15 research outputs found

    Towards Endurable, Reliable and Secure Flash Memories-a Coding Theory Application

    Get PDF
    Storage systems are experiencing a historical paradigm shift from hard disk to nonvolatile memories due to its advantages such as higher density, smaller size and non-volatility. On the other hand, Solid Storage Disk (SSD) also poses critical challenges to application and system designers. The first challenge is called endurance. Endurance means flash memory can only experience a limited number of program/erase cycles, and after that the cell quality degradation can no longer be accommodated by the memory system fault tolerance capacity. The second challenge is called reliability, which means flash cells are sensitive to various noise and disturbs, i.e., data may change unintentionally after experiencing noise/disturbs. The third challenge is called security, which means it is impossible or costly to delete files from flash memory securely without leaking information to possible eavesdroppers. In this dissertation, we first study noise modeling and capacity analysis for NAND flash memories (which is the most popular flash memory in market), which gains us some insight on how flash memories are working and their unique noise. Second, based on the characteristics of content-replication codewords in flash memories, we propose a joint decoder to enhance the flash memory reliability. Third, we explore data representation schemes in flash memories and optimal rewriting code constructions in order to solve the endurance problem. Fourth, in order to make our rewriting code more practical, we study noisy write-efficient memories and Write-Once Memory (WOM) codes against inter-cell interference in NAND memories. Finally, motivated by the secure deletion problem in flash memories, we study coding schemes to solve both the endurance and the security issues in flash memories. This work presents a series of information theory and coding theory research studies on the aforesaid three critical issues, and shows that how coding theory can be utilized to address these challenges

    Exploiting intrinsic flash properties to enhance modern storage systems

    Get PDF
    The longstanding goals of storage system design have been to provide simple abstractions for applications to efficiently access data while ensuring the data durability and security on a hardware device. The traditional storage system, which was designed for slow hard disk drive with little parallelism, does not fit for the new storage technologies such as the faster flash memory with high internal parallelism. The gap between the storage system software and flash device causes both resource inefficiency and sub-optimal performance. This dissertation focuses on the rethinking of the storage system design for flash memory with a holistic approach from the system level to the device level and revisits several critical aspects of the storage system design including the storage performance, performance isolation, energy-efficiency, and data security. The traditional storage system lacks full performance isolation between applications sharing the device because it does not make the software aware of the underlying flash properties and constraints. This dissertation proposes FlashBlox, a storage virtualization system that utilizes flash parallelism to provide hardware isolation between applications by assigning them on dedicated chips. FlashBlox reduces the tail latency of storage operations dramatically compared with the existing software-based isolation techniques while achieving uniform lifetime for the flash device. As the underlying flash device latency is reduced significantly compared to the conventional hard disk drive, the storage software overhead has become the major bottleneck. This dissertation presents FlashMap, a holistic flash-based storage stack that combines memory, storage and device-level indirections into a unified layer. By combining these layers, FlashMap reduces critical-path latency for accessing data in the flash device and improves DRAM caching efficiency significantly for flash management. The traditional storage software incurs energy-intensive storage operations due to the need for maintaining data durability and security for personal data, which has become a significant challenge for resource-constrained devices such as mobiles and wearables. This dissertation proposes WearDrive, a fast and energy-efficient storage system for wearables. WearDrive treats the battery-backed DRAM as non-volatile memory to store personal data and trades the connected phone’s battery for the wearable’s by performing large and energy-intensive tasks on the phone while performing small and energy-efficient tasks locally using battery-backed DRAM. WearDrive improves wearable’s battery life significantly with negligible impact to the phone’s battery life. The storage software which has been developed for decades is still vulnerable to malware attacks. For example, the encryption ransomware which is a malicious software that stealthily encrypts user files and demands a ransom to provide access to these files. Prior solutions such as ransomware detection and data backups have been proposed to defend against encryption ransomware. Unfortunately, by the time the ransomware is detected, some files already undergo encryption and the user is still required to pay a ransom to access those files. Furthermore, ransomware variants can obtain kernel privilege to terminate or destroy these software-based defense systems. This dissertation presents FlashGuard, a ransomware-tolerant SSD which has a firmware-level recovery system that allows effective data recovery from encryption ransomware. FlashGuard leverages the intrinsic flash properties to defend against the encryption ransomware and adds minimal overhead to regular storage operations.Ph.D

    Understanding Persistent-Memory Related Issues in the Linux Kernel

    Full text link
    Persistent memory (PM) technologies have inspired a wide range of PM-based system optimizations. However, building correct PM-based systems is difficult due to the unique characteristics of PM hardware. To better understand the challenges as well as the opportunities to address them, this paper presents a comprehensive study of PM-related issues in the Linux kernel. By analyzing 1,553 PM-related kernel patches in-depth and conducting experiments on reproducibility and tool extension, we derive multiple insights in terms of PM patch categories, PM bug patterns, consequences, fix strategies, triggering conditions, and remedy solutions. We hope our results could contribute to the development of robust PM-based storage systemsComment: ACM TRANSACTIONS ON STORAGE(TOS'23

    An examination of the Asus WL-HDD 2.5 as a nepenthes malware collector

    No full text
    The Linksys WRT54g has been used as a host for network forensics tools for instance Snort for a long period of time. Whilst large corporations are already utilising network forensic tools, this paper demonstrates that it is quite feasible for a non-security specialist to track and capture malicious network traffic. This paper introduces the Asus Wireless Hard disk as a replacement for the popular Linksys WRT54g. Firstly, the Linksys router will be introduced detailing some of the research that was undertaken on the device over the years amongst the security community. It then briefly discusses malicious software and the impact this may have for a home user. The paper then outlines the trivial steps in setting up Nepenthes 0.1.7 (a malware collector) for the Asus WL-HDD 2.5 according to the Nepenthes and tests the feasibility of running the malware collector on the selected device. The paper then concludes on discussing the limitations of the device when attempting to execute Nepenthes

    Adaptive Intelligent Systems for Extreme Environments

    Get PDF
    As embedded processors become powerful, a growing number of embedded systems equipped with artificial intelligence (AI) algorithms have been used in radiation environments to perform routine tasks to reduce radiation risk for human workers. On the one hand, because of the low price, commercial-off-the-shelf devices and components are becoming increasingly popular to make such tasks more affordable. Meanwhile, it also presents new challenges to improve radiation tolerance, the capability to conduct multiple AI tasks and deliver the power efficiency of the embedded systems in harsh environments. There are three aspects of research work that have been completed in this thesis: 1) a fast simulation method for analysis of single event effect (SEE) in integrated circuits, 2) a self-refresh scheme to detect and correct bit-flips in random access memory (RAM), and 3) a hardware AI system with dynamic hardware accelerators and AI models for increasing flexibility and efficiency. The variances of the physical parameters in practical implementation, such as the nature of the particle, linear energy transfer and circuit characteristics, may have a large impact on the final simulation accuracy, which will significantly increase the complexity and cost in the workflow of the transistor level simulation for large-scale circuits. It makes it difficult to conduct SEE simulations for large-scale circuits. Therefore, in the first research work, a new SEE simulation scheme is proposed, to offer a fast and cost-efficient method to evaluate and compare the performance of large-scale circuits which subject to the effects of radiation particles. The advantages of transistor and hardware description language (HDL) simulations are combined here to produce accurate SEE digital error models for rapid error analysis in large-scale circuits. Under the proposed scheme, time-consuming back-end steps are skipped. The SEE analysis for large-scale circuits can be completed in just few hours. In high-radiation environments, bit-flips in RAMs can not only occur but may also be accumulated. However, the typical error mitigation methods can not handle high error rates with low hardware costs. In the second work, an adaptive scheme combined with correcting codes and refreshing techniques is proposed, to correct errors and mitigate error accumulation in extreme radiation environments. This scheme is proposed to continuously refresh the data in RAMs so that errors can not be accumulated. Furthermore, because the proposed design can share the same ports with the user module without changing the timing sequence, it thus can be easily applied to the system where the hardware modules are designed with fixed reading and writing latency. It is a challenge to implement intelligent systems with constrained hardware resources. In the third work, an adaptive hardware resource management system for multiple AI tasks in harsh environments was designed. Inspired by the “refreshing” concept in the second work, we utilise a key feature of FPGAs, partial reconfiguration, to improve the reliability and efficiency of the AI system. More importantly, this feature provides the capability to manage the hardware resources for deep learning acceleration. In the proposed design, the on-chip hardware resources are dynamically managed to improve the flexibility, performance and power efficiency of deep learning inference systems. The deep learning units provided by Xilinx are used to perform multiple AI tasks simultaneously, and the experiments show significant improvements in power efficiency for a wide range of scenarios with different workloads. To further improve the performance of the system, the concept of reconfiguration was further extended. As a result, an adaptive DL software framework was designed. This framework can provide a significant level of adaptability support for various deep learning algorithms on an FPGA-based edge computing platform. To meet the specific accuracy and latency requirements derived from the running applications and operating environments, the platform may dynamically update hardware and software (e.g., processing pipelines) to achieve better cost, power, and processing efficiency compared to the static system

    Substituting Failure Avoidance for Redundancy in Storage Fault Tolerance

    Get PDF
    The primary mechanism for overcoming faults in modern storage systems is to introduce redundancy in the form of replication and error correcting codes. The costs of such redundancy in hardware, system availability and overall complexity can be substantial, depending on the number and pattern of faults that are handled. This dissertation describes and analyzes, via simulation, a system that seeks to use disk failure avoidance to reduce the need for costly redundancy by using adaptive heuristics that anticipate such failures. While a number of predictive factors can be used, this research focuses on the three leading candidates of SMART errors, age and vintage. This approach can predict where near term disk failures are more likely to occur, enabling proactive movement/replication of at-risk data, thus maintaining data integrity and availability. This strategy can reduce costs due to redundant storage without compromising these important requirements

    Scrubbing-Aware Secure Deletion for 3-D NAND Flash

    No full text
    corecore