
1

Safe Update of Hybrid SDN Networks
Stefano Vissicchio, Laurent Vanbever, Luca Cittadini, Geoffrey G. Xie, Olivier Bonaventure

Abstract—The support for safe network updates, i.e., live
modification of device behavior without service disruption, is
a critical primitive for current and future networks. Several
techniques have been proposed by previous works to implement
such a primitive. Unfortunately, existing techniques are not
generally applicable to any network architecture, and typically
require high overhead (e.g., additional memory) to guarantee
strong consistency (i.e., traversal of either initial or final paths,
but never a mix of them) during the update.

In this paper, we deeply study the problem of computing
operational sequences to safely and quickly update arbitrary
networks. We characterize cases for which this computation
is easy, and revisit previous algorithmic contributions in the
new light of our theoretical findings. We also propose and
thoroughly evaluate a generic sequence-computation approach,
based on two new algorithms that we combine to overcome
limitations of prior proposals. Our approach always finds an
operational sequence that provably guarantees strong consistency
throughout the update, with very limited overhead. Moreover, it
can be applied to update networks running any combination
of centralized and distributed control-planes, including different
families of IGPs, OpenFlow or other SDN protocols, and hybrid
SDN networks. Our approach therefore supports a large set
of use cases, ranging from traffic engineering in IGP-only or
SDN-only networks to incremental SDN roll-out and advanced
requirements (e.g., per-flow path selection or dynamic network
function virtualization) in partial SDN deployments.

Index Terms—Network management, network updates, recon-
figuration, hybrid SDN, theory, algorithms, simulations.

I. INTRODUCTION AND RELATED WORK

Networks have to be updated often, e.g., to support prompt
failure reaction, traffic engineering, policy changes and service
deployment [1], [2], [3]. Network updates consist in modifying
the forwarding table (Forwarding Information Base or FIB)
of network nodes. An update can indeed be abstracted as
a process that replaces initial FIB entries with final ones
on all nodes. For reliability, updates should be performed
incrementally, passing through a sequence of intermediate
states. To avoid disruptions, consistency properties, like the
absence of forwarding anomalies in every intermediate state
or short update time, should be guaranteed. Many techniques
have been proposed to carry out safe updates in various
settings – see, e.g., [4] for a survey.

Unfortunately, the applicability of mainstream approaches is
limited for two reasons: (i) the overhead that they impose to

Stefano Vissicchio is currently with University College London, UK
(email:s.vissicchio@cs.ucl.ac.uk); most of this work has been done when
he was a postdoctoral researcher of the Belgian fund for scientific re-
search (F.R.S.-FNRS) at Université catholique de Louvain, Louvain-la-Neuve,
Belgium. Laurent Vanbever is with ETH Zurich, Switzerland (email: lvan-
bever@ethz.ch). Luca Cittadini is with the Roma Tre University, Rome, Italy
(email:ratm@dia.uniroma3.it). Geoffrey Xie is with the Naval Postgraduate
School, Monterey, California (email: xie@nps.edu). Olivier Bonaventure is
with Université catholique de Louvain, Louvain-la-Neuve, Belgium (email:
olivier.bonaventure@uclouvain.be).

guarantee strong consistency during the update; and (ii) their
lack of generality. Table I details those limitations.

Regarding overhead, prior techniques can be classified in
two families. The first family (e.g., [2], [5], [6], [7]) guarantees
strong consistency by consuming extra network resources.
Those techniques either duplicate FIBs to install both the
initial and final entries at the same time on all nodes [2],
[5], [6], or temporarily store packets during updates [7].
Since network resources are typically limited and expensive
(e.g., FIBs of OpenFlow switches implemented with TCAMs),
those techniques are not always practical. The second family
(e.g., [8], [9], [10], [11], [12], [13], [14], [15]) is based on
replacing initial FIB entries with final ones in a carefully-
computed order, which induces no update overhead. Most
of those techniques focus on weaker guarantees than strong
consistency, e.g., absence of forwarding loops [8], [11], all
connectivity disruptions [12], [13], congestion [9], [10] or
middlebox bypassing [14]. Moreover, the few techniques
(e.g., [15]) that support strong consistency have intrinsic
limitations since a FIB-entry replacement order that guarantees
strong consistency does not exist in some cases.

Regarding generality, prior techniques can only be applied
to networks running either (i) solely a centralized control-
plane (e.g., OpenFlow [2], [3], [5], [7], [9], [10], [11], [6],
[15]), or (ii) exclusively a distributed one (e.g., a link-state
IGP [8], [16], [17]). Hence, they do not support a wide
set of use cases, including (i) incremental SDN roll-out;
(ii) protocol replacement, e.g., of OpenFlow with future SDN
protocols; and (iii) update of hybrid SDN networks [18],
running both traditional control-plane protocols (IGP, BGP,
etc.) and an SDN controller. We expect hybrid SDN to become
the norm rather an exception in the future, as also suggested
by documented SDN deployments [1], [9]: This likely makes
those use cases more and more important over time.

Overcoming limitations of previous techniques means com-
puting quick updates of generic networks, possibly running
multiple control-planes, while guaranteeing strong consistency
(also called safety in the following) with low overhead. This
is hard for many reasons. First, guaranteeing strong consis-
tency during an update is challenging. Indeed, we need to
compute an operational sequence ensuring that no traffic flow
is forwarded on any combination of initial and final paths,
in each transient state of the update. Second, this challenge is
exacerbated by our additional requirements, that is, quickness,
low resource consumption, and general applicability. These
requirements transform the decision problem of finding a safe
update sequence into an optimization problem where all safe
operational sequences have to be (implicitly) compared. Even
worse, these requirements cannot be easily accommodated
simultaneously. For example, updating destinations one by one
limits memory overhead (by adding at most one FIB entry per

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCL Discovery

https://core.ac.uk/display/111016236?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2

update feasible strong update supported
technique update consistency overhead control-planes

Update protocol [16] always no none modified link-state IGP
Shadow config [17] always yes FIB duplication distributed protocols
Ordered IGP changes [8] not guaranteed no none link-state IGP
Two-phase commit [2], [5], [6] always yes FIB duplication OpenFlow
Packet storage [7] always no packet storage modified OpenFlow
Ordered replacements [9]-[14] not guaranteed no none OpenFlow
Update synthesis [15] not guaranteed yes none OpenFlow

Post-ordering duplication (this paper) always yes few FIB entries any combination

TABLE I
OUR ALGORITHMS OVERCOME LIMITATIONS OF PRIOR TECHNIQUES (SHOWN IN CHRONOLOGICAL ORDER).

node at each step), but drastically increases the update time.
Finally, the need for generality prevents us from relying on
specific features of given control-planes, like the ability of
OpenFlow switches to send packets to the controller. In con-
trast, it requires to consider control-planes with qualitatively-
different behaviors under a common framework.

In this paper, we describe how we tackled those challenges.
We present a deep problem analysis, leveraging a generic
control-plane model. We analyze the consequent theoretical
findings and their impact on the literature. From our theory, we
also derive a procedure that efficiently computes quick, safe,
low-overhead updates of networks running any combination
of centralized and distributed control-planes. Our procedure
combines FIB-entry replacement and duplication, availing of
their strengths and limiting their drawbacks (see Table I). This
way, it generalizes principles of the recent FLIP algorithm [19]
to arbitrary networks beyond OpenFlow-only ones. Our proce-
dure works in two steps: it first orders FIB-entry replacements
until safe, and then uses minimal extra memory to complete
updates. In both phases, it parallelizes operations to limit the
network-update time.

This paper therefore makes the following contributions.

Compelling use cases, not supported by prior works (§II).
We aim to enable management abstractions (similar to [2])
in hybrid SDN networks. This would provide support for use
cases like safe and incremental roll-out of SDN, advanced
traffic engineering in partial deployments, and dynamic man-
agement of virtualized functions in (partial) SDN networks.

Problem analysis (§III). We abstract the update problem
posed by our use cases, and illustrate the limitations of
algorithms that exclusively rely on FIB entry replacement
or solely on FIB duplication. We also detail the impact of
qualitatively-different control-planes on previous works.

Theory (§IV). We zoom into the problem of finding a safe,
quick, zero-overhead update sequence, and relate its com-
plexity to fundamental properties of run control-planes. Our
findings shed new light on the current literature. We indeed
show that a simple (greedy) strategy is optimal to ensure strong
consistency whenever the involved control-planes do not react
to FIB changes, like basic OpenFlow controllers and link-state
IGPs. That is, computationally-hard algorithms (e.g., [15])

can be avoided for those use cases. Further, we characterize
instances of the zero-overhead update problem that require
structurally different algorithms with respect to existing ones.

Algorithms (§V). To support generic-network updates, we
design new algorithms implementing the two steps in our pro-
cedure. In the first step, the GPIA (Generic Path Inconsistency
Avoider) algorithm computes the longest sequence of parallel
per-node FIB replacements that guarantees strong consistency
with no overhead. Since this sequence may not complete the
update, the second step runs another original algorithm, called
FED (FIB Entry Duplicator), that judiciously duplicates FIB
entries. We formally prove the correctness of our algorithms
and two-phase procedure for any (hybrid SDN) network.

Evaluation and comparison with prior work (§VI). We
simulate our algorithms in realistic scenarios mimicking incre-
mental SDN deployment and traffic engineering cases. In most
experiments, GPIA safely orders many FIB entry replacements
(often for more than 70% of the nodes). By complementing
GPIA with FED, we achieve quick, safe updates, either
improving the update success rate or obtaining 80 − 100%
overhead reduction with respect to mainstream alternatives.

II. HYBRID SDN UPDATE USE CASES

Previous works (e.g., [1], [18], [20]) have shown that
hybrid SDN networks are profitable. In particular, they al-
low operators to keep offered services (e.g., MPLS VPNs)
and interaction with other networks (e.g., via BGP), while
achieving some SDN advantages (improved manageability
and flexibility) without a complete replacement of traditional
network components (devices, protocols, etc.).

In this section, we show the practical importance of support-
ing fast and safe updates in hybrid SDN networks, through
a set of use cases. Note that no previous work is directly
applicable to these use cases. Indeed, existing techniques focus
on either IGP-only or SDN-only networks (see Table I).

We illustrate the identified use cases on the network shown
in Fig. 1, where a link-state IGP and an SDN controller
coexist. Nodes (i.e., routers or switches) are represented by
circles, and physical links by edges labeled with their IGP
weights (that determine IGP paths through shortest-path com-
putation). The only node also supporting SDN protocols (e.g.,



3

10

1

r5

r2

r4

d1

1

r1

r3

1

fw2

1

1
d2

fw1

LEGEND

IGP

SDN

r6

SDN

(non ssh)

(ssh)

100 1
supports SDN
protocols

Fig. 1. Example of hybrid SDN network.

OpenFlow) is r1, represented as a filled circle. The SDN con-
troller can program the forwarding of all nodes including the
IGP-only ones, e.g., by installing static routes, using standard
interfaces to the routing system [21], or injecting information
in the IGP [22]. The network contains two firewalls fw1
and fw2 (filled rectangles). In this example, traffic flows for
destination d1 (dashed arrows) are forwarded on IGP shortest
paths. In contrast, the SDN controller imposes that flows for d2
follow different paths depending on whether they carry ssh
traffic (dotted arrows) or not (solid arrows).

Incremental deployment of SDN. Consider the case of an
operator willing to introduce an SDN controller in an IGP-
only network. To ensure a smooth and controlled transition
and acquire confidence with the new paradigm, she may
want to initially rely on the SDN controller only for a small
portion of non-critical traffic. Fig. 1 can represent this first
configuration. From there, the operator may want to roll back
to the initial state if she has to debug the SDN controller,
e.g., for unexpected behavior. Alternatively, after a trial period
and maybe the deployment of additional SDN nodes, she may
want to progressively move more and more flows (e.g., the
ones from r1 to d1 in Fig. 1) under SDN control.

Both moving to a new network state and rolling back to
previous ones require network updates in which flows are
moved from IGP to SDN control, and vice versa.

Dynamic traffic engineering. In Fig. 1, only the flows for d2
are controlled by SDN. This may be motivated by the need to
adjust forwarding paths for the typically-few most important
flows, e.g., deviating from shortest-path routing [20], [22]. For
example, flows from r1 to d2 may carry high traffic volumes,
or be subject to special requirements (e.g., low latency).

In those setups, network updates are needed whenever traffic
distributions or requirements change. As an example, should a
flash crowd occur for destination d1, the SDN controller may
have to tweak the forwarding of flows for d1 and split them
on different paths, possibly releasing the control of flows for
d2 if their volumes become negligible. Similarly, if a customer
sending traffic from r3 signs up for a low-latency service, the
SDN controller should also take in charge the flows from r3.

Dynamic and conditional SDN functionalities. Hybrid SDN
networks can support SDN functionalities without requiring
a full SDN deployment. For instance, in Fig. 1, fine-grained
policies are applied even if r1 is the only SDN-enabled node.
Indeed, traffic from r1 to d2 is forwarded on different paths

on the basis of its type. This can support security policies
through middleboxing (e.g., forcing the non-ssh traffic from
r1 through a firewall), while maximizing the utilization of
the network (e.g., load-balancing traffic from r1). Similarly,
virtualized network functions can be deployed on SDN nodes,
and be used to process any flow traversing those nodes.

Network updates (of both IGP- and SDN-controlled flows)
are needed to support SDN functionalities dynamically, e.g.,
depending on traffic volumes, or conditionally, e.g., under
given network conditions. For example, the instantiation of
virtualized security functions may be needed upon alarms (e.g.,
anomalous traffic surges) raised for specific flows; also, fine-
grained forwarding policies may depend on the load of single
middleboxes [23]. In Fig. 1, upon reception of suspicious
traffic from r3 and r4, several forwarding paths may need
to be updated, to enforce stricter security policies while
avoiding link congestion. For example, the operator may want
to (i) reconfigure the IGP network so that all r4’s flows traverse
fw2; (ii) bring r3 − d1 flows under SDN control to force the
corresponding traffic through fw2; and (iii) force r1−d2 flows
through fw1, to balance the load between fw1 and fw2.

In this paper, we treat IGP-only and pure SDN networks
as special cases of hybrid SDN ones. Hence, our findings
hold and our algorithms can be used as-is in IGP-only and
SDN-only use cases studied by previous works, e.g., protocol
replacements, traffic engineering in IGP or SDN networks, and
dynamic functions in SDN-only networks.

III. PROBLEM ANALYSIS

To support the use cases presented in §II, we need the ability
to safely and quickly update arbitrary networks at runtime.

An update can be generally defined as a sequence of
steps, each including a set of operations run in parallel. The
sequence replaces initial forwarding paths with final ones, by
progressively changing nodes’ FIB entries. We refer to any
set of paths installed after the application of a sub-sequence
of steps as intermediate paths or intermediate state.

To be safe, an update sequence must provably avoid inter-
mediate states with path inconsistencies. A path inconsistency
is a non-empty set of traffic-traversed paths that are different
from both the initial and the final ones. Avoiding path incon-
sistencies ensures preservation of both forwarding correctness
(delivery of packets to their destinations) and policies, e.g.,
security (traversal of a firewall, as for flows sourced at r1 in
Fig. 1) and performance (low-latency for certain flows) ones.

Since simultaneity of operations is impossible to guarantee
in practice, we consider sequences as safe only if path incon-
sistencies are prevented independently of the relative order in
which operations in the same step are executed by nodes. This
condition indeed ensures strong consistency even if operations
are delayed or not performed by nodes, e.g., because of lost
controller commands. However, it excludes naive approaches
like executing all the operations in a single step.

A. Prior techniques cannot achieve safety with low overhead

Duplicating FIBs is not always practical. A straightforward
approach to guarantee the absence of path inconsistencies is



4

w

u v z

d

LEGEND: Link-state IGP SDN

y

x h

Fig. 2. An example in which no FIB replacement ordering can prevent path
inconsistencies. The only applicable approach among prior works is network-
wide FIB duplication [17], [2], [5], that comes with high overhead.

to maintain both the initial and final states on the nodes, i.e.,
duplicating their FIB. Packets can then be tagged, so that all
the nodes process them consistently, according to packet tags.
This approach is adopted in several update techniques, tailored
to either SDN [2] or traditional [17] networks.

Duplicating the FIB on all nodes is generally unnecessary
and not practical. Consider Fig. 2, where d represents a
destination, and IGP paths for d have to be replaced with the
SDN ones. Assume that y’s FIB is almost full, with space for
only 10 additional entries. Let 1, 000 destinations be attached
to w as d, and the update represented in the figure affect all
of them. In this case, we simply cannot duplicate y’s FIB to
perform the update, because there is not enough room in y’s
FIB. A workaround consists in splitting the update in multiple
rounds [5], each updating 10 destinations. This, however, will
significantly slow down the update, e.g., requiring to perform
100 sub-update procedures in our example, only to comply
with FIB entry scarcity at some nodes (i.e., y).

Ordering FIB entry replacements is not always possible.
Computing a safe sequence of FIB entry replacements, e.g., as
proposed in [8], [9], [10], [15], is the most effective approach
to limit memory overhead. It consists in replacing (some)
initial FIB entries of some nodes with the corresponding final
ones, following a carefully-computed order.

Unfortunately, a safe update cannot be performed by only
ordering FIB-entry replacements, in some cases. Consider
again Fig. 2, with IGP paths to be replaced with SDN ones.
In this case, FIB-entry replacements on u, v and z cannot be
ordered without causing a path inconsistency. Indeed, starting
from z creates an intermediate path including a forwarding
loop between v and z. Also, starting the update from u or v
leads to path inconsistencies at u, namely, (u z w d) in the
former case and (u v w d) in the latter. In both cases, the
(v z) link is not traversed, potentially leading to a security
violation (e.g., if a firewall is positioned on that link).

B. Prior techniques can hardly be generalized

Different control-planes must be treated differently, depend-
ing on whether they react to node FIB changes or not [13].
Link-state IGPs and simple OpenFlow controllers (that we
considered in the previous examples) do not react to FIB
changes. However, protocols such as EIGRP (which is often
used in enterprise networks [24]) react to FIB changes by
withdrawing routes that traverse nodes whose FIB entries are
not installed by the protocol itself. Similarly, SDN protocols

w

u v z

d

LEGEND: EIGRP SDN

y

x h

updated

node

Fig. 3. EIGRP [24] triggers a path inconsistency remotely (on h), when
updating one node (y). This path inconsistency is not avoided by previous
algorithms, since they assume that FIB changes have only local effects.

like OpenFlow offer primitives for building controllers that are
notified and react to FIB changes [13].

Reaction to FIB changes has an impact on the computation
of safe updates. Assume that the IGP used in Fig. 3 is EIGRP.
Let y be the first node to be updated, as shown in Fig. 3.
As soon as y installs its final FIB entry, the IGP control-
plane withdraws all the IGP paths traversing y (since y stops
propagating its EIGRP routes to its neighbors). Consequently,
h changes its FIB entry (even if not updated): It replaces
its initial path (h y w d) with the new shortest path for d
including non-updated IGP nodes only. Should such new path
be (h x w d), we would have a path inconsistency.

The described path inconsistency is not possible with
control-planes that do not react to FIB changes (e.g., link-
state IGPs). In these cases, updating a node does not trigger
remote effects. All prior update techniques assume the latter
control-plane behavior. Hence, they do not support update
consistency in the presence of more than one IGPs or multiple
SDN controllers that react to FIB changes.

IV. CHARACTERIZATION OF UPDATE COMPLEXITY

In this section, we describe our model for generic hybrid-
SDN networks (§IV-A), which captures key features of run
control-planes abstracting from implementation details of spe-
cific protocols or controllers. We use this model to distinguish
qualitatively-different updates (§IV-B). In particular, we char-
acterize update scenarios for which it is easy to compute (e.g.,
with a greedy algorithm) a safe update sequence that does not
duplicate FIB entries. The characterization is based on the
nature of control-planes run before (i.e., initial) and after (i.e.,
final) the update, according to our model. Proofs of formal
statements are reported in the Appendix.

We also analyze the consequences of our findings on previ-
ous works (§IV-C). Interestingly, prior techniques can be ex-
tended to hybrid SDN networks that are easy to update, while
harder update cases require structurally-different approaches.

A. Modeling hybrid SDN networks

First, we describe how we model generic network, where
we cannot make any assumption on which control-planes are
run and how they compute nodes’ FIBs.

We rely on a generic control-plane model. We adopt the
model proposed in [13] that applies to networks with arbitrary
combinations of uncoordinated control-planes, each running a
different protocol (or a separate protocol instance). This model
abstracts any control-plane as a process which possibly reads



5

information from nodes, decides per-node forwarding entries,
and installs them on the nodes. A control-plane is called FIB-
aware (FA) if it computes forwarding entries on the basis of
nodes’ FIB content, as for typical implementations of distance-
vector IGPs or SDN controllers that react to FIB changes.
Otherwise, it is FIB-unaware (FU), as for link-state IGPs or
simple SDN controllers.

By definition of FA and FU, the following properties hold.
Property 1: The FIB entries provided by an FU control-

plane to any node are independent of the presence of any
other coexisting control-plane.

Property 2: If the FIB entry of a node for a destination d
is provided by an FA control-plane, the FIB entries of the
successors of that node on any forwarding path for d are
provided by the same FA control-plane.

We refer the reader to [13] for examples of FU and FA
control-planes (including real device configurations) and for
an in-depth discussion of their interactions.

In the following, we indicate network updates as FU-only
if the FIB entries of all nodes to be updated are provided
by FU control-planes before, after and throughout the update.
FA-involving updates encompass all the other cases.

We support hybridly-controlled flows. Indeed, we admit
that flows are forwarded over paths such that some subpaths
are determined by one control-plane (e.g., an IGP) while
other subpaths are provided by another control-plane (e.g.,
an SDN controller), as in [20]. For simplicity, we assume in
the following that every flow is entirely controlled by a single
control-plane in both the initial and final states – but obviously
any flow can be controlled by a control-plane in the initial state
and another control-plane in the final state. This assumption
is without loss of generality, as detailed in the appendix.

B. Distinguishing easy and harder updates

In [13], it has been shown that FU and FA are key to
characterize anomalies due to coexisting control-planes.

We now show that those properties also determine the
complexity of computing fast and safe update sequences with
no overhead. We study how to compute sequence of node
updates. A node update consists in replacing all the initial FIB
entries of a node with its final ones. The following theorem
stresses a fundamental difference between updates of different
hybrid SDN networks, as it solely applies to FU-only updates.

Theorem 1: In an FU-only update, if a node r can be safely
updated at time t, r can also be safely updated at any t′ > t.

A greedy strategy guarantees fast and safe FU-only up-
dates. Consider the greedy algorithm consisting in updating
in parallel (i.e., in the same step) all the nodes that can be
safely updated at a given time t. Theorem 1 implies that the
resulting sequences guarantee strong consistency. The follow-
ing theorem proves that such an approach is also optimal.

Theorem 2: For FU-only updates, the greedy strategy com-
putes safe sequences of minimal length.

Theorems 1 and 2 hold for any FU-only network. Further,
they apply to more complex scenarios, like updates that do
not change FIB entries on any FA-controlled device.

wu n2 z

d

n1

n3

LEGEND

initial

final (SDN)

(FA IGP)

worst u-d
IGP path

candidate
for update

Fig. 4. A naive approach cannot be used for FA-involving updates. In this
case, any among n1, n2, and n3 can be safely updated, but updating all of
them creates a path inconsistency at u (that will remain with no path for d).

Updates involving FA control-planes are harder. Theorem 1
cannot be generalized to updates involving FA control-planes.
Fig. 4 illustrates a counter-example. At time t = 0, updating u
would trigger path inconsistency (u n2 n1 z w d); similarly,
updating z would withdraw all FA paths, leaving the non-
updated nodes u, n1, n2 and n3 without paths. In contrast,
updating n2 or n3 is safe, since they are not used as next-hop
by any other node in the initial state. Moreover, n1 can be
safely updated, because the second best paths in the FA IGP
coincide with the final (SDN) paths. Nevertheless, updating
n1 would imply that n2 cannot be updated anymore, contrary
to what Theorem 1 guarantees for FU-only updates. Indeed,
as soon as n1 and n2 are updated, u receives IGP paths
only from n3, hence it will start using path (u n3 z w d),
generating a path inconsistency. This also implies that an
algorithm updating all n1, n2 and n3 at the same time is
not safe. Indeed, if the update on n3 is slower than the other
two, the path inconsistency (u n3 z w d) will be triggered.
Even worse, after the three nodes are updated, u would be left
without any path for d (since it is not updated yet).

C. Impact on previous algorithms

Previous update algorithms proposed to compute safe FIB
replacements either apply to classic OpenFlow or to existing
link-state IGP protocols, that is, FU-only scenarios. Therefore,
our findings come with the following consequences.

Previous algorithms can be used interchangeably in FU-
only networks. In other words, algorithms targeting link-state
IGP updates (e.g., [8]) can be translated into counter-parts for
simple SDN controllers. Similarly, proposals for OpenFlow
networks (e.g., [15]) can also be used in traditional networks
(unless there is a mismatch between operation granularity).
Finally, all previous approaches can be applied to hybrid SDN
networks where control-planes do not react to FIB changes.

Previous algorithms may be unnecessarily complex for
strongly-consistent FU updates. Theorem 1 implies that a
greedy strategy preserves strong consistency with no overhead
(if a solution exists). Hence, it is not necessary to employ a
non-polynomial algorithm (like the one proposed in [15]) for
those updates. In §V, we present an algorithm that computes
FU-only updates in polynomial time.

Previous algorithms cannot be used in the presence of an
FA control-plane. Indeed, they do not cater for remote effects



6

w

u v z

d

y

x h

(a1) GPIA sequence, step 1

w

u v z

d

y

x h

(a2) GPIA sequence, step 2

LEGEND

init (FU IGP)

final (SDN)

not updated

updated

duplicated FIB

*tag dinit

*tag dfin *

w

u v z

d

y

x h

*

*

(b1) GPIA+FED sequence, step 1

w

u v z

d

y

x h

*

*

(b2) GPIA+FED sequence, step 2

w

u v z

d

y

x h

*

*

*

*

(b3) GPIA+FED sequence, step 3

w

v z

d

y

x h

u*

*

*

*

(b4) GPIA+FED sequence, step 4

Fig. 5. Application of our procedure to the example in Fig. 2. Fig. 5(a1) and 5(a2) reports the node update sequence as computed by GPIA (phase 1 of our
procedure). Fig. 5(b1), 5(b2), 5(b3) and 5(b4) depicts the final operational sequence computed after the application of FED (phase 2 of our procedure).

of FA control-planes (as the ones shown in Fig. 3). Moreover,
§IV-B highlights the need for structurally-different approaches
for FU-only and FA-involving updates. For example, for FA-
involving updates, it is unsafe to rely on a static dependency
graph (formalizing dependencies between update operations),
calculated by exploring the pre- and post-update states, as
proposed in [11]: Indeed, such a dependency graph generally
changes after every update operation.

V. PROVABLY-SAFE GENERIC UPDATES

We achieve safe updates for generic networks in two phases.
The first phase (§V-A) consists in running the GPIA algorithm
to compute sequences of per-node FIB replacements that
avoids path inconsistencies without requiring extra space in
nodes’ FIBs. GPIA also parallelizes replacement operations
whenever safe. Since it might be impossible to complete the
update using replacements alone (see Fig. 2), the second
phase selectively duplicates FIB entries for the problematic
destinations, relying on the FED algorithm (§V-B). This way,
FED guarantees that we always find a feasible update sequence
as long as a single FIB entry can be used on every node.

Fig. 5 illustrates the application of our two-phase procedure
to the example in Fig. 2. Fig. 5(a1) and 5(a2) depict the
sequence computed by GPIA, during the first phase. Despite
being maximal in terms of updated nodes, the GPIA sequence
does not complete the update. Figures 5(b1)-5(b4) display the
final sequence computed by our two-phase procedure, where
the safe node updates computed by GPIA are complemented
by FIB duplication at u, v, and z.

We discuss generality and guarantees of our procedure in
§V-C, providing the corresponding proofs in the appendix.

A. Phase 1: Computing node updates with GPIA

GPIA computes sequences of node updates iteratively. At
each iteration, it simulates the update of every node not yet
updated, stores nodes that do not create path inconsistencies,
and updates one or more of them. It iterates until either the
computed sequence is provably of maximal length, or no
node can be safely updated. In the former case, we have
reached the optimum, hence we return the sequence. In the
latter case, GPIA applies different actions depending on the
involved control-planes. Namely, for FA-involving updates,

Input: node r, destination d, initial FIB entries fib0 , final FIB
entries fibf , updated nodes M
Output: True if r can be updated without creating path inconsistencies

1: check consistency(r, d, fib0, fibf , M )
2: nhs← compute next hops(M ∪ {r}, fib0, fibf , d)
3: curr paths← compute forwarding paths(nhs)
4: return curr paths = compute forwarding paths(fib0) ∨

curr paths = compute forwarding paths(fibf )

Fig. 6. Sub-procedure to check absence of path inconsistencies for d if a
node r is updated.

GPIA backtracks on previous choices, so that it can explore
all safe update sequences. In contrast, for FU-only updates,
GPIA never backtracks, degenerating into a greedy algorithm.

We now provide a more detailed description of GPIA.
A basic building block of GPIA is the check consistency

sub-procedure that checks whether the update of a single
node would cause a path inconsistency. This sub-procedure
is reported in Fig. 6. Given a node r and a destination d, it
computes all the forwarding paths for d that would be installed
if r is updated (line 3). Then, it compares the obtained paths
with both the initial and final ones (line 4). Paths are built
by concatenating the next-hops used by each node. In turn,
given a set of updated nodes M , the next-hops of every node
are calculated by the sub-procedure compute next hops (line
2), which is polymorphic with respect to the control-planes
used by each node. For any node n whose FIB entries are
provided by an FU control-plane, computing its next-hops for
any destination d is easy: By Property 1, if n is updated, then it
uses its final next-hops for d, otherwise n uses its initial ones.
In contrast, for any node m whose FIB entries are provided by
an FA control-plane, we must compute its next-hops according
to Property 2: For any destination d, m’s next-hops are the
successors of m on the shortest path from m to d such that
all the nodes in the path also use the same FA control-plane
as m. This computation can be done in polynomial time, by
calculating all shortest paths from m to d in a graph including
only the nodes using the same FA control-plane as m.

The core of the GPIA algorithm is reported in Fig. 7. After
variable initialization (line 2), it builds a set Cd for every



7

Input: all nodes N , initial FIB entries fib0, final FIB entries fibf ,
all destinations D, set of updated nodes M .
Output: max sequence of node updates.

1: compute sequence(N ,fib0,fibf ,D,M )
2: seq,max seq ← []
3: for d ∈ D do
4: Cd ← ∅
5: for x ∈ N \M do
6: if check consistency(x, d, fib0, fibf ,M) then
7: Cd ← Cd ∪ {x}
8: end if
9: end for

10: end for
11: C ← ∩d∈DCd

12: for n ∈ C do
13: tail← compute sequence(N, fib0, fibf , D,M ∪ {n})
14: seq ← add node update(n, tail, C)
15: if is maximal update(N,M, seq) then
16: return seq
17: end if
18: max seq ←get longer sequence(max seq, seq)
19: end for
20: return max seq

Fig. 7. GPIA Algorithm.

destination d. This set contains all the per-destination candi-
dates, i.e., all the nodes that can be updated without generating
a path inconsistency for d. Sets Cd are computed by the
check consistency sub-procedure (lines 3-10). After all sets
Cd are populated, the algorithm calculates cross-destination
candidates C as the intersection of all per-destination candi-
date sets (line 11). Then, GPIA updates a cross-destination
candidate and recurs on the remaining non-updated nodes:
By iterating on all cross-destination candidates (backtracking
phase), it explores all safe update sequences and eventually
returns the longest one, unless it discovers a sequence that is
guaranteed to be maximal (lines 12-20). To assess whether a
sequence is maximal, the sub-procedure is maximal update
checks whether the input sequence seq covers all the nodes
not yet updated at the current iteration (i.e., in N \M ).

This default GPIA behavior is actually tweaked in the
case of FU-only updates. First, is maximal update always
returns True for FU-only updates, ensuring that GPIA never
backtracks on previous candidate choices and becomes a
greedy algorithm. This has no impact on the output of GPIA:
Indeed, Theorem 1 implies that if a node r is a cross-
destination candidate at any iteration i, it remains so until
it is updated. Second, GPIA parallelizes node updates by log-
ging cross-destination candidate sets and aggregating update
operations on nodes belonging to the same cross-destination
candidate set within the add node update sub-procedure.
Theorem 1 ensures that this aggregation is safe.

As an illustration of a GPIA execution, consider again the
update scenario illustrated in Fig. 2. In the first iteration, GPIA
computes a cross-destination candidate set C = {x, y, w},
as they are the nodes that can be updated without triggering
path inconsistencies. GPIA then updates any of the three, and
iterates. Let’s assume, without loss of generality, that x is

updated first. In this case, the cross-destination candidate set
computed by GPIA in the second iteration is C ′ = {y, w, h},
since the update of h would not create path inconsistencies
anymore, given that x is already updated. GPIA then selects
any other node in C ′ and iterates again. After updating x,
y, w and h, GPIA finds no additional node that can be
safely updated. Since is maximal update always returns
true for FU-only updates, GPIA terminates without explor-
ing other update sequences (e.g., trying to update y first).
Moreover, add node update aggregates node updates into
groups, according to the sequence of explored candidate sets.
In particular, it aggregates the updates of x, y and w in a
single update step, since the first candidate set computed by
GPIA is {x, y, w}. Eventually, GPIA returns [{x, y, w}, {h}]
as update sequence, as shown in Figs. 5(a1) and 5(a2).

Note that we deliberately omitted several algorithmic opti-
mizations, including those added to our GPIA implementation.
For instance, forwarding paths can be stored, incrementally re-
computed and re-used across iterations. A detailed description
of these optimizations is beyond the scope of this paper.

B. Phase 2: Selectively duplicating FIB entries with FED

The second phase of our update-computation procedure
consists in selectively duplicating the FIB entries (of some
nodes, for specific destinations) that cannot be replaced with-
out creating path inconsistencies.

The algorithm used in this second phase is called FED, and
is detailed in Fig. 8. It is basically a generalization of previous
techniques based on maintaining both the initial and final FIB
entries on all nodes at the same time [2], [17].

After initialization (lines 2-3), FED identifies all the unsafe
pairs, that is, node-destination pairs for which the FIB entries
have to be duplicated. Given a sequence S produced by GPIA,
FED first computes the set N ′ of non-ordered nodes, i.e., the
nodes that are not included in the GPIA sequence (line 4). It
then constructs the set U of unsafe pairs by iterating on all
non-ordered nodes and destinations (lines 5-9). For each non-
ordered node n and destination d, FED adds (n, d) to U , unless
(i) n can be safely updated for d, i.e., consistency check
returns true; or (ii) n is guaranteed to have the same next-hops
in the initial and final state, i.e., is guaranteed final returns
true, because n’s initial and final FIB entries are identical and
no FA control-plane is involved in the update.

Based on U , FED duplicates FIB entries only for the
identified unsafe pairs adding some steps to the input sequence
S and returning a modified sequence S′ (lines 10-16).

First, add prepare match tag adds one set of parallel
operations to the first step in S, to prepare packet tagging
and tag matching. Namely, for each unsafe pair (n, d), the
initial FIB entry of n for d is replaced with two entries. The
first replacing entry matches a tag d init (e.g., no tag or a
tag already present in current packets) and applies the initial
forwarding action (e.g., forwarding packets to the initial next-
hops of n). Similarly, the second replacing entry matches
a d fin 6= d init tag and applies the final action (e.g.,
forwarding packets to the final next-hops). Tags for any unsafe
destination d are set by border nodes, i.e., the ingress nodes of



8

Input: all nodes N , initial FIB entries fib0, final FIB entries fibf ,
all destinations D, updated nodes M , node-update sequence S.
Output: final operational sequence.

1: compute FIB duplication(N ,fib0,fibf ,D,M ,S)
2: U ← ∅
3: S′ ← S
4: N ′ ← N \M
5: for (x, d) ∈ N ′ ×D do
6: if check consistency(x, d, fib0, fibf ,M) = False and

is guaranteed final(x, d, fib0, fibf ,M) = False then
7: U ← U ∪ {(x, d)}
8: end if
9: end for

10: B ← get per dest border nodes (fib0, fibf , U)
11: S′ ← add prepare match tag(S′, B,N ′)
12: O1 ← swap tags(B)
13: O2 ← update nodes(N ′)
14: O3 ← clean border nodes(B)
15: S′ ← get concat(S′, O1, O2, O3)
16: return S′

Fig. 8. FED algorithm.

packets for d – computed by the get per dest border nodes
sub-procedure (line 10). In the first update step of S′, border
nodes are instructed to push d init tags. In the example of
Fig. 5, for instance, FED imposes that additional operations
are performed in parallel to the update of x, y, and w (as in the
first step of the GPIA sequence). Those additional operations
(i) duplicate the FIB entries of u, v, and z for d to match
the d init and d fin tags in addition to the destination; and
(ii) instruct u and h (from which packets for d enter the
network) to add the d init tag to packets for d. Globally,
all those operations lead to the state displayed in Fig. 5(b1).

In addition, FED adds three successive sets O1, O2, O3

of parallel operations at the very end of S (lines 14-17 in
Fig. 8). Operations in O1 instruct border nodes to push final
d fin tags. In Fig. 5, this translates into u pushing the d fin
tag rather than the d init one to packets for d after the GPIA
sequence has been applied. Note that u also starts sending
those packets to its final next-hop z, as a result of matching
tags for d since the first update step. The resulting state is
reported in Fig. 5(b3). Operations in O2 install final FIB
entries on all non-ordered nodes. Notably, the entries installed
for any unsafe node-destination pair (n, d) are replaced by the
final entry of n for d. In our example in Fig. 5, the application
of operations in O2 brings v and z to their final state (see
Fig. 5(b4)), and removes FIB entry duplication on u (but u
keeps tagging packets for d). The update is virtually over after
O2. Operations in O3 remove packet tagging.

C. Properties of our two-phase procedure

(i) Our procedure applies to any combination of coexisting
control-planes. Some GPIA sub-procedures are polymorphic
with respect to the control-planes involved in the update, as
discussed in §V-A. This way, the resulting sequence is safely
applicable to networks running arbitrary control-planes. FED
is also general. Indeed, the critical operations that FED adds

to GPIA sequences, i.e., packet tagging and tag matching,
are supported by both SDN and IGP nodes. For SDN, the
definition itself of nodes as programmable hardware (e.g.,
through low-level protocols like OpenFlow) natively provides
support for those operations [2]. In contrast, IGP nodes can
rely on mechanisms like Policy Based Routing (PBR), com-
monly available on commercial devices (see, e.g., [25], [26]).

(ii) Our procedure computes safe updates. Indeed, we
proved the following theorem.

Theorem 3: Our two-phase procedure ensures that path
inconsistencies do not occur during the update.

(iii) Our procedure updates the maximum number of nodes
without adding FIB entries. Indeed, we proved the following
theorem.

Theorem 4: GPIA finds update sequences in which the
maximal number of nodes are updated without causing path
inconsistencies.

As a consequence of Theorem 1, additional properties hold
for FU-only updates.

(iv) The time complexity of our procedure is polynomial.
In general, the time efficiency of GPIA depends on the
backtracking phase, which can lead to exponential complexity.
However, for FU-only updates GPIA never backtracks (see
§V-A). Theorem 1 ensures that this has no impact on the safety
and length of the computed update sequence.

(v) Our procedure computes quick updates. Indeed, for FU-
only updates, GPIA minimizes the length of the computed se-
quence by parallelizing operations (see Theorem 2). Moreover,
FED adds three groups of operations to the sequence produced
by GPIA (if it does not complete the update). Our evaluation
(§VI) experimentally confirms that the computed sequences
tend to have a very limited number of steps.

VI. EVALUATION

In this section, we experimentally evaluate the effectiveness
of our two-phase procedure (§V), focusing on the gain that
it achieves with respect to previous approaches in practical
use cases. We describe our evaluation setup in §VI-A. We
report experimental results and compare our approach with
mainstream alternatives in §VI-B and §VI-C.

For the evaluation, we used a single-threaded Python
implementation of the algorithms reported in Figs. 6, 7
and 8. We have publicly released this implementation at
http://inl.info.ucl.ac.be/softwares/hybridupdate.

A. Dataset and Methodology

We used realistic topologies. Our dataset included all the
publicly available Rocketfuel topologies [27].

In our experiments, we used border nodes as destinations of
the forwarding paths to be updated. Those nodes attract Inter-
net traffic and are usually critical for both traffic engineering
and policy routing requirements. We determined the border
nodes as follows. For each topology, we partitioned the nodes
according to the cities in which they are located. Then, we
defined the nodes having no direct links with nodes in other



9

cities as border nodes. The identified border nodes are 38 out
of 306 nodes for AS 1221, 212/315 for AS 1239, 10/322
for AS 1755, 27/656 for AS 3257, 19/294 for AS 3967, and
73/748 for AS 6461.

We relied on realistic update scenarios. We performed
multiple experiments covering two scenarios.

The first scenario consisted in single-destination updates
where we changed forwarding paths for a single destination.
This scenario mimics fine-grained update operations like per-
destination deployment of new control-planes (e.g., SDN), vir-
tual machine migrations from one data center to another, and
update of low-delay flows (e.g., towards a VoIP server). In each
of those experiments, we considered a Rocketfuel topology
and we randomly selected one border node as destination.

The second scenario reflected multi-destination updates in
which all the border nodes are simultaneously selected as des-
tinations. It intuitively maps to a worst-case analysis of large
traffic engineering operations including global optimization of
forwarding paths, or prompt reaction to network events (e.g.,
congestion-threatening traffic surges).

We computed the initial and final forwarding paths as
follows. We took the shortest paths in the original topology
as initial paths, installed before the update. Then, to evaluate
the impact of the number of updated paths, we performed
two sets of experiments per scenario, in which the final paths
were computed as the shortest paths in a topology with 5
or 10 modified link weights respectively. The modified link
weights were assigned values consistent with the other weights
in the same topology. We chose to modify 5 or 10 weights
because traffic engineering optimizations typically correspond
to a number of weight changes in that range [28].

We stress that our approach supports additional scenarios
(not evaluated for brevity), like moving traffic flows away from
specific links and nodes to avoid or remove congestion.

We considered our two-step procedure as well as alter-
native approaches. Consistently with Table I, we grouped
alternatives to our approach into two broad classes.

The first class is two-phase commit, e.g., used in [2], [17],
[5], [6]. This approach duplicates all FIB entries so that each
node maintains both the initial and final FIBs. The update
then consists in tagging packets so that the final FIB rules
are applied network-wide, and finally removing the initial FIB
entries. Since FED is a generalization of previous two-phase
commit algorithms, we ran FED on an empty sequence to
compare our procedure with two-phase commit.

The second class is FIB-entry replacement ordering, where
FIB entries are replaced in a carefully-computed order. To
compute a safe order, several algorithms (e.g., [8], [15]) have
been proposed in literature. To compare with such algorithms,
we ran GPIA alone: Since GPIA is provably safe and optimal
(see Theorem 4), no algorithm based on FIB-entry replacement
ordering can perform better than GPIA.

We performed simulations. The compared algorithms are
correct and applicable to real networks. Indeed, safety of
the computed sequences is proved in the appendix, while
applicability is ensured by the ability of our control-plane

model to capture the behavior of real control-planes and
devices, as shown in [13] with emulations and testbeds.

The goal of our evaluation is therefore to assess the prac-
ticality of our two-step procedure in comparison to existing
techniques. Consistently, we use success rate, memory over-
head, time to compute the update sequence, and length of
computed sequences as evaluation metrics.

With these observations in mind, we opted for simulating the
application of the evaluated techniques to our update scenarios.
With respect to emulations, simulations are (i) more general,
since we can generalize results to any FU or FA control-
plane irrespectively of low-level environmental (e.g., event
timings) and implementation (e.g., protocol message format
and device-specific operations) details [13]; (ii) more scalable,
enabling us to evaluate different update techniques on realistic
networks with hundreds of nodes; (iii) independent from the
experimental setup, from the virtualization environment to
the software emulating the device operating system; and,
consequently, (iv) easier to reproduce.

To ensure statistical significance, we repeated every exper-
iment 60 times. In each repetition, we randomly selected the
links having different weights in the final graph.

B. Updates of FIB-unaware control-planes

We started our evaluation restricting to networks exclusively
running FU control-planes both before and after the simulated
update. We recall that FU control-planes prominently include
commonly-used link-state IGPs and OpenFlow controllers.
Hence, the evaluated update scenarios support all our use
cases (see §II) in hybrid networks running a link-state IGP
and an FU SDN controller. Moreover, they map to arbitrary
IGP configuration modifications, and change of FIB rules in
pure SDN networks.

Experimental results show that our procedure always
achieves safe updates with few additional FIB entries.

Contrary to FIB-entry replacement ordering, our pro-
cedure achieves 100% success rate. Fig. 9 compares the
percentage of cases in which our approach and any entry
replacement ordering technique can compute a safe update.

Fig. 9(a) shows that techniques only using FIB-entry re-
placements fail to compute a safe update in many cases (from
25% to 90% depending on the topology) in single-destination
experiments. Those techniques quickly become practically in-
applicable if multiple destinations are impacted by the update
(see Figs. 9(b) and 9(c)): Their success rate drops under 20%
and 5% for all topologies in our multi-destination experiments
with 5 or 10 different weights respectively.

Globally, Fig. 9 suggests that solely relying on replacement
ordering is not practical if strong consistency has to be
guaranteed. In contrast, our procedure (as well as two-phase
commit) is successful in any update scenario. This is because
our approach complements FIB-entry replacements with FIB-
entry duplications, i.e., running FED after GPIA.

Our procedure hugely reduces the number of duplicated
FIB entries. A FIB-entry replacement ordering is seldom
sufficient to perform a complete update. However, in many



10

topology

%
 o

f 
fe

a
s
ib

le
 c

o
m

p
le

te
 u

p
d

a
te

s

0
2

0
4

0
6

0
8

0
1

0
0

1
2

0

1221 1239 1755 3257 3967 6461

node ordering (UB) our approach

(a) Single-destination

topology

%
 o

f 
fe

a
s
ib

le
 c

o
m

p
le

te
 u

p
d

a
te

s

0
2

0
4

0
6

0
8

0
1

0
0

1
2

0

1221 1239 1755 3257 3967 6461

node ordering (UB) our approach

(b) Multi-destination, 5 link changes

topology

%
 o

f 
fe

a
s
ib

le
 c

o
m

p
le

te
 u

p
d

a
te

s

0
2

0
4

0
6

0
8

0
1

0
0

1
2

0

1221 1239 1755 3257 3967 6461

node ordering (UB) our approach

(c) Multi-destination, 10 link changes

Fig. 9. Contrary to FIB replacement techniques, our approach can always be used for a safe update.

20 40 60 80 100

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

% of nodes updated using only GPIA

F
ra

c
ti
o
n
 o

f 
e
x
p
e
ri

m
e
n
ts

 (
C

C
D

F
)

1221

1239

1755

3257

3967

6461

Fig. 10. Many nodes can be safely updated without duplicating any FIB
entry even in the multi-destination scenario with 10 link changes.

cases, we can update a significant number of nodes by just
ordering FIB-entry replacements. Fig. 10 shows the distribu-
tion (as complementary CDF) of the percentage of nodes that
can be updated without applying any FIB entry duplication.
A point (x, y) in the figure means that at least x% nodes
can be safely updated without FIB duplication in y ∗ 100%
of our experiments. As the plot shows, for 3 topologies out
of 6 GPIA can update more than 80% of the nodes without
FIB duplication, in more than 80% of the experiments. In the
remaining topologies, a lower but still significant percentage
of nodes (more than 60% in 60% of the experiments) can also
be safely updated without duplication.

Our procedure leverages this opportunity to significantly
reduce the amount of resources consumed during the update,
i.e., updating a signicant fraction of the network (see Fig. 10)
by just replacing FIB entries, with no overhead.

Fig. 11 shows that our procedure hugely reduces the number
of additional FIB entries across all scenarios and topologies. It
indeed displays the additional FIB entries that are required in
our experiments by both our procedure and two-phase commit
techniques. The figure includes three plots, for the single- and
the multi-destination scenarios respectively. In each plot, an
x value corresponds to a single experiment. Experiments are
grouped on the x axis by the used topology. The y axis reports
the additional FIB entries required for the x-th experiment, in
percentage with respect to the initial number of FIB entries.
The plots show that our procedure duplicates a percentage of
the initial FIB entries close to zero in many cases and less than
20% in all the experiments, with a very limited variance across

topologies and scenarios (as highlighted by the tendency of
circles to be close to each other). In other words, it achieves
a reduction of the duplicated FIB entries between 80% and
100% with respect to two-phase commit techniques.

In addition, our procedure requires no FIB duplication at
all on many nodes. Fig. 12 shows the distribution of the
FIB entries duplicated by our procedure on every node in the
different experiments. The plot refers to the multi-destination
scenario with 10 link weight changes. Less than 1% of the
initial FIB is duplicated on 50% of the nodes on all the
topologies. Moreover, 75% of the nodes (upper border of the
boxes) require less than 5% additional FIB entries in all the
cases except 3967. Overall, only in a very few cases (5% of the
nodes across all the experiments), more than 50% FIB entries
are duplicated for 1755 and 3967, and more than 20% for all
the other topologies. That is, heavy FIB entry duplication is
very localized to few nodes which likely produce intermediate
paths for most destinations. This localization decreases the
likelihood that stringent hardware requirements of legacy
nodes traversed by few paths can hamper the update feasibility,
contrary to two-phase commit techniques (see example in §III).

Our approach quickly computes short update sequences.
We used the number of update steps, i.e., the length of
the produced sequences, as an abstract measure of the time
required to complete a safe update. Moreover, to measure how
long our procedure takes to compute an update sequence, we
tracked the computation time of our single-threaded Python
prototype. A summary of both the update and the computation
times collected during our multi-destination experiments (with
10 modified link weights) is reported in Table II.

The update sequences computed by our approach consisted
in few steps of parallel operations, i.e., up to 6 steps for
90% of the experiments and at most 9 across all of them.
This is a small increase with respect to a standard two-phase
commit approach, which always requires the 4 steps illustrated
in Fig. 8. As a comparison, consider the alternative solution,
proposed in [5], to reduce the number of duplicated FIB entries
by splitting the update in multiple rounds, each updating a
subset of the affected destinations. This solution increases
the number of update steps by a multiplication factor that is
proportional to the number of rounds. To achieve reductions
of additional FIB entries comparable to our approach, such a



11

0
2
0

4
0

6
0

8
0

1
0
0

experiment

%
 o

f 
a
ll 

d
u
p
lic

a
te

d
 F

IB
 e

n
tr

ie
s

1221 1239 1755 3257 3967 6461

two−phase commit

our approach

(a) Single-destination

0
2
0

4
0

6
0

8
0

1
0
0

experiment

%
 o

f 
a
ll 

d
u
p
lic

a
te

d
 F

IB
 e

n
tr

ie
s

1221 1239 1755 3257 3967 6461

two−phase commit

our approach

(b) Multi-destination, 5 link changes

0
2
0

4
0

6
0

8
0

1
0
0

experiment

%
 o

f 
a
ll 

d
u
p
lic

a
te

d
 F

IB
 e

n
tr

ie
s

1221 1239 1755 3257 3967 6461

two−phase commit

our approach

(c) Multi-destination, 10 link changes

Fig. 11. Contrary to two-phase commit techniques, our approach uses a limited amount of network resources (additional FIB entries).

1221 1239 1755 3257 3967 6461

0
2
0

4
0

6
0

8
0

1
0
0

topology

%
 o

f 
F

IB
 d

u
p
lic

a
te

d
 p

e
r 

n
o
d
e

95−th percentile of nodes

90−th percentile of nodes

Fig. 12. For the vast majority of the nodes, our approach duplicates a number
of FIB entries equal or close to zero.

factor can range between 8 and 15 as shown by Fig. 9 in [5],
resulting in update sequences with 30 to 60 steps.

Computation time is also quite low. It is few seconds in
the worst case for all the topologies but 1239 which is the
biggest topology for both number of nodes (more than 300),
links and destinations (more than 200). Even on this topology,
however, the computation time is still lower than 30 seconds
in all our experiments. While those computation times are
already good to support a wide range use cases (including most
of those presented in §II), a faster update computation may
be required in specific cases (e.g., to quickly react to a link
failure or a security threat). To this end, both the algorithms
shown in Figs. 7 and 8 and their implementation can be largely
optimized, e.g., avoiding to recompute all the forwarding paths
for each consistency check and parallelizing the computation
of the cross-destination candidate set C.

C. Updates with FIB-aware control-planes

We now evaluate how our algorithms perform in scenarios
not covered by prior works. We indeed repeated the multi-
destination experiments with 10 link weight changes assuming
that the initial and final states are provided by an FA and an
FU control-planes respectively. Such scenarios correspond to
use cases including incremental deployment of SDN in an
enterprise network running EIGRP [24] and the replacement
of a FA SDN controller with a FU one.

For the sake of realism, we cut the execution of our
procedure after a maximum amount of backtracking that we
call cut value. Indeed, for FA-involving scenarios, the GPIA

Topology Update Steps Exe time

1239 (Median) 5 15.82 sec
1239 (90-th perc) 5 21.25 sec
1239 (Max) 6 26.97 sec
Others (Median) 5 1.61 sec
Others (90-th perc) 6 4.62 sec
Others (Max) 9 7.33 sec

TABLE II
OUR SIMULATIONS SHOW THAT OUR PROCEDURE COMPUTES

FAST UPDATES IN A SHORT TIME.

algorithm implementing the first step of our procedure adopts
a brute-force strategy, i.e., backtracking on previous choices
to generate all possible safe per-node update sequences. This
would result in computations that are too long for many
update use cases. For instance, even if only 30 nodes (i.e.,
less than 10% of the 315 nodes in the 1239 topology) can
be safely updated in any relative order, GPIA will generate
all the permutations of those 30 nodes. For this reason, we
limited GPIA to never backtrack a number of times greater
than the cut value. By definition, higher cut values correspond
to lower update overhead but also higher computation time. To
experimentally evaluate trends, we repeated each experiments
with cut values ranging from 1 to 3. We stopped at 3 since
results rarely differ between values 2 and 3 in our experiments.

We can only compare with two-phase commit techniques.
Indeed, GPIA is the first FIB-entry replacement algorithm that
guarantees safe updates in the presence of an FA control-plane.
Moreover, as already noted in §IV-C, extending previous FIB-
entry replacement algorithms to FA-involving updates is hard.

Our procedure significantly reduces duplicated FIB en-
tries, whenever safe. Fig. 13 displays a quantitative com-
parison between our procedure and the generalized two-phase
commit one. In particular, the figure plots the total percentage
of FIB entries that are duplicated by our approach (circles,
vertical crosses, or oblique crosses depending on the specific
cut value used in the experiment) and the two-phase commit
one (triangles) for every experiment. The overhead reduction,
however, heavily depends on the network topology in this
scenario: Intuitively, larger and more-connected networks are



12

0
2

0
4

0
6

0
8

0
1

0
0

experiment

%
 o

f 
a

ll 
d

u
p

lic
a

te
d

 F
IB

 e
n

tr
ie

s

1221 1239 1755 3257 3967 6461

two−phase commit

our approach (cut 1)

our approach (cut 2)

our approach (cut 3)

Fig. 13. The generality of our approach enables support for safe updates
including FA control-planes like distance-vector IGPs and FIB-reacting SDN
controllers.

harder to update because their higher number of paths makes
remote effects of node updates more likely. Indeed, the over-
head remains quite large for updates on 1239, but it is much
more limited for smaller topologies like 1221 and 1755. In the
latter cases, our procedure reduces the number of duplicated
FIB entries by about 60 − 80% in many experiments, with a
maximum of more than 90% for both topologies. Note that the
variance of our results for a single topology is more limited
(as shown by the tendency of points to aggregate in clusters).

Our experiments quantify intrinsic complexity of FA-
involving updates. In general, Fig. 13 shows that the overhead
reduction achieved by our procedure is more limited than
for FU-only updates (see Fig. 11(c) for comparison), despite
increasing cut values. Those results suggest that the limited
performance of our procedure depends more on the presence
of the FA control-plane, rather than (say) on the cut value.
In some update scenarios, the remote effects of single-node
updates induced by the FA control-plane are so constraining,
that only few FIB entry replacements can be ordered and FIB
entries must be duplicated on most of the nodes (see results for
1239 in Fig. 13). In comparison with FU-only updates, both
(i) the ordering phase of our approach (i.e., GPIA) is harder
to compute (see §III), and (ii) the FIB duplication phase (i.e.,
FED) generates significantly-higher overhead.

VII. CONCLUSIONS

In this paper, we studied the problem of computing practical
operational sequences for network updates, so that strong
consistency is guaranteed, with low overhead and limited
update time. We also generalized previous works by making no
assumption on the type and number of the control-planes in-
volved in the update. This also allowed us to cover compelling
use cases, like incremental SDN deployment and management
of hybrid SDN networks, not supported by previous works.

We related the computational complexity of finding a safe
update sequence to intrinsic properties of the involved control
planes. Moreover, we analyzed the inherent limitations of the
approaches proposed by previous works, and revisited them in
the light of our theoretical contributions. Based on the gained
insight, we proposed a procedure that combines the strengths
of previous techniques. We proved that our procedure com-
putes safe operational sequences that (i) update the maximal
number of nodes that can be updated without overhead, in the

minimum number of steps; and (ii) surgically add overhead
when necessary to update the remaining nodes. A thorough
evaluation based on realistic data and scenarios confirms that
our procedure outperforms mainstream techniques. Indeed, our
algorithms always find a safe operational sequence even when
FIB-entry replacement techniques cannot, and decrease the
update overhead by 80 − 100% with respect to two-phase
commit approaches.

ACKNOWLEDGEMENTS

This work has been partially supported by the ARC grant
13/18-054 from Communauté française de Belgique.

REFERENCES

[1] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu, J. Zolla, U. Hölzle, S. Stuart,
and A. Vahdat, “B4: Experience with a Globally-Deployed Software
Defined WAN,” in SIGCOMM, 2013.

[2] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and D. Walker,
“Abstractions for network update,” in SIGCOMM, 2012.

[3] S. Ghorbani and M. Caesar, “Walk the line: Consistent network updates
with bandwidth guarantees,” in HotSDN, 2012.

[4] K.-T. Foerster, S. Schmid, and S. Vissicchio, “Survey of consistent
network updates,” arXiv preprint arXiv:1609.02305, 2016.

[5] N. P. Katta, J. Rexford, and D. Walker, “Incremental Consistent Up-
dates,” in HotSDN, 2013.

[6] X. Jin, H. H. Liu, R. Gandhi, S. Kandula, R. Mahajan, M. Zhang,
J. Rexford, and R. Wattenhofer, “Dynamic Scheduling of Network
Updates,” in SIGCOMM, 2014.

[7] R. McGeer, “A Safe, Efficient Update Protocol for Openflow Networks,”
in HotSDN, 2012.

[8] L. Vanbever, S. Vissicchio, C. Pelsser, P. Francois, and O. Bonaventure,
“Seamless Network-Wide IGP Migrations,” in Proc. SIGCOMM, 2011.

[9] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri,
and R. Wattenhofer, “Achieving High Utilization with Software-driven
WAN,” in SIGCOMM, 2013.

[10] H. Liu, X. Wu, M. Zhang, L.Yuan, R. Wattenhofer, and D. Maltz, “zUp-
date: Updating Data Center Networks with Zero Loss,” in SIGCOMM,
2013.

[11] R. Mahajan and R. Wattenhofer, “On Consistent Updates in Software
Defined Networks,” in Proc. HotNets, 2013.

[12] K.-T. Forster, R. Mahajan, and R. Wattenhofer, “Consistent Updates
in Software Defined Networks: On Dependencies, Loop Freedom, and
Blackholes,” in IFIP Networking, 2016.

[13] S. Vissicchio, L. Cittadini, O. Bonaventure, G. G. Xie, and L. Vanbever,
“On the Co-Existence of Distributed and Centralized Routing Control-
Planes,” in INFOCOM, 2015.

[14] A. Ludwig, M. Rost, D. Foucard, and S. Schmid, “Good Network
Updates for Bad Packets: Waypoint Enforcement Beyond Destination-
Based Routing Policies,” in HotNets-XIII, 2014.

[15] J. McClurg, H. Hojjat, P. Cerny, and N. Foster, “Efficient Synthesis of
Network Updates,” in PLDI, 2015.

[16] P. Francois and O. Bonaventure, “Avoiding Transient Loops During the
Convergence of Link-state Routing Protocols,” IEEE/ACM Trans. Netw.,
vol. 15, no. 6, pp. 1280–1292, Dec. 2007.

[17] R. Alimi, Y. Wang, and Y. R. Yang, “Shadow configuration as a network
management primitive,” in Proc. SIGCOMM, 2008.

[18] S. Vissicchio, L. Vanbever, and O. Bonaventure, “Opportunities and
Research Challenges of Hybrid Software Defined Networks,” ACM
Computer Communication Review, vol. 44, no. 2, April 2014.

[19] S. Vissicchio and L. Cittadini, “FLIP the (Flow) Table: Fast LIghtweight
Policy-preserving SDN Updates,” in 2016 IEEE Conference on Com-
puter Communications, INFOCOM, 2016, pp. 10–15.

[20] S. Agarwal, M. Kodialam, and T. V. Lakshman, “Traffic engineering in
software defined networks,” in INFOCOM, 2013.

[21] A. Atlas et al., “Interface to the Routing System Framework,” Internet
Draft, 2013.

[22] S. Vissicchio, O. Tilmans, L. Vanbever, and J. Rexford, “Central control
over distributed routing,” in Proc. SIGCOMM, 2015.

[23] Z. A. Qazi, C.-C. Tu, L. Chiang, R. Miao, V. Sekar, and M. Yu,
“SIMPLE-fying Middlebox Policy Enforcement Using SDN,” in SIG-
COMM, 2013.



13

[24] D. A. Maltz, G. Xie, J. Zhan, H. Zhang, G. Hjálmtýsson, and A. Green-
berg, “Routing Design in Operational Networks: A Look from the
Inside,” in SIGCOMM, 2004.

[25] “Cisco. Configuring Policy-Based Routing,” http://www.cisco.com/c/en/
us/td/docs/ios/12 2/qos/configuration/guide/fqos c/qcfpbr.html.

[26] “Juniper. Configuring Filter-Based Forwarding to a Specific
Outgoing Interface or Destination IP Address,” http:
//www.juniper.net/techpubs/en US/junos12.2/topics/topic-map/
filter-based-forwarding-policy-based-routing.html.

[27] N. Spring, R. Mahajan, and D. Wetherall, “Measuring ISP topologies
with rocketfuel,” in Proc. SIGCOMM, 2002.

[28] B. Fortz and M. Thorup, “Internet traffic engineering by optimizing ospf
weights,” in Proc. INFOCOM, 2000.

APPENDIX

Notation. In the proofs, we rely on the following notation. We
denote the next-hop of a node x for a destination d at time
t as next(x, d, t), and the forwarding path from x to d at t
as π(x, d, t). A forwarding path is defined as a concatenation
of next-hops, that is, π(x, d, t) = (v0 . . . vk), with k ≥ 0,
v0 = x, vk = d, and ∀i = 1, . . . , k vi = next(vi−1, d, t).
Note that those definitions admit that nodes forwards packets
of the same (TCP) flow to multiple next-hops and over distinct
paths. We indeed define destinations as sub-flow identifiers
such that all nodes forward packets with that identifier over
a single path. Finally, we consider discrete time. Each time
instant corresponds to a step in our update procedure. Special
values 0 and f indicate the initial and final times, that is,
before starting and after completing the update respectively.

A naive strategy is correct and optimal for FU-only
updates. We indeed prove Theorems 1 and 2.

Theorem 1: In an FU-only update, if a node r can be safely
updated at time t, r can also be safely updated at any t′ > t.

Proof: Assume by contradiction that there exists a node
r and a time t so that r can be safely updated at a given time
t, but it cannot at time t+ 1.

Let S be the set of nodes updated at step t + 1. By
hypothesis, at t + 1, updating r would trigger a path in-
consistency for at least one destination d. Since the update
is FU-only, Property 1 holds. Consequently, for r not to be
safely updatable at t+1, the final next-hop x of r is such that
x ∈ S and next(x, d, 0) 6= next(x, d, f). Also by Property 1,
updating r only changes the next-hops of r, so we must have
next(r, d, 0) 6= next(r, d, f). Then, one of the following cases
must hold.
• r ∈ π(x, d, t + 1). Then, consider time t + 1. Since x

is updated at t + 1, next(x, d, t + 1) 6= next(x, d, 0),
which implies π(x, d, t+ 1) 6= π(x, d, 0). Moreover, r is
not updated yet, hence next(r, d, t+ 1) 6= next(r, d, f),
which implies π(x, d, t + 1) 6= π(x, d, f). That is, the
path of x for d at t + 1 is different from both its initial
and final paths for d, i.e., a path inconsistency at x.

• x ∈ π(r, d, t+ 1). Consider again time t+ 1. Since x is
updated at t+1, next(x, d, t+1) 6= next(x, d, 0), which
implies π(r, d, t + 1) 6= π(r, d, 0). Moreover, since r is
not updated at t + 1, next(r, d, t + 1) 6= next(r, d, f),
implying π(r, d, t + 1) 6= π(r, d, f). In other words, the
path of r for d at t + 1 is different from both its initial
and final paths for d, which is a path inconsistency at r.

In both cases, updating x ∈ S at time t triggers a path
inconsistency at t+1, hence contradicting the hypothesis that
x is safely updated at t.

Theorem 2: For FU-only updates, the greedy strategy com-
putes safe sequences of minimal length.

Proof: Consider any FU-only update and let S be the
sequence computed by the greedy strategy described in §IV-B.
Assume by contradiction that there exists a safe sequence S∗

which has less steps than S. This implies that at least one
node x is updated at a step j in S and a step i < j in S∗. We
have two cases.
• x can be safely updated after the node updates performed

in S until i. By definition, the greedy strategy would
have updated x at i, in this case, hence contradicting the
definition of x.

• x cannot be safely updated after the node updates per-
formed in S until i. Since S∗ is safe and x is updated at
i in S∗, there must exist a node y that is updated in S∗

at step z < i, and in S at k ≥ i.
In the first case, we directly generate a contradiction. In the
second case, we can iterate the same argument applied to x
on y. During this iteration, we consider a node (i.e., y) that is
updated in S∗ before the last one considered (i.e., x). Since
S∗ is finite, we eventually end up in the first case, that yields
the statement.

Our two-step procedure is correct and efficient. We now
prove Theorems 3 and 4.

Theorem 3: Our two-step procedure ensures that path in-
consistencies do not occur during the update.

Proof: Consider any sequence S generated by our pro-
cedure. We now show that any packet for any destination d
provably follows either the initial or the final path from the
border node b to d.

For any time before b uses the final tag, path consistency is
directly guaranteed by GPIA (see Theorem 4). Indeed, non-
ordered nodes forwards always to their initial next-hops as
assumed in GPIA.

Consider now any time t during the update in which b
uses the final tags. For each node n ∈ π(b, d, t), we have
two cases. If n is a node appearing in the GPIA sequence,
then n must be already updated. Otherwise, by definition of
the duplication algorithm (see Fig. 8), n either (i) has the
same next-hop before and after the update (as ensured by the
is guaranteed final function in Fig. 8), (ii) is updated, or
(iii) matches the final tag. In all cases, n uses its final next-
hop for d. Hence, π(b, d, t) = π(b, d, f), which yields the
statement.

Theorem 4: GPIA finds update sequences in which the
maximal number of nodes are updated without causing path
inconsistencies.

Proof: By definition, the check consistency procedure
identifies all the nodes that can be safely reconfigured at
a given update step. Exploration of all safe operational se-
quences is ensured by backtracking.

Generality of our approach for hybridly-controlled flows.
For simplicity, our two-step procedure is defined in the absence
of hybridly-controlled flows (see §IV-A). We now illustrate a



14

zero-overhead pre-update transformation, to be applied be-
fore our update computation procedure to hybridly-controlled
flows. It changes the path of every hybridly-controlled flow
into an equivalent one entirely determined by an SDN con-
troller. To this end, the SDN controller overwrites IGP FIB
entries of non-SDN nodes, by installing routes pointing to the
same next-hops as the replaced FIB entries. Such overwriting
is performed following a topological-sort order, so that no FIB
entry is overwritten on a node still used by nodes not processed
yet. The following theorem proves that this is safe, as pre- and
post-transformation next-hops remain the same for all nodes.

Theorem 5: The pre-update transformation guarantees
strong consistence.

Proof: Assume by contradiction that an intermediate path
P = (s . . . d) is triggered by a pre-update transformation.
Since all pre- and post-transformation paths are the same,
P cannot be due to a combination of initial and final next-
hops. Hence, for P to be an intermediate path, there must
exist a node x ∈ P that uses a next-hop that it is not using
initially nor finally. Property 1 ensures that it is not possible
for FU-only networks. If a FA control-plane is involved, then
P can be raised only if the initial next-hops of x for d have
temporarily withdrawn their FA route for d. In turn, this is
only possible if the FIB entries of some node between x and
d are overwritten before x’s ones. However, the transformation
never overwrites a node used by another, by definition, hence
yielding a contradiction.
Moreover, the pre-update transformation is always possible,
since the controller can always install the post-transformation
routes by relying on an additional link-state IGP with a
tweaked augmented topology [22].

Stefano Vissicchio is a Lecturer at University Col-
lege London. He obtained his Master degree from
the Roma Tre University in 2008, and his Ph.D.
degree in computer science from the same university
in April 2012. Before joining University College
London, he has been postdoctoral researcher at the
Université catholique of Louvain. Stefano’s research
interests span network management, routing theory
and protocols, measurements, and new network ar-
chitectures like Software Defined Networking. He
has received several awards including the ACM

SIGCOMM 2015 best paper award, the ICNP 2013 best paper award, and
two IETF/IRTF Applied Networking Research Prizes.

Laurent Vanbever is an Assistant Professor at
ETH Zurich where he leads the Networked Sys-
tems Group (NSG) since 2015. Before that, Laurent
was a Postdoctoral Research Associate at Princeton
University where he collaborated with Professor
Jennifer Rexford. He obtained his PhD degree in
Computer Science from the University of Louvain
(Belgium) in October 2012. His research interests lie
at the crossroads between theory and practice, with a
focus on making large network infrastructures more
manageable, scalable and secure. Laurent has won

several awards for his research including: the USENIX NSDI 2016 community
award; the ACM SIGCOMM 2015 best paper award; the ACM SIGCOMM
Doctoral Dissertation Award (runner-up); the University of Louvain Best PhD
Award; the ICNP 2013 best paper award; and three IETF/IRTF Applied
Networking Research Prizes.

Luca Cittadini received his master degree from
the Roma Tre University in 2006, and a Ph.D.
degree in Computer Science and Automation from
the same institution in 2010, defending the Thesis
“Understanding and Detecting BGP Instabilities”.
During his Ph.D. he was a teaching assistant in the
computer network research lab. His research activity
is primarily focused on routing: Luca has worked on
both intra-domain and inter-domain routing topics,
including theoretical analysis of the BGP protocol,
configuration and reconfiguration techniques, as well

as active and passive measurements.

Geoffrey G. Xie is a professor and associated chair
of the computer science department, Naval Postgrad-
uate School. He received the BS degree in computer
science from Fudan University, China, and the PhD
degree in computer sciences from the University of
Texas at Austin. He was a visiting scholar in the
School of Computer Science at Carnegie Mellon
University from 2003 to 2004, and the Computer
Laboratory of the University of Cambridge, United
Kingdom from 2010 to 2011. He has published more
than 70 articles in various areas of networking. He

co-chaired the ACM SIGCOMM Internet Network Management Workshop
in 2007. He won the best paper award at the 2007 IEEE ICNP conference
and the 2011 IEEE Fred W. Ellersick Award. His current research interests
include formal network analysis, routing design and theories, cloud security,
and abstraction driven design of enterprise networks.

Olivier Bonaventure graduated from the University
of Lie‘ge in 1992. He obtained his Ph.D. degree in
1999 and spent one year at Alcatel in Antwerp. He
is now full Professor at Universite catholique de
Louvain, Belgium, where he leads the IP Networking
Lab (http://inl.info.ucl.ac.be). He has published more
than eighty papers and was granted several patents.
He serves on the editorial board of IEEE/ACM
Transactions on Networking. He currently serves as
Education Director within ACM SIGCOMM, and is
a member of the CoNEXT steering committee. He

received several awards including the INFOCOM 2007 best paper award and
the 2012 USENIX NSDI Community award.


