P. Katta, J. Rexford, and D. Walker, “Incremental consistent updates,”
in Proceedings of the second ACM SIGCOMM workshop on Hot topics in
software defined networking. ACM, 2013, pp. 49–54.

[28] H. H. Liu, X. Wu, M. Zhang, L. Yuan, R. Wattenhofer, and D. Maltz,
“zupdate: updating data center networks with zero loss,” in Proceedings
of the ACM SIGCOMM 2013 conference on SIGCOMM. ACM, 2013,
pp. 411–422.

[29] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri, and
R. Wattenhofer, “Achieving high utilization with software-driven wan,”
in ACM SIGCOMM Computer Communication Review, vol. 43, no. 4.
ACM, 2013, pp. 15–26.

42

