64 research outputs found

    HDGlab: An Open-Source Implementation of the Hybridisable Discontinuous Galerkin Method in MATLAB

    Get PDF
    This paper presents HDGlab, an open source MATLAB implementation of the hybridisable discontinuous Galerkin (HDG) method. The main goal is to provide a detailed description of both the HDG method for elliptic problems and its implementation available in HDGlab. Ultimately, this is expected to make this relatively new advanced discretisation method more accessible to the computational engineering community. HDGlab presents some features not available in other implementations of the HDG method that can be found in the free domain. First, it implements high-order polynomial shape functions up to degree nine, with both equally-spaced and Fekete nodal distributions. Second, it supports curved isoparametric simplicial elements in two and three dimensions. Third, it supports non-uniform degree polynomial approximations and it provides a flexible structure to devise degree adaptivity strategies. Finally, an interface with the open-source high-order mesh generator Gmsh is provided to facilitate its application to practical engineering problems

    Spectral Exterior Calculus and Its Implementation

    Get PDF
    Preserving geometric, topological and algebraic structures at play in partial differential equations has proven to be a fruitful guiding principle for computational methods in a variety of scientific fields. However, structure-preserving numerical methods have traditionally used spaces of piecewise polynomial basis functions with local support to interpolate differential forms. When solutions are known to be smooth, a spectral treatment is often preferred instead as it brings exponential convergence. While recent works have established spectral variants of discrete exterior calculus, no existing approach offers the full breadth of exterior calculus operators and a clear distinction between vectors and covectors. We present such a unified approach to spectral exterior calculus (SPEX) and provide detail on its implementation. Notably, our approach leverages Poincare duality through the use of a primal grid and its dual (with a natural handling of boundaries to facilitate the treatment of boundary conditions), and uses a twin representation of differential forms as both integrated and pointwise values. Through its reliance on the fast Fourier transform, the resulting framework enables computations in arbitrary dimensions that are both efficient and have excellent convergence properties

    Isogeometric analysis of nonlinear eddy current problems

    Get PDF

    A spectral representation solution for electromagnetic scattering from complex structures

    Get PDF
    Significant effort has been directed towards improving computational efficiency in calculating radiated or scattered fields from a complex structure over a broad frequency band. The formulation and solution of boundary integral equation methods in commercial and scientific software has seen considerable attention; methods presented in the literature are often abstract, “curve-fits” or lacking a sound foundation in the underlying physics of the problem. Anomalous results are often characterized incorrectly, or require user expertise for analysis, a clear disadvantage in a computer-aided design tool. This dissertation documents an investigation into the motivating theory, limitations and integration into SuperNEC of a technique for the analytical, continuous, wideband description of the response of a complex conducting body to an electromagnetic excitation. The method, referred to by the author as Transfer Function Estimation (TFE) has its foundations in the Singularity Expansion Method (SEM). For scattering and radiation from a perfect electric conductor, the Electric-Field Integral Equation (EFIE) and Magnetic-Field Integral Equation (MFIE) formulations in their Stratton-Chu form are used. Solution by spectral representation methods including the Singular Value Decomposition (SVD), the Singular Value Expansion (SVE), the Singular Function Method (SFM), Singularity Expansion Method (SEM), the Eigenmode Expansion Method (EEM) and Model-Based Parameter Estimation (MBPE) are evaluated for applicability to the perfect electric conductor. The relationships between them and applicability to the scattering problem are reviewed. A common theoretical basis is derived. The EFIE and MFIE are known to have challenges due to ill-posedness and uniqueness considerations. Known preconditioners present possible solutions. The Modified EFIE (MEFIE) and Modified Combined Integral Equation (MCFIE) preconditioner is shown to be consistent with the fundamental derivations of the SEM. Prony’s method applied to the SEM poleresidue approximation enables a flexible implementation of a reduced-order method to be defined, for integration into SuperNEC. The computational expense inherent to the calculation of the impedance matrix in SuperNEC is substantially reduced by a physically-motivated approximation based on the TFE method. iv Using an adaptive approach and relative error measures, SuperNEC iteratively calculates the best continuous-function approximation to the response of a conducting body over a frequency band of interest. The responses of structures with different degrees of resonant behaviour were evaluated: these included an attack helicopter, a log-periodic dipole array and a simple dipole. Remarkable agreement was achieved

    Learned infinite elements for helioseismology

    Get PDF
    This thesis presents efficient techniques for integrating the information contained in the Dirichlet-to-Neumann (DtN) map of time-harmonic waves propagating in a stratified medium into finite element discretizations. This task arises in the context of domain decomposition methods, e.g. when reducing a problem posed on an unbounded domain to a bounded computational domain on which the problem can then be discretized. Our focus is on stratified media like the Sun, that allow for strong reflection of waves and for which suitable methods are lacking. We present learned infinite elements as a possible approach to deal with such media utilizing the assumption of a separable geometry. In this case, the DtN map is separable, however, it remains a non-local operator with a dense matrix representation, which renders its direct use computationally inefficient. Therefore, we approximate the DtN only indirectly by adding additional degrees of freedom to the linear system in such a way that the Schur complement w.r.t. the latter provides an optimal approximation of DtN and sparsity of the linear system is preserved. This optimality is ensured via the solution of a small minimization problem, which incorporates solutions of one-dimensional time-harmonic wave equations and allows for great flexibility w.r.t. properties of the medium. In the first half of the thesis we provide an error analysis of the proposed method in a generic framework which demonstrates that exponentially fast convergence rates can be expected. Numerical experiments for the Helmholtz equation and an in-depth study on modelling the solar atmosphere with learned infinite elements demonstrate the high accuracy and flexibility of the proposed method in practical applications. In the second half of the thesis, the potential of learned infinite elements in the context of sweeping preconditioners for the efficient iterative solution of large linear systems is investigated. Even though learned infinite elements are very suitable for separable media, they can only be used for tiny perturbations thereof since the corresponding DtN maps turn out to be extremely sensitive to perturbations in the presence of strong reflections.2021-12-2
    • …
    corecore