
EXPLOITING INTRINSIC FLASH PROPERTIES TO ENHANCE
MODERN STORAGE SYSTEMS

A Dissertation
Presented to

The Academic Faculty

By

Jian Huang

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Computer Science

Georgia Institute of Technology

August 2017

Copyright c© Jian Huang 2017



EXPLOITING INTRINSIC FLASH PROPERTIES TO ENHANCE
MODERN STORAGE SYSTEMS

Approved by:

Dr. Moinuddin K. Qureshi, Advisor
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Dr. Umakishore Ramachandran
School of Computer Science
Georgia Institute of Technology

Dr. Taesoo Kim
School of Computer Science
Georgia Institute of Technology

Dr. Steven Swanson
School of Computer Science and
Engineering
University of California, San Diego

Dr. James Mickens
School of Computer Science
Harvard University

Dr. Anirudh Badam
Systems Research Group
Microsoft Research, Redmond

Date Approved: July 20, 2017



Dedicated to my parents, sister, and wife

for their infinite love, encouragement, and support

iii



ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to my thesis advisor, Moinuddin K. Qureshi,

for his continuous support, guidance, and patience. He always inspires me to be a better

researcher in many ways. I will remember many of our discussions on research in his office

or the Starbucks Cafe in Clough Commons at Georgia Tech. All these bits and pieces make

up a precious part of the memory of my Ph.D. life. His principles and dedication will have

a great influence on me.

I owe an immeasurable debt to my another advisor, Karsten Schwan, for his kindness

and mentorship. I really appreciate the opportunity to work with him to start a new journey

of my Ph.D. study. His helpful nature and smile are an endless source of energy to keep me

going forward. We all miss you, Karsten.

I would like to express my sincere gratitude to my mentor Anirudh Badam for his men-

torship and friendship. This thesis would not have been possible without his gracious ad-

vice and encouragement. I am thankful for the opportunities to work with him at Microsoft

Research and enable me to see the beauty of systems research. And most importantly,

we made a friendship that would last a lifetime. I would also like to thank my other re-

search mentors Ranveer Chandra, Ed Nightingale, Laura Caulfield, Suman Nath, Sudipta

Sengupta, and Bikash Sharma at Microsoft Research for their guidance and support. The

research projects we have done were always full of adventure and expectations, which made

me have many wonderful summers in Seattle.

Special thanks to my recent collaborator Peng Liu for his mentorship. Peng was al-

ways available for discussions and gave me useful advice on my career development. I

would also like to thank Xuechen Zhang, Nitin Agrawal, Dawei Li, Xiaolong Wang, Xi-

angyong Ouyang, Hao Wang, Harry Xu, Xingyu Xin, and Feng Qin for their discussions,

suggestions, and feedback on my research.

I would like to thank Umakishore Ramachandran, Steven Swanson, Taesoo Kim, and

iv



James Mickens for their time to serve on my thesis committee and their valuable feedback

on my thesis proposal and the final dissertation.

Thank you to the group members of the memory systems lab, including Chia-Chen

Chou, Vinson Young, Swamit Tannu, Gururaj Saileshwar, Prashant Nair, and Mohammad

Arjomand. I am so proud to be part of such a talented, fun and motivated team.

Thanks also goes to my CERCS office-mates, especially Alexander Merritt, Yanwei

Zhang, Chao Chen, Anshuman Goswami, Chengwei Wang, and Fang Zheng. They are

always available for discussions and help. I would also like to thank Ada Gavrilovska,

Greg Eisenhauer, and Susie Y. McClain for keeping the CERCS lab running during the

most difficult time to provide a stable and helpful environment for our studies.

I am especially grateful to my parents, sister, and wife for their infinite love, endless

patience, and unconditional support. They always encourage me in all of my pursuits

and inspire me to follow my heart. For years my parents have set personal examples to

show the value of hard work for me. The efforts they put in educating my sister and me

always motivate us to become better persons. My sister is much more than just a sister,

her continuous support and encouragement empower me to pursue my dreams. Finally, I

would like to thank my wife who has made my Ph.D. journey worthwhile. We look forward

to starting a new chapter in our lives together.

v



TABLE OF CONTENTS

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

Chapter 1: Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 The Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Thesis Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Dissertation Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Chapter 2: Background and Related Work . . . . . . . . . . . . . . . . . . . . . 6

2.1 Flash Memory: Background and Terminology . . . . . . . . . . . . . . . . 6

2.2 Related Work in Improving Storage Isolation . . . . . . . . . . . . . . . . 8

2.3 Related Work in Improving Storage Performance . . . . . . . . . . . . . . 9

2.4 Related Work in Improving Storage Energy Efficiency . . . . . . . . . . . . 10

2.5 Related Work in Improving Storage Security . . . . . . . . . . . . . . . . . 11

vi



Chapter 3: FlashBlox: Hardware Isolated Virtual SSDs . . . . . . . . . . . . . . 13

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2.1 Hardware Isolation vs. Wear-Leveling . . . . . . . . . . . . . . . . 16

3.2.2 Leveraging Parallelism for Isolation . . . . . . . . . . . . . . . . . 18

3.3 FlashBlox Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3.1 Channel Isolated Virtual SSDs . . . . . . . . . . . . . . . . . . . . 21

3.3.2 Die Isolated Virtual SSDs . . . . . . . . . . . . . . . . . . . . . . . 25

3.3.3 Software Isolated Virtual SSDs . . . . . . . . . . . . . . . . . . . . 26

3.3.4 Intra Channel/Die Wear-Leveling . . . . . . . . . . . . . . . . . . . 27

3.4 FlashBlox Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.5 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.5.1 Hardware Isolation vs. Software Isolation . . . . . . . . . . . . . . 29

3.5.2 Migration Overhead . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.5.3 Migration Frequency Analysis . . . . . . . . . . . . . . . . . . . . 31

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Chapter 4: FlashMap: Unifying Indirection Layers Across System Stack . . . . 33

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2.1 Overhead from Redundant Software . . . . . . . . . . . . . . . . . 37

4.2.2 Challenges for Combining Indirection Layers . . . . . . . . . . . . 38

4.3 FlashMap Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

vii



4.3.1 Preserving File System Permissions . . . . . . . . . . . . . . . . . 41

4.3.2 Preserving PTE Behavior . . . . . . . . . . . . . . . . . . . . . . . 43

4.3.3 Preserving Memory Protection Behavior . . . . . . . . . . . . . . . 44

4.3.4 Preserving the FTL Properties . . . . . . . . . . . . . . . . . . . . 45

4.4 FlashMap Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.5 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.5.1 Experimental Methodology . . . . . . . . . . . . . . . . . . . . . . 47

4.5.2 Benefits from Saving DRAM . . . . . . . . . . . . . . . . . . . . . 48

4.5.3 Latency Benefits . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.5.4 DRAM vs. SSD . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Chapter 5: WearDrive: Energy-Efficient Storage for Wearables . . . . . . . . . 55

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.2.1 Small Batteries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.2.2 Energy Overhead of Legacy Platforms . . . . . . . . . . . . . . . . 58

5.2.3 New Applications on Wearables . . . . . . . . . . . . . . . . . . . 59

5.2.4 Low-Power Connectivity to the Phone . . . . . . . . . . . . . . . . 59

5.2.5 Slow flash on Wearables . . . . . . . . . . . . . . . . . . . . . . . 60

5.3 WearDrive Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.3.1 Storage with Battery-Backed RAM . . . . . . . . . . . . . . . . . . 60

5.3.2 Storing Data Across Devices . . . . . . . . . . . . . . . . . . . . . 63

viii



5.3.3 KV-store Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.3.4 Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.4 WearDrive Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.5 Experimental Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.5.1 WearBench . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.5.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.6 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.6.1 Local Memory vs. Local Flash . . . . . . . . . . . . . . . . . . . . 73

5.6.2 Passive Sensor Data Aggregation . . . . . . . . . . . . . . . . . . . 73

5.6.3 Extended Display Workload . . . . . . . . . . . . . . . . . . . . . 74

5.6.4 Impact on Smart-phone . . . . . . . . . . . . . . . . . . . . . . . . 76

5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Chapter 6: FlashGuard: Hardware-Assisted Defense Against Ransomware . . . 80

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.2 Ransomware Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.2.1 Study Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.2.2 Our Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.3 Threat Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.4 FlashGuard Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.4.1 Approach overview . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.4.2 Ransom-Aware FTL . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.4.3 Read and Write Operations in RFTL . . . . . . . . . . . . . . . . . 92

ix



6.4.4 Garbage Collection in RFTL . . . . . . . . . . . . . . . . . . . . . 93

6.4.5 Data Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.4.6 Metadata Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.5 FlashGuard Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.6 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.6.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.6.2 Efficiency on Data Recovery . . . . . . . . . . . . . . . . . . . . . 102

6.6.3 Impact on Storage Performance . . . . . . . . . . . . . . . . . . . 103

6.6.4 Impact on SSD Lifetime . . . . . . . . . . . . . . . . . . . . . . . 104

6.7 Security Analysis and Discussion . . . . . . . . . . . . . . . . . . . . . . . 105

6.7.1 Exploiting storage capacity . . . . . . . . . . . . . . . . . . . . . . 105

6.7.2 Timing attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.7.3 Secure deletion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Chapter 7: Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . 108

7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.2.1 Achieving Predictable Storage Performance . . . . . . . . . . . . . 109

7.2.2 Unifying Management for Memory and Storage . . . . . . . . . . . 110

7.2.3 Improving Storage Security on Various Platforms . . . . . . . . . . 110

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

x



Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

xi



LIST OF TABLES

3.1 Virtual SSD types supported in FlashBlox. . . . . . . . . . . . . . . . . . . 19

3.2 Monte Carlo simulation (10K runs) of SSD lifetime with randomly sampled
workloads on the channels. . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1 FlashMap’s Overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2 Cost-effectiveness of FlashMap for 1 TB workload sizes, compared with
the ideal large DRAM-only system. . . . . . . . . . . . . . . . . . . . . . 52

5.1 WearDrive API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.2 Workloads included in WearBench. . . . . . . . . . . . . . . . . . . . . . . 70

5.3 Reference wearable device used for evaluation. . . . . . . . . . . . . . . . 71

5.4 WearDrive saves wearable’s battery by trading it with the phone’s bat-
tery.The battery capacities of the wearable and phone used in the experi-
ments are 300 mAh and 2000 mAh respectively. . . . . . . . . . . . . . . . 77

6.1 Ransomware families, their encryption time, and behaviors of deleting backup
files (backup spoliation). . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.2 File distribution in a normal user’s computer. . . . . . . . . . . . . . . . . . 85

6.3 A variety of real-world application workloads used for evaluating Flash-
Guard. R: Read, W: Write. . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.4 The additional page movements (%) for retaining invalid pages in Flash-
Guard over the time period from 2 to 20 days. For the workloads that do
not incur additional page movements, they are not shown in the table. . . . 104

xii



LIST OF FIGURES

2.1 The system architecture of using an SSD with block I/O interface. . . . . . 6

2.2 The internal parallelism in an SSD. . . . . . . . . . . . . . . . . . . . . . . 7

3.1 Tenants sharing an SSD get better bandwidth (compare (a) vs. (b)) and
tail latency as shown in (c) when using new hardware isolation. How-
ever, dedicating channels to tenants can lead to wear-imbalance between
the various channels as shown in (d). A new design for addressing such a
wear-imbalance is proposed. . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 The average rate at which flash blocks are erased for various workloads,
including NoSQL, SQL, and batch processing workloads. . . . . . . . . . . 18

3.3 The system architecture of FlashBlox. . . . . . . . . . . . . . . . . . . . . 19

3.4 A FlashBlox SSD: vSSD A and B use one and two channels respectively.
vSSD C and D use three dies each. vSSD E, and F use three soft-planes each. 20

3.5 Applications manage a fine-granular log-structured data store and align
compaction units to erase-blocks in FlashBlox. A device level indirection
layer is used to ensure all erase-blocks are aging at the same rate. . . . . . . 27

3.6 The average and 99th percentile latencies of LevelDB+YCSB workloads
running at various levels of storage isolation. Compared to die and software
isolated vSSDs, channel isolated vSSD reduces the average latency by 1.2x
and 1.4x respectively, and decreases the 99th percentile latency by 1.2 -
1.7x and 1.9 - 2.6x respectively. . . . . . . . . . . . . . . . . . . . . . . . 30

3.7 The impact of a channel migration on workloads. LevelDB’s throughput
falls by 33.8%, its tail percentile of reads and updates increase by 22.1%
and 18.7% respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

xiii



3.8 The overhead of migrating 1GB of data as MapReduce and web search are
running on the channels involved. MapReduce’s bandwidth falls by up to
36.7% while web search’s latency increases by up to 34.2%. . . . . . . . . 31

4.1 Comparison of (a) conventional memory-mapped SSD-file’s IO stack and
(b) FlashMap that combines all the address translations for mapping files
into page tables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 FlashMap uses a page table design for indexing files. . . . . . . . . . . . . 40

4.3 File brings leaf-level page tables with itself to a process that maps it. Higher-
level page table pages are not shared, they are created on-demand for map-
ping the file. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.4 Page table entries are overloaded to store both SSD and DRAM locations
of pages. When a page table entry stores the DRAM location of a cached
page, the corresponding auxiliary SSD-location entry remembers it’s SSD-
location. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.5 Processes A and B map the same file. However, process B has custom
memory protections for a small memory region with private leaf-level page-
table pages (LL-PTP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.6 Index size for 1 TB SSD. . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.7 Improvements for analytics on Twitter, Friendster and MSD dataset, with
varied DRAM size. Compared to Separate Memory (OnDemand), FlashMap
performs 1.15–1.64x better for PageRank, and up to 3.32x better for the
connected component labeling. . . . . . . . . . . . . . . . . . . . . . . . . 49

4.8 For faster SSDs, FlashMap provides tangible improvements in the latency
over Unoptimized Software. . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.9 For faster SSDs, FlashMap provides up to 1.78x improvements on through-
put over Unoptimized Software with TPCC, TPCB and TATP benchmarks.
As for Flash with 100 µs device latency, FlashMap still performs 1.21x
more TPS than others. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

xiv



5.1 Motivating scenarios for WearDrive: (a) Mobile storage stacks are energy-
intensive because storage software consumes 80–110x more energy than
flash. (b) To maintain a connection to the phone for the wearable, WiFi-
Direct consumes 10–15mW extra power, while Bluetooth Low-Energy re-
quires only 1–2mW. (c) In terms of energy consumption of the whole sys-
tem when sequentially writing 32 MB data set with various I/O granular-
ities, it is more energy efficient to write to remote phone’s memory via
WiFi-Direct than to write data locally to flash on the wearable. . . . . . . . 57

5.2 (a) WearDrive expands wearable’s memory and storage capacity by lever-
aging phone’s capabilities. LocDRAM/RemDRAM represents local/remote
DRAM, LocFlash/RemFlash are local/remote Flash. (b) BB-RAM pages
are held in a linked list. The pages contain a sequential log of key-value
pairs as they arrive. The hashtable stored in regular DRAM contains the
index for the key-value store whose state can be efficiently recovered after
failures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.3 WearDrive creates individual logs per application and per sensor to isolate
on secondary storage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.4 Energy consumption of data transfer via BLE and WFD. WFD is efficient
if connection establishment, tail latency, and connection-teardown are not
included. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.5 Performance and energy comparison of WearableOnly and WearDrive with
a varied number (1, 2, 4) of threads. . . . . . . . . . . . . . . . . . . . . . 72

5.6 Energy used by various storage systems with varied number (1–16) of sen-
sors sampling values continuously at 1Hz for 24 hours. A typical smart-
watch battery contains between 3000–6000 Joules of energy. . . . . . . . . 72

5.7 Energy usage of receiving 10 notifications (10KB size) with the varied in-
terval between notifications. . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.8 Performance and energy usage of notification workload with different data
size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.1 The fundamental difference between HDD and SSD for an overwrite oper-
ation. When a logical block x is overwritten, HDD will update the mapped
physical block y with the new data B, while SSD will place the new data B
on a free block z and garbage collect the block y later. . . . . . . . . . . . . 89

xv



6.2 Overview of RFTL in FlashGuard. RFTL slightly modifies the existing
FTLs by adding a read tracker table (RTT) to track whether a page has
been read. Cooperating with other tables, RTT helps RFTL track the pages
that could be encrypted by ransomware. LPA: logical page address, PPA:
physical page address, VPA: virtual page address, PBA: physical block
address. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.3 The out-of-band (OOB) metadata in each physical page. It includes the
LPA mapped to this physical page, the previous physical page address (P-
PPA) mapped to the current LPA, the timestamp when the page is written,
the retained invalid page (RIP) bit indicating whether this page should be
retained if it becomes invalid. . . . . . . . . . . . . . . . . . . . . . . . . 93

6.4 An example of candidate block selection in state-of-the-art GC vs. RFTL’s
GC. Traditionally, block C is selected, as the number of the valid pages is
the least. In RFTL, block A is selected, since RFTL counts the retained
invalid pages (RIP) as valid pages. . . . . . . . . . . . . . . . . . . . . . . 94

6.5 FlashGuard restores all the overwritten pages by travelling back to their
previous versions with the previous physical page address stored in each
page’s OOB metadata. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.6 The total size of the data encrypted by each ransomware family. . . . . . . 101

6.7 The time of restoring the data that have been encrypted by ransomware. . . 101

6.8 The average latency of running real-world workloads with FlashGuard vs.
Unmodified SSD. The time of holding retained invalid pages in FlashGuard
ranges from 2 days to 20 days. FlashGuard’s average latency is almost the
same as that of the unmodified SSD for a variety of workloads. . . . . . . . 102

6.9 The average throughput of running real-world workloads with FlashGuard
vs. Unmodified SSD. FlashGuard has negligible impact on the I/O through-
put for most of these workloads. . . . . . . . . . . . . . . . . . . . . . . . 103

6.10 The normalized write amplification factor (WAF) of FlashGuard compared
to Unmodified SSD (lower is better). . . . . . . . . . . . . . . . . . . . . 105

xvi



SUMMARY

The longstanding goals of storage system design have been to provide simple abstrac-

tions for applications to efficiently access data while ensuring the data durability and se-

curity on a hardware device. The traditional storage system, which was designed for slow

hard disk drive with little parallelism, does not fit for the new storage technologies such as

the faster flash memory with high internal parallelism. The gap between the storage system

software and flash device causes both resource inefficiency and sub-optimal performance.

This dissertation focuses on the rethinking of the storage system design for flash memory

with a holistic approach from the system level to the device level and revisits several crit-

ical aspects of the storage system design including the storage performance, performance

isolation, energy-efficiency, and data security.

The traditional storage system lacks full performance isolation between applications

sharing the device because it does not make the software aware of the underlying flash

properties and constraints. This dissertation proposes FlashBlox, a storage virtualization

system that utilizes flash parallelism to provide hardware isolation between applications

by assigning them on dedicated chips. FlashBlox reduces the tail latency of storage oper-

ations dramatically compared with the existing software-based isolation techniques while

achieving uniform lifetime for the flash device.

As the underlying flash device latency is reduced significantly compared to the conven-

tional hard disk drive, the storage software overhead has become the major bottleneck. This

dissertation presents FlashMap, a holistic flash-based storage stack that combines mem-

ory, storage and device-level indirections into a unified layer. By combining these layers,

FlashMap reduces critical-path latency for accessing data in the flash device and improves

DRAM caching efficiency significantly for flash management.

The traditional storage software incurs energy-intensive storage operations due to the

need for maintaining data durability and security for personal data, which has become a

xvii



significant challenge for resource-constrained devices such as mobiles and wearables. This

dissertation proposes WearDrive, a fast and energy-efficient storage system for wearables.

WearDrive treats the battery-backed DRAM as non-volatile memory to store personal data

and trades the connected phone’s battery for the wearable’s by performing large and energy-

intensive tasks on the phone while performing small and energy-efficient tasks locally using

battery-backed DRAM. WearDrive improves wearable’s battery life significantly with neg-

ligible impact to the phone’s battery life.

The storage software which has been developed for decades is still vulnerable to mal-

ware attacks. For example, the encryption ransomware which is a malicious software that

stealthily encrypts user files and demands a ransom to provide access to these files. Prior

solutions such as ransomware detection and data backups have been proposed to defend

against encryption ransomware. Unfortunately, by the time the ransomware is detected,

some files already undergo encryption and the user is still required to pay a ransom to ac-

cess those files. Furthermore, ransomware variants can obtain kernel privilege to terminate

or destroy these software-based defense systems. This dissertation presents FlashGuard, a

ransomware-tolerant SSD which has a firmware-level recovery system that allows effective

data recovery from encryption ransomware. FlashGuard leverages the intrinsic flash prop-

erties to defend against the encryption ransomware and adds minimal overhead to regular

storage operations.
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CHAPTER 1

INTRODUCTION

For decades, storage systems have been designed for block-based devices such as hard

disk drive (HDD) that has little parallelism and long access latency. The widely used solid

state disk (SSD) out-performs HDD by orders of magnitude, providing up to 5000x more

IOPS, at 1% of the latency [1] without any physical seek operation. Such performance

characteristics make SSD more similar to DRAM than to HDD. Moreover, SSD behaves

intrinsically different from HDD. For example, typical SSDs have high internal parallelism

by organizing their flash blocks into a hierarchy of multiple chips; they employ a flash

translation layer (FTL) for out-of-place writes in order to mitigate the long erase latency of

flash memories and also ensuring uniform wear for flash blocks. These unique properties

make their storage management fundamentally different from that of HDDs.

1.1 The Problem

To be compatible with the existing computer systems and simplify the software devel-

opment, the storage systems that were originally made for HDD are employed for flash

memory today, which causes a large gap between storage system software and hardware

device. The gap not only causes resource inefficiency across the whole storage system

stack but also results in the uncertainty for data security and durability, since the flash de-

vice is taken as a ‘black box’ under the conventional block abstraction. To fully exploit

the hardware benefits, it is important to rethink the system design for flash memory with a

holistic cross-layer approach.

The storage system is normally virtualized and shared by multiple applications for re-

source efficiency and these applications can interfere with each other. Therefore, a long-

standing goal of storage virtualization has been to provide performance isolation between
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multiple applications sharing the device. Virtualizing SSDs, however, has traditionally

been a challenge because of the fundamental tussle between resource isolation and the

lifetime of the flash device. The SSDs aim to uniformly age all the regions of flash and

this violates the isolation assumption in traditional storage systems. Although the stor-

age system software has provided isolation mechanisms such as token bucket rate limiters

and intelligent IO throttling [2, 3, 4], the FTL in SSDs, which is responsible for address

translation and wear leveling for flash blocks, does not provide any isolation guarantee un-

derneath the flash controller and this makes the storage performance highly unpredictable.

This dissertation proposes utilizing flash parallelism to improve isolation between applica-

tions by running them on dedicated chips. It also proposes allowing the wear of different

chips to diverge at fine time granularities in favor of performance isolation and adjusting

the imbalance at a more coarse time granularity in a principled manner.

As flash device out-performs hard disk drive by orders of magnitude in terms of the

device latency and throughput, the storage software has become the major bottleneck when

accessing data on physical device. To improve the storage performance, an emerging ap-

proach to using SSDs treats them as a slower form of non-volatile memory. For example,

NoSQL databases like MongoDB [5, 6], LMDB [7] which are widely deployed use SSDs

via the existing memory-mapped file interface. Such an approach eases application de-

velopment and automatically tiers SSD under the DRAM by the operating system (OS)

manager. Using SSDs in this manner, unfortunately, is inefficient as there are three soft-

ware layers with redundant functionalities between the application and flash device. The

first of these, memory-level indirection, involves page table translations and sanity checks

by the OS memory manager. The second of these, storage-level indirection, involves con-

verting file offsets to blocks on the SSD and permission checks by the file system. The final

one, device-level indirection, is for the FTL of the SSD. Redundant indirections and checks

not only increase the latency of flash accesses but also affect performance by requiring pre-

cious DRAM space to cache indirection data across all the three layers. This dissertation
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proposes a holistic SSD architecture that combines memory, storage and device-level indi-

rections into a unified layer.

Beyond the performance issues, the storage software also incurs energy-intensive stor-

age operations which consume up to 110x more energy compared to flash hardware for

accessing data [8]. These energy overheads pose a big challenge for resource-constrained

platforms such as wearables because the size and weight constraints on wearables limit their

battery capacity and restrict them from providing rich functionality. The need for durable

and secure storage for personal data further compounds this problem as these features in-

cur energy-intensive operations. This dissertation presents WearDrive, a fast in-memory

storage system for wearables by treating the battery-backed DRAM as non-volatile mem-

ory to avoid the energy-intensive storage operations and leveraging the low-power network

connectivity on wearables to trade the resources on the phone for the wearable.

Finally, this dissertation also investigates the security aspect of the storage system stack.

Although the storage system has been developed for decades, it is still vulnerable to mal-

ware attacks. For instance, the encryption ransomware which is a malicious software that

stealthily encrypts user files and demands a ransom to provide access to these files. Several

prior studies have developed systems to detect ransomware by monitoring the activities that

typically occur during a ransomware attack. Unfortunately, by the time the ransomware is

detected, some files already undergo encryption and the user is still required to pay a ran-

som to access those files. Furthermore, ransomware variants can obtain kernel privilege,

which allows them to terminate software-based defense systems, such as anti-virus. While

periodic backups have been explored as a means to mitigate ransomware, such backups

incur storage overheads and are still vulnerable as ransomware can obtain kernel privi-

lege to stop or destroy backups. Therefore, it is important to defend against ransomware

without relying on software-based solutions and without incurring the storage overheads of

backups. This dissertation proposes FlashGuard, a ransomware-tolerant SSD which has a

firmware-level recovery system that allows quick and efficient data recovery from encryp-
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tion ransomware without relying on explicit software-based solutions.

1.2 Thesis Statement

Redesigning the storage system to exploit the intrinsic properties of flash memory can

substantially improve the scalability, reliability, and security of flash-based storage systems.

1.3 Contributions

This dissertation makes the following contributions:

• This dissertation proposes hardware isolation for flash-based storage system by uti-

lizing the internal parallelism of flash memory and assigning applications on ded-

icated chips. It also presents a new wear-leveling scheme to manage the wear of

flash chips at fine time granularities. Such a new design makes SSD wears uniformly

while the tail latency of storage operations are reduced significantly compared to the

traditional software-based isolation techniques.

• This dissertation presents a holistic SSD architecture for scalable SSD with larger

capacity. It combines memory, storage, and device-level indirections into a unified

layer while preserving the properties of each layer. Such an architecture significantly

improves DRAM caching efficiency and reduces the latency of accessing a page on

SSD. It also presents a way of unifying the new and emerging memory and storage

technologies such as 3D XPoint memory.

• This dissertation proposes an energy-efficient storage system based on the battery-

backed DRAM to avoid the energy-intensive storage operations to the flash device.

The DRAM on mobile and wearable devices can be treated as non-volatile memory

for free because they are backed by non-removable batteries. Such a type of non-

volatile memory opens a new field for persistent memory research.
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• This dissertation also presents a ransomware-tolerant SSD which has the capability

of defending against encryption ransomware by leveraging the intrinsic flash proper-

ties. Such an SSD can protect user data from encryption ransomware without relying

on the software-based defense systems, while adding minimal overhead to regular

storage operations and avoiding storage overhead of explicit data backups.

1.4 Dissertation Organization

The rest of the dissertation is organized as follows. Related work is discussed in Chap-

ter 2. Chapter 3 describes the hardware isolation for multi-tenant applications. Chapter 4

discusses the unified address translation for memory-mapped SSDs. The energy-efficient

storage system for wearables is presented in Chapter 5. Chapter 6 presents the ransomware-

tolerant SSD. Finally, Chapter 7 summarizes the dissertation and discusses the directions

of future work.
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CHAPTER 2

BACKGROUND AND RELATED WORK

As the replacement to conventional persistent storage devices – hard disk drives (HDDs),

Solid-State Drives (SSDs) have been widely used on many kinds of computing platforms,

because they provide orders of magnitude better performance than HDDs while their cost

is fast approaching to that of HDDs [9, 10, 11, 12]. This chapter describes the technical

background of SSDs. Related work for the specific problems in the storage system stack

will be further discussed in the corresponding chapter.

Block Driver

Host

Application

kernel

userspace

read/write

Block I/O Interface

Flash Translation Layer

NAND Flash

Hardware

Device

Figure 2.1: The system architecture of using an SSD with block I/O interface.

2.1 Flash Memory: Background and Terminology

Same as conventional HDDs, a commodity SSD employs a block interface to encapsulate

the idiosyncrasies of flash devices as shown in Figure 2.1. As such, it gives upper-level soft-

ware systems (such as file systems) an impression that both SSD and HDD perform storage

operations in the same manner. At the hardware level, however, an SSD is fundamentally

different from HDD.

Given an SSD, each physical page can be written only after it is erased. Unfortunately,

erase operation can be performed only at block (which has multiple pages) granularity and
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Figure 2.2: The internal parallelism in an SSD.

such operations are time-consuming. Therefore, SSDs issue the writes to free pages which

have been erased in advance (i.e., out-of-place write) rather than waiting for the expensive

erase operation for every write, and garbage collection (GC) will be executed later to clean

the stale data on SSDs. Moreover, each flash block has limited endurance: it is rated

only for a few thousand erase operations, therefore it is important for the blocks to age

uniformly. SSDs employ both out-of-place write and GC to overcome the shortcomings

of SSDs and maintain indirections in the Flash Translation Layer (FTL) for indexing the

virtual-to-physical address mapping.

Typical SSDs organize their flash array into a hierarchy of channels, dies and planes [13,

14]. As shown in Figure 2.2, each SSD has multiple channels, each channel has multiple

dies, and each die has multiple planes. The number of channels, dies and planes varies by

vendor and generation. Typically, there are 2 - 4 planes per die, 4 - 8 dies per channel, and

8 - 32 channels per drive.

Channels, which share only the resources common to the whole SSD, provide the

strongest isolation. Dies execute their commands with complete independence, but they

must share a bus with other dies on the same channel. Planes’ isolation is limited – the

controller may isolate data to different planes, but operations on these data must either

happen at different times or to the same address on each plane in a die [15].

2.2 Related Work in Improving Storage Isolation

SSDs have become indispensable for large-scale cloud services as their cost is fast ap-

proaching to that of HDDs. The rapidly shrinking process technology has allowed SSDs
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to boost their bandwidth and capacity by increasing the number of chips. However, the

limitations of SSDs’ management algorithms have hindered these parallelism trends from

efficiently supporting multiple tenants on the same SSD.

Previous work had proposed novel techniques to help application tenants place their

data such that underlying flash pages are allocated from separate blocks. This helps im-

prove performance by reducing the write amplification factor (WAF) [16]. Lack of block

sharing has the desirable side effect of clumping garbage into fewer blocks, leading to more

efficient garbage collection (GC), thereby reducing tail latency of SSDs [17, 18, 19, 20].

However, significant interference still exists between tenants because when data is

striped, every tenant uses every channel, die and plane for storing data and the storage

operations of one tenant can delay other tenants. Software isolation techniques [21, 22, 23]

split the SSD’s resources fairly. However, they cannot maximally utilize the flash paral-

lelism when resource contention exists at a layer below because of the forced sharing of

independent resources such as channels, dies, and planes.

New SSD designs, such as open-channel SSDs that explicitly expose channels, dies and

planes to the operating system [24, 25, 26], can help tenants avoid some of these pitfalls

by using dedicated channels. However, the wear imbalance problem between channels that

ensues from different tenants writing at different rates remains unsolved.

2.3 Related Work in Improving Storage Performance

To further improve the performance of storage operations against SSDs, an emerging ap-

proach to using SSDs treats them as a slower form of non-volatile memory. For example,

NoSQL databases like MongoDB [5, 6], LMDB [7] (backend for OpenLDAP) and oth-

ers [27, 28, 29] which are widely deployed [30] use SSDs via a memory-mapped file inter-

face. There are three advantages to this approach. First, the virtual memory interface eases

development. For example, MongoDB uses TCMalloc [31] to manage SSD-file backed

memory to create data structures like its B-tree index, and for using the Boost template li-
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brary. Second, SSDs are automatically tiered under DRAM by the OS’s memory manager.

Finally, memory that is backed by a file enables durability for data. Such hybrid memory

systems have also been proposed in the academic community [32, 33, 34, 35, 36].

However, these systems do not present optimizations for reducing the address transla-

tion overhead. Nameless writes [37] and DFS [38] combine the FTL with the file system’s

index. But, when mapping a file that uses nameless writes or DFS into virtual memory,

page tables are created separately on top which increases the address translation and other

software overhead.

DFTL [39] proposes caching only the “hot” mappings in memory while other mappings

can be stored on the SSD. While such techniques reduce the space requirement of RAM at

the FTL, they do not reduce the indirection overheads in higher software layers.

2.4 Related Work in Improving Storage Energy Efficiency

Beyond the storage performance of flash memories, the energy efficiency of storage oper-

ations is also a major concern of system design (especially for resource-constrained plat-

forms such as mobiles and wearables). Kim et al. [40] provided the evidence that slow flash

technologies such as SD and eMMC are the primary performance bottleneck for several

classes of mobile applications. Li et al. [8] studied the energy overhead of mobile stor-

age systems and found that the mobile software stack consumes more power than storage

hardware. These findings motivate the research on the energy efficiency of storage systems

in this dissertation, as these overheads become more prominent on wearables where the

battery is more constrained than on phones.

Recent optimizations to mobile storage [41, 42] address some of the performance prob-

lems, but flash is still 10,000x slower compared to DRAM. Emerging non-volatile memory

(NVM) technologies like PCM [43, 44, 45] are not yet available in the market. Battery-

backed RAM [46, 47, 48] is viable because batteries, DRAM, and flash are pervasive in

mobile systems. Luo et al. [46] proposed QuasiNVRAM that is a dedicated, known, con-
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tiguous region of physical memory to provide performance benefits for phone applications

that use SQLite on Android.

Rio [49], BlueFS [50], EnsemBlue [51] Simba [52], Segank [53], Bayou [54] and Per-

sonalRAID [55] are distributed file system techniques to share personal data efficiently

across mobile consumer electronic devices. For wearable devices, their workload charac-

teristics are different. The wearable workloads like extended-display and sensor data anal-

ysis focus on the newest data. A quick and energy-efficient mechanism can be exploited to

span data and computation across the wearable and the phone.

2.5 Related Work in Improving Storage Security

To ensure the data reliability and security in modern storage systems, a large number of

backup systems have been proposed [56, 57, 58]. The ones that have been commonly

adopted on Unix systems are dump and tar utilities. They both support full and incremen-

tal backup strategies [56]. On Microsoft Windows system, the most popular backup system

is Volume Shadow Copy Service that archives user data on local and external volumes in

an incremental manner [57]. Another line of work capable of achieving data recovery are

log-structured file systems [59] and journaling file systems [60]. They both maintain data

updates in persistent logs. Once data loss or inconsistency occurs, they can recover the data

back to previous states by rolling back the logs.

Apart from the backup systems integrated into OSes, other well-developed backup sys-

tems include the IBM Tivoli Storage Manager [58] that performs selective, incremental

backup in conjunction with deduplication, and those cloud based storage systems [61] that

synchronize file updates and creation with the backup storage running on the cloud.

As a defense mechanism, however, none of them is sufficient and proper. To avoid loss

of files newly updated or created, they have to perform backup frequently. From the per-

spective of efficiency, this is particularly time-consuming. Since malware has already run

with the kernel privilege, the backup systems proposed can be easily disabled or circum-
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vented. For example, a backup process that synchronizes user files with a cloud storage

can be terminated by ransomware with the kernel privilege.

Looking beyond file backups, researchers proposed to integrate proactive defense mech-

anisms into the existing software systems recently. For example, ShieldFS [62] monitors

the low-level file access activities to detect ransomware and implements a protection layer

with the copy-on-write mechanism to recover data. PayBreak [63] hooks crypto func-

tions in the standard libraries to identify the invocations from ransomware and logs the

encryption key for future data decryption. Similar to the attacks against file backups, ran-

somware can easily undermine these mechanisms by disabling them with kernel privilege

or obfuscating the execution of its critical functions.
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CHAPTER 3

FLASHBLOX: HARDWARE ISOLATED VIRTUAL SSDS

A longstanding goal of storage virtualization has been to provide performance isolation

between multiple tenants sharing the device. Virtualizing SSDs, however, has traditionally

been a challenge because of the fundamental tussle between resource isolation and the

lifetime of the device – existing SSDs aim to uniformly age all the regions of flash and this

hurts performance isolation.

We propose utilizing flash parallelism to improve isolation between virtual SSDs by

running them on dedicated channels and dies. Furthermore, we offer a complete solution

by also managing the wear. We propose allowing the wear of different channels and dies

to diverge at fine time granularities in favor of isolation and adjusting that imbalance at a

coarse time granularity in a principled manner. Our experiments show that the new SSD

wears uniformly while the 99th percentile latencies of storage operations in a variety of

multi-tenant settings are reduced by up to 3.1x compared to software isolated virtual SSDs.

3.1 Introduction

SSDs have become indispensable for large-scale cloud services as their cost is fast ap-

proaching to that of HDDs. They outperform HDDs by orders of magnitude, providing up

to 5,000x more IOPS, at 1% of the latency [64]. The rapidly shrinking process technology

has allowed SSDs to boost their bandwidth and capacity by increasing the number of chips.

However, the limitations of SSDs’ management algorithms have hindered these parallelism

trends from efficiently supporting multiple tenants on the same SSD.

The tail latency of SSDs in multi-tenant settings is one such limitation. Cloud storage

systems have started collocating multiple tenants on the same SSDs [65, 66, 67] which

further exacerbates the already well-known tail latency problem of SSDs [17, 68, 69, 70].
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The cause of tail latency is the set of complex flash management algorithms in the

SSD’s controller, called the Flash Translation Layer (FTL). The fundamental goals of these

algorithms are decades-old and were meant for an age when SSDs had limited capacity and

little parallelism. The goals were meant to hide the idiosyncrasies of flash behind a layer of

indirection and expose a block interface. These algorithms, however, conflate wear leveling

(to address flash’s limited lifetime) and resource utilization (to exploit parallelism) which

increases interference between tenants sharing an SSD.

While application-level flash-awareness [38, 71, 72, 73, 74] improves throughput by

efficiently leveraging the device level parallelism, these optimizations do not directly help

reduce the interference between multiple tenants sharing an SSD. These tenants cannot

effectively leverage flash parallelism for isolation even when they are individually flash-

friendly because FTLs hide the parallelism. Newer SSD interfaces [25, 26] that propose

exposing raw parallelism directly to higher layers provide more flexibility in obtaining

isolation for tenants but they complicate the implementation of wear-leveling mechanisms

across the different units of parallelism.

This dissertation proposes leveraging the inherent parallelism present in today’s SSDs

to increase isolation between multiple tenants sharing an SSD. We propose creating virtual

SSDs that are pinned to a dedicated number of channels and dies depending on the capacity

and performance needs of the tenant. The fact that the channels and dies can be more

or less operated upon independently helps such virtual SSDs avoid adverse impacts on

each other’s performance. However, different workloads can write at different rates and in

different patterns, this could age the channels and dies at different rates. For instance, a

channel pinned to a TPC-C database instance wears out 12x faster than a channel pinned

to a TPC-E database instance, reducing the SSD lifetime dramatically. This non-uniform

aging creates an unpredictable SSD lifetime behavior that complicates both provisioning

and load-balancing aspects of data center clusters.

To address this problem, we propose a two-part wear-leveling model which balances
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wear within each virtual SSD and across virtual SSDs using separate strategies. Intra-

virtual SSD wear is managed by leveraging existing SSD wear-balancing mechanisms

while inter-virtual SSD wear is balanced at coarse-time granularities to reduce interfer-

ence by using new mechanisms. We control the wear imbalance between virtual SSDs

using a mathematical model and show that the new wear-leveling model ensures near-ideal

lifetime for the SSD with negligible disruption to tenants.

We design and implement FlashBlox and its new wear-leveling mechanisms inside

an open-channel SSD stack (from CNEX labs [75]), and demonstrate benefits for a Mi-

crosoft data centers’ multi-tenant storage workloads: the new SSD delivers up to 1.6x

better throughput and reduces the 99th percentile latency by up to 3.1x. Furthermore, our

wear leveling mechanism provides 95% of the ideal SSD lifetime even in the presence

of adversarial write workloads that execute all the writes on a single channel while only

reading on other channels.

3.2 Motivation

Premium storage Infrastructure-as-a-Service (IaaS) offerings [76, 77, 78], persistent Platform-

as-a-Service (PaaS) systems [79] and Database-as-a-Service (DaaS) systems [80, 81, 82,

83] need SSDs to meet their service level objectives (SLO) that are usually outside the

scope of HDD performance. For example, DocDB [81] guarantees 250, 1,000 and 2,500

queries per second respectively for the S1, S2 and S3 offerings [84].

Storage virtualization helps such services make efficient use of SSDs’ high capacity and

performance by slicing resources among multiple customers or instances. Typical database

instances in DaaS systems are 10 GB – 1 TB [84, 85] whereas each server can have more

than 20 TB of SSD capacity today.

Bandwidth, IOPS [86, 87] or a convex combination of both [21, 88] is limited on a per-

instance basis using token bucket rate limiters or intelligent IO throttling [2, 3, 4] to meet

SLOs. However, there is no analogous mechanism for sharing the SSD while maintaining
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Figure 3.1: Tenants sharing an SSD get better bandwidth (compare (a) vs. (b)) and tail
latency as shown in (c) when using new hardware isolation. However, dedicating channels
to tenants can lead to wear-imbalance between the various channels as shown in (d). A new
design for addressing such a wear-imbalance is proposed.

low IO tail latency – an instance’s latency still depends on the foreground reads/writes [17,

18, 20] and background garbage collection [16] of other instances.

Moreover, it is increasingly becoming necessary for diverse workloads (e.g., latency-

critical applications and batch processing jobs) to be collocated for improving efficiency

while being isolated from each other [89, 18]. Virtualization and container technologies

are evolving to exploit hardware isolation of memory [90, 91], CPU [92, 93], caches [94,

95], and networks [96, 97] to support such scenarios. We extend this line of research to

SSDs by providing hardware isolated SSDs while solving the wear-imbalance problem that

arises due to the physical flash partitioning across diverse applications.

3.2.1 Hardware Isolation vs. Wear-Leveling

To understand this problem, we compare the two different approaches to hardware sharing

using a representative workload. The first approach stripes data from all the workloads
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Figure 3.2: The average rate at which flash blocks are erased for various workloads, in-
cluding NoSQL, SQL, and batch processing workloads.

across all the flash channels (eight total) much like existing SSDs. This scheme provides the

maximum throughput for each IO and uses the software rate limiter which has been used for

Linux containers and Docker [98, 99] to implement weighted fair sharing of the resources

(the scenario for Figure 3.1a). Note that each instance in software isolated case does not

share physical flash blocks with other collocated instances to eliminate the unpredictability

stemming from SSD firmware [16]. The second approach uses a configuration from our

proposed mechanism that provides the hardware isolation by assigning a certain number of

channels to each instance (the scenario for Figure 3.1b).

In both scenarios, there are four IO-intensive workloads. These workloads request

1/8th, 1/4th, 1/4th, and 3/8th of the shared storage resource. The rate limiter uses these as

weights in the first approach, while FlashBlox assigns 1, 2, 2 and 3 channels respectively.

Workloads 2 and 4 perform 100% writes and workloads 1 and 3 perform 100% reads. All

workloads issue sequentially-addressed and aligned 64 KB IOs.

Hardware isolation not only reduces the 99th percentile latencies by up to 1.7x (Fig-

ure 3.1c), but also increases the aggregate throughput by up to 10.8% compared to software

isolation. However, pinning instances to channels prevents the hardware from automati-

cally leveling the wear across all the channels, as shown in Figure 3.1d. We exaggerate

the variance of write rates to better motivate the problem: a need to balance wear between

hardware isolated virtual SSDs. However, we will explore applications’ typical write rates

(see Figure 3.2) and tailor our solution to this side effect. To motivate the problem further,

16



App

Virtual SSD

Intra virtual 

SSD wear 

leveling

Intra virtual 

SSD wear 

leveling

… …

App

Host-level 

Flash 

Manager

Flash

App

Virtual SSD

Virtual SSD to Channel/Die/Plane Mappings 

(Enables Hardware Isolation with Flash-level Parallelism)

Resource 

Manager

…

SSD-Level 

Flash 

Manager

Inter virtual SSD 

wear-leveling with 

migration

Other FTL 

Algorithms

…

Figure 3.3: The system architecture of FlashBlox.

we must first explore the parallelism available in SSD hardware, and the aspects of FTLs

which cause interference in the first approach.

3.2.2 Leveraging Parallelism for Isolation

As shown in Figure 2.2, the architecture of flash memories plays an important role in defin-

ing isolation boundaries. In current drives, none of this flexibility is exposed to the host.

Drives instead optimizes for a single IO pattern: extremely large or sequential IO. The

FTL logically groups all planes into an array, effectively creating large super-pages and

super-blocks. Striping increases the throughput of large, sequential IOs, but introduces the

negative side effect of interference between multiple tenants sharing the drive. As all data

is striped, every tenant’s reads, writes and erases can potentially conflict with every other

tenant’s operations.

3.3 FlashBlox Design

We now describe FlashBlox whose architecture is shown in Figure 3.3. At a high level,

FlashBlox consists of the following three components: (1) A resource manager that allows

tenants to allocate and deallocate virtual SSDs (vSSD); (2) A host-level flash manager

that implements inter-vSSD wear-leveling by balancing wear across channels and dies at
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Table 3.1: Virtual SSD types supported in FlashBlox.

Virtual SSD Type Isolation Level Allocation Granularity
Channel Isolated vSSD High Channel
Die Isolated vSSD Medium Die
Software Isolated vSSD Low Plane/Block
Unisolated vSSD None Block/Page

coarse time granularities; (3) An SSD-level flash manager that implements intra-vSSD

wear-leveling and other FTL functionalities.

One of the key new abstractions provided by FlashBlox is that of a virtual SSD (vSSD)

which can reduce tail latency. It uses dedicated flash hardware resources such as channels

and dies that can be operated independently from each other. It can be created using the

following simple API:

vssd t AllocVirtualSSD(int isolationLevel,

int tptLevel, size t capacity);

Instead of asking tenants to specify absolute numbers, FlashBlox enables them to create dif-

ferent types of vSSDs with different levels of isolation and throughput, and various storage

capacity in GBs (see Table 3.1). These parameters are compatible with the performance

and economic cost levels such as the ones [100, 84] advertised in DaaS services to ease

usage and management. Tenants scale up capacity by creating multiple vSSDs of adver-

tised sizes just as it is done in DaaS systems today. A vSSD is deallocated with void

DeallocVirtualSSD(vssd t vSSD).

Channels, dies and planes are used for providing different levels of performance iso-

lation. This brings significant performance benefits to multi-tenant scenarios because they

can be operated independently from each other.

Higher levels of isolation have larger resource allocation granularities as channels are

larger than dies. Therefore, channel-granular allocations can have higher internal frag-

mentation compared to die-granular allocations. However, this is less of a concern for

FlashBlox’s design for several reasons. First, capacities of flash’s channels/dies/planes can
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Figure 3.4: A FlashBlox SSD: vSSD A and B use one and two channels respectively.
vSSD C and D use three dies each. vSSD E, and F use three soft-planes each.

be modified by vendors according to the design specifications of data center operators.

Moreover, the tiered storage offerings of DaaS systems [100, 84, 85] allows the flexibility

for the cloud provider to choose sizes and granularities such that fragmentation is reduced.

Finally, the differentiated isolation levels match with the well-known pay-as-you-go cost

model for cloud platforms, in which better services are subject to increased pricing such

the overhead is offset.

Beyond providing different levels of hardware isolation, FlashBlox has to overcome the

unbalanced wear-leveling challenge to prolong the SSD lifetime. We describe the design

of each vSSD type and its corresponding wear-leveling mechanism respectively as follows.

3.3.1 Channel Isolated Virtual SSDs

A vSSD with high isolation receives its own dedicated set of channels. For instance, the

resource manager of an SSD with 16 channels can host up to 16 channel isolated vSSDs,

each containing one or more channels inaccessible to any other vSSD. Figure 3.4 illustrates

vSSD A and B that span one and two channels respectively.

Channel Allocation. The throughput level and target capacity determine the number

of channels allocated to a channel isolated vSSD. FlashBlox allows the data center/PaaS

administrator to implement the size t tptToChannel(int tptLevel) function

that maps between throughput levels and required number of channels. The number of

channels allocated to the vSSD is, therefore, the maximum of tptToChannel(tptLevel)
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and dcapacity / capacityPerChannele.

Within a vSSD, the system stripes data across its allocated channels similar to tradi-

tional SSDs. This maximizes the peak throughput by operating on the channels in parallel.

Thus, size of the super-block of vSSD A in Figure 3.4 is half that of vSSD B. Pages within

the super-block are also striped across the channels similar to existing physical SSDs.

The hardware-level isolation present between the channels by virtue of hardware paral-

lelism allows the read, program and erase operations on one vSSD to largely be unaffected

by the operations on other vSSDs. Such an isolation enables latency sensitive applications

to significantly reduce their tail latencies.

Compared to an SSD that stripes data from all applications across all channels, a vSSD

(over fewer channels) delivers a portion of the SSD’s all-channel bandwidth. Customers

of DaaS systems are typically given and charged for a fixed bandwidth/IOPS level, and

software rate-limiters actively keep their consumption in check. Thus, there is no loss of

opportunity for not providing the peak-bandwidth capabilities for every vSSD.

Unbalanced Wear-Leveling Challenge. A significant side effect of channel isolation

is the risk of uneven aging of the channels as different vSSDs may be written at different

rates. Figure 3.2 shows how various storage workloads erase blocks at different rates indi-

cating that channels pinned naively to vSSDs will age at different rates if left unchecked.

Such uneven aging may exhaust a channel’s life long before other channels fail. Pre-

mature death of even a single channel would render significant capacity losses (> 6% in

our SSD). Furthermore, premature death of a single channel leads to an opportunity loss of

never being able to create a vSSD that spans all the 16 channels for the rest of the server’s

lifetime. Therefore, it is necessary to ensure that all the channels are aging at the same rate.

Inter-Channel Wear-Leveling. To ensure uniform aging of all channels, FlashBlox

uses a simple yet effective wear-leveling scheme: periodically, the channel that has in-

curred the maximum wearout thus far is swapped with the channel that has the minimum

rate of wearout.
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A channel’s wearout rate is the average rate at which it erased blocks since the last time

the channel was swapped. This prevents the most-aged channels from seeing high wearout

rates, thus intuitively extending their lifetime to match that of the other channels in the

system. We analytically derive the minimum necessary frequency and present the design

of the migration mechanism as follows.

Swap Frequency Analysis. Let σi denote the wear (total erase count of all the blocks

till date) of the ith channel. ξ = σmax/σavg denotes the wear imbalance1 which must not

exceed 1 + δ; where σmax = Max(σ1, ..., σN), σavg = Avg(σ1, ..., σN), N is the total

number of channels, and δ measures the imbalance.

When the device is new, it is obviously not possible to ensure that ξ ≤ 1 + δ without

aggressively swapping channels. On the other hand, it must be brought within bounds fairly

early in the lifetime of the server (L = 150–250 weeks typical) such that all the channels

are available for as much of the server’s lifetime as possible.

SSDs are provisioned with a target erase workload and we analyze for the same – let’s

say M erases per week. We mathematically study the wear-imbalance vs. frequency of

migration (f ) tradeoff and show that manageable values of f can provide acceptable wear

imbalance where ξ comes below 1 + δ after αL weeks, where α is between 0 and 1.

Worst-case write workload for FlashBlox is when all the provisioned writes go to a

single channel while the other channels are read-only workloads.2 The assumption that a

single channel’s bandwidth can handle the entire provisioned bandwidth is valid for modern

SSDs: most data center SSDs are provisioned with 3,000-10,000 erases to last 150–250

weeks. This implies that provisioned erase rate for a 1TB SSD is M=21–116 MBPS which

is significantly lower than a channel’s erase bandwidth (typically 64–128MBPS).

1The ratio of maximum to average is an effective way to quantify imbalance [101]. This is especially true
in our case, as the lifetime of the new SSD will be determined by the maximum wearout of a single channel,
whereas the lifetime of ideal wear-leveling is determined by the average wearout of all the channels. The
ratio of maximum to average thus represents the loss of lifetime due to imperfect wear leveling.

2This worst-case is from a non-adversarial point of view. An adversary could change the vSSD write
bandwidth at runtime such that no swapping strategy can keep up. But data center workloads are not adver-
sarial and have predictable write patterns.
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For an SSD with N channels, the wear imbalance of the ideal wear-leveling is ξ = 1,

while the worst case workload for FlashBlox gives a ξ = N : σmax/σavg =M ∗ time/(M ∗

time/N) = N before any swaps. A simple swap strategy of cycling the write workload

through the N channels (write workload spends 1/f weeks per channel) is analyzed. Let’s

assume that after K rounds of cycling through all the channels, KN/f ≥ αL holds true –

that is αL weeks have elapsed and ξ has become less than 1 + δ and continues to remain

there. At that very instant ξ equals 1. Therefore, σmax = MK and σavg = MK, then after

the next swap, σmax = MK +M and σavg = MK +M/N . In order to guarantee that the

imbalance is always limited, we need:

ξ = σmax/σavg = (MK +M)/(MK +M/N) ≤ (1 + δ)

This implies K ≥ (N − 1 − δ)/(Nδ) which is upper bounded by 1/δ. Therefore, to

guarantee that ξ ≤ (1 + δ), it is enough to swap NK = N/δ times in the first αL weeks.

This implies that, over a period of 150–250 weeks, if α were 0.9 then a swap must be

performed once every 6–10 days (= 1/f ) for a N=16 channel SSD and a δ = 0.1. This

also implies that 2
16

th of the SSD is erased to perform the swap once every 6–10 days, which

is negligible compared to the 3,000–10,000 cycles that typical SSDs have. However, for

realistic workloads that do not have such a skewed write pattern, swaps must be adaptively

performed according to workload patterns to reduce the number of swaps needed.

Adaptive Migration Mechanism. A constant write rate of M is used for analysis

purposes, but in real settings writes are bursty. High write rates trigger frequent swaps

while swapping may not be needed as often during periods of low write rates. To achieve

this, we maintain a counter per channel to represent the amount of space erased (MB) in

each channel since the last swap. Once one of the counters goes beyond a certain threshold

γ, a swap is performed and the counters are cleared. γ is set to the space the channel has

erased from the constant-rate worst-case write workload between two swaps (i.e., M/f ).

The rationale behind this mechanism is that the channels must always be positioned in a

manner to be able to catch-up if the worst-case happens. FlashBlox then swaps the channel
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with σmax with the channel with λmin where λi denotes the erase-rate of the ith channel

and λmin =Min(λ1, ..., λN).

FlashBlox uses an atomic block-swap mechanism to gradually migrate the candidate

channels to their new locations without any application involvement. The migration hap-

pens in four steps. First, all the read, program and erase operations to the two erase-blocks

being swapped are stopped (and queued). Second, the erase-blocks are read into a memory

buffer (capacitor backed). Third, the erase-blocks are written to their new locations. Fourth,

the operations stopped to these erase-blocks are dequeued. Note that only the IO operations

for the candidate erase-blocks in the vSSD are queued and delayed, the IO requests for other

blocks are still issued with higher priority to mitigate the migration overhead.

The migrations affect the throughput and latency of the vSSDs involved. However, they

are rare (happen less than once in a month for real workloads) and take only 15 minutes to

finish. As a future optimization, we wish to modify the DaaS system to perform the read

operations on other replicas to further reduce the impact.

3.3.2 Die Isolated Virtual SSDs

For applications which can tolerate some interference (i.e., medium isolation) such as the

non-premium cloud database offerings (e.g., Amazon’s small database instance [100] and

Azure’s standard database service [102]), FlashBlox provides die-level isolation. The num-

ber of dies in such a vSSD is the maximum of tptToDie(tptLevel) and dcapacity

/ capacityPerDiee. Their super-blocks and pages stripe across all the dies within the

vSSD to maximize throughput. Figure 3.4 illustrates vSSD C and D containing three dies

each (vSSD D has dies from different channels). These vSSDs, however, have weaker

isolation guarantees since dies within a channel must share a bus.

The wear-leveling mechanism has to track wear at the die level as medium-level isolated

vSSDs are to dies. Thus, the wear-leveling mechanism in FlashBlox is split into two sub-

mechanisms: channel level and die level. The job of the channel-level wear-balancing
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mechanism is to ensure that all the channels are aging at roughly the same pace (see § 3.3.1).

The job of the die-level wear-balancing mechanism is to ensure that all the dies within a

channel are aging roughly at the same rate.

As discussed in § 3.3.1, an N channel SSD has to swap at least N/δ times to guarantee

ξ ≤ (1 + δ) within a target time period. This analysis also holds true for dies within a

channel. For the SSDs today, in which each channel has 4 dies, FlashBlox has to swap dies

in each channel 40 times in the worst case during the course of the SSD’s lifetime or once

every month or so.

As an optimization, we leverage the channel-level migration to opportunistically achieve

the goal of die-level wear-leveling, based on the fact that dies have to migrate along with

the channel-level migration. During each channel-level migration, the dies within the mi-

grated channels with the largest wear are swapped with the dies that have the lowest write

rate in the respective channels. Experiments with real workloads show that such a simple

optimization can effectively provide satisfactory lifetime for SSDs.

3.3.3 Software Isolated Virtual SSDs

For applications that have even lower requirements of isolation like Azure’s basic database

service [102], it is natural to use the plane level isolation. However, flash planes within a die

do not provide the same level of flexibility as channels and dies with respect to operating

them independently from each other. Therefore, we turn to a software approach.

Each die is split into four regions of equal size called soft-planes by default, the size of

each soft-plane is 4 GB in FlashBlox (other configurations are also supported). Each soft-

plane obtains an equal share of the total number of blocks within a die. They also receive a

fair share of the bandwidth of the die. The rationale behind this is to make it easier for data

center/PaaS administrator to map the throughput levels required from tenants to quantified

numbers of soft-planes.

vSSDs created using soft-planes are otherwise indistinguishable from traditional virtual
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SSDs where software rate limiters are used to split an SSD across multiple tenants. Similar

to such settings, we use an optimized version of the state-of-the-art token bucket rate-

limiter [99, 22, 70] which has been widely used for Linux containers and Docker [98] to

improve isolation and utilization at the same time.

The number of soft-planes used for creating these vSSDs is determined similarly to the

previous cases: as the maximum of tptToSoftPlane(tptLevel) and dcapacity

/ capacityPerSoftPlanee. Figure 3.4 illustrates vSSDs E and F that contain three

soft-planes each. The super-block used by such vSSDs is simply striped across all the soft-

planes used by the vSSD. We use such vSSDs as the baseline for our comparison of the

channel and die isolated vSSDs.

The software mechanism allows the flash blocks of each vSSD to be trimmed in iso-

lation, which can reduce the GC interference. However, it cannot address the situation

where erase operations on one soft-planes occasionally block all the operations of other

soft-planes on the shared die. Thus, such vSSDs can only provide software isolation which

is lower than die-level isolation.

Besides these isolated vSSDs, FlashBlox also supports an unisolated vSSD model

which is similar to software isolated vSSD, but a fair sharing mechanism is not used to

isolate such vSSDs from each other. To guarantee the fairness between vSSDs in today’s

cloud platforms, software isolated vSSDs are enabled by default in FlashBlox to meet low

isolation requirements.

For both software isolated and unisolated vSSDs, their wear-balancing strategy is kept

the same rather than swapping soft-planes. The rationale for this is that isolation between

soft-planes of a die is provided using software and not by pinning vSSDs to physical flash

planes. Therefore, a more traditional wear-leveling mechanism of simply rotating blocks

between soft-planes of a die is sufficient to ensure that the soft-planes within a die are all

aging roughly at the same rate.
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paction units to erase-blocks in FlashBlox. A device level indirection layer is used to ensure
all erase-blocks are aging at the same rate.

3.3.4 Intra Channel/Die Wear-Leveling

The goals of intra die wear-leveling are to ensure that the blocks in each die are aging at

the same rate while enabling applications to access data efficiently by avoiding the pitfalls

of multiple indirection layers and redundant functionalities across these layers [9, 41, 103,

104]. With both die-level (see § 3.3.3) and intra-die wear leveling mechanisms, FlashBlox

inevitably achieves the goal of intra-channel wear-leveling as well: all the dies in each

channel and all the blocks in each die age uniformly.

The intra-die wear-leveling in FlashBlox is illustrated in Figure 3.5. We leverage flash-

friendly application or file system logic to perform GC and compaction, and simplify the

device level mapping. We also leverage the drive’s capabilities to manage bad blocks with-

out having to burden applications with error correction, detection, and scrubbing. We base

our design for intra-die wear-leveling on existing open SSDs [9, 25, 26].

3.4 FlashBlox Implementation

We implement FlashBlox using a CNEX SSD [75] which is an open-channel SSD [24]

containing 1 TB Toshiba A19 flash memory and an open controller that allows physical

resource access from the host. It has 16 channels, each channel has 4 dies, each die has 4
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planes, each plane has 1024 blocks, each block has 256 pages with 16 KB page size. This

hardware provides basic I/O control commands to issue read, write and erase operations

against flash memory. We use a modified version of the CNEX firmware/driver stack that

allows us to independently queue requests to each die. FlashBlox is implemented using the

C programming language in 11,219 lines of code (LoC) layered on top of the CNEX stack.

We used FIO benchmarks [105] and 14 different workloads for the evaluation: six

NoSQL workloads from the Yahoo Cloud Serving Benchmarks (YCSB) [106], four database

workloads: TPC-C [107], TATP [108], TPC-B [109] and TPC-E [110], and four storage

workload traces collected from a large data center/cloud provider.

YCSB is a framework for evaluating the performance of NoSQL stores. All of the six

core workloads consisting of A, B, C, D, E and F are used for the evaluation. LevelDB [111]

is modified to run using the vSSDs from FlashBlox with various isolation levels. The open-

source SQL database Shore-MT [112] is modified to work over the vSSDs of FlashBlox.

The table size of the four database workloads TPC-C, TATP, TPC-B and TPC-E range from

9 - 25 GB each.

Storage intensive and latency sensitive applications in the data centers of a large cloud

provider are instrumented to collect traces for cloud storage, web search, PageRank and

MapReduce workloads. These applications are the first-party customers of the storage IaaS

system of the cloud provider.

3.5 Results and Analysis

3.5.1 Hardware Isolation vs. Software Isolation

In this experiment, the channel and die isolated vSSDs are evaluated against the software

isolated vSSDs (the weighted fair sharing of storage bandwidth is enabled). We begin with

a scenario of two LevelDB instances. They run on two vSSDs in three different settings

each using a different isolation level: high, medium and low. The two instances run a YCSB

workload each. The choice of YCSB is made for this experiment to show how removing

27



A+A
A+B

A+C
A+D

A+E
A+F

(a) Read (Average)

0
50

100
150
200
250
300
350
400

M
ic

ro
se

co
nd

s

DB1-in-Channel-Isolated-vSSD
DB1-in-Die-Isolated-vSSD

DB1-in-Software-Isolated-vSSD
DB2-in-Channel-Isolated-vSSD

DB2-in-Die-Isolated-vSSD
DB2-in-Software-Isolated-vSSD

A+A
A+B

A+C
A+D

A+E
A+F

(b) Update (Average)

A+A
A+B

A+C
A+D

A+E
A+F

(c) Read (99th Percentile)

0

200

400

600

800

1000

1200

1400

A+A
A+B

A+C
A+D

A+E
A+F

(d) Update (99th Percentile)

Figure 3.6: The average and 99th percentile latencies of LevelDB+YCSB workloads run-
ning at various levels of storage isolation. Compared to die and software isolated vSSDs,
channel isolated vSSD reduces the average latency by 1.2x and 1.4x respectively, and de-
creases the 99th percentile latency by 1.2 - 1.7x and 1.9 - 2.6x respectively.

IO interference can improve the throughput and reduce latency for applications.

Each LevelDB instance is first populated with 32 GB of data and each key-value pair

is 1 KB. 50 million CRUD (i.e., create, read, update and delete) operations are performed

by the YCSB client threads against each LevelDB instance. The size of the database and

number of operations are picked such that the GC is always triggered. YCSB C is read-

only, thus we report only the results for read operations.

The total number of dies in each setting is the same. In the channel isolation case, two

vSSDs are allocated from two different channels. In the die isolation case, both vSSDs

share the channels but are isolated at the die level within the channel. In the software

isolation case, both vSSDs are striped across all the dies in two channels.

As shown in Figure 3.6 (c) and Figure 3.6 (d), channel isolated vSSDs provide up to

1.7x lower tail latency compared to die isolated vSSDs and up to 2.6x lower tail latency

compared to vSSDs that stripe data across all the dies akin to software isolated vSSDs

whose operations are not fully isolated from each other.

3.5.2 Migration Overhead

We first evaluate the overhead of the migration mechanism. We migrate one channel and

measure the change in throughput and 99th percentile latency on a variety of YCSB work-
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Figure 3.7: The impact of a channel migration on workloads. LevelDB’s throughput falls
by 33.8%, its tail percentile of reads and updates increase by 22.1% and 18.7% respectively.
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Figure 3.8: The overhead of migrating 1GB of data as MapReduce and web search are
running on the channels involved. MapReduce’s bandwidth falls by up to 36.7% while web
search’s latency increases by up to 34.2%.

loads that are running on the channel.

The throughput of LevelDB running on that channel drops by no more than 33.8%

while the tail latencies of reads and updates increase by up to 22.1% (see Figure 3.7). For

simplicity, we show results for migrating 1 GB of the 64 GB channel. We use a single

thread and the data moves at a rate of 78.9 MBPS. Moving all the 64 GB of data in a

channel would take about 15 minutes.

The impact of migration on web search and MapReduce workloads is shown in Fig-

ure 3.8. During migration, the bandwidth of the MapReduce job decreases by 36.7%, the

tail latencies of reads and writes of the web search increase by 34.2%. These performance

slowdowns bring channel-isolation numbers on par with the software isolation. This im-

plies that a 36.7% drop for 15 minutes when amortized over our recommended swap rate

represents a 0.04% overall drop.
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Table 3.2: Monte Carlo simulation (10K runs) of SSD lifetime with randomly sampled
workloads on the channels.

#vSSD
NoSwap Lifetime

(Years)
Ideal vs. FlashBlox

Lifetime (Years) Wear
Imbalance

Swap Once in
Days (Avg)99th 50th 99th 50th

4 1.2 1.6 6.2/6.1 13.8/13.5 1.02 94
8 1.2 1.3 3.7/3.6 6.7/6.6 1.02 22
16 1.2 1.2 2.1/2.1 3.4/3.3 1.01 19

3.5.3 Migration Frequency Analysis

To evaluate FlashBlox’s wear-leveling efficacy, we run a Monte Carlo simulation (10K

runs) of the SSD lifetime. We create a various number of vSSDs and assign them uniformly

at random to one of the fourteen workloads. The SSD is then simulated to end-of-life.

We report the 99th and 50th percentile lifetime of ideal SSD, SSD without swapping

(NoSwap) and FlashBlox in Table 3.2. For the case of running 16 instances, 99% of the

ideal SSDs last 2.1 years, and half of them can work for 3.4 years. With adaptive wear-

leveling scheme, FlashBlox’s lifetime is close to ideal and its wear imbalance is close to the

ideal case. In the real world, where not all applications are adversarial, the swap frequency

automatically increases.

3.6 Summary

In FlashBlox, we propose leveraging channel and die-level parallelism present in SSDs to

provide hardware isolation for latency sensitive applications sharing an SSD. Furthermore,

FlashBlox provides near-ideal lifetime despite the fact that individual applications write at

different rates to their respective channels and dies. FlashBlox achieves this by migrating

applications between channels and dies at coarse time granularities. Our experiments show

that FlashBlox can improve throughput by 1.6x and reduce tail latency by up to 3.1x. We

also show that migrations are rare for real world workloads and do not adversely impact

applications’ performance.
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CHAPTER 4

FLASHMAP: UNIFYING INDIRECTION LAYERS ACROSS SYSTEM STACK

Applications can map data on SSDs into virtual memory to transparently scale beyond

DRAM capacity, permitting them to leverage high SSD capacities with few code changes.

Obtaining good performance for memory-mapped SSD content, however, is hard because

the virtual memory layer, the file system and the flash translation layer (FTL) perform

address translations, sanity and permission check independently from each other.

This chapter introduces FlashMap, an SSD interface that is optimized for memory-

mapped SSD-files to further improve the performance of flash-based storage system. The

proposed solution combines all the address translations into page tables that are used to

index files and also to store the FTL-level mappings without altering the guarantees of the

file system or the FTL. It uses the state in the OS memory manager and the page tables to

perform sanity and permission checks respectively. By combining these layers, FlashMap

reduces critical-path latency and improves DRAM caching efficiency. We find that this

increases performance for applications by up to 3.32x compared to state-of-the-art SSD

file-mapping mechanisms. Additionally, the latency of SSD accesses reduces by up to

53.2%.

4.1 Introduction

A growing number of data-intensive applications use solid state disks (SSDs) to bridge the

capacity and performance gaps between main memory (DRAM) and magnetic disk drives

(disks). SSDs provide up to 5000x more IOPS and up to 100x better latency than disks [1].

SSDs provide up to 20 TB capacity per rack-unit (RU) [113], whereas DRAM scales only

to a few hundred GBs per RU [114, 115]. SSDs are used today as a fast storage medium to

replace or augment disks.
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An emerging approach to using SSDs treats them as a slower form of non-volatile

memory. For example, NoSQL databases like MongoDB [5, 6], LMDB [7] (backend

for OpenLDAP) and others [27, 28, 29] which are widely deployed [30] use SSDs via

a memory-mapped file interface. There are three advantages to this approach. First, the

virtual memory interface eases development. For example, MongoDB uses TCMalloc [31]

to manage SSD-file backed memory to create data structures like its B-tree index, and for

using the Boost template library. Second, SSDs are automatically tiered under DRAM by

the OS’s memory manager and finally, memory that is backed by a file enables durability

for data. Such hybrid memory systems have also been proposed in the academic commu-

nity [32, 33, 34, 35, 36].

Using SSDs in this manner, unfortunately, is inefficient as there are three layers with re-

dundant functionalities between the application and NAND-Flash. The first layer, memory-

level indirection, involves page table translations and sanity checks by the OS memory

manager. The second layer, storage-level indirection, involves converting file offsets to

blocks on the SSD and permission checks by the file system. The final one, device-level

indirection, is for the flash translation layer (FTL) of the SSD. Redundant indirections and

checks not only increase the latency of NAND-Flash accesses, but also affect performance

by requiring precious DRAM space to cache indirection data across all the three layers.

In this dissertation, we present FlashMap, a holistic SSD design that combines memory,

storage, and device-level indirections and checks into one level. This is a challenging prob-

lem because page table pages and OS memory manager state that form the memory-level

indirection are process-specific, private, and non-shared resources while direct/indirect

blocks (file index) that form the storage-level indirection in a file system, and the FTL

that converts the logical block addresses to physical block addresses are shared resources.

FlashMap introduces the following three new techniques to combine these layers without

losing their functionality:

• FlashMap redesigns a file as a contiguous global virtual memory region accessible

32



to all eligible processes. It uses page table pages as the indirect block index for such

files where these page table pages are shared across processes mapping the same file.

• FlashMap enables sharing of page table pages across processes while preserving se-

mantics of virtual memory protections and file system permissions by creating private

page table pages only on demand.

• FlashMap introduces a new SSD interface with a sparse address space to enable

storing of the FTL’s mappings inside page table pages.

More importantly, FlashMap preserves the guarantees of all the layers in spite of com-

bining them into virtual memory. We implement FlashMap in Linux for EXT4 on top of

a functional SSD-emulator with the new interface proposed. Experimental results demon-

strate that data intensive applications like NoSQL stores (Redis [116]), SQL databases

(Shore-MT [112]) and graph analytic software (GraphChi [117]) obtain up to 3.32x better

performance and up to 53.2% less latency.

4.2 Motivation

To meet the high-capacity needs of data-intensive applications, system-designers typically

do one of two things. They either scale up the amount of DRAM in a single system [118,

119] or scale out the application and utilize the collective DRAM of a cluster [120, 121,

122]. When more capacity is needed, SSDs are useful for scale-up scenarios [123, 124,

125, 126, 127] and for scale-out scenarios [128, 129, 130]. Adding SSDs not only improves

performance normalized for cost but also improves the absolute capacity.

Today SSDs scale up to 10 TB per system slot [1] (PCIe slot) while DRAM scales only

to 64 GB per slot (DIMM slot). Even though systems have more DIMM slots than PCIe

slots, one would require an impractically high (160) number of DIMM slots to match per-

slot SSD density. SSDs provide up to a million IOPS at less than 100 µsec and lack seek la-

tencies. Such performance characteristics make SSDs more similar to DRAM than to disks.

Moreover, SSDs are non-volatile. Therefore, data-intensive applications are using SSDs as
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Figure 4.1: Comparison of (a) conventional memory-mapped SSD-file’s IO stack and (b)
FlashMap that combines all the address translations for mapping files into page tables.

slow, but high-capacity non-volatile memory [5, 7, 29, 32, 34] via memory-mapped files.

Such an approach has the following three advantages.

First, virtual memory interface helps existing in-memory applications adopt SSDs with

only a few code changes. For example, we find that less than 1% of the code has to be

changed in Redis (an in-memory NoSQL store built for DRAM) to use SSD-backed mem-

ory instead of DRAM. On the other hand, more than 10% of the code has to be modified if

SSDs are used via read/write system calls. Prior work [32] is also evident from the fact that

widely deployed databases like MongoDB map SSD-files and build data structures such as

BTree indexes using TCMalloc [31] and Boost [131].

Second, memory-mapped access ensures that hot data is automatically cached in DRAM

by the OS and is directly available to applications via load/store instructions. To get

such a benefit without memory-mapping, an application would have to design and imple-

ment custom tiering of data between DRAM and SSD which can take months to years

depending on application complexity.

Finally, file-backed memory as opposed to anonymously-mapped memory (SSD as a

swap space) allows applications to store data in the file durably and exploit other file system

features such as atomicity (via transactions and journaling), backup, space management,

naming, and sharing.

Unfortunately, existing OSes and SSDs are not optimized for this style of using the

SSD. There are three distinct software layers with separate indirections between the appli-
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cation and NAND-Flash. The separation of the virtual memory, the file system, and the

FTL as shown in Figure 4.1(a) reduces throughput and increases latency. We present a

holistic SSD designed for memory-mapped SSD-files that combines these layers.

4.2.1 Overhead from Redundant Software

To service a page fault in a memory mapped region from a file on an SSD, three types

of address translations are required. First, the CPU traverses the page tables (memory-

level indirection) to trigger the page fault. Later, the file system uses indirect blocks to

translate the faulting file offset to a block on the SSD (storage-level indirection). Finally,

the FTL converts this block address to an actual NAND-Flash level address (device-level

indirection). Multiple layers of indirection not only increase the latency but also decrease

the performance of applications. Each layer wastes precious DRAM space for caching

address translation data. The latency increases further if the required address translation is

not cached in DRAM. Locking all the address translation data in DRAM is not a feasible

option as one would require as much as 60 GB of DRAM for a 10 TB SSD1.

Even if the address translation data is cached in DRAM, the software latency is still

significant (5–15 µsec in each layer) as each layer performs other expensive operations.

For example, the memory manager has to check if the faulting address is in an allocated

range, the file system has to check if the process has access to the file (checks that can

be efficiently enforced using permission bits in page tables that are always enforced by

the CPU) and FTLs with sparse address spaces [132] have to check allocation boundaries

(checks that can be efficiently performed by the memory manager itself). There is a need

for a new SSD design that is optimized for memory-mapped SSD-files, one that uses a

single software layer (virtual memory), one address translation, one permission check (in

page tables), and one sanity check (in memory manager).

1A minimum of eight bytes per indirection layer per 4 KB page
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4.2.2 Challenges for Combining Indirection Layers

Memory-level indirection. SSD-files have to be mapped with small pages (4 KB) as large

pages are detrimental to the performance of SSDs. An x86 64 CPU provides memory us-

age (read/fault and write/dirty) information only at the granularity of a page. Therefore,

smaller page sizes are better for reducing the read/write traffic to the SSD. For example,

our enterprise class SSD provides 700K 4KB random reads per second, while it provides

only 1,300 2MB random reads per second. Thus using a 4KB page size means that the

size of the page tables would be about 20 GB for a 10 TB dataset. While keeping page

table pages only for the pages in DRAM can reduce the space required, it does not reduce

the software-latency of handing a page fault which is dominated by the layers below the

memory manager. To reduce this latency, we propose performing all the address transla-

tions with page table pages as they are an x86 64 necessity for file-mapping and cannot be

changed or removed. Moreover, the virtual memory protection bits can be exploited for all

permission checks and the memory allocation metadata in the OS memory manager can be

exploited to perform all sanity checks.

Storage-level indirection. In a file system, for typical block sizes (2–8KB), the indi-

rection layer requires 10–40 GB of space for a 10 TB SSD. Larger blocks, unfortunately,

decrease DRAM caching efficiency and increase the traffic from/to the SSD. Extent-based

file indexes such as the one used in EXT4 [133] can reduce this overhead. However, us-

ing such an index does not remove all the file system overhead from the IO-path. It is

well known that permission checks of file systems increase latency in the IO-path by 10–

15µs [134, 26]. A combined memory and storage-level indirection layer would not only

eliminate a level of indirection but would also perform all the necessary checks efficiently

by using the protection bits in the page tables.

Device-level indirection. NAND-Flash supports three operations – read, write, and

erase. Reads can be performed at a granularity of a page (4KB), which can be written only

after they are erased. Unfortunately, erases can be performed only at a large granularity
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of a block (eight or more pages at a time). Moreover, each block is rated only for a few

thousand erases and therefore it is vital for the blocks to age uniformly. SSDs employ a log-

structured data store with garbage collection (GC) [13] using indirections in the FTL for

out-of-place writes and ensuring uniform wear. To improve performance and lifetime, high-

performance SSDs implement such logs by employing a fine-granular and fully-associative

page-level index [132, 135]. Such an index at a granularity of a page (4KB) requires more

than 20 GB of space for a 10 TB SSD.

Traditionally, FTLs have cached their mappings in embedded SRAM/DRAM to provide

predictable performance. Unfortunately, it is not possible to provision large amounts of

RAM inside SSDs. Therefore, high-capacity SSDs store the mappings in the host [132]

where DRAM scales better. FlashMap leverages this SSD design pattern to combine the

FTL mappings with indirections in the higher layers.

Combining page tables with storage and device-level indirections, however, is challeng-

ing because page table pages are process specific and private entities while the remaining

indirections are system-wide entities that are shared by all processes. Furthermore, page ta-

ble pages cannot be shared frivolously across processes because it may lead to false sharing

of memory and violate permissions and protections. To address these problems, FlashMap

introduces a new virtual memory design where the page table pages needed for mapping a

file belong to the file system and are system wide resources shared across processes map-

ping the same file. FlashMap enforces file permissions and virtual memory protections

as required at a low-overhead by creating process-specific private page table pages only

on demand. This design helps FlashMap unify the memory, storage and device interfaces

(Figure 4.1(b)) without changing any guarantees from virtual memory, file system, or FTL.

4.3 FlashMap Design

To combine the memory and storage-level indirections, we re-imagine a file as a contigu-

ous virtual memory region of an abstract process. The region is indexed by an x86 64 style
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Figure 4.2: FlashMap uses a page table design for indexing files.

four-level page table as opposed to the traditional direct/indirect block/extent representa-

tions that file systems use. Figure 4.2 illustrates the indirect blocks in our file design –

the rest of the file system, however, remains unaltered. The 48-bit physical frame numbers

(PFN) in this page table are the block pointers that the file system uses to index the file.

Since we treat a file as a region of memory of an abstract process, we will use page and

block interchangeably. We will refer to the file index as shared page tables.

Such files can be accessed via the POSIX file API without any application changes.

Most file systems are designed to abstract away the indexing from the API and the rest

of the file system. We leverage this abstraction to preserve the rest of the file system

and POSIX API. When mapping such files, however, necessary shared page table pages

have to be borrowed by the process in contrast to traditional file-mapping and memory

management techniques where private page table pages are created for the process.

At a first glance, this problem can be solved by grafting the process’s page table with

as much of the shared page table pages as possible. However, the solution is not so sim-

ple. If two processes map the same file with different permissions (e.g., READ ONLY vs.

READ WRITE), then sharing page table pages by frivolous grafting can violate file system

permissions. To address these problems in a systematic manner, we introduce the notion of
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Semi-Virtual Memory which is a mechanism to share some of the shared page table pages

across processes that map the same file with different file-level permissions.

4.3.1 Preserving File System Permissions

Semi-Virtual Memory is a method to share only the leaf-level page table pages (LL-PTP)

that contain page table entries (PTE) across processes that map the same file. When a

process maps a file, only the LL-PTPs of the shared page table of the file are borrowed

and grafted into the process’s page table. The rest of the page table pages (page directory

pages) needed for the mapping are created for the process afresh and deleted when the

process unmaps the file.

The permissions set in the higher level page table entries (page global, middle, and

upper directory entries) override the permissions set at the page table entries in x86 64.

Therefore, private copies of higher-level page table pages can be exploited to implement

custom file-level permissions during mapping. It helps to think of this memory virtualiza-

tion at the granularity of a file rather than a page, hence the name Semi-Virtual Memory.

Not sharing higher-level page tables would increase the memory overhead of page tables

by only a negligible amount. The branching factor of x86 64 page tables is 512 (512 entries

per 4KB page), and the overhead is less than 0.5%. Figure 4.3 shows how only the LL-PTP

of the shared page tables are borrowed from the file system when a file is mapped into a

process. Rest of the higher-level page table pages are created for the process like the way

they are in traditional OSes.

FlashMap avoids false sharing of file permissions by design. Two or more files are

mapped to the same process such that the page table entries required for mapping these

files are never on the same LL-PTP. This requires that file boundaries be aligned to 2MB

(512x4KB span) in virtual memory space. FlashMap is designed for x86 64 where there is

ample virtual memory available and therefore, we do not see this requirement as a major

overhead. This design helps separate permissions for each file mapped to the same process.
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Figure 4.3: File brings leaf-level page tables with itself to a process that maps it. Higher-
level page table pages are not shared, they are created on-demand for mapping the file.

This enforcement does not violate the POSIX compliance of mmap. POSIX mmap

specifies that the OS may pick an address of its choosing to map the file if the address

requested by the caller is not available. However, as this scheme itself is deterministic, it is

still possible for a process to map a file to the same address across reboots.

In traditional OSes, the separation of the memory and storage-level indexes meant that

the memory manager and the file system needed to interact with each other only for data.

In a system like FlashMap, they have to additionally collaborate to manage the shared LL-

PTPs of the files that are currently mapped. PTE behavior must remain the same for user

space in spite of this dual role of LL-PTPs

4.3.2 Preserving PTE Behavior

FlashMap overloads the PTE. When a page of a file is in DRAM, the corresponding PTE in

the LL-PTP is marked as resident and contains the address of the physical page in DRAM

where the page resides. When the page is not cached in DRAM, the PTE in the shared

LL-PTP is marked as not-resident, and contains the address of the page on the SSD.

The SSD-location of the page must be stored elsewhere while the page is cached in

DRAM. We design an auxiliary index to store the SSD-locations of all the pages cached
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in DRAM. The auxiliary index is implemented using a simple one-to-one correspondence

between DRAM pages and the SSD-Location of the block that the DRAM page may hold

– a simple array of 8 byte values. It must be noted that the size of this array is the same

as the number of pages in DRAM and therefore is not significant. For example, for a

typical server with 64 GB DRAM, this auxiliary index would require only 128MB and can

be stored in DRAM – an overhead of less than 0.25%. Figure 4.4 demonstrates how the

overloaded page table entries and auxiliary SSD-location index remember the location of

all the pages (on SSD or cached in DRAM).

While Semi-Virtual Memory preserves the file-level permissions, it does not provide

one of the crucial properties of virtual memory – page-granular memory protection via

mprotect. The sharing of LL-PTPs between processes means that the protection status

of individual pages is also shared. This can violate the semantics of memory protection.

4.3.3 Preserving Memory Protection Behavior

To preserve the POSIX memory protection (mprotect) behavior, FlashMap simply dis-

ables Semi-Virtual Memory for the LL-PTPs of only the virtual memory ranges that require

custom access permissions only for the requesting process. If a process requires custom

memory protection for a single page, then the OS creates a private LL-PTP on demand

for the encompassing virtual memory range that contains this page – the minimum size of
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such a region would be the span of an LL-PTP in x86 64 (2MB = 512x4KB span). These

regions of memory are managed similarly to shared memory in operating systems where

the memory-level and storage-level indexes are separate. We call these regions “saturated

virtual memory”. We believe that saturated virtual memory regions will not increase the

memory overhead of address translation significantly. Basu et al. [115] report that for many

popular memory-intensive applications, less than 1% of memory requires custom per-page

protections. Moreover, our focus is on high-performance, in-memory applications where

sharing files across processes with differing protections is a rare scenario.

Saturated virtual memory is depicted in Figure 4.5. Processes A and B map the same

file, however, Process B requires custom protection status for a page. FlashMap creates a

private LL-PTP for the encompassing 2MB region to enforce the protection.

4.3.4 Preserving the FTL Properties

FlashMap only changes the interface between the OS and the SSD. The rest of the SSD re-

mains intact. FlashMap requires an SSD that can store only the mappings of the blocks of a

file on the host in the shared LL-PTPs. The rest of the mappings – of file system metadata

and other metadata – are managed by the SSD itself. Data dominates metadata in our ap-

plications which usually map large files to memory. Therefore, having separate translations

inside the SSD for metadata of the file system does not add significant overhead.
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We propose a virtualized SSD architecture, where the SSD and the file system share

indirections only for data blocks of files. For each file, FlashMap creates a virtual SSD

(48-bit address space) whose blocks have a one-to-one correspondence with the blocks of

the file. The mappings of this address space are stored by FlashMap in shared LL-PTPs.

Most of the space and IOPS of an SSD, in our scenario, will be spent towards data in large

memory-mapped files, and very little on file system metadata (boot blocks, super blocks,

inodes and etc.). A one-to-one mapping between FlashMap files and virtual SSDs allows

the SSD driver to have a trivial way to store performance-critical mappings in the shared

page table without affecting the metadata design of a file system.

Virtual SSDs are carved out of a larger virtual address space that the SSD driver imple-

ments. Similar to several high-performance SSDs [132], we design an SSD with a 64-bit

address space and carve out smaller virtual SSDs with 48-bit contiguous address spaces

from it. The first 48-bits worth of this address space is used for implementing a virtual

SSD whose FTL indirections are managed by the SSD driver itself. The file system can

use this as a traditional block device for storing non-performance-critical data: including

metadata and the on-SSD copy of the shared LL-PTPs. We call this the proto-SSD.

For each 48-bit address range, the file system must remember its allocation status so that

they can be recycled and reused as files are created and deleted. The file system maintains

a simple one-to-one table to represent this information using some space in the proto-SSD.

A 64-bit address space allows 216 48-bit contiguous address spaces. Therefore, this table

requires only tens of megabytes of space. Directories and smaller files are also stored on

the proto-SSD.

4.4 FlashMap Implementation

We modify EXT4 and the memory manager in Linux to combine their memory and storage

level indexes using Semi-Virtual Memory in combination with overloaded page tables,

auxiliary SSD-Location index, and saturated virtual memory. We also implement a wrapper
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that can be used to convert any legacy SSD into one that provides virtual SSDs and a proto

SSD. FlashMap is the combination of these two systems.

Modified EXT4 Index. We implement the shared page tables as the file index in EXT4

by replacing the default indirect (single/double/triple) block representation as depicted in

Figure 4.2. We populate the page table of each file as the file grows contiguously in a

virtual SSD’s address space. The index implementation is abstracted from the rest of the

file system in such a way that traditional POSIX file APIs, page replacement, and other file

system entities work seamlessly.

Augmented Memory Manager. We implement a special memory manager helper

kernel module that manages physical memory for all the virtual memory regions that map

FlashMap files. This contains a page fault handler that brings the relevant data/page tables

into DRAM. The module also manages the LL-PTPs. It also maintains the auxiliary SSD-

Location index. This module interacts with Linux’s page replacement scheme to identify

least recently used pages [136] and LL-PTPs of the file that can be sent back to the SSD.

The memory manager also implements the modified versions of mmap, munmap, and

mprotect by intercepting these system calls. It implements semi-virtual memory and

saturated virtual memory. We use a red-black tree to remember the virtual memory regions

that require saturated virtual memory and handle the page faults in these regions as if the

memory and storage-level indirections are separate. Finally, this module implements the

functions required by the SSD for atomically updating and reading the shared LL-PTPs and

the auxiliary SSD-index.

4.5 Results and Analysis

4.5.1 Experimental Methodology

We compare FlashMap with the following systems:

Unoptimized Software: Unmodified mmap is used to map a file on a unmodified EXT4

file system without extents on the proto-SSD. Private page tables are created by mmap. The
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Figure 4.6: Index size for 1 TB SSD.

proto-SSD has its FTL locked in DRAM similar to high-performance FTLs such as Fusion-

io’s ioMemory [132, 135]. Rest of the indirections are fetched on demand.

FS Extents: This is the same software and hardware stack as described above but

with file system extents (128MB) enabled in EXT4. An improved version is FS Extents

(OnDemand) in which the FTL mappings are fetched to DRAM from flash on-demand

similar to DFTL [39].

Separate FTL (OnDemand): Page tables and the file system index are combined but

the FTL remains separate. All the indirections are, however, fetched on demand.

Separate Memory (OnDemand): The file system and the FTL are combined similar to

existing systems such as Nameless Writes [37] and DFS [38] where the memory-level in-

directions remain separate. However, all the indirections are fetched on demand to DRAM.

The physical machine used for experiments has two Intel Xeon processors each with

6 cores running at 2.1 GHz and 64 GB DRAM. Samsung 840 EVO SSDs are used for

experimentation. For the experiments in Section 4.5.3, we emulate high-end SSDs (e.g.,

PCM-based SSDs) using DRAM with added latency.

4.5.2 Benefits from Saving DRAM

We first examine the total size of indirections in each system per TB of SSD used. The re-

sults are shown in Figure 4.6. FlashMap requires close to 2 GB while unoptimized software
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Figure 4.7: Improvements for analytics on Twitter, Friendster and MSD dataset, with varied
DRAM size. Compared to Separate Memory (OnDemand), FlashMap performs 1.15–1.64x
better for PageRank, and up to 3.32x better for the connected component labeling.

requires more than 6 GB of indirections per TB of SSD. For 10 TB SSDs available today,

unmodified software would require more than 60 GB of metadata. While more efficient

than Unoptimized Software, FS Extents and Separate Memory (OnDemand) are still more

than twice as expensive as FlahsMap in terms of metadata overhead. This indicates that for

a given working set, other methods would require 2-3x more amount of DRAM to cache

all the indirections needed for the data in a given working set. For large working sets, the

DRAM savings translate to higher performance.

We now turn our attention towards more computationally intensive applications like

PageRank and connected-component labeling inside graphs. The aim of these experiments

is to demonstrate that the additional DRAM provides performance benefits not just for

IOPS driven applications, but also for computationally intensive applications. We find that

FlashMap reduces the execution time of these memory intensive workloads significantly.

GraphChi [117] is a graph computation toolkit that enables analysis of large graphs

from social networks and genomics on a single PC. GraphChi is primarily a disk based

graph computation mechanism that makes efficient usage of available memory. It partitions

the graph such that each partition can fit in memory while it can work on it at memory

speeds. We modify GraphChi to use SSDs as memory and run graph algorithms for various

DRAM sizes. We increase the memory budget of GraphChi beyond the amount of DRAM

available in the system. This means that the entire SSD is the working set of GraphChi. We
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run two graph computational algorithms on different graphs with various memory budgets

to demonstrate the benefits of FlashMap over existing techniques.

First, we use GraphChi to find the PageRank of a real social networking graph. The

graphs we use in our experiments are from Twitter (61.5 million vertices and 1.5 billion

edges) [137, 138], Friendster (65.6 million vertices and 1.8 billion edges) and MSD (1 bil-

lion records of songs’ metadata). Figure 4.7 (a) and (b) demonstrate that FlashMap obtains

1.27–3.51x, 1.10–1.65x, 1.31–5.83x speedup in execution time of the PageRank algorithm

than FS Extents, Separate Memory (OnDemand) and Unoptimized Software respectively,

across different DRAM sizes.

The execution times of the PageRank algorithm on MSD at 1:64 DRAM:SSD ratio are

589.85 and 471.88 seconds respectively for Separate Memory (OnDemand) and FlashMap.

For GraphChi, the working set spans the entire SSD. As the size of the SSD increases,

the effective amount of DRAM available for GraphChi runtime decreases. It is natural

that this increases the execution time. However, by combining indirections, FlashMap

helps speed up the graph computation by freeing up memory. As shown in Figure 4.7

(b), the DRAM hit rates are 18.7% and 9.1% for FlashMap and Separate Memory (OnDe-

mand) respectively as DRAM:SSD ratio is 1:256. We next evaluate the FlashMap with the

connected-component labeling algorithm in GraphChi. We run it on the Twitter

and Friendster dataset and the results are shown in Figure 4.7 (c) and (d): FlashMap out-

performs FS Extents by up to 3.93x, and Separate Memory (OnDemand) by up to 3.32x.

4.5.3 Latency Benefits

The aim of the experiments in this section is to demonstrate that FlashMap also brings

benefits for high-end SSDs with much lower device latencies, as it performs single address

translation, single sanity and permission check in the critical path to reduce latency.

PCM-based SSDs and PCM-based caches on NAND-Flash based SSDs are on the hori-

zon [134, 139, 140]. With much smaller PCM access latencies, FlashMap can provide tan-
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Figure 4.9: For faster SSDs, FlashMap provides up to 1.78x improvements on throughput
over Unoptimized Software with TPCC, TPCB and TATP benchmarks. As for Flash with
100 µs device latency, FlashMap still performs 1.21x more TPS than others.

gible latency improvements. We emulate such SSDs with various latencies using DRAM

and show how the software overhead decreases because of FlashMap. 4KB pages from

the SSD are accessed at random in a memory-mapped file and the average latencies are

reported. The results are presented in Figure 4.8 and it shows how FlashMap can improve

latency by up to 53.2% for faster SSDs. Note that these SSDs do not have a device-level

indirection layer, therefore these benefits are purely from combining the translations and

checks in file systems with those in virtual memory.

We further break down the software overheads of FlashMap by intercepting and timing

each indirection layer. Table 4.1 lists the overhead of the key operations in FlashMap and

we find that these are comparable to the latencies for each component in unmodified Linux.

Furthermore, we investigate how the latency benefits of FlashMap improves the per-

formance of applications with concurrency. Faster access to data often translates to locks
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Table 4.1: FlashMap’s Overhead

Overhead Source Average Latency (µsec)
Walking the page table 0.85

Sanity checks 2.49
Updating memory manager state 1.66

Context switches 0.75

Table 4.2: Cost-effectiveness of FlashMap for 1 TB workload sizes, compared with the
ideal large DRAM-only system.

Application Benchmark Settings Bottleneck Performance/$ Expected Life

NoSQL Store (Redis) YCSB DRAM vs SATA SSD
(1GigE switch)

Wide-area latency &
router throughput 26.6x 33.2 years

DRAM vs PCIe SSD
(10GigE switch)

Wide-area latency &
router throughput 11.1x 10.8 years

SQL Database (MySQL) TPCC DRAM vs PCIe SSD Concurrency 1.27x 3.8 years
Graph Engine (GraphChi) PageRank DRAM vs SATA SSD Memory bandwidth 1.89x 2.9 years

being released faster in transactional applications and this translates to higher application-

level throughput.

We modify a widely used database manager (Shore-MT [112]) to mmap its database

and log files with various techniques (i.e., FlashMap, FS Extents, Separate Memory (On-

Demand) and Unoptimized Software). We use TPC-C [107], TPC-B [109] and TATP [108]

benchmark in our experiments. Their dataset sizes are 32-48 GB and the footprint of ad-

dress translation data is small. The memory configured for the database manager is 6

GB. As shown in Figure 4.9, for SSDs with low latency, FlashMap provides up to 1.78x

more throughput because of its latency reductions. For SSDs with higher hardware latency,

FlashMap provides more than 1.21x improvement on throughput over Separate Memory

(OnDemand), as the latency reduction (even small) can relieve the lock contentions in soft-

ware significantly [141, 142]. We find similar trends for TPC-B and TATP workloads.

4.5.4 DRAM vs. SSD

In this section, we analyze the cost effectiveness of using SSD as slow non-volatile memory

compared to using DRAM with the aim of demonstrating FlashMap’s practical impact on
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data-intensive applications. We survey three large-scale memory intensive applications

(as shown in Table 4.2) to conduct the cost-effectiveness analysis. For this evaluation, we

ignore the benefits of non-volatility that SSDs have and purely analyze from the perspective

of cost vs performance for workloads that can fit in DRAM today. Additionally, we analyze

how real-world workloads affect the wear of SSDs used as memory.

We use three systems for the analysis: Redis which is an in-memory NoSQL database,

MySQL with “MEMORY” engine to run the entire DB in memory and graph processing

using the GraphChi library. We use YCSB for evaluating Redis, TPC-C [107] for evalu-

ating MySQL, and page-rank and connected-component labeling on a Twitter social graph

dataset for evaluating GraphChi. We modify these systems to use SSDs as memory in less

than 50 lines of code each. The results are shown in Table 4.2. The expected life is calcu-

lated assuming 3,000 P/E and 10,000 P/E cycles respectively for the SATA and PCIe SSDs,

and a write-amplification factor of two. The results show that write traffic from real-world

workloads is not a problem with respect to wear of the SSD.

SSDs match DRAM performance for NoSQL stores. We find that the bottleneck to

performance for NoSQL stores like Redis is the wide-area network latency and the router

throughput. Redis with SATA SSD is able to saturate a 1GigE network router and match

the performance of Redis with DRAM. Redis with PCIe SSD is able to saturate a 10GigE

router and match the performance of Redis with DRAM. The added latency from the SSDs

was negligible compared to the wide-area latency.

SSD-memory is cost-competitive when normalized for the performance of key-value

stores. For a 1 TB workload, the SATA setup and PCIe setup cost 26.3x and 11.1x less

compared to the DRAM setup ($30/GB for 32 GB DIMMs, $2/GB for PCIe SSDs, $0.5/GB

for SATA SSDs). The base cost of the DRAM setup is $1,500 higher as the server needs

32 DIMM slots and such servers are usually expensive because of specialized logic boards

designed to accommodate a high density of DIMM slots.

SSDs provide competitive advantage for SQL stores and graph workloads. We find
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that the bottleneck of performance for MySQL is concurrency. MySQL on PCIe SSD’s

Tpm-C was 8.7x lower compared to MySQL on DRAM for a 480 GB TPCC database.

However, the SSD setup cost 11.1x less compared to the DRAM setup that makes the

SSD setup 1.27x better when performance is normalized by cost. Processing graphs in

DRAM is up to 14.1x faster than processing them on the SSD while the SSD setup used is

26.3x cheaper than DRAM system. However, the advantage of SSDs are not based on cost

alone. The ability to use large SSDs as slow-memory allows such applications to handle

workloads (up to 20 TB/RU) beyond DRAM’s capacity limitations (1 TB/RU) with very

few code modifications.

4.6 Summary

Using SSDs as memory helps applications leverage the large capacity of SSDs with min-

imal code modifications. However, redundant address translations and checks in virtual

memory, file system, and flash translation layer reduce performance and increase latency.

FlashMap consolidates all the necessary address translation functionalities and checks re-

quired for memory-mapping of files on SSDs into page tables and the memory manager.

FlashMaps design combines these layers but does not lose their guarantees. Experiments

show that with FlashMap the performance of applications increases by up to 3.32x, and the

latency of SSD-accesses reduces by up to 53.2% compared to other mapping mechanisms.
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CHAPTER 5

WEARDRIVE: ENERGY-EFFICIENT STORAGE FOR WEARABLES

The need for durable and secure storage for personal data incurs energy-intensive opera-

tions, which is especially a significant challenge for resource-constrained devices such as

wearables. The size and weight constraints on wearables limit their battery capacity, which

further compounds the energy problem.

This chapter presents WearDrive, a fast storage system for wearables based on battery-

backed RAM and an efficient means to offload energy intensive tasks to the phone. It

leverages low-power network connectivity available on wearables to trade the phone’s bat-

tery for the wearable’s by performing large and energy-intensive tasks on the phone while

performing small and energy-efficient tasks locally using battery-backed RAM. WearDrive

improves the performance of wearable applications by up to 8.85x and improves battery

life up to 3.69x with negligible impact on the phone’s battery life.

5.1 Introduction

The utility of a mobile device has long depended upon the tension between the device’s

size, weight and its battery lifetime. Smaller, lighter devices tend to be easier to carry.

However, battery lifetime is mainly a function of size. A smaller device must therefore

contain a smaller battery making energy a precious resource. The need for durable storage

further compounds this problem. Slow flash storage wastes energy by keeping the CPU

active for longer period of time [40, 41, 143], yet the use of a battery dictates that durable

storage is vital to a device’s utility. Likewise, data encryption is energy-intensive [8], but

the sensitive nature of personal information that devices collect dictates using appropriate

protection mechanism over a durable medium like flash that can be easily detached from a

stolen device to retrieve personal data.
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On wearables [144, 145, 146, 147], these trade-offs are magnified. Size matters even

more since the device is worn on the body, therefore these devices have a very precious

energy reserve. A watch that must be charged after a few hours is not very useful. Likewise,

these devices generate precious sensor data (e.g., body sensor readings and location) that

must be guaranteed against loss and theft.

In this dissertation, we explore a new approach to storage on wearable devices that

do away with local durable storage while leveraging a nearby phone to protect against data

loss and theft in an energy efficient manner. The system, called WearDrive, uses only mem-

ory on wearables for storage operations to provide performance and energy improvements.

It exploits the battery in mobile devices to provide durability for the data in memory. It

leverages low-power network connectivity available on wearables to exploit the capabili-

ties of the phone. New data is asynchronously transmitted to the phone, which ultimately

performs the energy-intensive operations of storing data with encryption in its local flash.

WearDrive targets the two most important application scenarios of wearables. The first

scenario is the “extended display” that uses the wearable as a second display to allow

applications on a nearby phone to run interactive but less-featured companion applications.

Examples include companions that provide notifications for emails, social networks, etc.

Providing fast and durable storage to such applications helps wearables conserve battery

while remaining interactive.

The second scenario is sensor data analysis. Wearables are packed with sensors that

take advantage of their location on a person’s body. Exposing this data to the applications

on the phone with low-energy data sharing can open up powerful applications. WearDrive

targets these scenarios and reduces the need for a large battery and eliminates the need for

flash on wearables.

Experimental results show WearDrive helps applications obtain up to 8.85x better per-

formance and consume up to 3.69x less energy compared to the state-of-the-art systems

with little impact on the phone.
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Figure 5.1: Motivating scenarios for WearDrive: (a) Mobile storage stacks are energy-
intensive because storage software consumes 80–110x more energy than flash. (b) To
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consumption of the whole system when sequentially writing 32 MB data set with various
I/O granularities, it is more energy efficient to write to remote phone’s memory via WiFi-
Direct than to write data locally to flash on the wearable.
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5.2 Motivation

Wearables present a new challenge for mobile system design. Constraints on size and

weight limit the battery capacity, but their location on the body and proximity to the phone

create new opportunities.

5.2.1 Small Batteries

Li-ion battery metrics like gravimetric energy density (Watt-Hours/kg) and volumetric en-

ergy density (Watt-Hours/liter) take more than ten years to double [148]. Therefore, wear-

ables will still be restricted to battery capacities of 1–2 Watt-Hours for the next several

years because of their size and weight constraints; today’s phones have 7–11 Watt-Hours

batteries [149, 150, 151]. Therefore, we propose that the battery on the phone is traded for

that on the wearable.

5.2.2 Energy Overhead of Legacy Platforms

To simplify the hardware and software development of wearables, manufacturers have cho-

sen to reuse the system-on-a-chip (SoC) design and mobile operating systems that were

originally made for phones and tablets. For example, most smart-watches and smart-

glasses [144, 152, 145, 146] follow this approach to reduce cost and accelerate development

of the platform and the applications. The focus of this paper is on such wearable devices.

This means that wearables face a larger energy challenge compared to phones, because of

their smaller batteries.

Our prior work [8] identified that mobile storage software consumes up to 110x more

energy compared to flash hardware for accessing data as shown in Figure 5.1a. The energy

overheads are caused by three factors. First, mobile flash is slow and increases CPU idle

time while waiting for IO completion [40]. Second, storage on mobile devices is accessed

via managed runtime environments like the Darwin engine on Android and the CLR engine
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on Windows that add additional CPU overhead. Finally, encryption of data that happens us-

ing special CPU instructions is also energy intensive. Therefore, a fast and energy-efficient

storage system with security and privacy guarantees is needed for wearables.

5.2.3 New Applications on Wearables

Nearly all existing applications of wearables fall into two categories: extended display and

sensor analysis. Using a wearable as an extended display requires arbitrary mobile appli-

cation states are shared across the wearable and phone. And for wearables, the users focus

more on new content from contextual applications like email, messaging, social networks,

calendar events, music controls, navigation companion and etc.

Wearables are rich sources of sensor data. For example, watches can better monitor

heart-rate and glasses can provide better video sensing. These sensors pave the way for a

wide variety of useful applications including long term fitness/wellness tracking, detecting

chronic health conditions like sleep-disorder, heart conditions, etc. Unfortunately, existing

wearables are severely crippled in terms of battery size and provide only limited data an-

alytics. A storage system capable of supporting these wearable workloads and exploiting

their characteristics for performance and energy-savings is needed.

5.2.4 Low-Power Connectivity to the Phone

Bluetooth Low Energy (BLE) enables wearables to maintain a constant connection to the

phone at a low-energy cost (Figure 5.1b). However, its low modulation rate imposes a large

energy tax on large data transfers. An alternative is WiFi-Direct (WFD) which requires

higher constant power to maintain a connection but supports low-energy large data transfers

with high modulation rates. Figure 5.1c shows the average energy per KB consumed by

the whole system of the wearable as it sequentially writes data to local flash or remotely to

the phone via BLE/WFD. The results indicate that the energy overhead of writing data to

remote memory via WFD is comparable to that of writing data to flash on the wearable.
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The challenge is to build a mechanism to connect the wearable to the phone with a

constant low-power connection overhead with a means to transfer data energy-efficiently.

A hybrid connection and data-transfer mechanism can be built using BLE and WFD so that

data sharing between wearable and phone can be enabled at a low-energy cost.

5.2.5 Slow flash on Wearables

The flash device for mobiles and wearables is slow and energy-intensive [40]. Faster flash

technologies like SSDs require 25–100% more $/GB and 5x more energy per operation,

and have a controller alone that is bigger than an entire SD card. Moreover, even SSDs are

10,000x slower than DRAM 1. Furthermore, we demonstrate that data transfers over WiFi-

Direct between two mobile devices consumes less energy than writing the same data to

flash (Figure 5.1c). We propose that wearables actively use only DRAM (local and remote)

to drastically speed up storage operations.

5.3 WearDrive Design

We begin by showing how applications minimize using flash and use mostly DRAM for

fast and durable storage operations on wearables. We then present a new data management

system that helps applications span extended-display and sensor data across the wearable

and the phone. A new hybrid BLE/WFD data transfer mechanism is then described which

helps WearDrive transmit data at a low-energy cost to the phone.

5.3.1 Storage with Battery-Backed RAM

To speed up storage operations, WearDrive actively uses DRAM as storage. However,

WearDrive guarantees durability in spite of DRAM’s volatility. DRAM on mobile plat-

forms is continuously refreshed. The only time when the DRAM refresh stops is when the

device is shutdown, the battery runs out of energy or it is removed. The first two scenarios

1Data surveyed from samsung.com, newegg.com and amazon.com
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Figure 5.2: (a) WearDrive expands wearable’s memory and storage capacity by lever-
aging phone’s capabilities. LocDRAM/RemDRAM represents local/remote DRAM,
LocFlash/RemFlash are local/remote Flash. (b) BB-RAM pages are held in a linked list.
The pages contain a sequential log of key-value pairs as they arrive. The hashtable stored
in regular DRAM contains the index for the key-value store whose state can be efficiently
recovered after failures.

provide an early warning sign allowing data in DRAM to be flushed to flash just in time

before the refresh stops. Removing the battery while the system is running can lead to

data loss even in today’s systems. Moreover, most wearables’ batteries are not removable.

Therefore, we assume that DRAM can be treated as non-volatile on such devices. We call

such DRAM as battery-backed RAM (BB-RAM).

BB-RAM coexists with DRAM to minimize OS changes. It grows and shrinks dy-

namically according to the memory pressure in the rest of the OS. DRAM is a precious

resource on wearable devices. Most of the wearables we surveyed have less than 0.5GB

of DRAM. While reserving a known and fixed region of physical memory as BB-RAM

simplifies the implementation, it leads to fragmentation of DRAM and does not allow BB-

RAM to dynamically expand and contract in accordance with application/OS requirements.
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WearDrive’s BB-RAM design adapts to memory pressure and spans across non-contiguous

physical memory pages.

WearDrive uses BB-RAM both on the wearable and phone to ensure high-performance

of applications spanning both the wearable and the phone. Wearable uses the phone as the

secondary storage for its data. All old data on the wearable’s BB-RAM is retired to the

phone’s BB-RAM. All dirty data in wearable’s BB-RAM is also sent to the phone when

the wearable needs to shutdown. Likewise, the phone uses its flash as the secondary storage

for its data in BB-RAM.

Data in BB-RAM is not lost even after an OS crash. WearDrive uses a firmware com-

ponent to ensure that BB-RAM is backed to flash in case of an OS crash. Firmware needs

additional support to identify the physical pages that are used as BB-RAM. For this pur-

pose, WearDrive reserves a small known region of physical memory to store a bitmap in

DRAM to represent whether that physical page belongs to BB-RAM or not. The firmware

uses these bits to identify BB-RAM pages after an OS crash (before shutdown) and writes

them to a reserved region on flash. This simple design allows BB-RAM to coexist with

DRAM and also enables a firmware without any OS state awareness to ensure data durabil-

ity. Recovering WearDrive’s state after a crash solely from the set of BB-RAM pages that

it spans across is a harder problem and we present its design in the next sections.

WearDrive uses BB-RAM only as long as there is enough battery life left to ensure

the durability of data in case of a crash. When battery level reaches a threshold, WearDrive

stops using BB-RAM and treats all of DRAM as volatile. New and dirty data is first written

to local flash to ensure durability. We set the threshold to 7% in WearDrive based on the

observation that flushing 512 MB data from memory to flash sequentially costs about 5%

of wearable’s battery life on our reference wearable platform. However, this value can be

adapted according to the hardware.

Warm reset. WearDrive is optimized for warm resets of the OS. If the available energy

is above 7%, the firmware continues to refresh DRAM without scrubbing or cleaning any
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data. The OS then separates the pages in BB-RAM from regular DRAM using the bitmap

and continues the boot process.

OS Deadlock. In case of a deadlock there is a chance that the data in BB-RAM will

permanently be lost as the phone is completely drained out of battery. WearDrive uses a

watchdog timer to detect if the OS is hung. When the battery life reaches the threshold,

firmware schedules a BIOS-context process that wakes up once every sixty seconds and sets

a bit in a known portion of memory that it expects the OS to reset every sixty seconds. If

the OS fails to reset it during an iteration then the firmware assumes that the OS has hanged

and flushes the data to flash by itself and disables the watchdog timer. The watchdog timer

is also disabled as soon as the OS starts using DRAM as volatile.

5.3.2 Storing Data Across Devices

Since extended display and sensor data analysis scenarios need to span data across wear-

ables and phone, we design WearDrive as a distributed storage system spanning across all

devices. We find that in most extended-display scenarios, the wearable is treated as a helper

for the full application on the phone because of the smaller screen size and small battery

size on wearables. For this reason, we design the component of WearDrive on the wear-

able as a cache (WearCache) and the component of WearDrive on the phone (WearKV)

as the main storage of data (see Figure 5.2a). WearKV and WearCache both have a key-

value store interface that mobile application developers are familiar with. We use the same

KV-store system to implement both WearCache and WearKV.

5.3.3 KV-store Design

KV-store is optimized for BB-RAM. This ensures fast and durable operations for WearCache

and WearKV when inserting new data. KV-store prioritizes new data. The focus of wear-

able applications is on the latest data generated by phone applications and also by the

sensors. Examples include the user’s interest in latest notifications and most recent sensor
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values that can provide statistics about a run or a workout session. Therefore, the KV-store

is implemented as a sequential log of key-value pairs in BB-RAM with FIFO replacement.

Figure 5.2b illustrates the design. Keys and values are arbitrary length data blobs. New

values are inserted by appending the KV-pair to the head of the log and adding a hash table

entry with pointers to the key and the value in the log.

KV-store stores data in BB-RAM and metadata in DRAM. The log of KV-pairs is stored

in BB-RAM and the hash table is stored in regular DRAM. The rationale for this is that

the hash table can be recovered from BB-RAM in case of a crash by scanning through the

BB-RAM pages in the right order. In case of a clean shutdown, the hash table is serialized

to secondary storage (Index Log in Figure 5.2b). This design choice makes effective use of

the precious BB-RAM space.

KV-store can recover BB-RAM and DRAM state after a crash. Recall that the firmware

flushes BB-RAM pages to local flash in case of a crash. To recover the hash table and

the correct head of the log of KV-pairs, ordering of the BB-RAM pages is needed. The

ordering of the BB-RAM pages in the log is determined by a four-byte pointer stored at the

tail of every BB-RAM page to the next BB-RAM page in the log as shown in Figure 5.2b.

Each KV-pair in BB-RAM is a sequence of five fields: four bytes length of the key followed

by the key, followed by eight bytes of application identifier (described later) and then four

bytes length of the value followed by the value. This FIFO of BB-RAM pages allows the

KV-store to arbitrarily increase its size by appending new pages and decrease the size of

the log by purging the KV-pairs at the tail to secondary storage. Moreover, the firmware

remains simple, precious BB-RAM space is best utilized and recent data that is of interest

for applications is prioritized during page replacement.

WearCache is the KV-store instance that lives on the wearable and caches all the latest

data from applications and sensors. New data arrives in WearCache via two methods: when

phone applications push data to their companion applications and when sensors generate

new values. When WearCache runs out of BB-RAM, it flushes old data to WearKV on the
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phone in FIFO order as the focus of the wearable is always on new data. It does so by

simply moving the tail forward in the log of KV-pairs on BB-RAM several KV-pairs at a

time. This provides the functionalities of having recent data on the wearable, adapting to

memory pressure, and providing an efficient replacement policy. An example application

on today’s watches that can leverage this storage model is a notification center for recent

emails. The user’s focus will be on the most recent emails while the older emails may

be safely flushed to WearKV as the user may not access them on the wearable. Complex

functionalities are implemented by the email application on the phone while a companion

email application on the wearable keeps the design/UI simple with a focus on latest data.

WearCache removes flash I/O overhead from the critical path of applications. The

OS, application binaries and other application metadata continue to reside on local flash.

However, data accessed in critical path resides in WearDrive. The key-value interface to

WearDrive eases development as wearable applications already use the key-value interface

for sharing data between the phone and wearable [153]. As future work, we wish to provide

filesystem and database interfaces using BB-RAM.

WearDrive supports simple sensor data analytics on the wearable and complex data

analytics on the phone. Small battery restricts wearables to analyzing sensor logs from

short activities like the latest run/workout-session or other short activity. However, appli-

cations can perform rigorous analytics on the phone (several days worth of sensor logs at a

time). Applications on the phone can proactively pull the sensor data from WearCache as

and when a certain number of samples are available. For example, a fitness tracker on the

phone can register with WearCache that the heart-rate logs from the wearable be pushed to

the phone once every ten minutes. WearCache implements these requests in the following

manner. For each sensor, WearCache pre-allocates a KV-pair. A certain amount of space is

reserved for the value upfront. The sensor samples (configurable sampling rate) are gradu-

ally added to the pre-allocated value as they become available. Data is pushed to the phone

and phone-applications are notified accordingly.
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Figure 5.3: WearDrive creates individual logs per application and per sensor to isolate on
secondary storage.

WearKV is the KV-store that resides on the phone and contains all the data of the

wearable. It contains old extended display data and the entire log of sensor values. Old

extended display data is fetched back to WearCache on demand (this is a rare event as

wearables focus on new data). The phone with its larger battery can use the full sensor log

to perform rigorous sensor data analysis. When WearKV runs out of BB-RAM, it flushes

old data to flash where it creates a per-application and per-sensor sequential log as shown

in Figure 5.3. It does so by leveraging the metadata information stored in the values where

it records the device-ID, application-ID, sensor-ID and time stamp of creation.

Data in WearDrive crosses the memory/flash boundary only on the phone. Data encryp-

tion and other mechanisms put in place to ensure security and privacy of data are needed

only for “truly” non-volatile media like flash that can be detached from the rest of the phone

and have unprotected data stolen in a straightforward manner. Therefore, the heavy soft-

ware cost [8] of storage is offloaded to the phone. Note that treating DRAM as non-volatile

by using it as BB-RAM is at least as secure as the previous model where data was not

encrypted in DRAM as DRAM which is part of the SOC is hard to detach from a device.

BB-RAM is a mechanism to ensure that data in DRAM in never lost as opposed to making

DRAM “truly” non-volatile.

Offline Capabilities. WearCache can function without the phone. WearCache can lock

data on the wearable based on time of arrival such that it is not purged to the phone until

explicitly deleted. Offline capabilities allow applications to lock data to be available locally
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so that functionality can be provided without the phone. An example is when the email

companion application imposes a restriction that emails from last three days are locked

locally. KV-pairs are written to flash on the wearable only if WearCache runs out of BB-

RAM and the applications impose an offline availability restriction. Offline requirements

are specified in WearCache using time cutoffs per applications and per sensor. We compare

the specified time with the timestamp stored in KV-pair’s metadata. The qualified offline

data is written to its local flash’s logs. As time passes, WearCache will move the tail closer

to the head on the flash log and overwrites older data that the application does not need.

5.3.4 Communication

Efficient reachability to the phone allows the wearable to be designed with less DRAM and

slower flash thereby reducing their cost. Moreover, it allows the wearable to offload storage

and computations to the phone. BLE 4.1 and 802.11a/b/g/n/ac are the network connectivity

options for wearables. While a few smart-watches only have BLE, we envision that Wi-Fi

will make it to all wearables as it enables efficient large data transfer.

Standalone BLE or WFD is not an ideal network connection. BLE consumes low power

(1–3mW) for staying always connected to the phone while using a WFD to stay connected

to the phone consumes 5x extra power (10–14mW) (Figure 5.1b). On the other hand, BLE

consumes 10–20x extra energy for transmitting data when compared to WFD (Figure 5.1c).

A mechanism to minimize the total energy of always staying connected and for transferring

data is required.

Using BLE for staying connected and short data transfers, and turning on WFD solely

for large data transfers is a hybrid solution. This is practical because WearCache and

WearKV know how much data is to be pushed. If it is beneficial then a control signal

over BLE is sent to the other side to turn on WFD. Data transmission begins on BLE and

switches over to WFD when it is available.

Knowing the right data transfer size for switching on WFD is crucial. To estimate the
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Figure 5.4: Energy consumption of data transfer via BLE and WFD. WFD is efficient if
connection establishment, tail latency, and connection-teardown are not included.

transfer size at which it pays-off to turn on the WFD, we conduct the following experiment:

transferring data of various sizes on BLE and WFD. We keep BLE always on and send data

of various sizes between two mobile devices whose power consumption is monitored using

the Monsoon power monitor [154]. We then estimate the energy required for transferring

the data via WFD. The energy estimates for WFD contains the energy needed for turning

the WiFi chipset on and off. Figure 5.4 shows the transfer size at which using the hybrid

protocol pays off.

The pay-off point for switching to WFD depends on signal quality. We present the

results for two extreme modulation rates in 802.11n: the highest modulation rate and the

lowest modulation rate. A crossover-point database is built for various modulation rates of

BLE and WFD. We use the BLE signal strength to estimate the WiFi signal strength as they

use the same band and radio over the same distance.

Picking the right time to turn off WFD is important. WFD consumes more power than

BLE in the idle state (i.e., standby power gap). However, network discovery, connection,

and powering-down are expensive, frequently turning WFD on/off would incur more en-

ergy usage than keeping it in the idle state for workloads with small inter-arrival times. We

use two solutions to solve this problem. The first is to have a running average of inter-

arrival times and predict on the basis of the average-value if it is worth keeping the WFD
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Table 5.1: WearDrive API

API Description

OpenWearDrive (FileName) open a connection to WearDrive and obtains a handle, the data is rep-
resented using an opaque FileName.

CloseWearDrive (handle) close the connection to WearDrive and flush any data from BB-RAM
in the process to an appropriate location.

InsertKV (handle, key, value) insert the new key/value to the FileName corresponding to the handle.
ReadKV (handle, key) provide the value corresponding to the key in the FileName file.

MakeOffline (handle, date)

make all data of this file that arrived after a certain date available on
the wearable even when the phone is not reachable. Date is speci-
fied relatively to the current time. This function is available only to
WearCache.

DeleteOldData (handle, date)
provide a hint to WearDrive that data beyond a certain date can be
deleted. Date is an absolute value. This function is available only to
WearKV.

RegisterForSensor (DeviceID, SensorID) register an application for values from the sensor
represented by (DeviceID, SensorID).

UnregisterFromSensor (DeviceID, SensorID) unregister the application from a sensor.

RegisterCallBack (TimeGap, CallBackFunction)

make WearDrive issue the CallBackFunction
in the context of registering application every
TimeGap seconds with the newly available sensor
values.

Compute (DeviceID1, SensorID1, ..., DeviceIDN,
SensorIDN, TimeGap)

a function that does not access any global vari-
ables but accesses data in sensor logs that are ac-
cessible to the application. It can be executed on
both wearable and phone.

on. The second is to explicitly help applications that can tolerate delay to batch data for

further energy saving.

5.4 WearDrive Implementation

We implement WearDrive on Android 4.4 using Java, C and JNI [155]. It consists of the

KV-store, the data transfer library and the code needed for ensuring the durability of BB-

RAM. WearDrive is accessed via the calls on all devices as shown in Table 5.1. InsertKV

and ReadKV always append the application ID (stored in handle) to the key for inserting

and reading data. This helps WearDrive isolate data between applications. Privacy is pro-

tected by not providing user-space access to BB-RAM. All data is accessed through user

space buffers provided to the system calls.

Sensor values are aggregated by WearDrive on a per-sensor basis. Applications can
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Table 5.2: Workloads included in WearBench.

Workload Parameters Application examples
Extended
Display

Size and inter-arrival time distribu-
tion of data

Email, news, instant messages, status
updates from social networks, etc.

Sensors sampling rate, monitoring period
Physical fitness, sleep quality, heart
health monitoring, elder care, etc.

Audio/ Video
Encoding rate, quality, monitoring
period

Dash-cam using glasses, sleep quality
monitoring.

register sensor logs for each sensor. WearDrive directly appends sensor samples to the pre-

allocated KV-pair that is buffering the current set of sensor samples. When enough samples

are available, WearDrive notifies the corresponding applications.

5.5 Experimental Methodology

Evaluating wearable applications is hard because of the lack of a standard benchmarking

tool that can generate representative workloads that span across wearables and phone. We

present WearBench, a framework that is intended to test the impact of data generated by

such wearable workloads on performance and energy.

5.5.1 WearBench

WearBench is an Android app that runs on the phone/wearable for generating the extended-

display data and sensor data which represent wearable applications. WearBench runs on

the phone when testing the wearable and vice versa so that WearBench does not interfere

with the measurements. WearBench defines synthetic data-analytics that can be executed

on sensor logs like calculation of running statistical features including average, standard-

deviation, k-means, and hourly/diurnal/weekly pattern recognition algorithms – sampling

rate and timeliness are configurable. WearBench can create notifications of varying sizes

and different inter arrival time distributions. To the best of our knowledge, WearBench is

the first framework for benchmarking wearable systems.

We identify several typical data-intensive workloads running on smart wearables (see
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Table 5.3: Reference wearable device used for evaluation.

Type Our Reference Wearable Samsung Gear
Processor 1.2 GHz dual-core 1.2 GHz dual-core
Memory 1 GB RAM 512 MB RAM
Storage 4 GB eMMC flash 4 GB eMMC flash
Network Bluetooth 4.0 LE, WiFi 802.11 b/g/n Bluetooth 4.0 LE, WiFi 802.11 b/g/n

Sensors

accelerometer, barometer, compass, GPS,
gyroscope, heart rate monitor, magnetome-
ter, altimeter, barometer, UV light sensor,
ambient light sensor, BLE and WiFi events,
camera, microphone

accelerometer, gyroscope, compass, heart rate
monitor, ambient light, UV light, barometer,
GPS, microphone, BLE and WiFi events

OS Android 4.4 Android 4.3+/Tizen

Table 5.2). In order to cover a wide variety of users, we abstract the usage pattern as

configurable parameters in WearBench.

5.5.2 Experimental Setup

We use a low-end mobile platform as a reference wearable device that runs Android 4.4.

As shown in Table 5.3, our reference wearable device compares to Samsung Galaxy Gear

smart-watches which have similar hardware and software configurations. While our refer-

ence has 1 GB RAM, we use only 512 MB on it for the system to match the amount of

RAM on state-of-the-art wearables.

Monsoon power monitor [154] is used to profile energy consumption of the device. We

instrument the reference wearable device’s battery-leads such that it draws power from the

Monsoon power meter instead of a battery. We perform comparative energy calculations

by subtracting the base power of the system from the power used when a workload is

executed. However, when reporting absolute energy required for a workload we include

the base power of the system. We compare WearDrive with the following state-of-the-art

storage solutions:

WearableOnly: The wearable applications use the capabilities on the wearable for

storage. The phone is used only for Internet connection via tethering. All the computation

is performed locally and all data is durably written to local flash. This is the way most

fitness/health trackers are implemented on today’s wearables.
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Figure 5.5: Performance and energy comparison of WearableOnly and WearDrive with a
varied number (1, 2, 4) of threads.
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Figure 5.6: Energy used by various storage systems with varied number (1–16) of sensors
sampling values continuously at 1Hz for 24 hours. A typical smart-watch battery contains
between 3000–6000 Joules of energy.

WearSDK: Android Wear SDK released by Google [153] is one way to span data

across wearable and phone. However, this SDK uses flash synchronously on either one of

the devices to ensure durability. WearSDK provides a data layer for data synchronization

between paired wearable and phone via BLE (i.e., WearSDK-BLE). We extend the data

layer and make it support WFD (i.e., WearSDK-WFD) and our hybrid network protocol

(i.e., WearSDK-HYN).
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5.6 Results and Analysis

5.6.1 Local Memory vs. Local Flash

We first examine the advantages of BB-RAM over local flash with a set of microbench-

marks. We configure WearBench to issue 100 K InsertKV and ReadKV operations. The

size of the data written or read is varied uniformly from 128 bytes to 1 KB. Figure 5.5

compares the throughput for different data sizes. WearDrive outperforms WearableOnly by

6.65–8.85x on inserts where storage I/O from flash becomes the bottleneck, and 1.57–1.69x

on reads where the CPU becomes (single thread) the bottleneck for our system and the flash

IOPS for WearableOnly. Moreover, WearDrive’s throughput scales linearly till four threads

while WearableOnly is saturated by a single thread. Figure 5.5 also shows the total energy

usage of these write/read operations. WearDrive consumes 2.58–3.69x and 1.57–1.70x less

power than WearableOnly on inserts and reads respectively, as slow I/O operations on flash

cause more CPU cycle wastage, and further increase the energy usage.

5.6.2 Passive Sensor Data Aggregation

We demonstrate the benefits of using local and remote BB-RAM for providing durability

for sensor data recording over flash.

Fitness/health tracking applications collect sensor values on a periodic basis and update

statistics [156]. We use a fitness tracker application that samples various sensors at 1Hz

and stores them to local flash periodically. We record the storage calls that this application

makes for storing sensor logs, and incorporate the workload into WearBench for replaying.

WearDrive aggregates sensor data in BB-RAM and ensures their durability. Wear-

ableOnly and WearSDK unfortunately cannot provide such guarantees unless they write

every sensor sample through to flash, but they suffer severe performance losses in doing so.

As a tradeoff between durability and performance, for these methods, we write the sensor

samples to flash when data fills a sector (512 bytes). Every five minutes, all the new data
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is sent to the phone as sending data to the phone at 1Hz leads to significant energy wastage

because the network chip would never go into low power mode. Figure 5.6 shows the total

amount of energy in Joules required each day only recording the sensor values. The overall

trend across all the systems show that the number of sensors sampled does not severely im-

pact the energy consumption of storage, indicating that the setup costs inside storage stack

are the dominant factors for this workload.

WearDrive outperforms the other systems by up to 3.31x and provides better durabil-

ity. When sampling 16 sensors every second for the whole day and writing them to flash,

the storage system (hardware and software) requires 1760 Joules. Considering a typical

smart-watch battery that contains 4000 Joules (1.1 Watt-Hour) of energy, writing sensor

data to flash requires 44% of total battery life each day. WearDrive on the other hand con-

sumes 28.25%, which is 1.54x more efficient. Moreover, we find that 89.5%, 68.1% and

58.75% of the battery life is respectively required by WearSDK-BLE, WearSDK-WFD and

WearSDK-HYN. While HYN reduces the cost of transmitting data over the network to the

phone, the bulk of the cost for these systems is still from using slow flash which wastes

energy by delaying CPU and network from going to sleep sooner.

5.6.3 Extended Display Workload

In this experiment, we demonstrate the benefits of WearDrive to efficiently store extended-

display data durably. We use WearBench to emulate application patterns from representa-

tive workloads of Twitter [138], Instagram [157], and email [143] applications with various

parameters (size and interarrival time).

Varying inter-arrival times. In order to model more notification workload patterns,

we vary the interval between tweets from 5 to 60 seconds and measure the energy-impact

from storing them durably on the wearable. Figure 5.7 shows these results.

WearDrive reduces energy usage by 1.2–2.9x compared with the default option of

WearSDK-BLE for today’s wearable applications. The benefits are made possible not only
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Figure 5.7: Energy usage of receiving 10 notifications (10KB size) with the varied interval
between notifications.

because of the performance benefits of BB-RAM, but also because of the energy-benefits

of HYN. Faster storage operations help the CPU and network go back to sleep faster and

reduce the energy footprint.

With HYN, WearDrive uses WFD when the average interval between notifications is

small enough to warrant keeping WFD active (20 seconds for our hardware). When the

interval is further increased, WearDrive will intelligently turn off WFD and use BLE to

send notifications. The hybrid networking protocol also brings benefit to WearSDK (see

WearSDK-HYN in Figure 5.7). For long intervals, WearDrive still performs better than

WearSDK-BLE, because of its faster storage.

Effects of batching notifications. Buffering data on the phone gives HYN more op-

portunity to exploit the energy efficiency of the WFD protocol. We vary the size of the

notifications pushed by the phone to wearable from 128 bytes to 1KB. The batch size that

the data is sent ranges from 10 to 100. This experiment allows us to study the energy-

benefits of delaying notifications from applications that are less interactive than instant

messages, such as social networking updates and even email in some cases.

Figure 5.8a shows the results for tweets which are short social networking messages that

can tolerate delay. Compared to WearSDK-BLE, WearDrive takes 2.93x less time, while

saving energy by 2.23x. The overhead of WearSDK is reduced with WFD and HYN for a

large number of notifications. For small number of notifications such as 10 notifications,
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Figure 5.8: Performance and energy usage of notification workload with different data size.

HYN will use BLE instead of WFD for data transfer. The execution time of WearSDK-

WFD is less than WearSDK-BLE and WearSDK-HYN, but its energy usage is larger as the

overhead on WiFi discovery and connection offsets its benefit on data transfer. WearDrive

is 1.81x more energy efficient than WearSDK-HYN because of BB-RAM’s fast durability.

Likewise for email, as shown in Figure 5.8b, the benefits of HYN when batching

when possible are apparent. However, WearDrive is 2.49x more energy efficient than

WearSDK-HYN because of the fast durability guarantee provided by BB-RAM. Overall,

WearDrive helps extended-display applications not only by making the energy-batching

tradeoff straightforward to exploit but also by providing benefits for applications that are

interactive by enabling fast durability.

5.6.4 Impact on Smart-phone

In this section, we evaluate the energy usage on the phone and show how WearDrive can

improve the lifetime of wearables by leveraging only a negligible portion of phone’s larger

battery capacity. To understand the energy impact on the phone accurately in this context,

we use the same reference hardware in Table 5.3 as a phone. Note that this is a hardware

specification similar to most low-end phones on the market today. However, we use a
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Table 5.4: WearDrive saves wearable’s battery by trading it with the phone’s battery.The
battery capacities of the wearable and phone used in the experiments are 300 mAh and
2000 mAh respectively.

Algorithms Mean k-NN ID3 k-means

Schemes % of battery life on % of battery life on % of battery life on % of battery life on
wearable phone wearable phone wearable phone wearable phone

WearableOnly 14.72% - 18.85% - 20.24% - 27.12% -
WearableOnly+InMem 0.83% - 4.96% - 6.56% - 13.23% -

WearDrive 0.87% 0.21% 0.87% 0.83% 0.87% 1.08% 0.87% 2.09%

2000mAh battery as the reference battery when evaluating the energy impact on the phone.

Energy cost of storage: We reuse the fitness monitoring application workload from

Section 5.6.2. Recall that for recording 16 sensors at 1Hz for 24 hours requires 28.25% of

the battery life on the wearable instead of 44.0% when writing the data to the flash on the

wearable. For this experiment, we find that the phone requires 1369 Joules of energy. This

energy accounts for 5.1% of the battery on the phone but this leads to savings of 16% of

the battery on the wearable. Considering the fact that the batteries on wearables are usually

5–7x smaller than on the low-end phone, this is a valuable tradeoff to make. Moreover,

having the data on the phone enables the phone to perform analytics and provide more

energy savings for the wearable device.

Energy cost of computation: We implement Mean and three commonly used data

mining algorithms in WearBench: k-NN (k-Nearest Neighbor) for classification [158],

ID3 (Iterative Dichotomiser 3) for generating decision tree [159], and k-means for clus-

ter analysis [160] for detecting patterns in streams of sensor data to find out when user’s

heart rate is high [161], when a user snores during the night [162], the levels of UV expo-

sure [163], etc. WearableOnly refers to the baseline, in which records are stored in SQLite

and data analytics run on wearables. WearDrive performs computation on the phone with

the data in WearKV. The sensor data are aggregated over three days.

Table 5.4 shows that WearableOnly method of storing and computing on the wear-

able consumes a significant portion of wearable’s battery life, ranging from 14.72% to

27.12%. For smaller data sets the data can be read into memory all at once and computed
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over as opposed to reading data from flash in batches. We refer to this solution as Wear-

ableOnly+InMem. It reduces the energy usage dramatically, but it works only for small

workloads that fit in memory. However, when sampled at a higher rate (required usually

when the user is running or biking) of over 10Hz, sensor data beyond a few hours will

not fit in the memory of the wearable. While such workloads may not fit in the phone’s

memory either, the phone’s larger battery takes much smaller impact.

When the computation is shifted to the phone by WearDrive, it consumes a trivial por-

tion (0.21%–2.09%) of phone’s battery life, but reduces the energy usage on wearables to

be only 0.87% of wearable’s battery life for issuing the arithmetic functions. As future

work, we wish to explore when offloading computation to the cloud pays-off with respect

to energy. Offloading to the cloud incurs more energy overhead due to data transmis-

sion across a wide area with WiFi or LTE. For instance, uploading 8 MB data to Google

Drive [164] consumes 3.14x more power than writing to local flash in our experiment setup

(with perfect WiFi conditions).

5.7 Summary

WearDrive demonstrates that battery-backed RAM (BB-RAM) can provide significant per-

formance and energy benefits for wearable applications. It also shows how Bluetooth and

WiFi can be used in combination to provide a low-energy communication link (HYN) be-

tween the wearables and the phone. BB-RAM in combination with HYN provides a quick

and energy-efficient way for wearable applications to span data across all the devices on the

body enabling new functionalities for users. We validate these benefits with various typi-

cal wearable applications using a new wearable benchmarking suite that we develop, and

show that WearDrive is 1.16-1.55x more energy-efficient compared to existing solutions.

WearDrive can leverage phone’s capabilities to reduce energy usage of wearables by up to

15.21x, with trivial impact on the phone for realistic wearable workloads.
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CHAPTER 6

FLASHGUARD: HARDWARE-ASSISTED DEFENSE AGAINST RANSOMWARE

The storage system software has been developed for decades, but it is still vulnerable to

malware attacks. Taking the encryption ransomware for example, it is a malicious software

that stealthily encrypts user files and demands a ransom to provide access to these files.

Several prior studies have been proposed to detect ransomware. However, by the time the

ransomware is detected, some files already undergo encryption and the user is still required

to pay a ransom to access those files. Furthermore, ransomware variants can obtain kernel

privilege, which allows them to terminate software-based defense systems, such as anti-

virus and data backups. Ideally, we would like to defend against ransomware without

relying on software-based solutions and without incurring additional storage overheads.

To that end, this dissertation proposes FlashGuard, a ransomware-tolerant Solid State

Drive (SSD) which has a firmware-level recovery system that allows quick and effective

recovery from encryption ransomware without relying on explicit backups. FlashGuard

leverages the observation that the existing SSD already performs out-of-place writes in or-

der to mitigate the long erase latency of flash memories. Therefore, when a page is updated

or deleted, the older copy of that page is anyway present in the SSD. FlashGuard slightly

modifies the garbage collection mechanism of the SSD to retain the copies of the data en-

crypted by ransomware and ensure effective data recovery. Our experiments with 1,447

manually labeled ransomware samples show that FlashGuard can efficiently restore files

encrypted by ransomware. In addition, we demonstrate that FlashGuard has a negligible

impact on the performance and lifetime of the SSD.
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6.1 Introduction

Recently, criminals are unleashing brash attacks on users’ machines through a new type

of malicious software called encryption ransomware [165, 166, 167]. For example, the

WannaCry ransomware [165] launched on May 12, 2017 has infected more than 230,000

computers across 150 countries. Among the victims are government agencies, schools,

hospitals, and police departments.

Different from traditional malware which typically disrupts computer operations and

gathers sensitive information, encryption ransomware stealthily encrypts the files on user’s

machine and demands users pay a ransom to restore the files. Since the operations per-

formed by ransomware are indistinguishable from benign software, ransomware can easily

bypass various antivirus, making it increasingly prevalent in cyber criminals [168, 169].

According to a study from IBM Security [170], the number of users who came across en-

cryption ransomware in 2016 increased by more than 6,000% over the previous year. The

ransomware attacks cost their victims about a billion dollars in 2016 which is a 41x increase

compared to the cost in all of 2015 [171].

To counteract ransomware, researchers have proposed several detection systems that

use file access patterns [172, 173] or features of cryptographic algorithms [174] to identify

ransomware. However, these detection mechanisms still cannot prevent ransomware from

locking up user data. First, existing ransomware detection occurs only after observing

the actual damage. Given that the encrypted data may contain the files considered to be

valuable, victims still have to shoulder the burden of paying the ransom. Second, some

ransomware can run with kernel privileges, which allow them to carry out kernel-level

attacks. Therefore, ransomware can easily disable or work around the aforementioned

detection mechanisms.

To address these issues, one instinctive solution would be to enable file backup on

local persistent storage (e.g., journaling and log-structured file systems [59, 60]) or remote
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machines (e.g., NFS [175] and cloud-based storage [61]). However, this is insufficient at

guarding against ransomware. First, any file backup mechanisms inevitably impose storage

overhead. Second, ransomware may find and jump to the backup and encrypt it regardless

of whether it is on shared network drives, local hard disk drives, external storage devices,

or plugged-in USB sticks [176]. Third, ransomware with the kernel privilege can also

terminate backup processes, making them futile against ransomware defense.

As the replacement to conventional persistent storage devices – hard disk drives (HDDs),

Solid-State Drives (SSDs) have been widely used on many kinds of computing platforms,

because they provide orders of magnitude better performance than HDDs while their cost

is fast approaching to that of HDDs [9, 10, 11, 12]. A unique property of SSDs is that

a physical page cannot be written until it is erased, however, the erase operation incurs

significantly longer latency. To overcome such a shortcoming, modern SSD performs out-

of-place write for every write. Therefore, SSDs intrinsically support the logging function-

ality without requiring an explicit backup. Such a feature will naturally preserve the old

copies of overwritten or deleted files for a period of time before they are reclaimed by the

process of garbage collection. Moreover, the firmware-level logging could isolate the data

protection and recovery from operating system (OS) kernels and upper-layer software.

Unlike existing ransomware detection systems [177, 173] and explicit file backups [56,

57], we take advantage of the intrinsic flash properties and build a ransomware-tolerant

SSD named FlashGuard, which has a lightweight hardware-assisted data recovery system.

It allows users to reinstate the data held in captivity by ransomware.

While the proposed system is based on the out-of-place write characteristic of an SSD,

it is challenging to leverage such a feature for data recovery for two major reasons. First,

once data is deleted or overwritten but gets left behind on the drive, SSD controller may

perform garbage collection (GC) to erase the blocks taken up by such stale data for free

space. Given that stale data may contain the original data copies “deleted” or “overwritten”

by ransomware, FlashGuard needs to hold stale data and prevent GC from discarding them.

78



Since holding too much stale data could increase the GC overhead, which further affects the

performance of regular storage operations significantly [178] and even jeopardizes the SSD

lifetime [179], an efficient GC mechanism is desirable. Second, we must guarantee that the

change to the GC is resistant to the potential attacks against SSDs from the ransomware

running with the kernel or administrator privilege.

To tackle these challenges, we implemented FlashGuard’s data recovery system in

SSD firmware by augmenting GC mechanism with the ability to only hold the data po-

tentially deleted or overwritten by ransomware. We prototyped FlashGuard on a 1 TB

programmable SSD with minimal modifications to the existing SSD design. Using a real

world set of 1,477 distinct ransomware samples covering 13 families, we show FlashGuard

can quickly recover the files held by ransomware. For example, we demonstrate Flash-

Guard can restore 4 GB of encrypted data in 30 seconds. Using a set of publicly available

storage traces, we extensively evaluated the impact of FlashGuard upon the storage per-

formance. Our experimental results show that FlashGuard incurs negligible performance

overhead (up to 6%) and has a trivial impact (less than 4%) on SSD lifetime.

To the best of our knowledge, FlashGuard is the first defense scheme that can efficiently

offset the damage of ransomware to user data even if ransomware run with administrator

privileges to load kernel code or exploits a kernel vulnerability.

6.2 Ransomware Study

Among various strains of ransomware, encryption ransomware is the most common type

that encrypts user data and demands money in exchange for decrypting them. The ob-

jective of this work is to design and develop a ransomware-tolerant SSD which has the

data-recovery capability to offset the damage to user data resulting from encryption ran-

somware. To achieve this, we first analyze the behaviors of encryption ransomware and

understand how they interact with user data by conducting a study on a large number of

ransomware samples. Different from prior studies on ransomware [172, 173, 180], our
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Table 6.1: Ransomware families, their encryption time, and behaviors of deleting backup
files (backup spoliation).

Family Samples Encryption Backup
Num % Target T (mins) spoliation

Petya1 14 0.95 MFT 2 N

CTB-Locker 119 8.05 Files 14 7

JigSaw 5 0.34 Files 16 7

Mobef 7 0.47 Files 16 7

Maktub 10 0.68 Files 22 3

Stampado 42 2.84 Files 27 7

cerber 29 1.96 Files 37 3

Locky 344 23.29 Files 43 3

7ev3n 16 1.08 Files 44 3

TeslaCrypt 75 5.08 Files 44 3

HydraCrypt 13 0.88 Files 70 3

CryptoFortress 4 0.27 Files 75 3

CryptoWall 799 54.10 Files 75 3

Total 1477 100 – – –

study focuses on two aspects – encryption time and backup spoliation.

6.2.1 Study Methodology

We gathered 1,477 encryption ransomware samples from VirusTotal [181] and classified

them into 13 distinct ransomware families based on the ransom notes they present to vic-

tims. Table 6.1 illustrates these families, their encryption strategies and the number of

samples in each ransomware family.

Following the common scientific guidelines [182], we executed each ransomware sam-

ple within a virtual machine (VM) running 64-bit Windows 7 SP1 with 2 CPU cores and

4 GB main memory on a host machine (configured with 2.67 GHz Intel quad-core Xeon

processor and 8 GB DRAM). We removed the barriers of ransomware execution by dis-

abling protection services such as firewall, Microsoft security protection, and user account

control. Moreover, we granted all ransomware samples the administrator privilege. Since

ransomware might perform key-exchange with the control server and establish those en-
1we do not deem Petya ransomware that it deletes backups because Petya demolishes and replaces

Windows file system.
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Table 6.2: File distribution in a normal user’s computer.

Type Number Size
Num % Avg (KB) Total (MB) %

pdf 2378 24.08 565.27 1312.70 30.28
html 2117 21.43 59.15 122.29 2.82
jpg 1073 10.86 335.08 351.12 8.10
doc 797 8.07 361.92 281.69 6.50
txt 788 7.98 553.89 426.23 9.83
xls 584 5.91 587.68 335.16 7.73
ppt 501 5.07 2110.94 1032.80 23.82
xml 353 3.57 132.59 45.71 1.10
gif 349 3.53 81.64 27.83 0.64
ps 208 2.11 764.85 155.36 3.58
csv 188 1.90 202.77 37.23 0.86
gz 128 1.30 628.64 78.58 1.81
log 99 1.00 170.80 16.51 3.81
unk 59 0.60 358.53 20.66 4.77
eps 40 0.41 516.59 20.18 4.66
png 39 0.39 312.85 11.92 2.75
others 141 1.77 343.62 58.72 1.35
Total 9876 100 449.44 4334.67 100

cryption keys used for locking up user data, we enabled the access to the Internet. How-

ever, considering ransomware may attempt to propagate themselves, we used a filtered

host-only adapter to control their traffic and minimize their impact upon the host. After

executing each ransomware, we revert the VM to a clean snapshot.

We conduct two experiments to measure ransomware’s encryption time and examine

whether ransomware attacks backup files (e.g., Volume Shadow Copies [183]) respectively.

We describe their experimental setups as follows:

Encryption time. We placed a set of files (9,876 files in total) following the file-type

distribution in a normal user’s computer [184] in each VM. Table 6.2 shows the distribution

of these files covering more than 18 unique file types. We run each ransomware sample and

use the screenshot method described in [172] to examine their execution time. Specifically,

we detect the changes to the screen of the virtual machine, screenshot the ransom notifica-

tions, and calculate the time it took for a ransomware to encrypt files and display a message
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on the screen to notify victim. To avoid false positives, we disabled Windows notification

and manually examined each screenshotted notification.

Backup spoliation. To determine whether a ransomware also attacks file backups

(especially the volume shadow copies), we created and enclosed several volume shadow

copies on VMs. We deem a ransomware sample targets at backups if we observe the dis-

appearance of these shadow copies.

6.2.2 Our Findings

Table 6.1 describes how fast ransomware encrypts data and notifies victim with a ransom

screen (the 5th column), and whether ransomware attacks file backups (the last column).

According to our study, ransomware typically displays ransom screen immediately after the

encryption (sometimes even before the encryption has been completed). The notification

procedure takes little time and most of the execution time of encryption ransomware is

spent on the encryption part.

We observed that ten families complete the file encryption in less than an hour. For

ransomware CTB-Locker, JigSaw, Mobef and Petya, their encryption takes even

less than 20 minutes. Moreover, we discovered that some ransomware encrypt only small

files or files with certain extensions. For example, JigSaw encrypts only files smaller

than 10 MB, CTB-Locker only locks up files with certain extensions and Petya only

encrypts a system’s Master File Table (MFT) [185].

Observation 1: Ransomware typically locks up data rapidly and the size of the data

encrypted is relatively small.

Implication: Ransomware would like to minimize the chances of being terminated and

caught, or ransomware authors may want to collect ransom quickly.

Table 6.1 also shows that eight ransomware families attempt to delete backup files. Re-

call that we assigned ransomware samples the administrator privilege, which grants the

82



ransomware the permission to destroy backups. We observed that some ransomware fami-

lies attempt to bypass User Access Control if the privilege of deleting the backup files is not

given. For instance, cerber [186] firstly escalates its privilege and then deletes Shadow

Copies using the WMIC utility [187].

Observation 2: Ransomware variants proactively try to remove any means that victims

could have to recover from the attack without paying the ransom.

Implication: Ransomware can obtain kernel privilege to terminate or destroy software-

based defense systems such as explicit data backups.

6.3 Threat Model

As this work focuses on defending against encryption ransomware, we exclude the dam-

age caused by non-encryption ransomware because they typically lock a computer system

in a way which is not difficult for a knowledgeable person to reverse. For example, the

ransomware Trojan WinLock trivially restricts access to the computer system and asks

users to pay ransom to receive a code for unlocking their machines. In addition, we assume

that encryption ransomware must be capable of restoring user data because inaccessibil-

ity and non-recoverability after paying ransom can significantly influence the rewards of

ransomware attacks.

In this work, we only consider the situation where data on persistent storage are over-

written or deleted by ransomware. The targets not only include the files created by user-

level applications (e.g., .docx and .zip) but also the metadata files that are required for

file systems (e.g., Master File Table).

As discussed in § 6.2, some ransomware (e.g., cerber) will try to elevate its privileges

to run as administrator. Once the privilege is given, the ransomware can disable or terminate

any kernel-level defense mechanisms. As such, we do not assume the OS is trustworthy.

Rather, we trust the SSD firmware. We believe this is a realistic assumption because (1)
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firmware is located within a storage controller, making it hardware-isolated to ransomware

processes; (2) in comparison with the OS kernel, firmware has a small Trusted Computing

Base (TCB) typically less vulnerable to malware attacks.

Overall, we believe this is a realistic threat model. First, it considers all types of ran-

somware attacks that aim to encrypt user data. Second, this threat model covers the cases

in which the OS kernel is compromised such as WannaCry [165]. With the advance in

ransomware defense, we believe ransomware authors will also actively exploit the vulner-

abilities in the OS kernel. To the best of knowledge, this is the first work that explores

malware defense solutions at the firmware level.

6.4 FlashGuard Design

6.4.1 Approach overview

To demand ransom, ransomware typically overwrites user files with encrypted contents. As

described in § 2.1, SSDs naturally hold the old copies of the data overwritten by upper-level

programs. As such, SSDs can be devised as a recovery system that holds data potentially

manipulated by ransomware. Moreover, SSDs have an indirection layer at the firmware

level to manage data. Building a recovery system on top of it, we can naturally isolate

our recovery system from the OS, making it resistant to the attacks typically launched by

malware to evade anti-virus. Taking advantage of the intrinsic characteristics of SSDs, we

can also minimize the code space of our recovery system. As a result, SSDs naturally

reduce the attack surface of our recovery system.

FlashGuard consists of two major components: a Ransomware-aware Flash Translation

Layer (RFTL) and a tool for data recovery. The RFTL is designed for holding data poten-

tially overwritten by encryption ransomware. The recovery tool is for victims to offset the

damage to their files when they are aware of ransomware infection.
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Figure 6.1: The fundamental difference between HDD and SSD for an overwrite operation.
When a logical block x is overwritten, HDD will update the mapped physical block y with
the new data B, while SSD will place the new data B on a free block z and garbage collect
the block y later.

6.4.2 Ransom-Aware FTL

The FTL in modern SSDs maintains four data structures (see 1 2 3 4 in Fig-

ure 6.2) to support out-of-place write and GC functionalities in practice. For each I/O ac-

cess, the address mapping table 1 is checked to translate the logical page address (LPA)

to physical page address (PPA)2. For performance reason, the recently accessed mapping

table entries 1 are stored in a cache (using LRU policy in RFTL) located in a small

and fast SRAM. If a mapping entry is not cached, FTL will check the Global Mapping Di-

rectory (GMD) 2 to locate the corresponding translation page, and place the mapping

entry in the address-mapping cache.

After certain storage operations, some pages in flash blocks may become invalid. To

assist the GC operation, FTL usually uses the Block Validity Table (BVT) 3 to track

the number of the valid pages in each block and to determine whether the block should

be garbage collected or not. Since BVT is indexed in block-level granularity, it is small

and can be fully stored in SRAM. Once a block is selected as the GC candidate, the Page

2The mapping table can be managed in page-level, block-level or hybrid block/page granularity. Flash-
Guard uses fine-granular and fully-associative page-level mapping.We believe it also works for other two
mapping schemes.
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Figure 6.2: Overview of RFTL in FlashGuard. RFTL slightly modifies the existing FTLs
by adding a read tracker table (RTT) to track whether a page has been read. Cooperating
with other tables, RTT helps RFTL track the pages that could be encrypted by ransomware.
LPA: logical page address, PPA: physical page address, VPA: virtual page address, PBA:
physical block address.

Validity Table (PVT) 4 will be accessed to check which pages are valid and should be

moved to a new flash block. The PVT could be a conventional page validity bitmap (PVB)

or a recent optimized version which uses a log-structured merge-tree to reduce the space

requirement of indexing the bitmap for each physical block [188]. In this work, we adopt

the latter optimized design. We will use examples (see § 6.4.3 and § 6.4.4) to illustrate how

these data structures work collaboratively with other components in FlashGuard.

To augment an SSD with the capability of counteracting ransomware attacks, a straight-

forward solution is to keep all the invalid pages in the physical device until ransomware is

detected. This is infeasible for two major reasons. First, an SSD would quickly fill up

with stale data, making the SSD unusable and causing unacceptable resource inefficiency.

Second, the GC operations will be executed much more frequently to compact and collect

free blocks, which affects the storage performance significantly.

Therefore, it is desirable that SSDs only hold the invalid pages having the old versions

of the data manipulated by encrypted ransomware. According to our study (§ 6.2) and

CryptoDrop [173], the size of the data encrypted by ransomware is typically less than a

gigabyte. Holding such a small dataset will have negligible impact on a commodity SSD
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which usually has TBs of storage capacity.

However, it is challenging to track the pages manipulated by encryption ransomware

since the underlying FTL does not have any semantic information of the received storage

commands. To overcome this, we propose the Ransomware-aware FTL to track the invalid

pages that could result from ransomware. RFTL augments the conventional FTLs with

only one additional data structure: the Read Tracker Table (RTT) 5 , which requires

minimal modification to the existing firmware implementation.

We propose RTT based on the insights that ransomware typically read user data from

disk, encrypt it and then overwrite or delete the original copy [172, 173]. Therefore, if a

page has been read and then become invalid later, it could be a victim page encrypted by

ransomware. We use the RTT 5 to track the page that has been read and leverage the

PVT 4 to check whether it is valid or not, they provide us the hints to decide whether

the page should be retained or not.

The RTT organizes entries in the way of the PVT 4 , except that each entry in the

RTT is a read bitmap3 indexed by a block address. With the same optimization used in

PVT, RTT enables RFTL to access and update the bitmap in an efficient manner. We use

a buffer (4 KB in RFTL) to cache the frequently accessed RTT entries, which introduces

only a small storage overhead in SRAM.

6.4.3 Read and Write Operations in RFTL

In this section, we describe how RFTL performs I/O requests in cooperation with the data

structures discussed in § 6.4.2.

Read operation: When a read request to page X is received, RFTL first looks up the LPA in

the cached address mapping table 1 . If it is a cache miss, it searches the corresponding

translation page in the GMD 2 to locate the mapping entry for X in the translation

page. During this process, the RFTL also places the mapping entry in the LRU cache for

3In FlashGuard, we use a bitmap carries 64 bits because each block contains 64 pages.
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the address mapping 1 . If it is a cache hit when accessing the cached address mapping

table 1 , the read operation will be issued directly. After locating the PPA of page X for

serving the read operation, the RFTL updates the read bitmap in RTT 5 and sets the

corresponding bit to 1 to indicate that the corresponding physical page has been read.

Write operation: When receiving a write request, RFTL performs the same address lookup

procedure as for read in the cached address mapping table 1 . If the mapping entry ex-

ists in the LRU cache, the data is written to a new free page, the address mapping entry

is updated with the new PPA. Otherwise, a new mapping entry is created. The updated

or newly created mapping entries are propagated to the translation pages and GMD 2

when they are evicted from the cached address mapping table 1 .

To enable the reverse mapping from the physical page in SSDs to logical page in file

systems for data recovery, RFTL stores the metadata information of a page in its out-of-

band (OOB) metadata. The commodity SSDs typically reserve 16-64 bytes OOB metadata

for each physical page. FlashGuard leverages this space to store the metadata information

about a page as shown in Figure 6.3.

The OOB metadata includes (1) the LPA mapped to this physical page, (2) the previous

PPA (P-PPA) mapped to the current LPA (it is used when a page is overwritten and it en-

ables FlashGuard to identify all the old pages mapped to the same LPA), (3) the timestamp

when the page is written, and (4) a Retained Invalid Page (RIP) bit to indicate whether

this page is invalid and also potentially manipulated by encryption ransomware. We will

discuss how these metadata can be leveraged for data recovery in § 6.4.5.

6.4.4 Garbage Collection in RFTL

Garbage collection is an essential component in SSDs to provide free blocks for future use

by compacting the used flash blocks and also guarantee all the flash blocks age uniformly

to extend SSD lifetime. It also plays a critical role in preserving the old copies (invalid

pages) of the data manipulated by ransomware. When GC executes, it first selects the
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Figure 6.3: The out-of-band (OOB) metadata in each physical page. It includes the LPA
mapped to this physical page, the previous physical page address (P-PPA) mapped to the
current LPA, the timestamp when the page is written, the retained invalid page (RIP) bit
indicating whether this page should be retained if it becomes invalid.

candidate blocks, move the valid pages in those blocks to new free blocks and then erases

these candidate blocks for future use.

Key idea: To make an SSD capable of holding data for recovery, we propose a new GC

scheme in RFTL. In particular, RFTL examines whether an invalid page in a GC candidate

block has been read. The GC will retain those pages. The invalid pages that have never

been read will be discarded/erased. The intuition behind this is that ransomware needs to

read data from an SSD before performing encryption, the pages that have never been read

cannot be a piece of damaged data caused by ransomware.

We describe the new GC scheme in Algorithm 1 and discuss its procedure as follows.

GC procedure: When the number of free blocks in an SSD is below a threshold (10% -

40% of all the flash blocks in commodity SSDs), GC will be triggered to free space. The

existing GC typically employs a greedy algorithm for selecting the GC candidate blocks.

More specifically, it chooses the block with the least number of valid pages. This selection

procedure can be quickly completed by looking up the BVT 3 that tracks the number

of valid pages for each block.

Different from the current block selection scheme for GC candidate, RFTL takes those

retained invalid pages (RIP has set to be Reserved in Algorithm 1) as valid pages. There-

fore, the GC in RFTL selects the block with the least number of both valid pages and

retained invalid pages. Such a GC scheme implies that a block with multiple invalid pages
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retained for recovery may delay its collection (see Figure 6.4), which could reduce the

additional GC overhead caused by copying retained invalid pages to new free blocks.

Algorithm 1 Garbage Collection in RFTL
Require: ReserveT ime = the time threshold for retaining invalid pages

Reserved = the bit flag indicating a page is invalid but retained

1: Select the candidate block for GC .
the candidate block has the least number of valid pages and retained invalid pages.

2: Check PVT to find valid pages in candidate block
3: for each valid page do
4: Check page’s OOB metadata
5: Verify page’s validity
6: if page is valid then
7: Copy page to a new free page
8: Update address mapping entry
9: for each invalid page do

10: Check read tracker table (RTT)
11: if page has been read then
12: Check page’s RIP bit
13: if RIP == Reserved then
14: page timestamp← timestamp in page’s OOB metadata
15: if current time - page timestamp < ReserveTime then
16: Clear this page’s read bit in the bitmap of RTT
17: Copy page and its OOB metadata to a new free page
18: Set the new page’s read bit in RTT to 1 (Read)
19: else
20: Discard and reclaim this page
21: Clear this page’s read bit in the bitmaps of RTT
22: else
23: Set metadata (timestamp←current time, RIP←Reserved)
24: Clear this page’s read bit in the bitmaps of RTT
25: Copy page and its OOB metadata to a new free page
26: Set the new page’s read bit in RTT to 1 (Read)
27: else
28: Discard and reclaim this page

Once a candidate flash block is selected, RFTL checks the PVT 4 and searches the

valid pages in that block. Since lazy policies are usually adopted to update the PVT, the

information in PVT might be outdated. To address this issue, RFTL double checks each

valid page indicated by PVT by looking at its OOB metadata. It retrieves the LPA from

the OOB metadata and looks up the corresponding PPA through the address mapping table
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Figure 6.4: An example of candidate block selection in state-of-the-art GC vs. RFTL’s GC.
Traditionally, block C is selected, as the number of the valid pages is the least. In RFTL,
block A is selected, since RFTL counts the retained invalid pages (RIP) as valid pages.

1 . If the PPA retrieved is the same as the PPA of the page, RFTL deems it valid.

Given a candidate flash block, RFTL migrates its valid pages and retained invalid pages

to new free blocks. For those valid pages, their corresponding mapping entries in 1 are

updated and pointed to the new PPAs. The retained invalid pages will be kept in the flash

device for a certain time (a configurable threshold, 20 days in FlashGuard by default).

RFTL uses the timestamp stored in the page’s OOB metadata to calculate how long this

page has been retained. Once the interval between the timestamp in the OOB metadata

and the current time is larger than the configured threshold, the page will be erased and

reclaimed. Otherwise, both the page and its OOB metadata are copied to a free page, so

that RFTL will keep retaining this invalid page in the SSD until it is expired when it is

selected by GC next time (see line 13-21 in Algorithm 1).

For an invalid page X whose RIP bit is not set and has been read as indicated in RTT

5 , it is treated as a page to be retained and will be copied to a free page Y. RFTL runs

the GC procedure for this type of invalid pages as follows:

First, RFTL prepares the OOB metadata for the new page Y: the RIP bit is set to be

Reserved, the timestamp is set to the current time (so that the content of this page will be

conservatively retained for a certain period of time), the LPA and P-PPA are kept the same
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as in page X’s OOB metadata. Second, RFTL copies the page X and its OOB metadata into

the free page Y in a new free block. Third, page X’s read bit in RTT is cleared and page Y’s

read bit in RTT is set to 1 (indicating the content of this page has been read). Finally, page

X is garbage collected (see line 23-26 in Algorithm 1). After this procedure, RFTL moves

the retained invalid page to a new location and keeps holding it in the flash device.

For an invalid page which has never been read, RFTL will discard and garbage collect

it (see line 28 in Algorithm 1), which is handled in the same way as in traditional SSDs.

Impact on SSD performance: The GC scheme in RFTL keeps the basic and essential

procedures in the state-of-the-art FTLs, including candidate block selection and valid page

movement. In our design, the overhead is introduced by copying retained invalid pages.

The RFTL takes retained invalid pages as valid pages and the GC on the blocks carrying

these pages will be delayed (see Figure 6.4). Meantime, RFTL also needs to ensure all

the blocks age at the same rate (i.e., wear leveling) to extend the lifetime of the SSD. The

blocks that have retained invalid pages, would still be selected as candidate blocks for GC,

thus additional overhead would be introduced.

However, these blocks will not be frequently garbage collected because of the throt-

tling and swapping mechanisms in the existing GC design: cold data (i.e., not frequently

accessed data) is migrated to old blocks (i.e., blocks that experience more wear). The

blocks which have many retained invalid pages will be accessed less frequently, and the

chance that they will be collected shortly is small. In addition, if all the pages in a GC

candidate block are invalid and will be retained, RFTL does not garbage collect them.

Impact on SSD lifetime: The SSD lifetime is determined by the wear-leveling and write

traffic to the device. The GC in existing FTLs uses a greedy policy for candidate block

selection, which always selects the block having the least number of valid pages. Such a GC

policy provides maximal GC efficiency (i.e., the least number of page migrations), and the

throttling and swapping mechanisms are used to balance the wear between blocks. RFTL

employs these techniques. Moreover, recent research [189, 10] on SSDs discloses that a
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Figure 6.5: FlashGuard restores all the overwritten pages by travelling back to their previ-
ous versions with the previous physical page address stored in each page’s OOB metadata.

relaxed wear-leveling can provide guaranteed SSD lifetime. Experiments with a variety of

real-world workloads demonstrate that RFTL has minimal impact on SSD lifetime in § 6.6.

6.4.5 Data Recovery

To restore the invalid pages retained in an SSD when victims are aware of the ransomware

infection, users can remove the SSD device and plug it into another clean and isolated

computer for data recovery in case ransomware would attack the data recovery procedure.

FlashGuard first checks the RTT 5 to locate all the pages that have been read recently.

These pages are the candidate pages that may contain the user’s stale data. As the RTT

is cached in firmware RAM, this checking procedure is fast. To read the retained invalid

page, FlashGuard checks the RIP bit in OOB metadata of each candidate page. If the RIP

bit flag is set, the page is read from flash. Otherwise, RFTL will check the address mapping

table 1 to figure out whether this page is valid or not. If it is invalid, the page is read

from flash as well, since it is possible that this page is also a victim page.

FlashGuard accelerates the procedure of reading invalid pages retained from a flash

drive by leveraging the internal parallelism in an SSD. Parallelizing the read of pages from

the flash drive, the recovery will not take too much time (see the evaluation in § 6.6).

Once these invalid pages retained are read from a flash drive, the LPAs, P-PPAs, and

timestamps stored in these pages’ OOB metadata will be used to reconstruct the user files.

FlashGuard can use the previous physical page address (P-PPA) stored in each page’s OOB

metadata to reverse an invalid page to its previous versions as shown in Figure 6.5. In order
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to maintain data locality for performance reasons, modern file systems usually manage

the logical address space in a contiguous manner, and also flash controllers buffer storage

operations to exploit temporal and spatial locality [190]. With these insights, the recovery

tool in FlashGuard sorts the retained invalid pages with their LBAs and timestamps to

reconstruct the original file. As a page could have been overwritten several times by either

ransomware or trusted users, the recovery tool can reverse it to any older versions and allow

users to verify the content.

Since FlashGuard retains all the versions of the invalid pages in flash device, many

other existing data recovery tools can also be leveraged to reconstruct user files (if there is

no information available for data locality). For example, some recovery tools can read the

first few bytes in each page to figure out the file type (e.g., .ppt or .doc file), and then

use the defined layout for the file type to recover the data [191].

6.4.6 Metadata Recovery

As all the data structures (see Figure 6.2) are cached in firmware RAM, the cached data

could be lost if a power failure happens. FlashGuard maintains their durability by lever-

aging the metadata recovery and check-pointing techniques that have been adopted in the

state-of-the-art FTLs [188, 9]. RFTL identifies the recently written flash block by checking

its OOB metadata (which includes timestamp as shown in Figure 6.3) and use the meta-

data information to recover the cached entries such as the address mapping table 1 .

For the data structure RTT 5 that tracks the recent reads, RFTL recovers it to the latest

checkpointed states. For the blocks that have been written after the checkpoint, RFTL iden-

tifies their older versions (with P-PPA in OOB metadata) and conservatively marks them as

‘read’ in RTT.

An alternative solution is to use a battery or large capacitor to preserve the cached

entries and persist them before power turns off, which simplifies the metadata recovery

procedure significantly. We wish to take this solution as the future work.
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6.5 FlashGuard Implementation

We implement FlashGuard on a 1TB programmable SSD with a state-of-the-art page-level

FTL. Each block in the SSD has 64 pages and each page is 4 KB with 16 bytes of OOB

metdata. The programmable SSD provides basic I/O control commands to issue read, write

and erase operations against the physical flash device. The RFTL for FlashGuard is imple-

mented based on the page-level FTL. FlashGuard is implemented with 5,718 lines of C

code on top of the flash device. The SSD is over-provisioned with 15% of its full capacity

by default, and the garbage collection is running in the background.

We also implement a recovery tool that can read all the retained invalid pages from the

flash device and organize them in the manner as discussed in 6.4.5. The recovered data

will be written back to SSD after having verified by users.

6.6 Results and Analysis

6.6.1 Experimental Setup

To evaluate the capability of FlashGuard to recover data encrypted by ransomware, we use

the 1,477 ransomware samples from 13 families as shown in Table 6.1. These samples are

executed with the same experimental setup as described in § 6.2.1. Once a ransom screen

appears, we start to run the recovery tool to recover encrypted data.

To evaluate the impact of FlashGuard on storage performance and SSD lifetime, we re-

ply five sets of I/O traces collected from a variety of real-world applications (see Table 6.3):

(1) the storage traces collected from enterprise servers running different applications (e.g.,

media server, research project management systems, and print server) in Microsoft Re-

search at Cambridge for one week [192]; (2) the storage traces collected from machines

running in a department at FIU for twenty days [193]; (3) the database workload traces

of running TPC-C benchmark and TPC-E benchmark for eight days [107]; (4) the storage

traces of running IOZone benchmark [194] for ten days; (5) the storage traces of running
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Table 6.3: A variety of real-world application workloads used for evaluating FlashGuard.
R: Read, W: Write.

Workload Description IO Pattern
FI

U
IO

Tr
ac

e online-course
course management system of a depart-
ment using Moodle

R:22.3%, W:77.7%

webmail web interface to the mail server R:18.0%, W:82.0%

home
research group activities: developing, test-
ing, experiments, etc.

R:0.9%, W:99.1%

mailserver department mail server traces R:8.6%, W:91.4%

web-research
research projects management using
Apache web server

R:0.001%, W:99.999%

web-users
web server hosting faculty, staff and grad-
uate student web sites

R:10.0%, W:90.0%

M
ic

ro
so

ft
Se

rv
er

s

hm hardware monitoring R:35.5%, W:64.5%
mds media server R:11.9%, W:88.1%
prn print server R:10.8%, W:89.2%
proj project directories R:12.5%, W:87.5%
prxy firewall/web proxy R:3.1%, W:96.9%
rsrch research projects R:9.3%, W:90.7%
src source control R:56.4%, W:43.6%
stg web staging R:15.2%, W:84.8%
ts terminal server R:17.6%, W:82.4%

usr user home directories R:40.4%, W:59.6%
wdev test web server R:20.1%, W:79.9%
web web/SQL server R:29.9%, W:70.1%

O
th

er
s postmark mail servers R:83.2%, W:16.8%

IOZone filesystem benchmark R:0.0%, W:100.0%
TPC-C online transaction processing R:75.1%, W:24.9%
TPC-E OLTP of a brokerage firm R:91.8%, W:8.2%

the Postmark benchmark [195] for ten days. For each experiment, we first run 50 million

mixed read and write operations to warm up the system and then replay each trace to collect

the performance results.

6.6.2 Efficiency on Data Recovery

FlashGuard performs the procedure of data recovery following the approaches discussed in

§ 6.4.5. Once the recovery procedure is finished, we manually verify the pages that have

been read from the flash device. All the old versions of the encrypted data can be found in

the flash pages recovered by FlashGuard. Figure 6.6 displays the average size of the data
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Figure 6.6: The total size of the data encrypted by each ransomware family.
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Figure 6.7: The time of restoring the data that have been encrypted by ransomware.
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Figure 6.8: The average latency of running real-world workloads with FlashGuard vs. Un-
modified SSD. The time of holding retained invalid pages in FlashGuard ranges from 2
days to 20 days. FlashGuard’s average latency is almost the same as that of the unmodified
SSD for a variety of workloads.

recovered from infection by different families, which ranges from 0.2 GB to 4.1 GB.

The execution time of restoring the encrypted data ranges from 4.2 seconds to 49.6

seconds as shown in Figure 6.7. FlashGuard leverages the internal parallelism in flash
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Figure 6.9: The average throughput of running real-world workloads with FlashGuard vs.
Unmodified SSD. FlashGuard has negligible impact on the I/O throughput for most of these
workloads.

device to access the retained invalid pages in parallels. It is noted that the recovery time

is not proportional to the victim data size, as the retained invalid pages are not evenly

distributed across the parallel elements (i.e., chip-level packages) in flash device. However,

the current recovery approach used in FlashGuard is much faster than the naive approach

that scans the whole flash device (which takes 707.7 seconds).

Most of the ransomware samples do not read and overwrite user data many times, it

takes little time for FlashGuard to reconstruct the original files. Although encryption ran-

somware would attack user data with the knowledge of SSD properties, for instance, a

ransomware can keep reading and overwriting user data to an SSD, FlashGuard can still

restore the encrypted data since it retains all their older versions.

6.6.3 Impact on Storage Performance

To understand the impact of FlashGuard on storage performance, we begin with the de-

fault over-provisioning (15% of the SSD’s full capacity) and run the acknowledged storage

traces collected from real-world applications (see Table 6.3). We assume all the writes are

encrypted, which means all the invalid pages that have been read will be retained in SSD.

The time of holding these invalid pages ranges from 2 days to 20 days, the storage latency

and throughput are reported in Figure 6.8 and Figure 6.9.
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Table 6.4: The additional page movements (%) for retaining invalid pages in FlashGuard
over the time period from 2 to 20 days. For the workloads that do not incur additional page
movements, they are not shown in the table.

Enterprise Storage Other Workloads

da
ys

hm us
r

w
eb

Po
st

m
ar

k

T
PC

C

T
PC

E

2 0.0 0.0 0.1 8.5 8.1 5.3
4 0.0 0.1 0.1 9.1 8.3 5.5
8 0.5 0.1 0.4 9.7 8.8 5.7
16 0.5 0.3 0.6 9.7 8.8 5.7
20 0.5 0.3 0.8 9.7 8.8 5.7

For most of the workloads, the average latency of running them on FlashGuard is al-

most the same as that of running them on the unmodified SSD as shown in Figure 6.8. For

I/O-intensive workloads including Postmark, TPCC, and TPCE, FlashGuard increases the

average latency by up to 6.1%. As the time of holding retained invalid pages is increased,

the average latency is slightly increased. In terms of I/O throughput, FlashGuard has trivial

impact (up to 0.6%) as shown in Figure 6.9. FlashGuard does not introduce much perfor-

mance overhead for three reasons:

First, the RFTL in FlashGuard delays the GC execution on the flash blocks having re-

tained invalid pages by counting them as valid pages, which reduces the chances of moving

retained invalid pages. Second, the GC is executed in the background, which allows FTLs

schedule GC during the idle time of flash controller, further reducing the performance

interference caused by GC. Third, the existing I/O schedulers and FTLs provide decent

GC efficiency (i.e., the valid page movements during GC procedure) for many workloads.

When all the pages on a flash block are invalid, the flash block will be erased without in-

curring any page movement. In FlashGuard, no additional page movement is required for

a flash block whose pages are all retained invalid pages.

To further understand the performance overhead of FlashGuard, we profile the GC

events and collect statistics on the number of additional page movements. As shown in

Table 6.4, all the FIU workloads incur no additional page movements, although the time
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Figure 6.10: The normalized write amplification factor (WAF) of FlashGuard compared to
Unmodified SSD (lower is better).

of holding the retained invalid pages is set to be 20 days. For the workloads running in

enterprise servers, up to 0.8% of the page movements are contributed by retaining invalid

pages. For these I/O intensive workloads such as Postmark, TPCC and TPCE, more page

movements are introduced. Since the IOZone traces are write-only, no pages are required

to be retained in FlashGuard.

6.6.4 Impact on SSD Lifetime

As flash block has limited endurance, it is necessary to ensure FlashGuard offers acceptable

SSD lifetime. We use the write amplification factor (WAF) [196] to evaluate the actual

amount of physical write traffic to that of logical write traffic. Larger WAF means that SSD

suffers from more write traffic, indicating that the SSD would last for a shorter time.

As shown in Figure 6.10, For the storage workloads running in enterprise and uni-

versity, the WAF of FlashGuard is the same as that of unmodified SSD. For IO-intensive

workloads, the WAF is increased by up to 4%, this is because FlashGuard incurs additional

page movements for retaining invalid pages. As the time of holding the retaining invalid

pages in the flash device is increased, the WAF is slightly increased. However, this is less of

a concern. For an SSD that usually has a lifetime of 160 - 250 weeks, the slightly increased

WAF reduces its lifetime by only one or two weeks, which is acceptable in practice.
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6.7 Security Analysis and Discussion

According to our study in § 6.2, few encryption ransomware was developed considering

the SSD characteristics. In this section, we discuss the possible ransomware attacks against

FlashGuard and potential research directions in the future.

6.7.1 Exploiting storage capacity

To support data recovery, FlashGuard holds the data potentially encrypted by ransomware

and prevents them from being discarded by garbage collection. Intuition suggests an at-

tacker can exploit storage capacity and keep writing to occupy the available space in SSD,

forcing FlashGuard to release its hold. Another potential attack is that a ransomware keeps

reading and overwriting data to the SSD in order to cause FlashGuard to retain a large

amount of garbage data. In practice, such attacks are in vain. FlashGuard refuses to release

data hold if the lifespan of the holding data has not yet expired, even though the SSD is

fully occupied. When such an incident happens, FlashGuard will stop issuing IO requests

when the SSD is full, resulting in the failure of filesystem operations in OS. Therefore,

even though ransomware has the kernel privilege, it cannot prevent a user from noticing

abnormal events.

6.7.2 Timing attacks

Time is critical for both security and performance of FlashGuard. The longer FlashGuard

holds stale data, the more overhead it might impose on I/O operations. To obtain high

storage performance, a user might set the lifespan of holding data relatively short. In this

way, the user is exposed to the threat of ransomware attacks in that ransomware could slow

down the pace of encrypting data and notifying victims.

As discussed in § 6.2, ransomware variants have been evolving to lock up user data and

collect ransom rapidly to prevent from being caught. In § 6.6, we have already demon-
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strated that FlashGuard typically incurs only negligible overhead to regular I/O operations,

even though we set the lifespan of holding data for 20 days. This implies FlashGuard is

effective in defending against the aforementioned ransomware attacks. This is because it

not only significantly increases the risk of ransomware of being caught but also thwarts

ransomware authors from gaining rewards rapidly. In the future, we wish to explore new

detection and defense mechanisms against timing attacks.

6.7.3 Secure deletion

FlashGuard retains overwritten contents for the sake of recovery. Intuitively, this design

contradicts to the objective of secure deletion [11, 197, 198, 199, 200], which requires

irrecoverable data deletion from a physical medium. However, we believe FlashGuard is

compatible with secure deletion. In particular, FlashGuard can use a user-specified encryp-

tion key to encrypt the stale data potentially overwritten by ransomware. In this way, a user

can still perform data recovery but not worrying about data leakage because adversaries

cannot restore “securely deleted data” without the encryption key. As future work, we will

develop this solution, making FlashGuard compatible with secure deletion.

6.8 Summary

In this chapter, we present FlashGuard, a ransomware-tolerant SSD that retains the data

potentially encrypted by ransomware in SSD. With FlashGuard, we demonstrate that vic-

tims can efficiently reinstate the damage to their files caused by encryption ransomware.

The design of FlashGuard takes advantage of the intrinsic flash properties. We show Flash-

Guard only introduces negligible overhead to regular storage operations and has a trivial

impact on SSD lifetime. In comparison with existing detection mechanisms against ran-

somware, FlashGuard is the first firmware-level defense system, it is naturally resistant to

the ransomware that exploits kernel vulnerabilities or runs with the kernel privilege.

102



CHAPTER 7

CONCLUSIONS AND FUTURE WORK

7.1 Conclusions

Flash memories have been developed to bridge the gap between DRAM and hard disk drive.

However, the system software which performs as the abstraction layer between hardware

and applications has not adapted rapidly to the hardware evolution. Such a gap not only

hinders the exploitation of the power and flexibility of hardware devices but also causes

resource inefficiency and sub-optimal performance. This dissertation revisits the storage

system design for flash memory with a holistic approach from the system level to the device

level and proposes new solutions to improve the performance isolation, software latency,

energy-efficiency, and system security of the flash-based storage systems respectively.

Chapter 3 investigates the problem of performance isolation between multiple tenants

sharing the SSD in modern data centers and identifies that there is a fundamental tussle

between resource isolation and the lifetime of the flash device – existing SSDs aim to

uniformly age all the regions of flash and this hurts isolation. To improve performance

isolation, we propose utilizing flash parallelism to provide hardware isolation between ap-

plications by running them on dedicated flash chips. Moreover, we propose allowing the

wear of different flash chips to diverge at fine time granularities in favor of isolation and

adjusting the wear imbalance at a coarse time granularity in a principled manner. The ex-

perimental results show that the new SSD wears uniformly while the tail latency of storage

operations is decreased significantly.

Chapter 4 further discusses improving the storage performance with the new ways of

using SSDs. It presents a solution that combines all the indirection layers of the virtual

memory system, file system, and the flash translation layer into a unified layer while pre-

103



serving the properties of each layer. Specifically, it combines all the address translation

into page tables in virtual memory system without altering the guarantees of the file sys-

tems and the flash translation layer. It uses the state in the memory manager and the page

tables to perform sanity and permission checks. Such a unified address translation layer

reduces critical-path latency and improves DRAM caching efficiency.

Chapter 5 focuses on improving the energy-efficiency of the flash-based storage system

on resource-constrained devices such as wearables. It proposes a fast and energy-efficient

in-memory storage system based on battery-backed DRAM and an efficient means to of-

fload energy-intensive tasks to the connected phone. This dissertation uses the battery-

backed DRAM as non-volatile memory to avoid energy-intensive storage operations and

leverages the low-power network connectivity available on wearables to trade the resources

on the phone for the wearable.

Chapter 6 targets the security aspect of the modern storage systems with a focus on the

defense against encryption ransomware. This dissertation presents a ransomware-tolerant

SSD which has a firmware-level recovery system that allows quick and effective recovery

from encryption ransomware. It leverages the intrinsic flash properties to present a malware

defense solution at the firmware level. Based on the observation that the existing SSD

already performs out-of-place write in order to mitigate the long erase latency of flash

memories, therefore, when a page is updated or deleted, the older copy of that page is

anyways preserved in the SSD. The proposed solution requires minimal modification to the

firmware implementation.

7.2 Future Work

7.2.1 Achieving Predictable Storage Performance

FlashBlox has demonstrated that leveraging the flash parallelism to provide hardware iso-

lation can significantly reduce the tail latency for multi-tenant applications. As the under-

lying hardware components and their management are exposed to upper system software
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and applications, all the storage events such as IO scheduling and garbage collection can

be handled in a transparent manner. Therefore, it is feasible to achieve highly predictable

storage performance in flash-based storage systems. Furthermore, FlashBlox discusses the

scenario that multiple applications share the same SSD on a single machine. It can be ex-

tended and integrated with multi-resource data center schedulers to help applications obtain

predictable end-to-end performance.

7.2.2 Unifying Management for Memory and Storage

We are at the cusp of memory and storage technology revolution; increasing diversity of

memory and storage devices is becoming evident which brings challenges to the memory

and storage management. FlashMap took Flash as an example and has shown the benefits of

unifying the memory and storage software. The OS memory manager transparently man-

ages data placement between flash and DRAM by discerning access pattern information

from the virtual memory system. We envision future hardware and software systems that

can enable intelligent data placement across heterogeneous memory technologies. Similar

to the approach discussed in FlashMap, page tables can be leveraged for moving physi-

cal pages around memory technologies for two benefits: the application’s view via virtual

memory is not changed and more importantly, expensive hardware-level mapping tables

are not needed.

7.2.3 Improving Storage Security on Various Platforms

FlashGuard leverages the intrinsic properties of Flash to protect against encryption ran-

somware. This approach can be applied to any kind of flash-based storage devices to pro-

tect different computing platforms against encryption ransomware. A typical example is

the mobile device which has used Flash to store personal user data for decades. As the

flash devices used on mobiles (e.g., eMMC) share the same intrinsic properties as that on

personal computers and enterprise servers (e.g., SSDs) [8, 40, 201], our approach can be
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deployed on the mobile platform to enhance its storage system and protect users against the

ever-increasing threat of mobile ransomware such as Simplocker [202, 203, 204, 205].

FlashGuard retains overwritten contents for the sake of recovery. Intuitively, this design

contradicts with the objective of secure deletion [11, 197, 198, 199, 200], which requires

irrecoverable data deletion from a physical medium. However, we believe FlashGuard is

compatible with secure deletion. In particular, FlashGuard can use a user-specified encryp-

tion key to encrypt the stale data potentially overwritten by ransomware. In this way, a user

can still perform data recovery but not worrying about data leakage because adversaries

cannot restore “securely deleted data” without the encryption key. As future work, we wish

to develop this solution, making FlashGuard compatible with secure deletion.
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