Towards Endurable, Reliable and Secure Flash Memories-a Coding Theory Application

Abstract

Storage systems are experiencing a historical paradigm shift from hard disk to nonvolatile memories due to its advantages such as higher density, smaller size and non-volatility. On the other hand, Solid Storage Disk (SSD) also poses critical challenges to application and system designers. The first challenge is called endurance. Endurance means flash memory can only experience a limited number of program/erase cycles, and after that the cell quality degradation can no longer be accommodated by the memory system fault tolerance capacity. The second challenge is called reliability, which means flash cells are sensitive to various noise and disturbs, i.e., data may change unintentionally after experiencing noise/disturbs. The third challenge is called security, which means it is impossible or costly to delete files from flash memory securely without leaking information to possible eavesdroppers. In this dissertation, we first study noise modeling and capacity analysis for NAND flash memories (which is the most popular flash memory in market), which gains us some insight on how flash memories are working and their unique noise. Second, based on the characteristics of content-replication codewords in flash memories, we propose a joint decoder to enhance the flash memory reliability. Third, we explore data representation schemes in flash memories and optimal rewriting code constructions in order to solve the endurance problem. Fourth, in order to make our rewriting code more practical, we study noisy write-efficient memories and Write-Once Memory (WOM) codes against inter-cell interference in NAND memories. Finally, motivated by the secure deletion problem in flash memories, we study coding schemes to solve both the endurance and the security issues in flash memories. This work presents a series of information theory and coding theory research studies on the aforesaid three critical issues, and shows that how coding theory can be utilized to address these challenges

    Similar works