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ABSTRACT

Storage systems are experiencing a historical paradigm shift from hard disk to non-

volatile memories due to its advantages such as higher density, smaller size and non-

volatility. On the other hand, Solid Storage Disk (SSD) also poses critical challenges

to application and system designers. The first challenge is called endurance. Endurance

means flash memory can only experience a limited number of program/erase cycles, and

after that the cell quality degradation can no longer be accommodated by the memory sys-

tem fault tolerance capacity. The second challenge is called reliability, which means flash

cells are sensitive to various noise and disturbs, i.e., data may change unintentionally after

experiencing noise/disturbs. The third challenge is called security, which means it is im-

possible or costly to delete files from flash memory securely without leaking information

to possible eavesdroppers.

In this dissertation, we first study noise modeling and capacity analysis for NAND

flash memories (which is the most popular flash memory in market), which gains us some

insight on how flash memories are working and their unique noise. Second, based on

the characteristics of content-replication codewords in flash memories, we propose a joint

decoder to enhance the flash memory reliability. Third, we explore data representation

schemes in flash memories and optimal rewriting code constructions in order to solve the

endurance problem. Fourth, in order to make our rewriting code more practical, we study

noisy write-efficient memories and Write-Once Memory (WOM) codes against inter-cell

interference in NAND memories. Finally, motivated by the secure deletion problem in

flash memories, we study coding schemes to solve both the endurance and the security

issues in flash memories. This work presents a series of information theory and coding

theory research studies on the aforesaid three critical issues, and shows that how coding
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theory can be utilized to address these challenges.
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1. INTRODUCTION

Non-volatile memories are becoming ubiquitous due to their advantages such as higher

density, scaling size and non-volatility, etc. However, challenges also exist, among which

the most serious ones are the endurance, the reliability and the security. In this dissertation

we present a series of information theory and coding theory studies on those challenges.

1.1 Opportunities and Challenges

The unit of flash memory is a cell. Data is represented by the number of charge in a cell.

A flash chip is composed of blocks, each block consists of pages, and each page consists

of cells. There are three basic operations on flash memory cells: program/write, read and

erase. The granularity of read/program and erasure is a page and a block, respectively.

The writes on flash memory are made in out-of-place fas hion, i.e., instead of modi-

fying existing data, the previous data is marked as invalid and the new data is written in

another block.

There are three main challenges in flash memories:

• Endurance. Endurance means flash memory can only experience a limited number

of program/erase cycles, beyond which the cell quality degradation can no longer be

accommodated by the memory system fault tolerance capacity.

• Reliability. Reliability means flash cells are sensitive to various noise and disturbs,

i.e., data may change unintentionally after experiencing noise/disturbs.

• Security. Security means it is impossible or costly to delete files from flash memory

securely without leaking information to possible eavesdroppers.

Those problem are serious especially when flash memories are scaling down, and become

even worse with the era of three-dimention flash memories. On the other hand, those
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problems are hard to solve by traditional methods due to the dramatic differences between

flash memories and traditional storage media. This research not only provides a feasible

solution to flash memory challenges but also shows how it expands the coding theory

scope.

In this dissertation we present a series of research studies on the aforesaid three critical

issues to address these challenges. Our research work makes the following contributions.

1.2 Research Contributions

1.2.1 Noise modeling and capacity analysis for NAND flash memories

In order to solve the reliability challenge in flash memories, we first have to understand

various types of error mechanisms in flash memories, which have drastically different

characteristics from traditional communication channels. Understanding the error models

is necessary for developing better coding schemes in the complex practical setting. This

work endeavors to survey the noise and disturbs in NAND flash memories, and construct

channel models for them. The capacity of flash memory under these channel models is

analyzed, particularly regarding capacity degradation with flash operations, the trade-off of

sub-thresholds for soft cell-level information, and the importance of dynamic thresholds.

1.2.2 Joint decoding of content-replication codes for flash memories

In order to solve the reliability challenge in flash memories, we present the content-

replication codeword problem, and it leads to a novel joint decoding scheme proposed.

We focus on the joint decoding algorithm designs and study their theoretical decoding

performances in this work. The proposed scheme is new for storage systems especially for

flash memories, and we show their reliability can be enhanced by increasing the diversity

of error-correcting codes.
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1.2.3 Compressed rank modulation

In order to solve the endurance challenge in flash memories, we present a new data

representation scheme, Compressed Rank Modulation (CRM). CRM stores information in

the multiset permutation induced by the charge levels of cells. The only allowed charge-

placement method is the minimal-push-up aiming to minimize the increase of highest

charge levels. CRM achieves a higher capacity and a longer endurance.

1.2.4 Polar codes are optimal for Write-Efficient Memories

In order to present efficient code constructions for Write-efficient memory (WEM)

to solve the endurance challenge in flash memories, we conduct this research. WEM is

a model for storing and updating information on a rewritable medium with constraints.

CRM is an example of WEM. A optimal and efficient coding scheme for WEM using

polar codes is designed. The coding scheme achieves capacity.

1.2.5 Coding on noisy Write-Efficient Memories

To jointly solve the endurance and the reliability problem, we propose a new coding

model, noisy WEM. We construct an efficient coding scheme for it. Its decoding and

rewriting operations can be done efficiently.

1.2.6 WOM codes against inter-cell interference in NAND memories

This is another work to jointly solve the endurance and the reliability problem, how-

ever, the error type here is specified as inter-cell interference. In this work, we study

Write-Once Memories (WOM) codes against cell-to-cell interference. We derive bounds

of the rewriting capacity of WOM codes based on the new WOM codes, Delta-WOM, and

constrained codes. We also explore efficient WOM code constructions: one construction

is based on our Diamond-WOM codes construction, which can be proven to approach its

known rewriting capacity; the other one is based on constrained codes.
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1.2.7 Coding on secure Write-Efficient Memories

Endurance and security are two serious challenges for non-volatile memories such as

flash memories. Write-Efficient Memory (WEM) is an important rewriting code model

to solve the endurance problem. Aiming at jointly solving the endurance and the secu-

rity issues in non-volatile memories, this work focuses on rewriting code with a security

constraint. To that end, a novel coding model, secure WEM, is proposed. We explore its

rewriting-rate-equivocation region and its secrecy rewriting capacity in this work.

1.2.8 Polar codes for secure Write-Efficient Memories

This work is to present an optimal code construction for secure WEM to solve both the

endurance and the secureity challenges in flash memories. This nested code construction

is based on optimal code constructions for WEM and wiretap channel codes, and the code

construction approaches the secrecy rewriting capacity for a large family of secure WEM.

1.3 Organization of the Dissertation

The rest of this dissertation is organized as follows. In Section 2, we discuss our the-

oretical study on the noise modeling in flash memories and its impact on the capacity.

In Section 3, we present our work to improve the flash memory repliability through joint

decoding of content-replicated codes. In Section 4, we discuss Compressed Rank Modu-

lation. In Section 5, we show that Polar codes can be used to construct an optimal code

construction for Write-Efficient Memories, and Write-Efficient Memories with error cor-

recting ability is discussed in Section 6. In Section 7, we explore Write-Once Memroies

against intra-cell interference. In Section 8, we present Secure Write-Efficient Memories

and its efficient code construction in Section 9. Finally, conclusion is obtained in Sec-

tion 10.
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2. NOISE MODELING AND CAPACITY ANALYSIS FOR NANS FLASH

MEMORIES

2.1 Introduction

Flash memories have become a significant storage technology, mainly due to their

high speed, physical robustness and non-volatility. Various coding techniques have been

developed for them, including codes for error correction [37, 77], rewriting [9, 76], rank

modulation [36], etc. Despite their wide applications, flash memories are far from ideal. In

particular, they have various reliability issues, some of which get more serious with each

new generation of flash memories due to the scaling of flash cell sizes [13]. Flash mem-

ories have quite a few noise or disturb mechanisms, including retention errors, inter-cell

interference, random noise, programming errors, read and write disturbs, and stuck cells

[10, 12]. These mechanisms have quite different characteristics from traditional commu-

nication channels.

It is important to understand the channel models for the noise and disturbs in flash

memories, in order to design better coding schemes in the complex practical setting. How-

ever, information-theoretical work on channel modeling for flash memories has been lim-

ited. This paper is an endeavor to survey the various noise and disturb mechanisms for

NAND flash memories, and build their corresponding channel models. We analyze the

capacity of flash memories under these models, and show how it evolves with read and

write operations. While conventional storage media (e.g., magnetic and optical recording)

typically have noise accumulated over time [54], in flash memories, significant noise ac-

cumulates with flash operations and causes the storage capacity to degrade. We also show

that there is a trade-off for using sub-thresholds for obtaining more soft information on

analog cell-levels due to read disturbs. Furthermore, as the noise in flash cell is highly
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(a) (b)

Figure 2.1: (a) The structure of NAND flash cell. (b) A symbol for NAND flash cell,

where “CG”, “ FG”, “S”, “D” and “P” stand for control gate, floating gate, source, drain

and P-substrate, respectively.

correlated and not symmetric, it is important to use dynamic thresholds to achieve higher

capacity.

The rest of this work is organized as follows. In Section 2.2, we introduce the funda-

mental structures and operations in flash memories. In Section 2.3, we model various types

of noise and disturbs. In Section 2.4, we analyze the special features of storage capacity

in flash memories. In Section 2.5, we present concluding remarks.

2.2 Fundamental Concepts of Flash Memories

In this section, we briefly survey the fundamental concepts on NAND flash memories,

which are necessary for understanding the channel models of noise and disturbs.

2.2.1 Structure and operations of flash memory cell

A flash memory cell is a MOS transistor with a floating-gate layer. Its structure is

illustrated in Figure 2.1 (a). We represent it with the simplified symbol in Figure 2.1 (b).

A flash cell stores data by storing charge in its floating-gate layer. And the mount
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Figure 2.2: A typical distribution of the analog levels of MLC.

of charge affects its threshold voltage, which is a minimum required voltage added to

CG to open the gate. When electrons are stored, the more electrons are trapped in the

floating-gate layer, the higher the threshold voltage is. We call the analog value of a cell’s

threshold voltage its analog level. In practice, a cell’s analog levels are quantized into

discrete values to represent one or more bits. We denote the q discrete levels of a cell

by level 0, 1, · · · , q − 1. When q = 2, 4, 8, the flash memory cells are called SLC

(Single-Level Cell), MLC (Multi-Level Cell) and TLC (Triple-Level Cell), respectively.

We illustrate a typical distribution of the analog levels of MLC in Figure 2.2. A cell’s

discrete level is read by comparing it to several reference levels. For q-level cells, q − 1

reference levels are needed. (The three reference levels for MLC are shown as dotted

vertical lines in Figure 2.2.) If more reference levels are used, more soft information about

the analog levels can be obtained, which can be useful for coding schemes, but at the cost

of longer read delays and more read disturbs.

There are three basic operations on a flash cell: read, write and erase. To read a

cell’s level, a reference voltage is applied to its control gate to see if the gate opens or

not. (When q > 2, multiple such reads with different reference voltages may be needed.)

To write a cell (also called programming, which means to inject charge into a cell), the

7



Figure 2.3: The estimates of voltage biases on S, CG, P and D during flash operations

Fowler-Nordheim (FN) [13] tunneling mechanism is used by applying a high voltage to

the control gate. To erase a cell (which means to remove all stored charge from the cell),

a high negative voltage is applied to the control gate. Some typical configurations of

voltages applied to the four ends of a flash cell are shown in Figure 2.3 for read, write and

erase, respectively.

2.2.2 Structure and operations of flash-cell array

The cells in a flash memory are organized as (often tens of thousands or more) blocks,

where every block is a two dimensional array. We illustrate a block in Figure 2.4. There ev-

ery vertical wire BL is called a bitline, and every horizontal wire WL is called a wordline.

In addition, there are two horizontal wires BSL (Bitline Select Line) and GSL (Grounded

Select Line). Each row of a page is called a page, which is the unit of read and write

operations. A block usually has 32, 64 or more pages, and a page stores thousands of bits.

An erase operation is applied to a whole block, and therefore called block erasure.

More specifically, the read, write and erase operations are performed as follows:

• Read. To read a page of cells, a positive voltage Vread is applied to the page’s

corresponding WL (wordline). For the other pages, a higher voltage Vpass is applied

to their WLs.
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Figure 2.4: Structure of a NAND flash memory block

• Write. To write a page of cells (more specifically, a subset of the cells in the page),

a high voltage Vpgm is applied to its corresponding WL. For the programmed cells

in that page, their corresponding BLs are grounded; for the remaining cells, their

corresponding BLs are set to a positive voltage Vcc. For the remaining pages, which

are not programmed, a positive voltage Vpass is applied to their WLs.

• Erase. To erase a block, all the WLs are grounded, and a high positive voltage is

applied to all the BLs.

We illustrate the typical voltage configurations for read and write in Figure 2.5 (a), (b),

respectively. Please note that the exact voltage numbers may vary from company to com-

pany.
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(a)

(b)

Figure 2.5: (a) A typical voltage configuration for the read operation. Here the i-th page

shown in the figure is being read. (b) A typical voltage configuration for the write oper-

ation. Here the i-th page is being programmed. (In particular, the programmed cells are

shown in circles)
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Table 2.1: Basic notations

Notation Meaning
q Number of discrete levels of a cell
W Number of WLs in a block
Wi The i-th WL in a block
B Number of BLs in a block
Bj The j-th BL in a block
ci,j The cell in the i-th page (corresponding to the i-th WLWi) and

the j-th column (corresponding to the j-th BL Bj)
Vi,j(0) The analog level of cell ci,j right after it is programmed
Vi,j(t) The analog level of cell ci,j after time t has elapsed

since it was programmed
Vi,j A simplified notation of Vi,j(t)
Vi The average analog level of the i-th discrete level

2.3 Channel Modeling for Errors in Flash Memories

In this section, we survey the various noise and disturb mechanisms, and present chan-

nel models for them.

2.3.1 Overview of error models

In this subsection, we briefly overview the errors in flash memories. Their details

will be introduced later. Throughout the paper, a number of notations will be used; for

convenience, we summarize them in Table 2.1.

The various types of noise and disturbs in flash memories include:

1. Inaccurate programming. When cells are programmed, the analog levels they obtain

usually deviate from the target level. Even for cells programmed the same way, their

obtained analog levels are typically different due to cell heterogeneity, the difference

in their original analog levels after the previous erasure operation and other reasons

(e.g., inter-cell interference).

2. Retention error. After cells are programmed, the charge stored in them leaks away
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gradually. When cells experience more program/erase (P/E) cycles, their quality

degrades, and charge leakage becomes more serious.

3. Cell-to-cell interference. There is coupling capacitance between adjacent cells. As

a result, the analog level of a cell depends not only on its own storage charge, but

also the charge in neighboring cells. For a cell ci,j , the more charge its neighbors

have, the higher its analog levels becomes due to the interference. The interference

becomes particularly serious when the neighbors of ci,j are programmed after ci,j

itself because that makes it impossible to program ci,j adaptively.

4. Read disturb. When the i-th page is read, the other pages are unintentionally and

weakly programmed because of the positive voltage Vpass applied to their wordlines,

making their analog levels higher.

5. Program disturb. When a page is programmed, – more specifically, when a subset

of the cells in that page are programmed, – the other cells in that page are unin-

tentionally and weakly programmed because of the voltage difference between their

control gates and P-substrates, making their analog levels higher.

6. Pass disturb. When a page is programmed, the other pages are unintentionally and

weakly programmed because of the positive voltage Vpass applied to their wordlines.

Flash memory cells also have random noise and stuck-at errors. The latter is caused by

the degradation of cell quality, which makes it impossible to change the levels of stuck-at

cells.

In the following, we analyze the errors in more detail, and present information-theoretic

models.
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2.3.2 Inaccurate programming

For cells of q levels, for k = 0, 1, ..., q − 1, when we program a cell to the k-th level

(for k = 0 it is actually the erasure state), let Vk denote the target analog level. For a cell

ci,j programmed to the k-th level, let Vi,j(0) denote its actual programmed analog level.

We call

Zk = Vi,j(0)− Vk, (2.1)

the programming noise. For simplicity, we assume Zk ∼ N (0, σk) has a Gaussian distri-

bution. Similar bell-shape models have appeared in [11, 74].

2.3.3 Retention error

It is reported in [17] that the number of leaked electrons depends on the leaking time

t and the initial number of electrons n(0). The number of electrons at time t, n(t), can be

modeled as n(t) = n(0)e−υt, where υ is a constant parameter. This parameter υ can vary

for cells. So for cell ci,j , we use υi,j to denote its corresponding value of υ.

Note that the number of leaked electrons does not always strictly follow the above

smooth function. Therefore, we use an additive noise Zre to denote the corresponding

noise term. Based on the linear relationship between the analog level and the number of

electrons in the cell’s FG (see [13] for details), we model Vi,j(t) – the analog level of cell

ci,j after time t has elapsed since it was programmed – as

Vi,j(t) = Vi,j(0)e−υi,jt + Zre. (2.2)

For simplicity, we assume Zre ∼ N (0, σre) has a Gaussian distribution.
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Figure 2.6: Illustration of cell-to-cell interference

2.3.4 Cell-to-cell interference

Cell-to-cell interference is a complex issue for flash memories. The analog level we

can read from a cell depends not only on the cell’s own level, but also the levels of its

neighboring cells. This is due to the parasitic capacitance-coupling effect between neigh-

boring cells. For this reason, we differentiate the concept of intrinsic analog level from

the extrinsic analog level of a cell. By intrinsic (respectively, extrinsic) analog level, we

refer to the cell’s analog level when there is no (respectively, there is) interference from

neighboring cells. For cell ci,j , we use V̂i,j to denote its intrinsic analog level, and use Vi,j

to denote its extrinsic analog level.

A model for cell-to-cell interference is proposed in [11], where a cell is interfered by

its eight neighboring cells, as shown in Fig. 2.6. Here Bx, By and Bxy refer to coupling

parameters between neighboring cells in the row direction, the column direction and the

diagonal direction, respectively. We model the effect of cell-to-cell interference as
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Vi,j = V̂i,j +Bx(V̂i,j−1 + V̂i,j+1) +By(V̂i−1,j

+ V̂i+1,j) +Bxy(V̂i−1,j+1 + V̂i−1,j−1

+ V̂i+1,j+1 + V̂i+1,j−1) + Zinter, (2.3)

where the noise Zinter accounts for the possible deviation from the above linear model.

For simplicity, we assume Zinter ∼ N (0, σinter).

For two neighboring cells A and B, if A is programmed before B, when B is pro-

grammed, the interference from A can be compensated by programming because the read-

able level of cell B is already its extrinsic analog level.

2.3.5 Read disturb

When the k-th page is read (for k ∈ {0, 1, · · · ,W − 1}), the other pages are softly

programmed due to the voltage Vpass added on their control gates. For a disturbed cell ci,j

(for i ∈ {0, 1, · · · ,W − 1} − {k} and j ∈ {0, 1, · · · , B − 1}), we denote its analog level

before the read disturb by Vi,j , and denote that after the read disturb by V ′i,j . We model

read disturb as

V ′i,j = Vi,j + γrdi,j + Zrd, (2.4)

where γrdi,j is a parameter that depends on the time interval for the read operation, the

strength of the electrical field between cell ci,j’s control gate and P-substrate, and the cell’s

capacitance; and the noise Zrd accounts for the possible deviation from the above simple

linear model. For simplicity, we assume Zrd ∼ N (0, σrd) has a Gaussian distribution.
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2.3.6 Program disturb

When the i-th page is programmed (for i ∈ {0, 1, · · · ,W−1}), let S ⊆ {0, 1, · · · , B−

1} denote the indices of those programmed cells in that page. The unprogrammed cells

in that page, which have indices in {0, 1, · · · , B − 1} − S , will be softly programmed,

which is called program disturb. For a disturbed cell ci,j (for j ∈ {0, 1, · · · , B − 1} − S),

we denote its analog level before the program disturb by Vi,j , and denote that after the

program disturb by V ′i,j . We model program disturb as

V ′i,j = Vi,j + γprodi,j + Zprod, (2.5)

where γprodi,j has a similar meaning as in function (2.4) (although it may have a different

value due to changed parameters such as the time interval for programming). Here the

noise Zprod accounts for the possible deviation from the above simple linear model. For

simplicity, we assume Zprod ∼ N (0, σprod) has a Gaussian distribution.

2.3.7 Pass disturb

When the k-th page is programmed, the other pages are softly programmed due to the

voltage Vpass added on their control gates. The process is similar to read disturb, and we

model it as

V ′i,j = Vi,j + γpasdi,j + Zpasd, (2.6)

where γpasdi,j has a similar meaning as in function (2.4) (but with possible different values,

as for program disturb). And as before, Zpasd accounts for the additive noise term, and for

simplicity we assume Zpasd ∼ N (0, σpasd).
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2.4 Capacity Analysis for Flash Memories

In this section, we analyze the storage capacity of flash memories. In particular, we

focus on its special features: how the storage capacity degrades with flash operations, the

trade-off between instantaneous capacity and read disturbs when sub-thresholds are used,

and the importance of dynamic thresholds.

2.4.1 Basic model for write and read operations

The storage capacity of flash cells is affected by a number of factors, including the

number of cell levels, the specific implementation of read and write operations, etc. In

this section, we focus on fundamental features of flash channels. So for simplicity, we

consider the following simplistic write/read model for an SLC block of W pages. We first

program the W pages sequentially from W0 to WW−1, and we assume every cell has an

equal likelihood of being programmed to 0 or 1. We then have n − 1 rounds of reading;

in each round, we read the pagesW0,W1, · · · ,WW−1 sequentially. Although the noise in

cells is correlated (e.g., via inter-cell interference), when we compute capacity, we treat

them as having independent noise. (This is, of course, a restrictive model for capacity.)

Furthermore, when we analyze capacity, we assume B (the number of cells in a page)

approaches infinity.

The above simple model for SLC can be extended to MLC and TLC and to more

complex read/write patterns. However, the basic observations derived here still hold for

more general cases.

2.4.2 Capacity degradation with flash operations

In conventional storage media such as hard disk, noise typically accumulates over time.

In flash memories, however, significant noise is accumulated due to flash operations. So

frequent operations will lead to large noise, thus degrade the storage capacity significantly.
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In this subsection, we analyze how the analog-level distribution of cells changes with

more and more write/read operations (under the model introduced earlier), and compute

the corresponding storage capacity. (Note that P/E cycles degrade cells’ quality, which is

another source of capacity degradation, but we do not consider it here.)

We assume that the W writes and (n − 1)W reads in our model happen at time

0, 1, · · · ,W − 1,W,W + 1, · · · , (n − 1)W − 1, respectively. So for the i-th page Wi,

it was programmed at time i and was read at time i+W, i+ 2W, · · · , i+ (n− 1)W . For a

cell ci,j , which is intended to be programmed to Vk ∈ {V0, V1}, let Vi,j(k, t) be the analog

level of ci,j after the t-th operation. We first present the recursive formula for Vi,j(0, t)

below. (For simplicity, we assume 0 < i < W − 1 to avoid boundary cases)

• When t < i, ci,j has not been programmed. It is at discrete level 0, and Vi,j(k, t)

deviates from V0 due to inaccurate programming (of erasure in this case). Thus,

Vi,j(0, t) = V0 + Z0 based on function (2.1).

• When t = i, ci,j does not need to be programmed, but it suffers from program

disturb. Thus, Vi,j(0, t) = Vi,j(0, t− 1) + Zprod based on function (2.5).

• When t = i + 1,Wi+1 is being programmed. ci,j deviates even further from V0 by

cell-to-cell interference from ci+1,j−1, ci+1,j and ci+1,j+1 and pass disturb fromWi+1.

Based on the models of cell-to-cell interference, i.e., function (2.3) and pass disturb,

i.e., function (2.6), Vi,j(0, t) = Vi,j(0, t−1)+ByVi+1,j(k1, t)+Bxy(Vi+1,j−1(k2, t)+

Vi+1,j+1(k3, t)) + Zinter + γpasdi,j + Zpasd, where k1, k2, k3 ∈ {0, 1}.

• When t ∈ [i + 2,W − 1],Wt is being programmed. ci,j is distorted by pass disturb

fromWt. Thus based on the model of pass disturb, i.e., function (2.6), Vi,j(0, t) =

Vi,j(0, t− 1) + γpasdi,j + Zpasd.

• When t = W +mi, where m = 1, 2, · · · , n− 1, ci,j is being read. There is no noise

18



for ci,j; thus Vi,j(0, t) = Vi,j(0, t− 1).

• When t ∈ [W,nW−1]−{W+mi}, where n ∈ N+, n ≥ 2 andm = 1, 2, · · · , n−1,

cells ofWt mod W are being read. ci,j is distorted by read disturb fromWt mod W .

Thus based on the model of read disturb, i.e., function (2.4), Vi,j(0, t) = Vi,j(0, t −

1) + γrdi,j + Zrd.

We conclude the above as follows: Vi,j(0, t) =



V0 + Z0 t < i,

Vi,j(k, t− 1) + Zprod t = i,

Vi,j(k, t− 1) +ByVi+1,j(k1, t)

+Bxy(Vi+1,j−1(k2, t)+

Vi+1,j+1(k3, t)) + Zinter

+γpasdi,j + Zpasd t = i+ 1,

Vi,j(k, t− 1) + γpasdi,j + Zpasd t ∈ [i+ 2,W − 1],

Vi,j(k, t− 1) t = W +mi,

Vi,j(k, t− 1) + γrdi,j + Zrd otherwise.

(2.7)

The formula for Vi,j(1, t) can be obtained similarly with the only difference that Vi,j(1, i) =

V1 +Z1 due to the inaccurate programming. Therefore, we know that Vi,j(1, i) = V1 +Z1

and Vi,j(0, i) = V0 +Z0 +Zprod. Furthermore, Vi,j(k, t) (for t = 0, 1, · · · ) form a Markov

chain.

In order to obtain the probability distribution for Vi,j(k, t), we make the following as-

sumptions for simplicity: for cell-to-cell interference, Bxy is negligible compared to By;

given any i and j, γpasdi,j and γrdi,j are constant over time, so they have no effect on Vi,j(k, t)’s
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probability distribution; Vi,j(k, t) is independent of j, and we write it as Vi(k, t) some-

times. Thus, Vi,j(0, t) ∼ N (V0(1 + By), σi(0, t)) or Vi,j(0, t) ∼ N (V0 + ByV1, σi(0, t))

with equal probability, where σ2
i (0, t) =



σ2
0 t < i,

σ2
i (0, t− 1) + σ2

prod t = i,

σ2
i (0, t− 1) + (Byσi+1(k, t))

2

+σ2
pasd + σ2

inter t = i+ 1, k ∈ {0, 1},

σ2
i (0, t− 1) + σ2

pasd t ∈ [i+ 2,W − 1],

σ2
i (0, t− 1) t = W +mi,

σ2
i (0, t− 1) + σ2

rd otherwise.

(2.8)

(a) (b)

Figure 2.7: (a) SLC with one reference level; (b) SLC with three reference levels (i.e.,

three sub-thresholds).

Suppose the reference voltage for reading (that separates the two levels) is Vr. Also
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suppose ci,j represents 1 if Vi,j(k, t) > Vr and 0 otherwise (see Fig. 2.7 (a)). P t(Y |X)

(Y,X ∈ {0, 1}) is the probability that ci,j (which is intended to be programmed to VX ∈

{V0, V1}) represents data Y after t operations. Thus, P t(1|0) =

1

2
(Q(

Vr − V0(1 +By)

σi(0, t)
) +Q(

Vr − (V0 +ByV1)

σi(0, t)
)), (2.9)

where Q(x) = 1√
2π

∫ +∞
x

e−t
2/2dt.

With a similar process and assumptions as above, we obtain that Vi,j(1, t) ∼ N (V0, σ0)

when t < i. Vi,j(1, t) ∼ N (V1(1 + By), σi(1, t)) or Vi,j(1, t) ∼ N (V1 + ByV0, σi(1, t))

with equal probability when t ≥ i, where σ2
i (1, t) =



σ2
1 t = i,

σ2
i (1, t− 1) + (Byσi+1(k, t))

2

+σ2
pasd + σ2

inter t = i+ 1, k ∈ {0, 1},

σ2
i (1, t− 1) + σ2

pasd t ∈ [i+ 2,W − 1],

σ2
i (1, t− 1) t = W +mi,

σ2
i (1, t− 1) + σ2

rd otherwise.

(2.10)

P t(0|1) =


1−Q(Vr−V0

σ1
) t < i,

1− 1
2
(Q(Vr−V1(1+By)

σi(1,t)
) +Q(Vr−(V1+ByV0)

σi(1,t)
) t ≥ i.

(2.11)

Let X = Y = {0, 1}, and our channel model is P = (X ,Y , P t(Y |X)). An example is

presented in Figure 2.8 (a).
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(a) (b)

Figure 2.8: (a) Noise channel model with single reference voltage; (b) Noise channel

model with three reference voltages.

Thus, the capacity ofWi after the t-th operation is

Ci(t) = I(X;Y ) = H(X)−H(X|Y ),

= 1−H(X|Y ), (2.12)

= 1− 1

2

∑
X,Y ∈{0,1}

P t(Y |X) log2

P t(Y |X)∑
X P

t(Y |X)
,

where equation (2.12) is based on the assumption that X is uniformly distributed over

{0, 1}. Due to data-processing inequality [16, chapter 2], we conclude that Ci(t + 1) ≤

Ci(t) for t ∈ N.

Let Vr be 1.4 and the remaining parameters be fixed values in Table 2.2. We numer-

ically calculate C2(t) for t = 0, 1, · · · , 127 as shown by the solid line of Figure 2.9 (a)

and (b). We can clearly see that the storage capacity C2(t) decreases with more and more

operations.
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(a) (b)

(c)

Figure 2.9: (a), (b) Comparison between the fixed-reference-voltage scheme and the

dynamic-reference-voltage scheme during sequential write operations ((a)) and sequen-

tial read operations ((b)). Here the x-axis is the discrete time when write or read op-

erations happen, the y-axis is the storage capacity, the solid curve corresponds to C2(t)

t = 0, 1, · · · , 127 for fixed reference voltage, and the dashed curve corresponds to Cd2(t)

for dynamic reference voltage. (c) The trade-off between the number of sub-thresholds

(reference voltages) and capacity (note that the y-axis is scaled).
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Table 2.2: Parameters used in computing C(t)

σ2
0 σ2

1 σ2
inter σ2

pasd σ2
rd σ2

prod

2 1 9× 10−3 5× 10−3 10−4 8× 10−3

(Byσi+1(0, t))
2 (Byσi+1(1, t))

2 By V0 V1 W
10−3 10−3 0.01 0 2.5 64

2.4.3 The impact of sub-threshold for flash capacity

Recently, the usage of sub-thresholds (e.g., [69, 23, 24]) in flash memories has at-

tracted great research interest. With sub-thresholds, there are multiple reference voltages

between adjacent discrete levels (e.g., in Figure 2.7 (b) there are three reference voltages

Vr0 , Vr1 , Vr2 between two adjacent cell level distributions). The purpose of sub-thresholds

is to obtain more soft information on cell levels, and improve coding performance (e.g., for

LDPC codes). However, we observe that there is also a trade-off. Sub-thresholds lead to

more reads, and therefore causes more read disturbs. Although having sub-thresholds can

increase the precision of reading at the moment, the additional noise caused by read dis-

turbs also distorts cell levels and is accumulated for future reading. Therefore, there is an

optimal way to set sub-thresholds to maximize capacity over the flash memory’s lifetime

(which is not necessarily the more sub-thresholds the better).

In this subsection, we explore the impact of sub-thresholds for flash capacity, focusing

on the trade-off between read precision and read disturbs. (How to set the positions of sub-

thresholds is beyond the scope of this paper, and there is already a significant body of work

on it [69, 24, 23].) Consider SLC, for l = 1, 3, 5, · · · , let V(l) = {Vr0 , Vr1 , · · · , Vrl−1
}

denote the set of l sub-thresholds we use for separating discrete level 0 from level 1.

Let Vr be the single sub-threshold when l = 1. We require the sub-thresholds in V(l) be

symmetric with respect to Vr; we also require V(l−1) ⊂ V(l) so that more soft information
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can be obtained with more sub-thresholds (if no read disturb is considered). Specifically,

we make all the sub-thresholds fall in the region [V0 + (1+By)(V0+V1)

2
, V1 + (1+By)(V0+V1)

2
].

Let L be the maximum number of sub-thresholds used. Let δ = V1−V0
2L

. We set V(l− 1) as

{Vrk = Vr − (b l
2
c − k)δ|k = 0, 1, · · · , l − 2}.

An SLC with l sub-thresholds can be modeled by a 2-input (l + 1)-output channel,

where the (l + 1) outputs– 0, 1, · · · , l– corresponds to l + 1 regions separated by the l

sub-thresholds. Let X = {0, 1}, Y = {0, 1, · · · , l}, and P t(Y |X) (X ∈ X , Y ∈ Y) be

the probability that ci,j (which is intended to be programmed to VX ∈ {V0, V1}) is read as

Y ∈ Y after t operations. P t(Y |X) can be obtained in a similar way as before. (With the

same setting and the similar analysis of the previous subsection, we obtain that Vi,j(k, t) =

Vi,j(k, t−1)+γrdi,j + l×Zrd when it is suffered from read disturbs. The remaining cases of

Vi,j(k, t) are the same as those of the previous subsection.) Our proposed channel model

is Pm = (X ,Y , P t(Y |X)). Figure 9.4 (b) presents an illustration of the channel model

with three sub-thresholds.

Let the capacity of the i-th pageWi (with l sub-thresholds) after twrite/read operations

be Ci(l, t) = I(X;Y ). With parameters listed in Table 2.2 except σ2
0 = σ2

1 = 1, we present

C2(l, 500) for different l in Figure 2.9 (c). (The capacity for other values of i and t has

similar shapes.) As shown in Figure 2.9(c), there is a trade-off between the number of

sub-thresholds and storage capacity. When there are too many sub-thresholds, the impact

of read disturbs becomes dominant, and the corresponding capacity decreases.

2.4.4 Dynamically adjust reference threshold voltages

It can be seen from the error models that flash disturbs are highly correlated (both in

time and space), and the noise has a tendency to be non-symmetric (e.g., disturbs tend to

increase cell levels). Therefore, it is important to set reference voltages adaptively over

time to reduce errors and maximize capacity. Such a scheme is called dynamic threshold,
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and has been studied before [80, 75]. In this subsection, we study how dynamic thresholds

can help improve storage capacity based on our flash models.

Let Vr(t) be the reference voltage we adaptively choose for the t-th operation. Let

ERk(t) denote the error probability of quantizing Vi(k, t) (for simplicity, we assume t ≥

i). Therefore ERk(t) =


1
2
(Q(Vr(t)−V0(1+By)

σi(0,t)
) +Q(Vr−(V0+ByV1)

σi(0,t)
)) k = 0,

1− 1
2
(Q(Vr(t)−V1(1+By)

σi(1,t)
) +Q(Vr−(V1+ByV0)

σi(1,t)
)) k = 1.

(2.13)

Assume that k is uniformly distributed over {0, 1}. Thus the total quantizing error

probability for the t-th operation is TER(t) = 1
2
+

1

4
(Q(

Vr(t)− V0(1 +By)

σi(0, t)
) +Q(

Vr(t)− (V0 +ByV1)

σi(0, t)
))

−1

4
(Q(

Vr(t)− V1(1 +By)

σi(1, t)
) +Q(

Vr(t)− (V1 +ByV0)

σi(1, t)
)).

The objective of dynamic reference voltage is to choose Vr(t) such that TER(t) is

minimized, therefore Vr(t) should satisfy

∂(Q(Vr(t)−V0(1+By)
σi(0,t)

) +Q(Vr(t)−(V0+ByV1)
σi(0,t)

))

∂Vr(t)
=

∂(Q(Vr(t)−V1(1+By)
σi(1,t)

) +Q(Vr(t)−(V1+ByV0)
σi(1,t)

))

∂Vr(t)
. (2.14)

Similarly, we can obtain the probability distribution of Vi,j(k, t), and P t(Y |X) for

X ∈ X = {0, 1} and Y ∈ Y = {0, 1}. The channel model ofWi for dynamic reference

voltages is denoted by Pd = (X ,Y , P t(Y |X)), and its capacity is Cdi (t) = I(X;Y ). With

parameters of Table 2.2, we numerically compute Cd2(t), which is shown by the dashed

curve in Figure 2.9 (a) and (b). We can see that after dynamically adjusting the refer-
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ence voltages, the channel (with quantization) becomes less noisy and the storage capacity

increases correspondingly.

2.5 Concluding Remarks

In this paper, we explore various noise and disturb mechanisms in NAND flash mem-

ories, and build their corresponding information-theoretic channel models. We further

study the storage capacity of flash memory under these channels. In particular, we show

the impact of read/write operations on flash capacity, as well as the intriguing effect of sub-

thresholds and dynamic thresholds. It is important to design coding schemes adaptively

corresponding to the special properties of flash memories. That remains as our future

work.
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3. JOINT DECODING OF CONTENT-REPLICATION CODES FOR FLASH

MEMORIES

3.1 Introduction

One challenge for flash memories is the data reliability as several types of noise [49]

exist. Besides a strong error correcting code, e.g., LDPC code, another mechanism to pro-

tect flash memories is memory scrubbing [64], i.e., while errors accumulate in a codeword,

with the next block erasure, the codeword is corrected and a new error-free codeword is

written back to the memory. However, in flash memory rewrites are made in an out-

of-place fashion, i.e., an updated codeword is stored at a new physical address and the

original codeword remains in the memory. Those mechanisms lead to multiple copies of

codewords, i.e., the content-replicated codeword problem. Besides memory scrubbing,

other factors also may cause the content-replication problem such as garbage collection,

weal-leveling, etc, and it is estimated that on average 3 ∼ 13 (i.e., the exact number de-

pends on the work load traffic and various algorithms used) copies of content-replicated

codewords can be generated [21].

In this work, we enhance the flash memory reliability by utilizing the existence of two

content-replicated codewords for decoding, including an old codeword and a new code-

word storing the same information. We aim at designing a joint decoding scheme having

access to both content-replicated codewords, and explore its decoding performance. This

leads to reliability improvement in flash memories. We further study a new paradigm

where the two content-replicated codewords have different forms for better performance.

The significance of this paper is two-fold: on the practical side, the new coding scheme

utilizes the unique properties of flash memories; on the theoretical side, we show that

increasing the diversity of error-correcting codes in the storage system can improve the re-
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liability of replicated data even if there exist constraints in their joint decoding algorithms.

The rest of this paper is organized as follows, in Section 3.2 we present the problem

statement; we then present various joint decoding algorithms and study their theoretical

decoding performances in Section 3.3 for Binary Erasure Channel and Additive White

Gaussian Noise channel in Section 3.4, respectively; the conclusion and future work are

presented in Section 3.5.

3.2 Problem Statement

In this section, we first define some notations used throughout this paper, and then

formally define the problem.

Let D = {0, 1, · · · ,M − 1} be the message set for M ∈ N, and let X and Y be

two alphabets of the symbols stored in a cell. Let two encoders be f1 : D → XN and

f2 : D → XN , and the desired joint decoder be h : YN × YN → D, where N is the

length of codewords. Let P = (X ,Y ,PY |X) and Q = (X ,Y ,QY |X) be two independent

channels.

We illustrate the model in Figure 3.1. Here, m is a common message to both encoders,

the N -dimensional vectors xN−10 (1), xN−10 (2) ∈ XN are two codewords obtained through

two encoders (those encoders are not necessarily identical), and yN−10 (1), yN−10 (2) are two

noisy codewords through P and Q. The task is to design a joint decoder to give a reliable

estimation the message m, which is denoted as m̂, giving yN−10 (1) and yN−10 (2).

The problem statement is presented below:

Definition 1. Given two (N, 2NR) error-correcting codes, a message set D = {0, 1, · · · ,

2NR − 1}, their encoding functions f1 : D → XN and f2 : D → XN , and two idependent

channels P and Q, the task is to design a joint decoding scheme h : YN × YN → D such

that Pr(h(yN−10 (1), yN−10 (2)) 6= i|xN−10 (1) = f1(i), x
N−1
0 (2) = f2(i))) → 0 for i ∈ D as

N →∞.
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That is a new decoding algorithm h(·) is required to design which is due to the presence

of content-replicated codewords. For simplicity we assume that such a joint decoding

scheme always exists, i.e., Pr(h(yN−10 (1), yN−10 (2)) 6= i|xN−10 (1) = f1(i), x
N−1
0 (2) =

f2(i))) → 0 for i ∈ D as N → ∞, and leave the exact condition under which this holds

as our future work.

We point out two implicit requirements for the joint decoder in the above definition:

The first is the rate of the given code should be larger than the capacities of underline

two channels, i.e., R > C(P) and R > C(Q), therefore reliable decoding is impos-

sible for individual decoders, i.e., @ g1 : XN → D and @ g2 : XN → D such that

Pr(g1(y
N−1
0 (1)) 6= i, g2(y

N−1
0 (2)) 6= i|xN−10 (1) = f1(i), x

N−1
0 (2) = f2(i))) → 0 for

i ∈ D as N → ∞. Otherwise, the joint decoder degenerates to the individual decoder

in channel coding model; The second one is the same encoders to which reliable individ-

ual decoders corresponding exist when channels are not degrading too much are required

here. More precisely, given the same parameters N , R, we require f1(·) and f2(·) meet

up with the condition that when R < C(P1) and R < C(Q1) for some P1 and Q1, there

exist g1 : XN → D and g2 : XN → D such that Pr(g1(yN−10 (1)) 6= i, g2(y
N−1
0 (2)) 6=

i|xN−10 (1) = f1(i), x
N−1
0 (2) = f2(i)))→ 0 for i ∈ D as N →∞.

The above requirements are due to the motivations of joint decoders: the joint decoder

is not to replace existing individual decoders (as it is possible that individual decoders

suffice to reliably decode when channels do not degrade too much, and also the content-

replicated codewords can not always be guaranteed to exist) but to replace individual de-

coders when they fail. It is also those requirements that differentiate the joint decoder from

other coding models like Multiple Access Channels with correlated sources by Splepian

and Wolf [66] and Fountain code [52].

In the following, assume P and Q are Binary Erasure Channels with the same param-

eter ε, and both encoders are LDPC encoders. The following notations will be used: let
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the rate of two LDPC codes be K
N

, let G1, G2 be the encoding matrices, and H1, H2 de-

notes their parity check matrices. Let yN−10 (1), yN−10 (2) ∈ {0, 1, ?}N be two codewords

received.

Figure 3.1: Illustration of joint decoding content-replicated codewords.

3.3 Joint Decoder for BEC Channels

In this section, we present various joint decoder designs when P and Q are Binary

Erasure Channels with the same parameters.

3.3.1 Joint decoder of identical content-replicated codes

In this subsection, we start the joint decoder design with identical content-replicated

codes, i.e., the two encoders are identical.

3.3.1.1 Joint decoder design and its performance

The given codes are identical in this case, i.e., G1 = G2 and H1 = H2.

Given yN−10 (1) and yN−10 (2), a combined codeword yN−10 is obtained as follows, for
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i = 0, 1, · · · , N − 1, yi =


? if yi(1) = yi(2) =?,

yi(1) if yi(2) =? and yi(1) 6=?,

yi(2) else

The parity check matrix for yN−10 is H1. The decoding result is obtained by applying belief

propagation to yN−10 with H1 and initial erasure probability ε2.

Let λ(x) and ρ(x) be degree distributions for the LDPC codes used, let εBP (λ, ρ) be

its original threshold as in [60], and εBPiden(λ, ρ) be the threshold for our joint decoder. The

comparison of εBPiden(λ, ρ) and εBP (λ, ρ) for some regular LDPC codes is presented in the

second and the third columns of Table 3.1, and we have εBPiden > εBP .

Note that the above scheme can be generalized to cases when P and Q are with different

ε, and due to space limitation we do not present that here.

Table 3.1: Comparison of εBP , εBPiden and εBPdif

(dv, dc) εBP εBPiden εBPdif
(3,4) 0.6474 0.8046 0.8741
(3,5) 0.5176 0.7194 0.7594
(3,6) 0.4294 0.6553 0.6600
(4,6) 0.5061 0.7114 0.7335
(4,8) 0.3834 0.6192 0.5814

3.3.2 Joint decoder of different content-replicated codes

In the above subsection, the two codes are identical, which are effectively repetition

codes, and this motivates us to explore another joint decoder design when the two encoders
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are different.

3.3.2.1 Joint decoder design

The given codes are different in this case, i.e., G1 6= G2 and H1 6= H2, but codewords

carry identical systematic information bits, that is, two encoding functions are xN−10 (1) =

uK−10 G1 and xN−10 (2) = uK−10 G2.

Let I1, I2 ⊆ {0, 1, · · · , N − 1} be the information bit index sets for yN−10 (1) and

yN−10 (2), and let P1 and P2 be their parity check bit index sets. Let yN−10 (1)I1 = (yi(1) :

i ∈ I1), i.e., information bits of yN−10 (1), and similar notations apply to yN−10 (2)I2 ,

yN−10 (1)P1 and yN−10 (2)P2 . Let g(·) : I1 → I2 be a one-to-one mapping such that

xi(1) = xg(i)(2) for i ∈ I1. Similar to the previous section, we define (yN−10 )I1 , where

yi = 
? if yi(1) = yg(i)(2) =?,

yi(1) if yg(i)(2) =? and yi(1) 6=?,

yg(i)(2) else

Then, a constructed combined codeword is y2N−K−10 = [(yN−10 )I1 , y
N−1
0 (1)P1 , y

N−1
0 (2)P2 ].

That is, y2N−K−10 is constructed by extracting information bits from yN−10 (1) and yN−10 (2),

and appending parity check bits from yN−10 (1) and yN−10 (2). An example is illustrated in

Figure 3.2.

Let H1 = [H1,0,H1,1, · · · ,H1,N−1], let H1,I1 = [H1,i : i ∈ I1], and let H1,P1 =

[H1,i : i ∈ P1]. Similarly, we divide H2 into H2,I2 and H2,P2 . Then, the parity check

matrix H for y2N−K−10 is of the form in Figure 3.3. An example is illustrated in Figure 3.2.

The decoding result is obtained by applying belief propagation to y2N−K−10 with H,

the initial erasure probability ε2 for (yN−10 )I1 , and ε for yN−10 (1)P1 and yN−10 (2)P2 .
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Figure 3.2: Illustration of constructed y2N−K−10 and H. (a) The Tanner graph and H1 for

yN−10 (1), where information bits are black and parity check bits are red; (b) The Tanner

graph and H2 for yN−10 (2), where information bits are black and parity check bits are

green; (c) The constructed Tanner graph and H based on (a) and (b), where information

bits are black, parity check bits from yN−10 (1) are red, and parity check bits from yN−10 (2)

are green.
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Figure 3.3: Illustration of the parity check matrix H.

3.3.2.2 Performance analysis by density evolution

In a Tanner graph of an LDPC code, for an edge if its one end connects to an informa-

tion bit of variable nodes, we call it information edge; If it connects to a parity check bit of

variable nodes, we call it parity edge. For example, in Fig. 3.2 (c), the edges connecting

to c0, c1, c2, c3 are information edges and the remaining edges are parity edges.

For information edges (resp. parity edges), let λ(i)i (resp. λ(p)i ) be the fraction of edges

connecting to an variable node with degree i. Let λ(i)(x) =
div∑
i=1

λ
(i)
i x

i−1, where
div∑
i=1

λ
(i)
i = 1,

and λ(p)(x) =
dpv∑
i=1

λ
(p)
i xi−1, where

dpv∑
i=1

λ
(p)
i = 1, be the degree distribution functions from

the edge perspective. For example, λ(i)(x) = 6
15
x2 + 4

15
x3 + 5

15
x5 and λ(p)(x) = 1 in

Figure 3.2 (c).

Let ρj,k be the fraction of edges connecting to a check node with degree j+k, of which

j edges are information edges and k edges are parity edges. Let ρ(x, y) =
∑
j,k

ρj,kx
jyk,

where
∑
j,k

ρj,k = 1, denote the edge degree distribution functions from the check node

perspective. For example, ρ(x, y) = 12
21
x3y + 9

21
x2y in Figure 3.2 (c).

Let ρ(p)j,k =
ρj,k

1−ρ0,j+k
and ρ(i)j,k =

ρj,k
1−ρj+k,0

, let ρ(i)(x, y) =
∑
j,k

ρ
(i)
j,kx

j−1yk where
∑
j,k

ρ
(i)
j,k = 1

and j ≥ 1, k ≥ 0, and ρ(p)(x, y) =
∑
j,k

ρ
(p)
j,kx

jyk−1 where
∑
j,k

ρ
(p)
j,k = 1 and j ≥ 0, k ≥ 1. For

example, ρ(i)(x, y) = 12
21
x2y + 9

21
xy and ρ(p)(x, y) = 12

21
x3 + 9

21
x in Figure 3.2 (c), where

ρ(p)(x, y) happens to be the same as ρ(i)(x, y) for this example.
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Lemma 2. Given two regular (dv, dc) LDPC codes (which are not necessarily the same),

the edge degree distributions of constructed the combined LDPC code are: λ(i)(x) =

x2dv−1, λ(p)(x) = xdv−1, and ρj,k =
(
j+k
j

)
(dc−dv

dc
)j(dv

dc
)k, where j + k = dc.

Proof. Based on the construction presented, for the Tanner graph of y2N−K−10 , both check

nodes of yN−10 (1) and yN−10 (2) connect to information bits of variable nodes of y2N−K−10 ,

thus those node degrees are doubled; The degree of parity check bit of variables nodes of

y2N−K−10 remains the same as those of yN−10 (1) and yN−10 (2).

The result for ρj,k follows from that for a random edge it is an information edge with

probability dc−dv
dc

, a parity edge with probability dv
dc

, and the probability distribution that j

out of j + k edges are from information edges is a binomial distribution.

From Lemma 2, we know that λ(i)(x) and λ(p)(x) are not identical, the initial effective

erasure probability is ε2 for information bits of y2N−K−10 and ε for parity bits of y2N−K−10 ,

thus the probabilities of a parity bit and an information bit being an erasure at the l-round

of belief propagation decoding are not the same (We show this point in Figure 3.4 through

a simulation with both (3, 6) LDPC code and initial erasure probability 0.6).

Let x(l)i be the average probability of an information bit of y2N−K−10 being an erasure

after the l-round of belief propagation decoding, and similarly let x(l)p be that for a parity

check bit of y2N−K−10 .

Our main result based on density evolution [60] is presented below:

Theorem 3. For our joint decoding of different content-replicated codes, the average era-

sure probabilities after l-round of belief-propagation decoding are given by

x
(l)
i = ε2λ(i)(1− ρ(i)(1− x(l−1)p , 1− x(l−1)i ))),

x(l)p = ελ(p)(1− ρ(p)(1− x(l−1)i , 1− x(l−1)p ))),
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Figure 3.4: Density evolution comparision of information bits and parity bits for joint

decoder of different content-replicated (3, 6) LDPC codes with initial erasure probability

0.6.

Proof. We break the proof into two steps.

First, let y(l)i be the average probability of being an erasure under belief-propagation

decoding after l rounds for an output edge from a check node to an information bit of

variable node. It is given by y(l)i =
∑
j,k

ρ
(i)
j,k(1 − (1 − x(l)i )j−1(1 − x(l)p )k) = 1 − ρ(i)(1 −

x
(l)
i , 1− x

(l)
p ).

Similarly, let y(l)p be the average probability of erasure under belief-propagation de-

coding after l-round for an output edge from a check node to a parity check bit of variable

node. It is given by y(l)p = 1− ρ(p)(1− x(l)i , 1− x
(l)
p ).

Second, the average probability of erasure for the output message of an information bit

of variable nodes is given by x(l)i = ε2
∑
i

λ
(i)
i (y

(l−1)
i )i−1 = ε2λ(i)(y

(l−1)
i ).
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Similarly, the average probability of erasure for the output message of an parity check

bit of variable nodes is given by x(l)p = ελ(p)(y
(l−1)
p ).

Combining the above two steps, we obtain the desired results.

The following theorem presents us the existence of density evolution threshold.

Theorem 4. Based on Theorem 3, one sees density evolution updates are given by fi(ε, x, y) =

ε2λ(i)(1− ρ(i)(1− x, 1− y)) and fp(ε, x, y) = ελ(p)(1− ρ(p)(1− x, 1− y)). We observe

the following:

1. fi(ε, x, y) and fp(ε, x, y) are non-decreasing in all arguments for ε, x, y ∈ [0, 1] and

strictly increasing if ε, x, y ∈ (0, 1).

2. For any x0, y0, ε ∈ [0, 1], the sequence xl+1 = fi(ε, xl, yl) and yl+1 = fp(ε, xl, yl)

are monotonic in l.

3. Let xl+1(ε) and yl+1(ε) be defined recursively by xl+1(ε) = fi(ε, xl(ε), yl(ε)), yl+1(ε) =

fp(ε, xl(ε), yl(ε)), x0(ε) = ε2 and y0(ε) = ε. Then, xl+1(ε) and yl+1(ε) are non-

decreasing in ε.

4. The function x∞(ε) = lim
l→∞

xl(ε) and y∞(ε) = lim
l→∞

(yl(ε)) exist and are non-decreasing

for all ε ∈ [0, 1].

Proof. For 1), we observe that d
dε
fi(ε, x, y) = 2ελ(i)(1− ρ(i)(1− x, 1− y)) is not negative

for ε, x, y ∈ [0, 1], and d
dε
fp(ε, x, y) = λ(p)(1 − ρ(p)(1 − x, 1 − y)) are positive for x, y ∈

[0, 1]. d
dx
fi(ε, x, y) = ε2λ(i)

′
(1 − ρ(i)(1 − x, 1 − y)))ρ(i)

′
(1 − x, 1 − y) is positive for

ε, x, y ∈ (0, 1) and d
dx
fp(ε, x, y) = ελ(p)

′
(1− ρ(p)(1− x, 1− y))ρ(p)

′
(1− x, 1− y) is also

positive for ε, x, y ∈ (0, 1). Similarly, we can prove d
dy
fi(ε, x, y) and d

dy
fp(ε, x, y) are also

positive for ε, x, y ∈ (0, 1).

For 2), the monotonicity of fi(ε, x, y) and fp(ε, x, y) implies that xl+1 = fi(ε, xl, yl)
≥
≤

xl and xl+2 = fi(ε, xl+1, yl+1)
≥
≤ xl+1. Therefore, monotonicity holds inductively and the
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direction of xl depends only on the first step. Similarly, we can prove yl+1 = fp(ε, x, y)

are monotonic.

For 3), we first observe that x0(ε) and y0(ε) are non-decreasing in ε. Next, we proceed

by induction, for any ε ≤ ε′, to see that xl+1(ε) = fi(ε, xl(ε), yl(ε)) ≤ fi(ε
′, xl(ε

′), yl(ε
′)) =

xl+1(ε
′). Similarly, we can prove that yl+1(ε) is non-decreasing in ε.

For 4), the limit exists because 2) implies the sequence xl(ε) is monotonic and bounded

for all ε ∈ [0, 1]. The limit function is non-decreasing because 3) implies that, for any

ε ≤ ε′, we have x∞(ε) = lim
l→∞

xl(ε) ≤ lim
l→∞

xl(ε
′) = x∞(ε′). The same process applies for

the sequence yl(ε).

Let εBPdif (λ(i), ρ(i)) = sup{ε ∈ [0, 1] : x∞(ε) = 0} (which is clearly equal to sup{ε ∈

[0, 1] : y∞(ε) = 0}) be the threshold defined by the density evolution. We compute

εBP , εBPiden, ε
BP
dif , where εBPdif is based on the recursive functions defined in Theorem 3, for

some regular LDPC codes in the fourth column of Table 3.1. Comparing with previous

results, we can see that εBPdif > εBPiden is possible.

3.3.3 Joint decoder of related content-replicated codes

In this section, we further explore another joint decoder when the two encoders are

related, i.e., not only their parity check bits but also information bits are related.

3.3.3.1 Related encoder design

The two codes are related in this case. More specially, let G3 be an intermediate LDPC

generator matrix with the rate 1
2
. Similarly, let Ii and Pi denote the information bit index

set and parity check bit index set for codes with Gi, i = 1, 2, 3. The encoding algorithm

is below, where (xN−10 )P3 denotes the subvector (xi : i ∈ P3).

1. f1: xN−10 (1) = uK−10 G1.

2. vK−10 = (uK−10 G3)P3 .
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Figure 3.5: Illustration of constructed y2N−10 and H. (a) The Tanner graph and H1 for

yN−10 (1), where information bits are black and parity check bits are red; (b) The Tanner

graph and H2 for yN−10 (2), where information bits are green and parity check bis are blue;

(c) The Tanner graph and H3 for vK−10 , where information bits are black and parity check

bits are blue; (d) The constructed Tanner graph and H for y2N−10 .

3. f2: xN−10 (2) = vK−10 G2.

That is, (xN−10 (1))I1 and (xN−10 (2))I2 are related through G3. Refer to Figure 3.5 for an

example.

3.3.3.2 Joint decoder design

A combined codeword is obtained by assembling yN−10 (1) and yN−10 (2) in the follow-

ing way, y2N−10 = (yN−10 (1)P1 , y
N−1
0 (1)I1 , yN−10 (2)P2 , yN−10 (2)I2).

Let H3 be the parity check matrix corresponding to G3. Then, the parity check matrix

H for y2N−10 is of the form in Figure 3.6. An example is presented in Figure 3.5.
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The decoding result is obtained by applying belief propagation to y2N−10 with H and

initial erasure probability ε.

Figure 3.6: Illustration of parity check matrix H

3.3.3.3 Performance analysis by density evolution

For individual LDPC codes xN−10 , let λ(i)(x) =
∑
λix

i−1, λ(p)(x), ρ(p)(x, y) and

ρ(i)(x, y) be the same notations used as subsection B of the previous section. For the

intermediate LDPC code uK−10 , let λ3(x) =
∑
λ3,ix

i−1 and ρ3(x) be the usual degree dis-

tribution functions from the edge perspective. We define a new degree distribution function

for the combined LDPC code λ(x, y) =
∑

i,j λiλ3,jx
i−1yj . We have the following results

for density evolution, where we use the same notations as the previous section.

Theorem 5. For our joint decoding of related content-replicated codes, the average erasure

probabilities after l-round of belief-propagation decoding are given by
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x(l)p = ελ(p)(1− ρ(p)(1− x(l−1)i , 1− x(l−1)p ))),

x
(l)
i = ε2λ(i)(1− ρ(i)(1− x(l−1)p , 1− x(l−1)i ))

·λ3(1− ρ3(1− x(l−1)i )).

Proof. The proof is the similar to that of the previous theorem, and thus we present its

sketch as follows.

Let y(l)i (resp. y
(l)
p ) denote the average probability of being an erasure after the lth

round of belief propagation decoding for an output edge from a check node of yN−10 (1) or

yN−10 (2) to an information bit (resp. parity check bit) of variable node of y2N−10 . Clearly,

they follow the same formulas as Theorem 3.

Similarly, we obtain the following convergence results:

Theorem 6. Based on Theorem 5, one sees density evolution updates are given by fi(ε, x, y) =

ε2λ(i)(1−ρ(i)(1−x, 1−y))·λ3(1−ρ3(1−x)) and fp(ε, x, y) = ελ(p)(1−ρ(p)(1−x, 1−y)).

We observe the following:

1. fi(ε, x, y) and fp(ε, x, y) are non-decreasing in all arguments for ε, x, y ∈ [0, 1] and

strictly increasing if ε, x, y ∈ (0, 1).

2. For any x0, y0, ε ∈ [0, 1], the sequence xl+1 = fi(ε, xl, yl) and yl+1 = fp(ε, xl, yl)

are monotonic in l.

3. Let xl+1(ε) and yl+1(ε) be defined recursively by xl+1(ε) = fi(ε, xl(ε), yl(ε)), yl+1(ε) =

fp(ε, xl(ε), yl(ε)), x0(ε) = ε2 and y0(ε) = ε. Then, xl+1(ε) and yl+1(ε) are non-

decreasing in ε.
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4. The function x∞(ε) = lim
l→∞

xl(ε) and y∞(ε) = lim
l→∞

(yl(ε)) exist and are non-decreasing

for all ε ∈ [0, 1].

Let εBPre (λ(i), ρ(i)) = sup{ε ∈ [0, 1] : x∞(ε) = 0} be the threshold defined by the

density evolution. We calculate several εBPre based on the recursive functions defined in

Theorem 6 in Table 3.2, where the first row indicates the regular LDPC for G3, and the

first column indicates the regular LDPC code for G1 and G2. For example, the result

0.8918 is the threshold when LDPC codes for G1 and G2 are (3, 4) regular codes, and

the intermediate LDPC code is (2, 4) code in Table 3.2. From this table, we see that

εBPre > εBPiden > εBPdif > εBP is possible with appropriate G3. That is the threshold can be

improved by increasing the diversity of the underlying error-correcting codes.

Table 3.2: Calculation of εBPre

(dv, dc) (1,2) (2,4) (3,6) (4,8)

(3,4) 0.8741 0.8918 0.8794 0.8754
(3,5) 0.7594 0.8169 0.7928 0.7771
(3,6) 0.6600 0.7569 0.7327 0.7085
(4,6) 0.7335 0.7976 0.772 0.7543
(4,8) 0.5814 0.7082 0.6917 0.662

3.4 Joint Decoders for AWGN Channels

In this section, we proceed the joint decoder designs for AWGN channel with the

insight provided in previous sections. In the following, we assume that both Q and Q

are AWGN channels with the same parameters, let the rates of two LDPC codes still

be K
N

, let G1, G2 be the encoding matrices, and let H1, H2 denote their parity check

matrices. Let xN−10 (1) and xN−10 (2) be all zeros due to the channel symmetry, yN−10 (1) and
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yN−10 (2) are noisy codewords through P and Q, respectively, thus yi(1), yi(2) ∼ N (0, σ2)

for i = 0, · · · , N − 1.

3.4.1 Joint decoder of identical content-replicated codes

We first present the joint decoder design and its theoretical performance for the case

when encoders are identical, i.e., G1 = G2 and H1 = H2.

Given noisy codewords yN−10 (1), yN−10 (2) ∈ RN of the same codeword xN−10 , the log-

likely-ratio (LLR) message from channel P, denoted as uP0(i) , is ln p(yi(1)|xi=1)
p(yi(1)|xi=0)

= 2yi(1)
σ2 ,

i.e., Gaussian with mean 2
σ2 and variance 4

σ2 , and so is for the LLR message from channel

Q, denoted as uQ0(i). Therefore, by averaging of LLR messages from P and Q, we can

obtain the combined LLR message as u0(i) =
uP0 (i)+uQ0

(i)

2
, i.e., Gaussian with mean 2

σ2

and variance 2
σ2 .

The decoding result is obtained by applying sum-product algorithm with H1 and initial

LLR messages u0(i) for i = 0, · · · , N−1. That is, let v be a LLR message from a variable

node (with initial LLR u0(i)) to a check node, then v = u0(i) +
∑dv−1

i=1 ui, where ui,

i = 1, · · · , dv − 1, are the incoming LLRs from the neighbors of the variable node except

the check node that gets the message v, and u is updated by tanh(u
2
) =

∏dc−1
i=1 tanh(

vj
2

),

where vj , j = 1, · · · , dc − 1, are the incoming LLRs from dc − 1 neighbors of a check

node.

Let u(l) be the average of LLRs from a check node to a variable node at the l-th round

of sum-product decoding, let λ(x) and ρ(x) be degree distribution functions for the LDPC

code used, define σBPiden(λ, ρ) = sup{σ : u(l) → ∞ as l → ∞} be the threshold for

our joint decoder. σBPiden(λ, ρ) can be obtained through the methods provided by Fu [28],

compare it with σBP (λ, ρ) in the Table 3.3, and we conclude σBPiden(λ, ρ) > σBP (λ, ρ).
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3.4.2 Joint decoder for different content-replicated codes

In this part, we present the joint decoder design for different content-replicated codes.

We use two (dv, dc) regular LDPC codes to simplify the analysis of decoding algorithm.

The two content-replicated codes are different in this way, i.e, G1 6= G2, H1 6= H2.

3.4.2.1 Joint decoder design

Let I1, I2,P1,P2 and g(·) be the same notations as before, for the combined codeword

obtained, y2N−K−10 = (yI1 , y
N−1
0 (1)P1 , y

N−1
0 (2)P2), we have initial LLR from channel

ui ∼ N ( 2
σ2 ,

2
σ2 ) for i ∈ I1 (that is by combining LLRs from yN−10 (1)I1 and yN−10 (2)I2),

uj, uk ∼ N ( 2
σ2 ,

4
σ2 ) for j ∈ P1 and k ∈ P2. The decoding result is obtained by applying

sum-product decoding algorithm on y2N−K−10 with H demonstrated in Figure 3.3 with uI1 ,

uP1 and uP2 specified as above.

3.4.2.2 Theoretical performance analysis by density evolution

In sum-product decoding algorithm, for variable nodes of y2N−K−10 , let v(l)i be the

average log-likely-ratio (LLR) from an information bit to parity nodes at the l-round, and

similarly let v(l)p be that from a parity check bit of y2N−K−10 .

For a parity node connecting to j information edges and k parity edges, let µ(l)
i (j, k)

and µ(l)
p (j, k) be its LLR sent to an information and a parity bit at l-round, respectively.

Thus, we have

µ
(l)
i (j, k) = 2 tanh−1

(
(tanh

v
(l)
i

2
)j−1(tanh

v
(l)
p

2
)k
)

µ(l)
p (j, k) = 2 tanh−1

(
(tanh

v
(l)
i

2
)j(tanh

v
(l)
p

2
)k−1

)
. (3.1)

Let u(l)i be the average LLR from a parity nodes to an information bit at the l-round,

and similarly let u(l)p be that from a parity check node to a parity bit. Then, by averaging
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LLR from a check node to a information and parity bit, we have

u
(l)
i =

dc∑
j=1

ρ
(i)
j,kµ

(l)
i (j, k),

u(l)p =
dc∑
j=1

ρ
(p)
j,kµ

(l)
p (j, k), (3.2)

where ρ(i)j,k and ρ(p)j,k are the same as previous sections.

Thus we obtain our main result of this subsection as below:

Theorem 7. For our joint decoding of different content-replicated codes (i.e., the two

LDPC codes are both (dv, dc) LDPC codes), the LLRs after l-round of sum-product de-

coding at the variable node are given by

v
(l)
i = µ

(0)
i + (2dv − 1) · u(l−1)i ,

v(l)p = µ(0)
p + (dv − 1) · u(l−1)p ,

where µ(0)
i is the initial LLR for information bits of y2N−K−10 , and µ(0)

p is that for parity

bits.

Check nodes are updated as equation (3.2).

In this part, we present an approximate algorithm to obtain the density evolution based

on Theorem 7.

For calculation of density evolution of LDPC codes, there is several work so far, such

as [59], [63] and [28]. The method presented in [59] obtains thresholds with the Fourier

transform, which is computationally intensive and thus not very practical. The method

presented in [63] obtains approximate thresholds for AWGN channels with sum-product

decoding based on two assumptions of the LLR passed: one is their densities are approxi-

mately Gaussian when the channel is AWGN, and the other one is the so-called symmetry
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Figure 3.7: m and σ2 of LLR for joint decoding of different content-replicated codes.

condition which requires a density function f(x) to satisfy f(x) = f(−x)ex (By enforc-

ing this condition for Gaussian with mean m and variance σ2, this condition reduces to

σ2 = 2m). As pointed by Fu in [28] this method is not very accurate as the Gaussian

assumption does not always hold especially for LLR from check nodes.

For our analysis of density evolution, we turn to the method presented in [28] to obtain

the approximate threshold, and this is not only as Gaussian assumption is invalid but also as

the symmetry condition property does not hold for our case, which is verified by intensive

numerical calculations as shown in Figure 3.7 (i.e., from this figure clearly the assumption

that σ2 = 2m does not hold). Also the update rules stated by Theorem 7 and the initial

samples of µ(0)
i and µ(0)

p are stationary (i.e., invariant with respect to the iteration number),

thus we know that those update rule preserves ergodicity. Therefore, based on the well-

known property of ergodicity, i.e, any statistical parameter of the random process can be

arbitrarily closely approximated by averaging over a sufficient number of samples, we

have the following approximate algorithm for density evolution.

1. Step 0: choose a large number n, generate an initial n samples of µ(0)
i accord-

47



ing to N (2/σ2, 2/σ2), and similarly generate a n samples of µ(0)
p according to

N (2/σ2, 4/σ2).

2. Step 1 (for variable nodes): For iteration 0, copy µ(0)
i to v(l)i and copy µ(0)

p to v(l)p

as shown by variable update formula of Theorem 7. For other iterations, take the n

samples of u(l−1)p and u(l−1)i from the previous iteration, randomly interleave (dv−1)

samples u(l)p and (2dv − 1) samples u(l)i , respectively. Then, update v(l)i and v(l)p by

variable update formula Theorem 7.

3. Step 2 (for check nodes): For each iteration, take the n samples of v(l)i and v(l)p as

calculated above. Randomly interleave (dc− 1) samples of them, and then compute

the n samples of u(l)i and u
(l)
p based on equation (3.1) and check update formula

Theorem 7.

Let σBPdiff (λ, ρ) be the threshold for our joint decoder with (λ, ρ) being degree distribution

functions for our different LDPC codes. We calculate σBPdiff (λ, ρ) based on the method

presented above and compare it with σBP (λ, ρ) and σBPiden(λ, ρ) in the Table 3.3. From the

table we can see that unlike the BEC case, here it is possible that σBPdiff (λ, ρ) > σBPiden(λ, ρ).

We also observed that νli is slightly larger than νlp for each round of sum product de-

coding, and we show this by the results of the (3, 5) different content-replication codes in

Figure 3.8.

3.4.3 Joint decoder for related content-replicated codes

In this subsection, we present the joint decoder design for related content-replicated

codes under AWGN channel and present its theoretical analysis.

3.4.3.1 Joint decoder design

Similar as the BEC case, an intermediate generator matrix G3 with rate 1/2 is used to

connect two LDPC generator matrices G1 and G2, and the encoding process is exactly the
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Figure 3.8: Comparison of LLR of information bits and parity bits for the joint decoder of

different content-replication codes.

same as the BEC counterpart.

The decoding process is presented here: given yN−10 (1) and yN−10 (2), a combined code-

word y2N−10 is constructed the same as before, i.e., y2N−10 = (yN−10 (1)P1 , y
N−1
0 (1)I1 , y

N−1
0 (2)P2 ,

yN−10 (2)I2). The decoding result is obtained by applying sum-product decoding algorithm

to y2N−10 with the parity check matrix H (constructed the same as Figure 3.6) and the

initial LLR message u0 ∼ N ( 2
σ2 ,

4
σ2 ).
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3.4.3.2 Theoretical performance analysis by density evolution

For density evolution, we assume that (d′v, d
′
c) regular LDPC code is used to connect

two (dv, dc) regular LDPC codes.

For one (dv, dc) LDPC code, let v(l)i be the average LLR from an information bit to its

parity nodes (not the intermediate ones) at the l-round, and similarly let v(l)p be that from a

parity check bit. For a parity node connecting to j information edges and k parity edges,

let µ(l)
i (j, k) and µ(l)

p (j, k) be its LLR sent to an information and a parity bit at l-round,

respectively. Similarly, their values can be expressed the same as equation (3.1).

For the intermediate (d′v, d
′
c) LDPC code, let x(l) be the average LLR sent to its parity

nodes and let y(l) be the average LLR sent to its variable nodes at the l-round of sum-

product decoding. Thus we have

x(l) = µ(0) + dv · u(l−1)i + (d′v − 1) · y(l−1),

y(l) = 2 tanh−1(tanh
x(l)

2
)d
′
c−1,

where µ(0) is the initial LLR for bits of y2N−10 .

We have the following result for the density evolution of our joint decoder:

Theorem 8. For our joint decoding of related content-replicated codes (i.e., the two LDPC

codes are both (dv, dc) LDPC codes and the intermediate LDPC code is (d′v, d
′
c) LDPC

code), the LLRs after l-round of sum-product decoding at the variable node are given by

v
(l)
i = µ(0) + (dv − 1) · u(l−1)i + d′v · y

(l−1)
i ,

v(l)p = µ(0) + (dv − 1) · u(l−1)p ,

where u(l)i and u(l)p are updated as equation (3.2).
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We present the approximated algorithm for density evolution based on Theorem 8

below.

1. Step 0: choose a large number n, generate an initial n samples of µ(0) according to

N (2/σ2, 4/σ2).

2. Step 1 (for variable nodes): For iteration 0, copy µ(0) to ν(l)i , x(0) and ν(0)p as shown

by variable update formula of Theorem 8 and equation (3.2). For other iterations,

take the n samples of u(l−1)p , u(l−1)i and y(l−1) from the previous iteration, randomly

interleave (dv − 1) samples u(l−1)p , u(l−1)i and y(l−1), respectively. Then, update v(l)i ,

v
(l)
p and x(l) by variable update formula of Theorem 8 and equation (3.2).

3. Step 2 (for check nodes): For each iteration, take the n samples of v(l)i , x(l) and v(l)p

as calculated above. Randomly interleave the samples of them, and then compute

the n samples of u(l)i , x(l) and u(l)p based on equation (3.2) and check update formula

of Theorem 8 and equation (3.2).

Let σBPd′v ,d′c(λ, ρ) be the threshold for our joint decoder with (λ, ρ) being degree distribution

functions for our LDPC codes and (d′v, d
′
c) as the intermediate LDPC code. We calcu-

late σBPd′v ,d′c(λ, ρ) based on the method presented above and compare it with σBP (λ, ρ),

σBPiden(λ, ρ) and σBPdiff (λ, ρ) in the Table 3.3. From the results, we can see that it is possible

that σBPd′v ,d′c(λ, ρ) > σBPiden(λ, ρ) with appropriate (d′v, d
′
c).

3.5 Conclusion and Future Work

In this paper, we study two codewords carrying the same message problem, and present

various joint decoding schemes and their performances. We propose the following future

work:

• For our joint decoder designs, we assume that the two channels are the same for

simplification, which is not true in practice. Therefore, it is interesting to explore
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Table 3.3: Thresholds σ∗ of AWGN channels for joint decoders

(dv, dc) σBP σBPiden σBPdiff σBP2,4 σBP3,6 σBP4,8

(3,4) 1.261 1.555 1.69 1.655 1.5 1.45
(3,5) 1.004 1.264 1.379 1.462 1.267 1.201
(3,6) 0.880 1.116 1.19 1.358 1.161 1.085
(4,6) 1.002 1.242 1.3 1.382 1.207 1.145
(4,8) 0.838 1.044 1.065 1.3 1.091 1.007

joint decoder designs with channels of the same type but with different parameters

or even different channels.

• For the joint decoder design over AWGN channel case, we just focus on the regular

LDPC codes for simplicity and thus to explore the joint decoder performance of

content-replication codes consisting of irregular LDPC codes is another future work.

• It is interesting to explore other joint decoder design schemes with better perfor-

mances.

• The current joint decoders are for LDPC codes, and we are curious whether similar

results can be obtained for other codes (e.g., BCH and Polar codes).
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4. COMPRESSED RANK MODULATION

4.1 Introduction

Flash memories are nonvolatile memories both electrically programmable (charge place-

ment) and electrically erasable (charge removal). Elements of flash memories are called

cells, and data is represented by the charge level of a cell: let n flash memory cells denoted

by 1, 2, ..., n. ci ∈ R denotes the charge level of cell i, Th1 denotes a threshold charge

level, cell i represents information ‘0’ if ci > Th1, and ‘1’ otherwise. Such scheme is

called Single-Level Cell, or SLC; generally, by setting q − 1 (q > 2) increasing threshold

charge levels, Th1 < Th2 < ... < Thq−1, cell i represents information ‘0’ if ci > Thq−1,

‘q-1’ if ci ≤ Th1, and ‘j’ ∈ { ‘1’,‘2’, ..., ‘q-2’ } if ci ∈ (Thq−j−1, Thq−j]. Such scheme is

called Multi-Level Cell (MLC).

Flash memories have the conspicuous property that the programming and the erasing

are asymmetric: while adding charge to a cell is easy, removing charge has to be done with

a large number (between 215 and 218) of cells.

One problem of the MLC scheme incurred by the asymmetry is the overshooting:

since flash memory technologies usually do not support charge removals from individual

cells, the charge placement has to be done in a cautious approach to avoid the charge level

exceeding the threshold charge level and the global erases.

Another problem caused by the asymmetry is the limited lifetime of flash memories: it

is found that after a certain number of erasing, typical quoted at 104 to 105 depending on

the specific device, the performance of flash memories becomes unreliable [13] e.g., bits in

a flash chip will fail. Therefore, one research area of flash memories (e.g., [35, 72, 71]) is

to treat flash memories as the memories with the charge level can only be increased, which

is the well-known Write-Once Memories, or WOM [61]. Theoretical work on WOM can
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be found in [26, 25, 33].

Rank Modulation (RM) codes [36] are proposed in the context of flash memories to

eliminate mainly the overshooting problem, and they can be applied to other nonvolatile

memories, such as Phase Change Memories. Besides eliminating the overshooting prob-

lem, RM has other advantages such as a faster programming speed and a better reliability.

Contrary to the MLC scheme, data of RM is represented not by the charge level but by

the permutation induced by n cells’ charge levels. Let Sn denote the set of n! permutations

over {1, 2, ..., n}. n cells’ charge levels, cn def
= (c1, ..., cn) ∈ Rn, induce a permutation

a ∈ Sn in the following way: the induced permutation is a def
= (a1, a2, ..., an) ∈ Sn if and

only if ca1 > ca2 > ... > can , i.e., cell a1 has the highest charge level, and cell an has the

lowest charge level. In this way, no discrete levels are needed (i.e., no need for threshold

levels), thus it eliminates the overshooting problem.

Supposing a RM scheme represents any data of D = {1, 2, ..., D}, the decoding func-

tion, d : Sn → D, is to map the given permutation a ∈ Sn to data x ∈ D. The rewriting

function, r : Sn × D → Sn, is defined as given the current permutation a ∈ Sn and data

to rewrite x ∈ D, we are seeking b = r(a, x) ∈ Sn such that d(b) = x. The decoding

performance is done by a charge-comparing operation to obtain the permutation and by

the mapping function. The rewriting performance can be done by various ways, e.g., by

a series of push-to-the-top [36] operations (raising the charge level of one cell above the

current highest one).

In this work, we propose a generalization of RM, Compressed Rank Modulation (CRM)

scheme, where the similar idea was independently presented by E. En Gad et al. [29]. For

RM, in order to tolerate noise, there is a sufficiently large gap between every two analog

charge levels, and thus it constraints its capacity since every rank has one cell. This moti-

vates us to study CRM, where we let multiple cells share the same rank to achieve a higher

capacity, and meanwhile it maintains the advantages of RM.
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We first define the following terms. For m,n ∈ N, [n] is defined as the set {1, 2, ..., n},

and if m > n, [n,m] is defined as the set {n, n+ 1, ...,m}. Smn is the (mn)! permutations

over [mn]. Given a vector mn def
= (m1,m2, ...,mn) ∈ Nn and N =

n∑
i=1

mi, we define

Smn as the set {(s1, s2, ..., sn)|si = {si,1, ..., si,mi} ⊂ {1, 2, ..., N}, si
⋂
sj = ∅ for i 6=

j, and
n⋃
i=1

si = {1, 2, ..., N}}. When m1 = m2 = ... = mn = m, Smn is denoted

as Sn,m. For example, S2,2 = {({1, 2}, {3, 4}), ({1, 3}, {2, 4}), ({1, 4}, {2, 3}), ({2, 3},

{1, 4}), ({2, 4}, {1, 2}), ({3, 4}, {1, 2})}.

We define CRM as follows: givenN =
n∑
i=1

mi cells, denoted as 1, 2, ..., N , their charge

levels, cN def
= (c1, c2, ..., cN) ∈ RN , and a permutation a = (a1, ..., an) ∈ Smn , cN induces

a if and only if ca1,j1 > ca2,j2 > ... > can,jn for j1 ∈ [m1], j2 ∈ [m2], ..., jn ∈ [mn], i.e.,

the first m1 highest charge level cells are in a1, the next m2 highest charge level cells are

in a2, and the last mn highest charge level cells are in an. For example, if let the charge

levels of 4 cells be (3.04, 2.56, 0.98, 2.96) and mn = (2, 2), then the induced permutation

is ({1, 4}, {2, 3}) ∈ S2,2.

The decoding performance of CRM is similar to that of RM, that is though charge-

comparing operations. The rewriting performance is not by the push-to-the-top operations

but by the minimal-push-up operations, which is first presented in [46], to obtain a longer

lifetime. In order to better understand it, we define virtual level and rewriting cost as

follows.

As mentioned, there is no need to quantize continous cell levels for CRM, which makes

it safe for overshooting, however, also makes it hard for theoretical analysis. In order to

allow easy and fair analysis, we use the virtual level concept similar to [38], which is

formally defined as follows.

Given a permutation u = (u1, ...,un) ∈ Smn with N =
n∑
i=1

mi, the virtual level of u,

lN , is a vector (l1, ..., lN) ∈ NN that satisfies the following conditions:
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• ∀1 ≤ i ≤ n and j1, j2 ∈ ui we have lj1 = lj2;

• ∀1 ≤ i1 < i2 ≤ n, j1 ∈ ui1 and j2 ∈ ui2 , we have lj1 > lj2 .

Besides the two conditions, the following condition is required rewriting u to v:

• Given a permutation v ∈ Smn representing data to rewrite, its virtual level, l′N =

(l′1, ..., l
′
N), should not decrease, i.e., l′i ≥ li for i ∈ [N ].

The basic operation of changing u to v is a push-up: for cell i with rank k, i ∈ uk, the

push-up operation over i is to make its charge level higher than that of all other mk − 1

cells in uk. Our objective is to increase the highest charge level or virtual level as few as

possible to obtain a longer lifetime.

With this purpose, we define rewriting cost from u to v, C(u→ v), as min
l′N ,lN
{max
i∈[N ]

l′i −

max
i∈[N ]

li}, where l′N and lN are virtual levels of v and u, respectively. For easy and fair

analysis, we assign the virtual level of u by letting n, n − 1, ..., 1 to u1,u2, ...,un. The

virtual level of v is determined as arg min
l′N
{max
i∈[N ]

l′i − n}. Minimal-push-up operations are

the push-up operations that achieve rewriting cost.

The following example makes the above notions more concrete:

Example 9. Let mn = (3, 2, 1), two permutations are u = ({1, 2, 3}, {4, 5}, {6}) and

v = ({1, 3, 6}, {2, 5}, {4}). Let us consider the virtual levels of u and v that achieve

C(u → v). We assign the virtual level of u as (3, 3, 3, 2, 2, 1), and the virtual level of v

can be assigned as (4, 3, 4, 2, 3, 4), (5, 3, 5, 2, 3, 5) or others satisfying its definition. It is

easy to verify that (4, 3, 4, 2, 3, 4) is the one making C(u→ v) = 1.

The remaining of this work is structed as follows: in Section 4.2, the programming

method with the minimal cost and the closed-form formula for rewriting cost are presented;

in Section 4.3, the incoming ball size and the outgoing ball size over Sn,m are presented; in
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Section 4.4, asymptotical rate analysis of rewriting codes and an optimal code construction

are presented; the conclusion is obtained in Section 4.5.

4.2 Rewriting Data with Minimal Cost

In this section, we present the way to program from u to v such that push-up operations

are minimal-push-up operations, and the closed-form formula to compute rewriting cost

from the given permutations directly.

4.2.1 Minimal-push-up operations

Given two permutations u,v ∈ Smn with mn = (m1,m2, ...,mn) and N =
n∑
i=1

mi, we

first present the way to program from u to v such that push-up operations are minimal-

push-up operations.

Let u = (u1,u2, ...,un), i ∈ [n] and j ∈ [mi], u(i, j)
def
= arg mink{|{v|v ∈ ui, v =

1, 2, ..., k}| = j}. That is, u(i, j) is the function to obtain the index of the cell, which is the

jth (in lexical order) among the ith rank cells of u. For example, let u = ({1, 2, 3}, {4, 5}, {6}),

then u(2, 2) = arg mink{|{v|v ∈ u2, v = 1, 2, ..., k}| = 2}, which is 5.

Reversely, let i ∈ [N ], and u−1(i) be the function to obtain the rank of cell i in u such

that i ∈ uu−1(i).

According to the definition, the virtual level of cell u(i, j), lu(i,j) for i ∈ [n] and j ∈

[mi], of u is determined as follows:

for i = 1, 2, ..., n do:

for j = 1, 2, ...,mi do:

lu(i,j) ← n+ 1− i.

Then, we program u to v rank by rank, from rank n to rank 1, and an example is shown

in Figure 4.1 to illustrate the programming process.

We first identify the virtual level of the nth rank cells in v, lv(n,i) for i ∈ [mn]:

for i = 1, 2, ...,mn do:
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Figure 4.1: An example of programming from u = ({1, 2, 3}, {4, 5}, {6}) to v =

({1, 3, 6}, {2, 5}, {4}) via minimal-push-up operations.

lv(n,i) ← max
j∈[mn]

lv(n,j).

That is, the virtual level of the rank n cells in v is the highest virtual level of those cells

of u, which rank n in v. For example, in Figure 4.1, lv(3,1) = l4 = 2.

We next identify the rest cell virtual levels:

for i = n− 1, n− 2, ..., 1 do:

for j = 1, 2, ...,mi do:

lv(i,j) ← max{lv(i+1,j) + 1, lv(i,j)}.

That is, if the virtual level of one cell is already higher than that of the next rank cells, it

should stay at its original virtual level (e.g., cell 2 in Figure 4.1), otherwise the virtual level

has to be higher than that of the next rank cells by 1 (e.g., cell 1, 3, 5, and 6 in Figure 4.1).

The fact that the above programming process is minimal-push-up operations can be

proved briefly as follows. It is easy to obtain that to minimize the increase of lv(1,j1), we
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have to minimize that of lv(2,j2) and lv(3,j3), ..., lv(n,jn) for j1 ∈ [m1], j2 ∈ [m2], ..., jn ∈

[mn] since lv(1,j1) > lv(2,j2) > ... > lv(n,jn). Thus the push-up operations minimizing the

increase of lv(i,j) for i ∈ [n] and j ∈ [mi], which is a greedy approach, are minimal-push-

up operations.

4.2.2 The closed-form formula for rewriting cost

Next, we present the closed-form formula to compute rewriting cost directly from the

given permutations.

According to the presented programming process, we have C(u → v) = lv(1,i) − n.

The next theorem presents that C(u → v) can be obtained directly from u and v, instead

of their virtual levels. It is actually an extention of Theorem 1 in [46], but for completeness

we present its proof here:

Theorem 10. C(u→ v) = max
k∈[1,n],j∈[mk]

(k − u−1(v(k, j))).

Proof. First, we prove by induction on i that lv(i,j) is

n+ 1− i+ max
k∈[i,n],l∈[mk]

(k − u−1(v(k, l))).

The base case is i = n. Based on the programming process, we know lv(n,j) = max
l∈[mn]

lv(n,l),

which is n+ 1− n+ max
l∈[mn]

(n− u−1(v(n, l))) according to the fact that lu(i,j) = n+ 1− i.

Thus, the assumption for the base case is correct.

Now, we assume it is correct for i = h, and we are proving the case for i = h− 1.

lv(h−1,j) = max{lv(h,j) + 1, lv(h−1,j)}

= max{n+ 1− (h− 1) + max
k∈[h,n],l∈[mk]

(k − u−1(v(k, l))), n+ 1− u−1(v(h− 1, j))},
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where the first equation is based on minimal-push-up operations; the second equation is

by the assumption when i = h and substituting lv(h−1,j) by its original virtual level in u,

n+ 1− u−1(v(h− 1, j)).

Then, we proceed as:

= n+ 1− (h− 1) + max{ max
k∈[h,n],l∈[mk]

(k − u−1(v(k, l)), h− 1− u−1(v(h− 1, j))}

= n+ 1− (h− 1) + max
k∈[h−1,n],l∈[mk]

(k − u−1(v(k, l))),

thus the conclusion about lv(i,j) is correct.

Therefore,

C(u→ v) = lv(1,i) − n = max
k∈[n],l∈[mk]

(k − u−1(v(k, l))).

From the above theorem, we know that C(u→ v) is equal to the maximal rank increase

of cells from u to v, and that C(u→ v) ∈ [n− 1].

Given u ∈ Smn , v ∈ Sm′n with mn 6= m′n and N =
n∑
i=1

mi =
n∑
i=1

m′i, we now

generalize the above results to the rewriting case from u to v, which will be used in the

next section.

After applying virtual levels to u and v, rewriting cost C(u → v) is still defined as

arg min
l′N
{max
i∈[N ]

l′i − n} with the objective to increase the highest virtual level as few as

possible, where l′N is the virtual level for v. Extending notations of index function as

well as its inverse function to u and v, we obtain that minimal-push-up operations are

lv(i,j) = max{lv(i+1,j1) + 1, lv(i,j)} for i ∈ [n], j1 ∈ [m′i+1] and j ∈ [m′i]. Using the skill
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similar to Theorem 10, we obtain that C(u→ v) = max
k∈[n],l∈[m′k]

(k − u−1(v(k, l))).

4.3 Analyzing Ball Sizes for Rewriting Codes

In this section, we present the exact number of permutations that ∀u ∈ Sn,m can be

programmed to (reps. from) v ∈ Sn,m with rewriting cost constraint r.

Given u ∈ Sn,m and r ∈ [n − 1], we define the outgoing ball (reps. the incoming

ball) centered at u with radius r as B(out)
m,n,r(u) = {v ∈ Sn,n|C(u → v) ≤ r} (reps.

B(in)
n,m,r(u) = {v ∈ Sn,m|C(v→ u) ≤ r}).

The following theorem presents us the size of an outgoing ball over Sn,m using com-

binatorial skills, and it is worthy to note that E. En Gad et al. [29] derived the same result

independently using the induction method.

Theorem 11. |B(out)
n,m,r(u)| =

(
(r+1)m
m

)n−r (rm)!
m!r

.

Proof. We list B(out)
n,m,r(u) by the following steps, and we use the example of Figure 4.2 to

illustrate it.

(a) Given ∀(l1, l2, ..., lr+1) ∈ Nr+1 such that
r+1∑
i=1

li = m, program li cells of u1 to rank

i (i ∈ [2, r + 1]) obtaining a cell state a ∈ Smn , where mn = (l1,m + l2, ...,m +

lr+1,m, ...,m). A def
= {a} ⊂ Smn .

(b) ∀a ∈ A and u2, ...,un, define u′ = (u′1, ...,u
′
n−1) ∈ Sn−1,m with u′i = ui+1 (i ∈

[n − 1]) as the set of permutations over
⋃n
i=2 ui. Recursively, program u′ to v′ =

(v′1,v
′
2, ...,v

′
n−1) ∈ Sn−1,m such that C(u′ → v′) ≤ r.

With v′ ∈ Sn−1,m, the obtained cell state, b ∈ Smn , consists of v′, with b−1(v′(i, j)) =

i + 1 for i ∈ [n − 1] and j ∈ [m], and u1 with b−1(i) = a−1(i) for i ∈ u1, where

mn = (l1,m+ l2, ...,m+ lr+1,m, ...,m). B def
= {b} ⊂ Smn .

(c) ∀b ∈ B with its corresponding v′ specified in (b), program li cells of v′i−1 for i ∈

[2, r + 1] to rank 1 obtaining a cell state c ∈ Sn,m. C def
= {c} ⊂ Sn,m.
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Figure 4.2: An example for the outline of Theorem 11: Given u = ({1, 2}, {3, 4}, {5, 6})

∈ S3,2 where cells in the same row are in the same rank, we list all v ∈ S3,2 satisfying

C(u → v) ≤ 1. (a) ((1) → (2)): program some cells of rank 1 to rank 2, and there are

four possible ways; (b) ((2) → (3)): cell 3, 4, 5, and 6 in u can be regarded as u′ =

({3, 4}, {5, 6}) ∈ S2,2. For each cell state in (2), recursively, we program u′ to v′ ∈ S2,2

such that C(u′ → v′) ≤ 1 and keep the remaining cell ranks still; (c) ((3)→ (4)): after (b)

the cell states are not valid permutations of S3,2, e.g., ({2}, {1, 3, 4}, {5, 6}), thus cells of

rank 2 are programmed to the rank 1 to make it a valid permutations of S3,2, e.g., cell 3 and

cell 4 in ({2}, {1, 3, 4}, {5, 6}) are programmed to rank 1 forming ({2, 3}, {1, 4}, {5, 6})

and ({2, 4}, {1, 3}, {5, 6}), respectively.
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We are proving C = B(out)
n,m,r(u), compute |C|, thus |C| = |B(out)

n,m,r(u)|.

Fist, based on the outline, ∀c ∈ C, C(u→ c) ≤ r since any cell rank of c is increased

by r at most. Therefore c ∈ B(out)
n,m,r(u), C ⊆ B(out)

n,m,r(u) and |C| ≤ |B(out)
n,m,r(u)|.

Second, we will prove B(out)
n,m,r(u) ⊆ C.

Define the following two terms:

• The set of hybrid states

The set of hybrid states of u,v ∈ Sn,m is denoted as Sh(u,v) ⊆ Smn , where mn =

(m −
n∑
i=2

ni,m + n2, ...,m + nn) and ni = |{v(i, g)|v(i, g) = u(1, j) for g, j ∈ [m]}| for

i ∈ [2, n].

Given u and v, ∀m ∈ Sh(u,v) can be specified via its ranks, m−1(i) for i ∈ [mn], as

follows:

for i = 1, 2, ...,mn do:

if i = u(1, j) = v(h, g) for j, g ∈ [m], and h ∈ [n], m−1(i)← h.

else if i = u(h, g) for h ∈ [n] and g ∈ [m], m−1(i)← h.

That is, m is obtained by programming cells of u1 to their ranks in v, and keeping the

remaining cell ranks still. For example, the state of (2) in Figure 4.3 is the hybrid state of

u and v.

Clearly, m is uniquely determined by v and u, thus |Sh(u,v)| = 1.

Furthermore, given ∀v ∈ B(out)
n,m,r(u), Sh(u,v) ⊆ A since the cell ranks of u1 are

increased by r at most.

• The set of near destination states

The set of near destination states from u′ ∈ Smn to v ∈ Sn,m with r ∈ [n− 1] is denoted

as Sn(u′,v, r), where mn = (m−
n∑
i=2

ni,m+n2, ...,m+nn) and ni = |{v(i, g)|v(i, g) =

u(1, j) for g, j ∈ [m]}| for i ∈ [2, n].
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Given u′,v and r, ∀m ∈ Sn(u′,v, r) can be specified via its ranks, m−1(i) for i ∈

[mn], as follows:

for i = 1, 2, ...,mn do:

if i = u′(1, h) = v(1, g) for h ∈ [m−
n∑
i=2

ni] and g ∈ [m], m−1(i)← 1.

if i = v(h, g) for h ∈ [2, n] and g ∈ [m], m−1(i)← h.

else if i = u′(h, g) for h ∈ [n] and g ∈ [m+ nh], m−1(i)− h ≤ r.

That is, m is obtained by programming cells, which are in u′1 as well as in v1 (e.g. cell

12 in Figure 4.3 if u′ is the permutation of (2)), and cells of vi for i ∈ [2, n] (e.g. cell 10,

1, 2, 5, 11, 6, 3, 4, 7 in Figure 4.3), to their ranks in v, and increasing the remaining cells

(which are not in u′1 but in v1, e.g. cell 8, 9 in Figure 4.3) by r at most. For example, both

states of (3) in Figure 4.3 are near destination states from u′ to v with parameter 2.

Let ki = |{u′(i, j)|v(1, l) = u′(i, j) for j ∈ [m + ni], l ∈ [m]}| for i ∈ [r + 1], that is

among the m cells in v1, the numbers of cells from u′i for i ∈ [r + 1] are k1, k2, ..., kr+1,

respectively. Thus |Sn(u′,v, r)| =
(

m−k1
k2,k3,...,kr+1

)
. For example, in Fig. 4.3, let u′ be the

state of (2), |Sn(u′,v, 2)| = 2.

For ∀w ∈ Sn(Sh(u,v),v, r), it is easy to obtain that for i ∈ u1, w−1(i) = v−1(i), that

is the cell ranks of u1 are the same in w and v. Therefore, the permutations obtained by

applying (b) on Sh(u,v) must contain w. Thus Sn(Sh(u,v),v, r) ⊆ B.

Given ∀v ∈ B(out)
n,m,r(u), v can be obtained by first programming u to Sh(u,v), Sh(u,v)

to ∀w ∈ Sn(Sh(u,v),v, r), and w to v. The example of Fig. 4.3 makes this process

more concrete. Since Sh(u,v) ⊆ A, and Sn(Sh(u,v),v, r) ⊆ B, obtain that v ∈ C,

B(out)
n,m,r(u) ⊆ C, and |B(out)

n,m,r(u)| ≤ |C|.

Finally, we compute |C|.

First, consider permutations without duplications.

For (a), let the numbers of cells in u1 programmed to the 1st, the 2nd,..., the (r + 1)th
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Figure 4.3: An example of changing u to v in three steps, where r = C(u→ v) = 2. The

state of (2) is the hybrid state of u and v, and two states of (3) are near destination states

from the state of (2) to v with parameter 2.

ranks be l1, l2, ..., lr+1, respectively, thus |A| =
∑

l1+...+lr+1=m

(
m

l1,l2,...,lr+1

)
.

For (b), |B| =
∑

l1+...+lr+1=m

(
m

l1,l2,...,lr+1

)
|B(out)

n−1,m,r|.

For (c), rank i has
(
m
li

)
ways to select and program cells to the 1st rank, thus the result

is ∑
l1+...+lr+1=m

(
m

l1, ..., lr+1

)(
m

l2

)
...

(
m

lr+1

)
|B(out)

n−1,m,r|.

Next, we consider duplicated permutations in our scheme: duplications come from

multiple near destination states, the number of which equals to
(

m−l1
l2,l3,...,lr+1

)
for each com-

bination of l1, l2, ..., ln.

Thus, |B(out)
n,m,r(u)| can be written as

∑
l1+...+lr+1=m

(
m

l1,...,lr+1

)(
m
l2

)
...
(
m
lr+1

)(
m−l1

l2,...,lr+1

) |B(out)
n−1,m,r(u2..un)|
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=
∑

l1+...+lr+1=m

(
m

l1

)
...

(
m

lr+1

)
|B(out)

n−1,m,r|

=

(
(r + 1)m

m

)
|B(out)

n−1,m,r|

=

(
(r + 1)m

m

)n−r
(rm)!

m!r
,

where the first equation holds by simple recursive calculations, the second equation holds

by the fact that
∑

l1+...+lr+1=m

(
m
l1

)
...
(
m
lr+1

)
equals to the coefficient of xm in ((1 + x)m)r+1,

which is
(
(r+1)m
m

)
, and the last one is because |B(out)

r,m,r(...)| = |B(out)
r,m,r−1(...)| =

(rm)!
m!r

.

Similarly, we have:

Lemma 12. |B(in)
n,m,r(u)| =

(
(r+1)m
m

)n−r (rm)!
m!r

.

4.4 Rewriting Codes with Bounded Cost

In this section, we study codes where the cost of the rewriting operation is limited by

r. We present three rewriting codes, we study one rewriting code in detail including its

asymptotical rate analysis and one code construction, and the skills can be extent to two

other variants easily. For simplicity, the analysis is mainly focus on Sn,m.

4.4.1 (n,m,M, r) rewriting codes

Denote a code in Sn,m with rewriting cost r and cardinalityM as an (n,m,M, r) code,

and we formally define it as follows:

Definition 13. An (n,m,M, r) rewriting code for CRM, where r ∈ [n−1], is a collection

of subsets B = {Bi|i ∈ [M ]} where Bi ⊆ Sn,m, and it represents data i, such that

• Bi
⋂
Bj = ∅ for i 6= j, and

M⋃
i=1

Bi = Sn,m.

• ∀u ∈
M⋃
i=1

Bi, and ∀j ∈ [M ], ∃v ∈ Bj such that C(u→ v) ≤ r.
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• ∀u ∈
M⋃
i=1

Bi, and ∀j ∈ [M ], ∃v ∈ Bj such that C(v→ u) ≤ r.

That is, we partition Sn,m into M disjoint sets, each set represents data, and every

permutation can be programmed to and from some permutation of any set Bi for i ∈ [M ]

with the cost constraint r. Construction 1 of this subsection presents us an example of

(3, 2, 30, 1) code.

The reason that we use set Bi to represent data i is to increase the possibility that such

permutation with the cost constraint r can be found during rewriting.

According to the definition, we know that for ∀u ∈ Sn,m every Bi contains at least one

element of B(out)
n,m,r(u) as well as that of B(in)

n,m,r(u), thus we have the following corollary

immediately:

Corollary 14. For (n,m,M, r) code, M ≤ |B(out)
n,m,r(u)| and M ≤ |B(in)

n,m,r(u)|.

4.4.1.1 Asymptotical rate analysis

The rate of the (n,m,M, r) code is defined as R = log2M
nm

, and its asymptotical rate,

denoted as storage capacity,R(n, r), is defined asR(n, r) = lim
m→∞

log2M
nm

.

Let two random variables X, Y ∈ [n], PXY , PX and PY |X denote the joint, marginal

and conditional distribution, respectively. If X is uniformly distributed in the set [n], we

denote it as X ∼ U(1, n). We define a joint probability distribution set with parameters r

and n, P(n, r) = {PXY |PX = PY , X ∼ U(1, n), P (Y |X) = 0 if |Y −X| ≥ r + 1}. For

example, the following probability transition matrix

P =



1 2 3

1 2/9 1/9 0

2 1/9 1/9 1/9

3 0 1/9 2/9
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gives us an element of P1,3, where every entry pij stands for P (X = i, Y = j).

The next lemma derives the characterization for R(n, r), and its proof uses the skill

similar to [2, 3].

Lemma 15. R(n, r) = max
PXY ∈P(n,r)

H(Y |X).

Proof. First, we list some notations and one property of typical sequences, and for more

details please refer to [16].

Let xn be a sequence with n elements drawn from the alphabet X . Define the type of

xn by π(x|xn) = |{i|xi=x}|
n

. Suppose the distribution of elements in X is P (X ), denote it

as X ∼ P (X ), and the set T nPX of n-sequence with type X ∼ P (X ) is defined as,

T nPX = {xn|π(x|xn) = P (x),∀x}.

Let (xn, yn) be a pair of sequences with elements drawn from alphabets (X ,Y). Define

their joint type: π(x, y|xn, yn) = |{i|(xi,yi)=(x,y)}|
n

for (x, y) ∈ X × Y . We denote

T nPXY (xn) = {yn|π(x, y|xn, yn) = P (x, y),∀(x, y)}.

The following property is useful:

(n+ 1)−|X ||Y|2nH(Y |X) ≤ |T nPXY (xn)| ≤ 2nH(Y |X). (4.1)

For convenience, given ∀u ∈ Sn,m, write it as amn sequence, that is u = (u−1(1), · · · ,

u−1(mn)).

Now, we formally prove Lemma 15 as follows:
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Proof of the direct part

∀u ∈
M⋃
i=1

Bi, we have M ≤ |B(out)
n,m,r(u)| according to corollary 14, and thus R ≤

log2 |B
(out)
n,m,r(u)|
mn

.

Let Q be some joint probability distribution of X, Y ∈ [n], and it has a marginal

distribution PX . Define T mnQ (u) = {v ∈ Sn,m|Pu,v = Q} for u ∈ Sn,m, where Pu,v

denotes the joint type of u and v.

Consider the following set of joint types P(out)(u,v) = {Pu,v|v ∈ B(out)
n,m,r(u)}. Define

the following set of joint types P(out)(n, r) = {PXY |PX = PY , X ∼ U(1, n), P (Y |X) =

0 if Y −X ≥ r + 1}. Clearly, P(n, r) ⊂ P(out)(n, r).

• Now, we prove that P(out)(u,v) = P(out)(n, r).

First, given u ∈ Sn,m and ∀v ∈ B(out)
n,m,r(u), consider Pu,v. According to the definition

of Sn,m, the marginal distributions of Pu,v, PX , PY , satisfy PX = PY and X ∼ U(1, n).

Based on v ∈ B(out)
n,m,r(u) and Theorem 11, we conclude that P (Y |X) = 0 if Y −X ≥ r+1.

Therefore, Pu,v ∈ P(out)(n, r) and P(out)(u,v) ⊆ P(out)(n, r).

Next, given ∀Q ∈ P(out)(n, r), and u ∈ Sn,m, consider the typical sequence with joint

type Q, T mnQ (u). Based on PX = PY , X ∼ U(1, n), we obtain that T mnQ (u) ∈ Sn,m

according to the definition of Sn,m. According to P (Y |X) = 0 if Y − X ≥ r + 1,

T mnQ (u) ∈ B(out)
n,m,r(u) based on Theorem 11. Thus Q ∈ P(out)(u,v) and P(out)(n, r) ⊆

P(out)(u,v). �

Now, we partition B(out)
n,m,r(u) as follows:

B(out)
n,m,r(u) =

⋃
Q∈P(out)(n,r)

(B(out)
n,m,r(u) ∩ T mnQ (u)).

Since the total number of the joint types among T mnQ (u) is up bounded by (mn + 1)n
2

[16], and the size of each joint type is up bounded by 2
mnmax

P ′∈P(out)(n,r)
H(Y |X) according
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to (4.1), we obtain that

|B(out)
n,m,r(u)| ≤ (mn+ 1)n

2

2
mnmax

P ′∈P(out)(n,r)
H(Y |X)

.

That is,

R ≤ log2 |B
(out)
n,m,r(u)|
nm

≤ n2 log2mn+ 1

mn
+ max

P ′∈P(out)(n,r)
H(Y |X). (4.2)

On the other hand, ∀u ∈
M⋃
i=1

Bi, we have M ≤ |B(in)
n,m,r(u)| based on corollary 14, thus

R ≤ log2 |B
(in)
n,m,r(u)|
mn

. Similarly, we consider the following set of joint types P(in)(u,v) =

{Pu,v|v ∈ B(in)
n,m,r(u)} = P(in)(n, r)

def
= {PXY |PX = PY , X ∼ U(1, n), P (Y |X) =

0 if X − Y ≥ r + 1}. Clearly, P(n, r) ⊂ P(in)(n, r).

Using the same technique as above, we can obtain that

R ≤ log2 |B
(in)
n,m,r(u)|
nm

≤ n2 log2mn+ 1

mn
+ max

P ′∈P(in)(n,r)
H(Y |X). (4.3)

By (4.2) and (4.3), we know that

R ≤ n2 log2mn+ 1

mn
+ max

P∈P(n,r)
H(Y |X).

Proof of the converse part

We prove this part by a random code construction.

• We first prove that random codes satisfying the first two conditions of (n,m,M, r)
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codes exist.

Now label the elements of Sn,m independently and uniformly with probability 1/M using

one of the numbers 1, 2, ...,M . The elements labeled with i form the set Bi. M will be

determined below.

We first calculate the probability Pr(u, i) that for a fixed u there does not exist a

v ∈ Bi ∩ B(out)
n,m,r(u).

Clearly,

Pr(u, i) = (1− 1

M
)|B

(out)
n,m,r(u)|.

Then, the probability that we do not have such random code satisfying the first two condi-

tions of (n,m,M, r) code is
∑

u∈Sn,m

M∑
i=1

Pr(u, i), which is

∑
u∈Sn,m

M∑
i=1

Pr(u, i) = |Sn,m|M(1− 1

M
)|B

(out)
n,m,r(u)| ≤ 1,

if M ≤ (2 log2 |Sn,m|)−1|B
(out)
n,m,r(u)|.

With the same skill of partitioning B(out)
n,m,r(u), we obtain that |B(out)

n,m,r(u)|

= |
⋃

Q∈P(out)(n,r)

B(out)
n,m,r(u)

⋂
T mnQ (u)|

≥ max
Q∈P(out)(n,r)

2mnH(Y |X)(mn+ 1)−n
2

,

based on (4.1), thus we can choose M such that

1

nm
log2M ≤ max

Q∈P(out)(n,r)
H(Y |X)− n log2mn+ 1

m
, (4.4)
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and in this case we make sure that there exists random code satisfying the first two condi-

tions of (n,m,M, r) codes. �

By using similar techniques, we can choose M such that

1

nm
log2M ≤ max

Q∈P(in)(n,r)
H(Y |X)− n log2mn+ 1

m
, (4.5)

in which case we assure that there are random codes satisfying the first and the third

condition of (n,m,M, r) codes.

Thus, according to (4.4) and (4.5) we can choose M such that

1

nm
log2M ≤ max

Q∈P(n,r)
H(Y |X)− n log2mn+ 1

m
.

to make sure there are random codes satisfying all three conditions of (n,m,M, r) codes.

Note that the same skill to obtain (4.2) and (4.4) can be used to prove part of Lemma

22, and the skill to obtain (4.3) and (4.5) can be applied to part of Lemma 20.

The next lemma presents us the exact value ofR(n, r), where the matrixA def
= [ai,j]n×n,

ai,j = 1 if |i − j| ≤ r, and 0 otherwise, and λA is the largest eigenvalue of the matrix A.

The proof skills are similar to those of [2, 40], which can be applied to remaining parts of

Lemma 22 and Lemma 20. Figure. 4.4 presents us a surface plot ofR(n, r) for n, r ∈ [50].

Lemma 16.

R(n, r) = log2 λA.

Proof. Let (X, Y ) be a pair of random variables with PXY ∈ P(n, r). For i, j ∈ [n],

denote Pr(X = i, Y = j) = qij , Pr(X = i) = pi, and Pr(Y = j|X = i) = wij . Then

qij = pi · wij , and W = [wij]n×n is a stochastic matrix.
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Figure 4.4: Surface plot ofR(n, r) for n, r ∈ {1, 2, ..., 50}.

According to lemma 15,R(n, r) can be written down as the following form:

max : −
n∑
i=1

∑
j:|j−i|≤r

qij log2(qij/
∑

j:|j−i|≤r

qij),

s.t. : qij ≥ 0, for j : |j − i| ≤ r and i ∈ [n],

qij = 0, for j : |j − i| ≥ r + 1 and i ∈ [n],
n∑
i=1

∑
j:|j−i|≤r

qij = 1,

n∑
i=1

qij =
∑

i:|j−i|≤r

qji =
1

n
, j ∈ [n]. (4.6)

We solve this via Lagrange multiplier function:

L(qij, j : |j − i| ≤ r, i ∈ [n]; s; t1, ..., tn)
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= −
n∑
i=1

∑
j:|j−i|≤r

qij log2(qij/
∑

j:|j−i|≤r

qij)

+ s
n∑
i=1

∑
j:|j−i|≤r

qij +
n∑
j=1

tj(
n∑
i=1

qij −
∑

i:|j−i|≤r

qji).

Thus, we get
∂L

∂qij
= − log2wij − µ+ tj − ti = 0,

where µ = (ln 2)−1[
n∑
i=1

(|{j : |i− j| ≤ r}| − n)]− s.

Then,

wij = 2tj−ti−µ, for j: |j − i| ≤ r, and i ∈ [n]. (4.7)

Since
∑

j:|j−i|≤r
wij = 1 for i ∈ [n], we have

∑
j:|j−i|≤r

2tj = 2µ2ti , for i ∈ [n], (4.8)

and

wij =
2tj∑

l:|l−i|≤r
2tl

for j : |j − i| ≤ r and i ∈ [n].

We interpret eq. (4.8) as indicating that {2ti} is an eigenvector of the matrix A =

[ai,j]n×n, where ai,j = 1 if|j − i| ≤ r and 0 otherwise, thus 2µ is the eigenvalue corre-

sponding to {2ti}.

The fact thatW = [wij]n×n is a stochastic matrix implies that ( 1
n
, ..., 1

n
) is its stationary

distribution, which is actually pi. This ensures that eq.(4.6) can be satisfied.

Substituting eq. (4.7) into the objective function and by simple arithmetic calculations,

we obtain that

−
n∑
i=1

∑
j:|j−i|≤r

qij log2(qij/
∑

j:|j−i|≤r

qij) = log2 2µ.
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4.4.1.2 Code construction for n = 3,m = 2, and r = 1

Given u,v ∈ Sn,m and the cost constraint r, u dominates v if C(v → u) ≤ r. Given

a set C ⊆ Sn,m and a u ∈ Sn,m if ∃v ∈ C such that u dominates v, then u dominates C.

C ⊆ Sn,m is a dominating set if ∀u ∈ Sn,m,∃v,w ∈ C such that u dominates v and w

dominates u. Our goal is to divide Sn,m into the maximal number of disjoint dominating

sets. In the following, we write a permutation of Sn,m as that of Snm, e.g., we write

({1, 2}, {3, 4}) as (1234).

Construction 17. Divide the 90 codes of S3,2 into 30 sets of 3 codes each, where each set is

a coset of 〈(135)(246)〉, the cyclic group generated by (135)(246), e.g., (123456), (345612)

and (561234) is a cyclic group. Map each set to a different symbol.

Theorem 18. Code construction 17 is optimal.

Proof. Let g = (135)(246) and G = 〈g〉 = {g0, g1, g2}, where g0 = I is the identical

permutation. ∀u ∈ S3,2, uG
def
= {ug0,ug1,ug2} is the set of codes.

First, we prove that uG is a dominating set. Denote uG = {x,y, z}, then x3,y3, z3

forms a partition of {1, 2, ..., 6}. Thus ∀v ∈ S3,2, ∃w ∈ uG such that v3

⋂
w3 6= ∅, then

v dominates wg or w.

Similarly, ∀v ∈ S3,2, ∃w ∈ uG such that v1

⋂
w1 6= ∅, then v is dominated by wg or

w. This finishes the dominating set proof.

|B(in)
3,2,1(u)| = 36, thus the dominating set size should be at least b90

36
c = 3. Therefore

the code is optimal.

4.4.2 Two variants of (n,m,M, r) codes

In this subsection, we present two variants of worst case rewriting codes including

their definitions, storage capacity characterizations, and their exact values. Since the cor-
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responding proofs are exactly the same as subsection A of section 4.4, we omit them.

4.4.2.1 Variant one

Denote a code in Sn,m with rewriting cost r and cardinality M as an (n,m,M, r)(in)

code, and we formally define it as follows:

Definition 19. An (n,m,M, r)(in) rewriting code for CRM, where r ∈ [n − 1], is a col-

lection of subsets B = {Bi|i ∈ [M ]} where Bi ⊆ Sn,m, and it represents data i, such

that

• Bi
⋂
Bj = ∅ for i 6= j, and

M⋃
i=1

Bi = Sn,m.

• ∀u ∈
M⋃
i=1

Bi, and ∀j ∈ [M ],∃v ∈ Bj such that C(v→ u) ≤ r.

That is, we partition Sn,m into M disjoint sets, each set represents data, and every

permutation can be programmed from some permutation of any set Bi for i ∈ [M ] with the

cost constraint r.

The rate of the (n,m,M, r)(in) code is defined as R(in) = log2M
nm

, and its storage ca-

pacity,Rin(n, r), is defined asR(in)(n, r) = lim
m→∞

log2M
nm

.

A(in) def
= [a

(in)
i,j ]n×n, a(in)i,j = 1 if i − j ≤ r, and 0 otherwise, and λA(in) is the largest

eigenvalue of the matrix A(in). The following lemma presents us the characterization and

the exact value ofRin(n, r).

Lemma 20. R(in)(n, r) = max
PXY ∈P(in)(n,r)

H(Y |X) = log2 λA(in) .

4.4.2.2 Variant two

Denote a code in Sn,m with rewriting cost r and cardinality M as an (n,m,M, r)(out)

code, and we formally define it as follows:
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Definition 21. An (n,m,M, r)(out) rewriting code for CRM, where r ∈ [n − 1], is a

collection of subsets B = {Bi|i ∈ [M ]} where Bi ⊆ Sn,m, and it represents data i, such

that

• Bi
⋂
Bj = ∅ for i 6= j, and

M⋃
i=1

Bi = Sn,m.

• ∀u ∈
M⋃
i=1

Bi, and ∀j ∈ [M ],∃v ∈ Bj such that C(u→ v) ≤ r.

That is, we partition Sn,m into M disjoint sets, each set represents data, and every

permutation can be programmed to some permutation of any set Bi for i ∈ [M ] with the

cost constraint r.

The rate of the (n,m,M, r)(out) code is defined as R(out) = log2M
nm

, and its storage

capacity,Rout(n, r), is defined asR(out)(n, r) = lim
m→∞

log2M
nm

.

A(out) def= [a
(in)
i,j ]n×n, a(in)i,j = 1 if j − i ≤ r, and 0 otherwise, and λA(out) is the largest

eigenvalue of the matrix A(out). The following lemma presents us the characterization and

the exact value ofRout(n, r).

Lemma 22. R(out)(n, r) = max
PXY ∈P(out)(n,r)

H(Y |X) = log2 λA(out) .

4.5 Conclusion

We explore a generalized scheme of RM, CRM. General worst case code construction,

average case code construction, and error correction codes are our future work.
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5. POLAR CODES ARE OPTIMAL FOR WRITE-EFFICIENT MEMORIES

5.1 Introduction

Write-efficient memories (WEM) are models for storing and updating information on

a rewritable medium with constraints. WEM is widely used in data storage area: in flash

memories, write-once memories (WOM) [61], and the recently proposed compressed rank

modulation (CRM) [46] are examples of WEM; for phase change memories, they are fit

for WEM: changing the cell state in one direction does not cost anything, while changing

states in the opposite direction has a cost, and some cost constraint during updating is

required considering issues of reliability and endurance [44]. The recent proposed scheme,

that polar codes are constructed for WOM codes achieving capacity [9], motivates us to

construct codes for WEM.

5.1.1 WEM with a maximal rewriting cost constraint

Let X = {0, 1, ..., q − 1} be the storage alphabet. R+ = [0,+∞), and ϕ : X × X →

R+ is the rewriting cost function, measuring the time or enery cost of changing from one

state to another state. Suppose that a memory consists of N cells. Given one cell state,

xN−10

def
= (x0, x1, ..., xN−1) ∈ XN , and another cell state yN−10 ∈ XN , the rewriting cost

of changing from xN−10 to yN−10 is measured by ϕ(xN−10 , yN−10 ) =
N−1∑
i=0

ϕ(xi, yi).

Let D ⊆ N. We use D to denote the |D| possible values of the data stored in the N

cells. Let the decoding function be D : XN → D, which maps the N cells’ levels to the

data they represent. Let the rewriting function be R : XN ×D → XN , which changes the

N cells’ levels to represent the new input data.

Definition 23. [27] An (N,M, q, d) WEM code consists of

• D = {0, 1, · · · ,M − 1} and
⋃M−1
i=0 Ci, where Ci ⊆ XN is the set of codewords
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representing data i. We require ∀i 6= j, Ci
⋂
Cj = ∅;

• A rewriting function R(i, xN−10 ) such that ϕ(xN−10 ,R(i, xN−10 )) ≤ Nd for any i ∈

D and xN−10 ∈ XN ;

• A decoding function D(yN−10 ) such that D(R(xN−10 , i)) = i for any i ∈ D.

The rewriting rate of an (N,M, q, d) WEM code is defined asR = log2M
N

,R is achiev-

able if there exists an (N,M, q, d) code as N → ∞, and the rewriting capacity function,

R(q, d), is the supremum of all achievable rates.

Let P(X × X ) be the set of joint probability distributions over X × X . For a pair of

random variables (X, Y ) ∈ (X ,X ), let PXY denote the joint probability distribution, let

PY denote the marginal distribution, PY |X denote the conditional probability distribution,

and E(·) denote the expectation operator. If X is uniformly distributed over {0, 1, ..., q −

1}, denote it as X ∼ U(q).

Define P(q, d) = {PXY ∈ P(X × X ) : PX = PY , E(ϕ(X, Y )) ≤ d}. R(q, d) is

determined as [27]: R(q, d) = max
PXY ∈P(q,d)

H(Y |X).

For WOM codes, the cell state can only increase but not decrease. WOM codes are

special cases of WEM codes with the cost function defined appropriately: for a WOM cell

if we update it from x ∈ X to y ∈ X , the cost is measured by ϕ(x, y) = 0 if y ≥ x, and

∞ otherwise. Therefore, WOM codes are such WEM codes with ϕ(·) defined previously,

and d is equal to 0.

In this work, we focus on symmetric WEM. Recall that the rewriting capacity of WEM

isR(D) = max
PXY ∈P(D)

H(Y |X) [2]. Analogous to a symmetric channel, a symmetric WEM

is such a WEM that its rewriting capacity is achieved when current cell state alphabet (i.e.,

X) and updated cell state alphabet (i.e., Y ) are uniformly distributed. That is, the rewriting

capacity of symmetric WEM isRs(q, d):
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Definition 24. For X, Y ∈ X with PX , PY and PXY , and ϕ : X × X → R+, Rs(q, d) =

max
PXY ∈Ps(q,d)

H(Y |X), where Ps(q, d)
def
= {PXY ∈ P(X × X ) : PX = PY , X ∼ U(q),

E(ϕ(X, Y )) ≤ d}.

We present an example of WEM withRs(q, d) below.

Denote by Sq,m the set of (mq)!
m!q

permutations over {
m︷ ︸︸ ︷

1, 1, ..., 1, ...,

m︷ ︸︸ ︷
q, q, ..., q}. We abuse

the notation of uqm−10

def
= [u0, u1, ..., uqm−1] to denote an element of Sq,m, which denotes

the mapping i→ ui.

Example 25. A rewriting code for CRM with the maximal rewriting cost constraint,

(q,m,M, d), is defined by replacing XN by Sq,m, ϕ(·) by Chebyshev distance between

uqm−10 , vqm−10 ∈ Sq,m, d∞(uqm−10 , vqm−10 )
def
= max

j∈{0,1,...,qm−1}
|uj − vj| , and Nd by d in

definition 8.4.1.1.

Note that (q,m,M, d) is actually an instance of WEM by defining ϕ(·) and d appropri-

ately: for x, y ∈ X , let ϕ(x, y) = 0 if |x−y| ≤ d, and∞ otherwise. Now the (q,m,M, d)

CRM is an (qm,M, q, 0) WEM with XN replaced by Sq,m, and ϕ(·) is defined previously.

Denote the rewriting capacity function for CRM with the maximal rewriting cost con-

straint as Rc(q, d), which is the largest d-admissible rate when m → ∞, and it is proved

thatRc(q, d) = Rs(q, d) [46].

5.1.2 WEM with an average rewriting cost constraint

Assume the sequence of data written to the storage medium is {M1, · · · ,Mt}, where

we assume Mi for 1 ≤ i ≤ t is uniformly distributed over D, and the average rewriting

cost is D̄ def
= lim

t→∞
1
t

t∑
i=1

ϕ(xN−10 (i),R(Mi, x
N−1
0 (i))), where xN−10 (i) is the current cell

states before the ith update. By assuming the stationary distribution of cell levels xN−10 is

π(xN−10 ), D̄ =
∑
xN−1
0

π(xN−10 )
∑
j∈D

D̄j(x
N−1
0 ), where D̄j(x

N−1
0 ) is the average rewriting cost

of updating cell levels xN−10 to a codeword representing j ∈ D.

The definition of WEM with an average rewriting cost constraint is defined as follows:
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Definition 26. An (N,M, q, d)ave WEM code consists of

• D = {0, 1, · · · ,M − 1} and
⋃M−1
i=0 Ci, where Ci ⊆ XN is the set of codewords

representing data i. We require ∀i 6= j, Ci
⋂
Cj = ∅;

• A rewriting function R(i, xN−10 ) such that D̄ ≤ d.

• A decoding function D(yN−10 ) such that D(R(xN−10 , i)) = i for any i ∈ D.

The rewriting rate of an (N,M, q, d)ave code is defined as Rave = log2M
N

, and its

rewriting capacity function, Rave(q, d), is defined as the largest d-admissible rate when

N →∞. It is proved thatRave(q, d) = R(q, d) [2]. Similarly, we focus on the symmetric

rewriting capacity function,Rs
ave(q, d), as defined in definition 24.

5.1.3 The outline

The connection between rate-distortion theorem and rewriting capacity theorem is pre-

sented in Section 5.2. The binary polar WEM codes with an average rewriting cost con-

straint and a maximal rewriting cost constraint are presented in subsection A and B of

Section 5.3, respectively. The q-ary polar WEM codes, based on the recently proposed

q-ary polar codes [57], are presented in subsection A and B of Section 5.4 for an aver-

age rewriting cost constraint and a maximal rewriting cost constraint, respectively. The

conclusion is obtained in Section 5.5.

5.2 Lossy Source Coding and its Duality with WEM

In this section, we present briefly background of lossy source coding and its duality

with WEM, which inspires code constructions for WEM.

Let X also denote the variable space, and Y denotes the reconstruction space. Let

d : Y × X → R+ denote the distortion function, and the distortion among a vector xN−10

and its reconstructed vector yN−10 is d(xN−10 , yN−10 ) = 1
N

N−1∑
i=0

d(xi, yi).
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A (qNR, N) rate distortion code consists of an encoding function fN : XN → {0, 1, · · · ,

qNR − 1} and a reproduction function gN : {0, 1, ..., qNR − 1} → YN . The associated

distortion is defined as E(d(XN−1
0 , gN(fN(XN−1

0 )))), where the expectation is with re-

spect to the probability distribution on XN . R(q,D) is the infimum of rates R such that

E(d(XN−1
0 , gN(fN(XN−1

0 )))) is at most D as N →∞.

Let P (q,D)
def
= {PXY ∈ P(X × Y) : E(d(X, Y )) ≤ D}, and R(q,D) is determined

as min
PXY ∈P (q,D)

I(X;Y ) [16].

We focus on lossy compression with the double symmetric rate-distortion Rs(q,D). It

is defined as for (X, Y ) ∈ (X × X ) and d(x, y), Rs(q,D) = min
PXY ∈P s(q,D)

I(Y ;X), where

P s(q,D)
def
= {PXY ∈ P(X × X ) : PX = PY , X ∼ U(q), E(d(X, Y )) ≤ D}.

The duality between Rs(q,D) and Rs(q,D) is captured by the following lemma, the

proof of which is ommited due to being straightforward.

Lemma 27. With the same d(·) and ϕ(·),

Rs(q,D) +Rs(q,D) = log2 q. (5.1)

The inspiration we obtain from the above lemma is that for a q-ary cell with lossy com-

pression requirement, on averageRs(q,D) part of it is to represent data, and the remaining

partRs(q,D) is not used. Therefore, if we store data inRS(q,D) of a cell and the remain-

ing part is equipped with same encoding/reconstruction methods as lossy compression, the

rewriting constraint can be satisfied.

5.3 Polar Codes are Optimal for Binary WEM

Inspired by lemma 27, we show that polar codes can be used to construct binary WEM

codes with Rs(2, D) in a way related to the code construction for lossy source coding

of [42] in this section.
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5.3.1 A code construction for binary WEM with an average rewriting cost constraint

In this part, we start with background of polar code, then polar code construction for

lossy compression, and finally we present code construction for WEM as well as its proof.

5.3.1.1 A brief introduction of polar codes [5]

Let W : {0, 1} → Y be a binary-input discrete memoryless channel for some output

alphabet Y . Let I(W ) ∈ [0, 1] denote the mutual information between the input and output

of W with a uniform distribution on the input. Let GN denote n-th Kronecker product of(
1 0
1 1

)
. Let the Bhattacharyya parameter Z(W ) =

∑
y∈X

√
WY |X(y|0)WY |X(y|1).

The polar code is a linear code given by CN(F, uF ) = {xN−10 = uN−10 GN : uF c ∈

{0, 1}|F c|}, where ∀F ⊆ {0, 1, ..., N − 1}, uF denotes the subvector ui : i ∈ F , and

uF ∈ {0, 1}|F |. By convention, F is called the frozen set and uF is called the frozen set

value. The polar code ensemble, i.e., collection of polar code with all possible frozen set

value, is CN(F ) = {CN(F, uF ),∀uF ∈ {0, 1}|F |}.

The secret of polar codes achieving I(W ) lies in how to select F : define W (i)
N :

{0, 1} → YN × {0, 1}i as sub-channel i with input ui, output (yN−10 , ui−10 ) and transition

probabilities W (i)
N (yN−10 , ui−10 |ui)

def
= 1

2N−1

∑
uN−1
i+1

N−1∏
i=0

W (yi|(uN−10 GN)i), and (uN−10 GN)i

denotes the i-th element of uN−10 GN ; The fraction of {W (i)
N } that are approaching noise-

less, i.e., Z(W
(i)
N ) ≤ 2−N

β for 0 ≤ β ≤ 1
2
, approaches I(W ); The F is chozen as indecies

with large Z(W
(i)
N ), that is F def

= {i ∈ {0, 1..., N − 1} : Z(W
(i)
N ) ≥ 2−N

β} for β ≤ 1/2.

The encoding is done by a linear transformation, and the decoding is done by succes-

sive cancellation (SC).

5.3.1.2 Polar codes on lossy source coding

We sketch the binary polar code construction for lossy source coding as follows, and

for more details interested readers can refer to [42].
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Note that Rs(2, D) can be obtained through the following optimization function:

min : I(Y ;X),

s.t. :
∑
x

1

2
P (y|x) =

∑
y

1

2
P (x|y) =

1

2
,

∑
x

∑
y

1

2
P (y|x)d(y, x) ≤ D. (5.2)

Let P ∗(y|x) be the probability distribution minimizing the objective function of (5.2).

P ∗(y|x) plays the role of a channel. By convention, we call P ∗(y|x) test channel, and

denote it as W (y|x).

Now, we construct the source code with Rs(2, D) using the polar code for W (y|x),

and denote the rate of the source code by R: set F as N(1−R) sub-channel indexes with

the highest Z(W
(i)
N ), set F c as the remaining NR sub-channel indexes, and set uF to an

arbitrary value.

A source codeword yN−10 is mapped to a codeword xN−10 ∈ CN(F, uF ), and xN−10 is

described by the index uF c = (xN−10 G−1N )F c .

The reproduction process is done as follows: we do SC encoding scheme, ûN−10 =

Û(yN−10 , uF ), that is for each k in the range 0 till N − 1:

1. If k ∈ F , set ûk = uk;

2. Else, set ûk = m with the posterior P (m|ûi−10 , yN−10 ).

The reproduction codeword is ûN−10 GN .

Thus, the average distortion DN(F, uF ) (over the source codeword yN−10 and the en-
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coder randomness for the code CN(F, uF )) is :

∑
yN−1
0

P (yN−10 )
∑
ûFc

d(yN−10 , ûN−10 GN)
∏
i∈F c

P (ûi|ûi−10 , yN−10 ),

where ûF = uF .

The expectation of DN(F, uF ) over the uniform choice of uF , DN(F ), is DN(F ) =∑
uF

1
2|F |

DN(F, uF ). Let QUN−1
0 ,Y N−1

0
denote the distribution defined by QY N−1

0
(yN−10 ) =

P (yN−10 ), and QUN−1
0 |Y N−1

0
by

Q(ui|ui−10 , yN−10 ) =


1
2
, if i ∈ F,

P (ui|ui−10 , yN−10 ), otherwise.

Thus, DN(F ) is equivalent to EQ(d(yN−10 , uN−10 GN)), where EQ(·) denotes the expecta-

tion with respect to the distribution QUN−1
0 ,Y N−1

0
.

It is proved that DN(F ) ≤ D +O(2−N
β
) for 0 ≤ β ≤ 1

2
, the rate of the above scheme

is R = |F c|
N

, and polar codes achieve the rate-distortion bound by Theorem 3 of [42].

On the other hand, Theorem 2 of [9] further states the strong converse result of the

rate distortion theory. More precisely, if yN−10 is uniformly distributed over {0, 1}N , then

∀δ > 0, 0 < β < 1
2
, N sufficiently large, and with the above SC encoding process and

the induced Q, Q(d(uN−10 GN , y
N−1
0 ) ≥ D + δ) < 2−N

β . That is, for ∀yN−10 , the above

reproduction process obtains xN−10 = uN−10 GN such that the distortion d(xN−10 , yN−10 ) is

less than D almost by sure.

5.3.1.3 The code construction

We formly present our code construction, theoretical performances and experimental

performances in this part.
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We focus on the code construction with symmetric rewriting cost function, which sat-

isfies ∀x, y, z ∈ {0, 1}, ϕ(x, y) = ϕ(x+ z, y + z), where + is over GF(2).

To construct codes for WEM with Rs(2, D), we utilize its related form Rs(2, D) in

(5.1) and the test channel W (y|x) for Rs(2, D). Note that W (y|x) is a binary symmetric

channel.

The code construction for (N,M, 2, D)ave with rateR is presented in Algorithm 5.3.1:

Algorithm 5.3.1 A code construction for (N,M, 2, D)ave WEM

1: Set F asNR sub-channel indexes with the highest Z(W
(i)
N ), and set F c as the remain-

ing N(1−R) sub-channel indexes.
2: The (N,M, 2, D)ave code is C = {Ci : Ci = CN(F, uF (i))}, where uF (i) is the binary

representation form of i for i ∈ {0, 1, ...,M − 1}.

As GN is of full rank [5], ∀uF (i) 6= uF (j), CN(F, uF (i))
⋂
CN(F, uF (j)) = ∅. That

is the polar code ensemble is the WEM code, and each polar code of the ensemble is a set

of WEM to represent one data with frozen set value.

The rewriting operation is done by successive cancellation encoder to make sure the

rewriting cost constraint is satisfied, and it is presented in Algorithm 5.3.2, where the

dither gN−10 is inspired by [9].

Algorithm 5.3.2 The rewriting operation yN−10 = R(xN−10 , i).

1: Let vN−10 = xN−10 + gN−10 , where gN−10 is a common-known random vector.
2: SC encoding vN−10 , and this results uN−10 = Û(vN−10 , uF (i)) and ŷN−10 = uN−10 GN .
3: yN−10 = ŷN−10 + gN−10 .

The decoding operation is to retrieve information bits in frozen set, and it is presented
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in Algorithm 5.3.3.

Algorithm 5.3.3 The decoding operation uF (i) = D(xN−10 ).

1: yN−10 = xN−10 + gN−10 .
2: uF (i) = (yN−10 G−1N )F .

The following theorem guarantees that decoding operation is a valid operation.

Lemma 28. D(R(yN−10 , i)) = i holds for each rewriting.

Proof. From the rewriting operation, yN−10 = ŷN−10 + gN−10 = uN−10 GN + gN−10 =

Û(vN−10 , uF (i))GN+gN−10 , from the decoding function Û(vN−10 , uF (i))GN+gN−10 +gN−10 ,

which is Û(vN−10 , uF (i))GN , thus the decoding result is i.

5.3.1.4 The average rewriting cost analysis

From yN−10 = R(xN−10 , i), we know that yN−10 = Û(vN−10 , uF (i))GN + gN−10 =

Û(xN−10 +gN−10 , uF (i))GN+gN−10 , thusϕ(xN−10 , yN−10 ) isϕ(xN−10 , Û(xN−10 +gN−10 , uF (i))GN+

gN−10 ), which is ϕ(xN−10 +gN−10 , Û(xN−10 +gN−10 , uF (i))GN) due to ϕ(·) being symmetric.

Denote wN−10 = xN−10 + gN−10 , thus ϕ(xN−10 , yN−10 ) = ϕ(wN−10 , Û(wN−10 , uF (i))GN).

The average rewriting cost D̄

= lim
t→∞

1

Nt

t∑
i=1

E(ϕ(xN−10 (i), xN−10 (i+ 1))),

= lim
t→∞

1

Nt

t∑
i=1

E(ϕ(wN−10 Û(wN−10 , uF (Mi+1))GN)),

=
∑
wN−1

0

π(wN−10 )
∑
j

D̄j(w
N−1
0 ). (5.3)
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Let us focus on D̄j(w
N−1
0 ), which is the average (in this case, over the probability of

rewriting to data j and the randomness of the encoder) rewriting cost of updating wN−10 to

a codeword representing j. Thus D̄j(w
N−1
0 ) =

1

2|F |

∑
uFc

ϕ(wN−10 , uN−10 GN)
∏
i∈F c

P (ui|ui−10 , wN−10 ).

Therefore, interpreting ϕ(·) as d(·), D̄ is actually the average distortion over the en-

semble CN(F ), DN(F ).

The following lemma from [42] is to bound D̄:

Lemma 29. [42] Let β < 1
2

be a constant and let σN = 1
2N

2−N
β . When the polar code for

the source code with Rs(2, D) is constructed with F :

F = {i ∈ {0, 1, ..., N − 1} : Z(W
(i)
N ) ≥ 1− 2σ2

N},

then DN(F ) ≤ D +O(2−N
β
), where D is the average rewriting cost constraint.

Therefore, with the same β, σN , F, and polar code ensemble CN(F ), D̄ ≤ D +

O(2−N
β
).

According to [5], lim
N=2n,n→∞

|F c|
N

=

lim
N→∞

|{i ∈ {0, 1, ..., N} : Z(W
(i)
N ) ≤ 2−2

nβ}|
N

= I(W ) = Rs(2, D),

thus this implies that for N sufficiently large ∃ a set F such that |F
c|
N
≥ Rs(2, D) − ε,

∀ε > 0. In other words, the rate of the constructed WEM code, R = |F |
N

= 1 − |F c|
N
≤

Rs(2, D) + ε.
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The complexity of the decoding and the rewriting operation is of the orderO(N logN)

according to [5].

We conclude the theoretical performance of the above polar WEM code as follows:

Theorem 30. For a binary symmetric rewriting cost function ϕ : X × X → R+, fix a

rewriting cost D and 0 < β < 1
2
. For any rate R < Rs(2, D), there exists a sequence of

polar WEM codes of length N and rate R ≤ R, so that under the above rewriting opera-

tion, D̄ satisfies D̄ ≤ D +O(2−N
β
). The decoding and rewriting operation complexity of

the codes is O(N logN).

5.3.1.5 Experimental performance

The experimental performance is presented in Figure 5.1, where the rewriting cost

function is the Hamming distance between old and new cell states, the upper bound of

C(2, d) is H(d) [2]. The polar code is constructed based on [68], and decoding is based on

[67].

We can see that the rates and the average rewriting costs approach those of points

of H(d) as the length of codeword increases. Longer codewords are needed for further

approaching the lower bound.

5.3.2 A code construction for binary WEM with a maximal rewriting cost constraint

The code construction for WEM with the maximal rewriting cost constraint is an im-

mediate result due to the result for WEM with an average rewriting cost constraint.

The code construction, the rewriting operation and the decoding operation are exactly

the same as Algorithm 5.3.1, Algorithm 5.3.2, and Algorithm 5.3.3, respectively.

The rewriting capacity is guaranteed by Lemma 27, the decoding and rewriting oper-

ation complexity is the same as polar codes, and the rewriting cost is obtained due to the

strong converse result of rate distortion theory, i.e., Theorem 2 of [9]. Thus, we have:
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Figure 5.1: Experimental performance for polar WEM with an average cost constraint

for polar code with various lengths, where the x-axis is the rewriting rate, the y-axis

the average rewriting cost, and the theoretical points are those points (R, d) (R ∈

{0.2, 0.3, · · · , 0.9}) satisfying R = H(d).
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Figure 5.2: Experimental performance for polar WEM with a maximal cost constraint with

d = 0.32, 0.24 and 0.19, respectively, where the x-axis is the codeword length, and y-axis

is the empirical probability Q(ϕ(yN−10 , xN−10 ) ≥ 1.1d).

Theorem 31. For a binary symmetric rewriting cost function ϕ : X × X → R+, fix a

rewriting costD, δ, and 0 < β < 1
2
. For any rateR < Rs(2, D), there exists a sequence of

polar WEM codes of lengthN and rateR ≤ R, so that under the above rewriting operation

and the induced probability distribution Q, the rewriting cost between a current codeword

∀yN−10 and its updated codeword xN−10 satisfies Q(ϕ(yN−10 , xN−10 ) ≥ D+ δ) < 2−N
β . The

decoding and rewriting operation complexity of the codes is O(N logN).

We present our experimental results in Figure 5.2. The rewriting cost function, storage

channel P , and λ(N) are the same as those of the previous subsection. We let δ = 0.1d,

and d = 0.32, 0.24, and 0.19, respectively. The empirical probability Q(ϕ(yN−10 , xN−10 ) ≥

1.1d) is presented in Figure 5.2. As predicted by Theorem 31 it decreases (nearly exponen-
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tially) as the length of codeword increases. However, even longer codewords are needed

to make the probability to be truly negligible.

5.4 Polar Codes are Optimal for q-ary WEM, q = 2r

In this section, we extend the previous binary scheme to q-ary WEM (q = 2r), consid-

ering the length of polar codes, which is N = 2n.

5.4.1 A code construction with an average rewriting cost constraint, q = 2r

Our polar code is based on the recently proposed result for q-ary polar code where

q = 2r [57], and we first present its background here.

5.4.1.1 Background of q-ary polar codes, q = 2r [57]

The storage alphabet is X , |X | = q, and for x ∈ X , (x0, x1, ..., xr−1) is its binary

representation. Let W : X → Y be a symmetric discrete memoryless channel. I(W ) is∑
x∈X

∑
y∈Y

1
q
W (y|x) log2

W (y|x)∑
x′∈X

1
q
W (y|x′) .

Let xN−10 = uN−10 GN , where the arithmetic operations are over GF (q). yN−10 de-

notes the result of sending xN−10 through W . The sub-channel i, W (i)
N , is defined by

W
(i)
N (yN−10 , ui−10 |ui)

def
= 1

qN−1

∑
uN−1
i+1

N−1∏
i=0

W (yi|(uN−10 GN)i).

Consider the following bit channel: Fix k ∈ {0, 1, · · · , r}, let the channel input

be u ∈ {0, 1}r−k and output be y ∈ Y , its transition probability is W [r−k](y|u) =

1
2k

∑
x:xr−1

k =u

W (y|x), where x = (x0, x1, · · · , xr−1) ∈ X .

Futher consider the Bhattacharyya parameter for the bit channel: Define Z(W{x,x′}) =∑
y∈Y

√
W (y|x)W (y|x′), let Zv(W ) = 1

2r

∑
x∈X

Z(W{x,x+v}) for v ∈ X\{0}, and Zi(W ) =

1
2i

∑
v∈Xi

Zv(W ), where i = 0, 1, · · · , r − 1 and Xi = {v ∈ X : i = arg max
0≤j≤r−1

vj 6= 0}

with the binary representation of v, (v0, v1, · · · , vr−1).

The channel polarization is as follows: Zi(W
(j)
N ) ∀i ∈ {0, 1, · · · , r − 1} and j ∈

{0, 1, · · · , N − 1} converges to Zi,∞ ∈ {0, 1}, and with probability one (Z0,∞, Z1,∞, · · · ,
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Zr−1,∞) takes one of the values (Z0,∞ = 1, · · · , Zk−1,∞ = 1, Zk,∞ = 0, · · · , Zr−1,∞ = 0)

∀k = 0, 1, · · · , r − 1, i.e., Theorem 1.b of [57]; Let k = 0, 1, · · · , r − 1 and n ∈ N, let

Ak,n ⊆ {0, 1, · · · , N − 1}, let Rk(ε)
def
= (

k−1∏
i=0

D1) × (
r−1∏
i=k

D0) with D0 = [0, ε) and D1 =

(1− ε, 1] for ε ∈ (0, 1), and j ∈ Ak,n if (Z0(W
(j)
N ), Z1(W

(j)
N ), · · · , Zr−1(W (j)

N )) ∈ Rk(ε).

The channel polarizes in the sense that

∑
i∈{0,1,··· ,N−1}

|Aki,n|

rN
→ I(W ) as N →∞.

The communication scheme is as follows: let us sort j ∈ {0, 1, ..., N−1} by
r−1∑
i=0

Zi(W
(j)
N ).

If this value is approximately k, j is assumed to be contained in the setAk,n, i.e., j ∈ Ak,n

if (Z0(W
(j)
N ), Z1(W

(j)
N ), ...., Zr−1(W

(j)
N )) ∈ Rk(ε).

We transmit user data in encoding messages uN−10 = (u0, ..., uN−1), i.e., if j ∈ Ak,n,

then the symbol uj ∈ X is assembled by frozening the first k bits and user bits in the

remaining bits.

Alternatively, for uN−10 ∈ XN , we also represent it by its binary form, that is uN−10 =

(uI(0,0), · · · , uI(0,r−1), · · · , uI(N−1,0), · · · , uI(N−1,r−1)) ∈ {0, 1}rN , where uI(i,0), · · · , uI(i,r−1)

is the binary representation of ui ∈ X , and I(i, j) = i × r + j. ∀i ∈ Aki,n, let the frozen

bit set be determined by F = {I(i, j) : i ∈ {0, 1, · · · , N − 1}, j ∈ {0, 1, · · · , ki − 1}} ⊆

{0, 1, · · · , rN − 1}. Frozen bits for uN−10 are defined as uF ∈ {0, 1}|F | with the subvector

ui : i ∈ F .

Finally, the polar code with frozen set F ∈⊆ {0, 1, ..., rN − 1} and frozen set value

uF ∈ {0, 1}|F | is CN(F, uF ) = {xN−10 = uN−10 GN : ∀uF c ∈ {0, 1}|F
c|}. The polar code

ensemble for a frozen set is the collection of polar codes with all possible frozen set value,

i.e, CN(F ) = {CN(F, uF ) : ∀uF ∈ {0, 1}|F |}.

5.4.1.2 The code construction

We focus on the q-ary WEM code construction with a symmetric rewriting cost func-

tion, which satisfies ∀x, y, z ∈ {0, 1, ..., q−1}, ϕ(x, y) = ϕ(x+z, y+z), where + is over

GF(q).
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Similar to the binary case, to construct codes for WEM with Rs(q,D), we utilize its

related form Rs(q,D) in Lemma 27 and its test channel W (y|x).

The code construction is presented in Algorithm 5.4.1.

Algorithm 5.4.1 A code construction for (N,M, q,D)ave WEM

1: ∀i ∈ Aki,n, F = {I(i, j) : i ∈ {0, 1, ..., N − 1}, j ∈ {0, 1, ..., ki − 1}}.
2: The (N,M, q,D)ave code is C = {Ci : Ci = CN(F, uF (i))}, where uF (i) is the binary

representation form of i for i ∈ {0, 1, ...,M − 1}.

The WEM code rate is R = |F |
rN

, and the polar code rate is R = |F c|
rN

. Similarly, when

R approaches Rs(q,D),R approachesRs(q,D) based on Lemma 27.

The rewriting operation is presented in Algorithm 5.4.2, where the SC encoding is a

generalization of q-ary lossy source coding.

Algorithm 5.4.2 The rewriting operation yN−10 = R(xN−10 , i).

1: Let vN−10 = xN−10 + gN−10 , where gN−10 is a common-known and random vector.
2: SC encoding vN−10 , ûN−10 = Û(vN−10 , uF (i)), that is for each k in the range 0 tillN−1:

ûj =

{
uj if j ∈ Ar,n,
m with the posterior P (m|ûj−10 , vN−10 ),

where in the above m = 0, 1, ..., q − 1 and if j ∈ Ak,n for 0 ≤ k ≤ r − 1, the first k
bits of ûj are fixed, and let ŷN−10 = ûN−10 GN .

3: yN−10 = ŷN−10 − gN−10 , and − is over GF(q).

The correctness of the above rewriting function can be verified similarly to Lemma 28.

The decoding algorithm is still to retrieve bits in frozen set, and it is presented below:
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Algorithm 5.4.3 The decoding operation uF (i) = D(xN−10 ).

1: yN−10 = xN−10 + gN−10 .
2: uF (i) = (yN−10 G−1N )F .

5.4.1.3 The average rewriting cost analysis

Similar to the analysis of equation (5.3), we obtain that D̄ =
∑
wN−1

0

π(wN−10 )
∑
j

D̄j(w
N−1
0 ).

In the following, we first focus on D̄j(w
N−1
0 ). Note that ûN−10 = Û(vN−10 , uF (j)) is

random, i.e., the SC encoding function may result in different outputs for the same input.

More precisely, in step i of the SC encoding process, i ∈
r−1⋃
k=0

Ak,n, ûi = m with the

posterior P (m|ûi−10 , vN−10 ), where if i ∈ Ak,n, the first k bits of ûi are fixed and known.

This implies that the probability of picking a vector uN−10 with Âr,n given vN−10 with Ar,n

is equal to 
0 if Âr,n 6= Ar,n,∏

i∈
r−1⋃
k=0

Ak,n
P (ui|ui−10 , vN−10 ) otherwise,

where in the second case ∀i ∈ Ak,n, the first k bits of ui are fixed.

Therefore, the average (in this case, over the probability of rewriting to data j and the

randomness of the encoder) rewriting cost of updating wN−10 to a codeword representing

j, D̄j(w
N−1
0 ), is

=
1

2|F |

∑
uFc

ϕ(wN−10 , uN−10 GN)
∏

i∈
⋃r−1
k=0Ak,n

P (ui|ui−10 , wN−10 ),

where uF = uF (j), uF c ∈ {0, 1}|F
c|, and the summation over uF c takes care of Ar,n and

the fact that i ∈ Ak,n, the first k bits of ui are fixed.
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Thus, we obtain that D̄

=
∑
wN−1

0

π(wN−10 )
∑
j

D̄j(w
N−1
0 ),

=
∑
wN−1

0

π(wN−10 )
∑
uF (j)

1

2|F |

∑
ucF

∏
i∈

⋃r−1
k=0Ak,n

P (ui|ui−10 , wN−10 )ϕ(wN−10 , uN−10 GN),

<
∑
wN−1

0

π(wN−10 )
1

q|Ar,n|

∑
uN−1
0

∏
i∈

⋃r−1
k=0Ak,n

P (ui|ui−10 , wN−10 )ϕ(wN−10 , uN−10 GN). (5.4)

Let QUN−1
0 ,WN−1

0
denote the distribution defined by QWN−1

0
(wN−10 ) = π(wN−10 ), and

QUN−1
0 |WN−1

0
defined by

Q(ui|ui−10 , wN−10 ) =


1
q

if i ∈ Ar,n,

P (ui|ui−10 , wN−10 ) otherwise.

Then, inequation (5.4) is equivalent to D̄ < EQ(ϕ(wN−10 , uN−10 GN)), where EQ(·)

denotes the expectation with respect to the distribution QUN−1
0 ,WN−1

0
. Similarly, let EP (·)

denote the expectation with respect to the distribution PUN−1
0 ,WN−1

0
.

The following three lemmas are already proved in [42] for q = 2 and in [41] for

primary q, they extend trivially to q = 2r, and we omit their proofs.

Lemma 32.
∑

wN−1
0 ,uN−1

0

|Q(wN−10 , uN−10 )−P (wN−10 , uN−10 )| ≤
∑

i∈Ar,n

q−1∑
ui=0

EP (|1
q
−P (ui|ui−10 , wN−10 )|).

Lemma 33. Let F be chosen such that for i ∈ Ar,n,

q−1∑
ui=0

EP (|1
q
− P (ui|ui−10 , wN−10 )|) ≤ σN .
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Then, the average rewriting cost is bounded by

1

N
EQ(ϕ(wN−10 , uN−10 GN)) ≤ 1

N
EP (ϕ(wN−10 , uN−10 GN)) + |Ar,n|dmaxσN ,

where dmax
def
= maxx,y ϕ(x, y).

Lemma 34. EP (ϕ(wN−10 , uN−10 GN)) = ND.

The following lemma, which is a modification of Lemma 5 [41], presents that it is

sufficient to choose the set F as those bits with indexes I(i, j) for which i ∈ {0, 1, ..., N −

1}, j ∈ {0, 1, ..., ki − 1} with i ∈ Aki,n.

Lemma 35. If i ∈ Ar,n, that is (Z0(W
(i)
N ), ..., Zr−1(W

(i)
N )) ∈ Rr(ε), and let εN ≥ r

√
ε,

then
q−1∑
ui=0

EP (|1
q
− P (ui|ui−10 , wN−10 )|) ≤

√
2εN .

Proof. By Pinsker’s inequality, for two distribution functions P and Q defined on X , ||P −

Q||1 ≤
√

2D(P ||Q), where D(P ||Q) is the Kullback-Leibler divergence between two

distributions, that is D(P ||Q) =
∑

i log2(
P (i)
Q(i)

)P (i), we obtain that:
q−1∑
ui=0

EP |1q − P (ui|ui−10 , wN−10 )|

P (ui)=
1
q

=
∑

wN−1
0 ,ui0

|P (ui)P (ui−10 , wN−10 )− P (ui|ui−10 , wN−10 )P (ui−10 , wN−10 )|,

=
∑

wN−1
0 ,ui0

|P (ui)P (ui−10 , wN−10 )− P (ui0, w
N−1
0 )|,

≤

√√√√2
∑

wN−1
0 ,ui0

P (ui0, w
N−1
0 ) log2

P (ui0, w
N−1
0 )

P (ui)P (ui−10 , wN−10 )
,

=

√
2I(W

(i)
N ),

≤
√

2εN ,
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where the last inequality is based on the conclusion of Lemma 1 [57], that is if (Z0(W
(i)
N ),

· · · , Zr−1(W (i)
N )) ∈ Rk(ε) ∀k = 0, 1, · · · , r, then |I(W

(i)
N ) − (r − k)| ≤ γ with γ ≥

max(k
√
ε, (2r−k − 1)ε log2 e).

Therefore, the performance of the above polar WEM code can be concluded as follows:

Theorem 36. For a q-ary (q = 2r) symmetric rewriting cost function ϕ : X × X → R+,

fix a rewriting cost D and 0 < β < 1
2
. For any rate R < Rs(q,D), there exists a

sequence of polar WEM codes of length N and rate R ≤ R, so that under the above

rewriting operation, D̄ satisfies D̄ ≤ D+O(2−N
β
). The decoding and rewriting operation

complexity of the codes is O(N logN).

5.4.2 A code construction with a maximal rewriting cost constraint, q = 2r

Similarly, the code construction, the rewriting operation and the decoding operation are

exactly the same as Algorithm 5.4.1, Algorithm 5.4.2, and Algorithm 5.4.3, respectively.

Next, we mainly focus on its performance.

Theorem 37. For a q-ary (q = 2r) symmetric rewriting cost function ϕ : X×X → R+, fix

a rewriting cost D, δ, and 0 < β < 1
2
. For any rateR < Rs(q,D), there exists a sequence

of polar WEM codes of length N and rate R ≤ R, so that under the above rewriting

operation and the induced probability distribution Q, the rewriting cost between a current

codeword ∀yN−10 and its updated codeword xN−10 satisfies Q(ϕ(yN−10 , xN−10 ) ≥ D + δ) <

2−N
β . The decoding and rewriting operation complexity of the codes is O(N logN).

Proof. We mainly focus on the rewriting cost analysis. The proof of this part is based

on the ε-strong typical sequence [16] and Theorem 4 and 5 of [9]. We give the sketch as

follows.

We recall ε-strong typical sequences xN−10 × yN−10 ∈ XN ×YN with respect to p(x, y)

over X ×Y , and denote it by A∗(N)
ε (X, Y ). We denote by C(a, b|xN−10 , yN−10 ) the number
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of occurrences of a, b in xN−10 , yN−10 with the same indexes, and require the following.

• First, ∀a, b ∈ X × Y with p(a, b) > 0, |C(a, b|xN−10 , yN−10 )/N − p(a, b)| < ε;

• Second, ∀a, b ∈ X × Y with p(a, b) = 0, C(a, b|xN−10 , yN−10 ) = 0.

In our case yN−10 = uN−10 GN . Due to the full rank of GN , there is a one-to-one

correspondence between uN−10 and yN−10 . We say that uN−10 , xN−10 ∈ A
∗(N)
ε (U,X) if

xN−10 , uN−10 GN ∈ A∗(N)
ε (X, Y ) with respect to 1

q
W (y|x), where W (y|x) is the test chan-

nel.

The first conclusion is that for N sufficiently large, Q(A
∗(N)
ε (U,X)) > 1 − 2−N

β

for ∀0 < β < 1
2
, ε > 0, which is a generalization of Theorem 4 of [9], and where

Q(A
∗(N)
ε (U,X)) = Q(∀a, b : | 1

N
C(a, b|uN−10 GN , x

N−1
0 ) − 1

q
W (a|b)| ≤ ε). The sketch

proof is based on Lemma 32 and Lemma 33 we obtain that

∑
uN−1
0 ,xN−1

0 ∈A∗(N)
ε (U,X)

|Q(uN−10 , xN−10 )− P (uN−10 , xN−10 )| ≤ |Ar,n|σNdmax.

Thus, we obtain

|
∑

uN−1
0 ,xN−1

0

Q(uN−10 , xN−10 )− P (uN−10 , xN−10 )|

≤
∑

uN−1
0 ,xN−1

0

|Q(uN−10 , xN−10 )− P (uN−10 , xN−10 )|,

≤ |Ar,n|σNdmax,

where in the above uN−10 , xN−10 ∈ A∗(N)
ε (U,X).

By lower bounding P (A
∗(N)
ε (U,X)) = 1 − P (∃a, b : | 1

N
C(a, b|uN−10 GN , x

N−1
0 ) −

1
q
W (a|b)| ≥ ε) ≥ 1− 2q2e−2Nε

2 based on Hoeffding’s inequality, and Q(A
∗(N)
ε (U,X)) ≥
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P (A
∗(N)
ε (U,X))−|Ar,n|σNdmax (we just obtained), we obtain the desired result by setting

σN = 2−N
β

2Ndmax
.

The second conclusion is that let yN−10 = R(xN−10 , i), then ∀δ > 0, 0 < β < 1
2

and N

sufficiently large, Q(ϕ(yN−10 , xN−10 )/N ≥ D + δ) < 2−Nβ , which is a generalization of

Theorem 5 of [9]. The outline is that Q(ϕ(xN−10 , yN−10 )/N ≥ D + δ)

≤ Q((ϕ(xN−10 , yN−10 )/N ≥ D + δ)
⋂
xN−10 , yN−10 ∈ A∗(N)

ε (X, Y )) +Q(xN−10 , yN−10 6∈ A∗(N)
ε (X, Y )),

≤ 2−Nβ,

where the last inequality is based on the conclusion just obtainedQ(xN−10 , yN−10 6∈ A∗(N)
ε (X, Y )) <

2−Nβ , and that when xN−10 , yN−10 ∈ A
∗(N)
ε (X, Y ), for ε sufficiently small and N suffi-

ciently large, ϕ(yN−10 , xN−10 )/N ≤ D + δ.

5.5 Conclusion

Code constructions for WEM using recently proposed polar codes have been presented.

Future work focuses on exploring error-correcting codes for WEM.
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6. CODING FOR NOISY WRITE-EFFICIENT MEMORIES

6.1 Introduction

Nonvolatile memories (such as flash memories and phase-change memories (PCM))

are becoming ubiquitous nowadays. Besides the well-known endurance [35] problem,

another serious challenge is the data reliability issue, e.g., retention error [49] in NAND

flash memories and resistance drift [34] in PCM.

Write-efficient memory (WEM) [2] is a coding model that can be used to solve the

endurance problem for nonvolatile memories. In WEM, codewords are partitioned into

several disjointed sets, where codewords of the same set represent the same data. A cost

constraint has to be satisfied during the rewriting (namely, updating the data stored in

WEM).

WEM is a natural model for PCM [44], and can also be applied to flash memory when

data representation scheme such as rank modulation [46] is used. In WEM, there is a cost

associated with changing the level of a cell. For nonvolatile memories such as PCM, this

cost is important because cells age with programming and have the endurance problem. An

optimal code [48] has been proposed to achieve the rewriting capacity of WEM. However,

rewriting codes combined with error correction are still limited [37], especially for WEM

[27].

In this paper, we propose a joint error correction and rewriting scheme for WEM.

While previous results are mainly for Write-Once Memories [9], our work focuses on

WEM. We propose a new coding model, noisy WEM, and provide a characterization for

its capacity. We present an efficient coding scheme based on polar codes [5] for a special

case of noisy WEM. The scheme is related to the coding schemes in [43], [9] and [37]. We

also provide a lower bound to noisy WEM’s capacity, and experimentally verify the code
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construction’s performance.

The rest of this part is organized as follows. In Section 5.2, we introduce noisy write-

efficient memory model. In Section 5.3, we present characterization of noisy rewriting

capacity of noisy WEM. In Section 5.4, we present an efficient code construction for a

special case of binary noisy WEM, and verify its performance experimentally. We con-

clude this paper in Section 5.5.

6.2 Noisy Write-Efficient Memory Model

In this section, we first introduce terms and notations used throughout the paper, and

then formally present the definitions of noisy WEM and related parameters.

6.2.1 Terms and notations

Let X = {0, 1, · · · , q − 1} be the alphabet of a symbol stored in a cell. (For ex-

ample, for PCM, it denotes the q levels of a cell.) ∀x, y ∈ X , let the rewriting cost of

changing a cell’s level from x to y be ϕ(x, y). Given N cells and xN−10 , yN−10 ∈ XN , let

ϕ(xN−10 , yN−10 ) = 1
N

N−1∑
i=0

ϕ(xi, yi) be the rewriting cost of changing the N cell levels from

xN−10 to yN−10 .

Let M ∈ N andD = {0, 1, · · · ,M −1}. We useD to denote the M possible values of

the data stored in the N cells. Let the decoding function be D : XN → D, which maps the

N cells’ levels to the data they represent. Let the rewriting function be R : XN×D → XN ,

which changes the N cells’ levels to represent the new input data. Naturally, we require

D(R(xN−10 , i)) = i for any xN−10 ∈ XN and i ∈ D.

Assume the sequence of data written to the storage medium is {M1, · · · ,Mt}, where

we assume Mi for 1 ≤ i ≤ t is uniformly distributed over D, and the average rewriting

cost is D̄ def
= lim

t→∞
1
t

t∑
i=1

ϕ(xN−10 (i),D(Mi, x
N−1
0 (i))), where xN−10 (i) is the current cell

states before the ith update. By assuming the stationary distribution of cell levels xN−10 (i)
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is π(xN−10 ), D̄ =
∑
xN−1
0

π(xN−10 )
∑
j∈D

D̄j(x
N−1
0 ), where D̄j(x

N−1
0 ) is the average rewriting

cost of updating cell level states xN−10 to a codeword representing j ∈ D.

Let P(X × X ) be the set of joint probability distributions over X × X . For a pair of

random variables (S,X) ∈ (X ,X ), let PSX , PS, PX|S denote the joint probability distri-

bution, the marginal distribution, and the conditional probability distribution, respectively.

E(·) denotes the expectation operator. IfX is uniformly distributed over {0, 1, · · · , q−1},

denote it by X ∼ U(q).

6.2.2 Noisy WEM with an average rewriting cost constraint

We formally present the definition of noisy WEM with an average rewriting cost con-

straint as follows:

Definition 38. An (N,M, q, d)ave noisy WEM code for the storage channel P = (X ,Y ,

PY |X(y|x)) consists of

• D and C =
⋃
i∈D Ci, where Ci ⊆ XN is the set of codewords representing data i. We

require ∀i 6= j, Ci
⋂
Cj = ∅. (Here PY |X(y|x) represents the transition probability

of the noisy channel, which changes a cell’s level from x to y.)

• A rewriting function R(sN−10 , i) with d ∈ R+ an upper bound to the average rewrit-

ing cost, i.e.,D̄ ≤ d.

• A decoding function D(yN−10 ).

The noisy WEM model is illustrated in Figure 6.1. Here the N -dimensional vector

sN−10 ∈ XN is the current cell states, and the message M is the new information to write,

which is independent of sN−10 . The rewriter uses both sN−10 and M to choose a new

codeword xN−10 ∈ XN , which will be programmed as the N cells’ new states, such that

the average rewriting cost satisfies the predefined cost constraint. The codeword xN−10
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Figure 6.1: The noisy WEM model. M , sN−10 , xN−10 , yN−10 and M̂ are , respectively, the

message, the current cell states, rewritten codeword, the noisy channel’s output, and the

estimated message.

passes a noisy channel, and the noisy codeword yN−10 ∈ XN is its output. The decoder

can reliably decode yN−10 to recover the message M . The cell states sN−10 are drawn

independently and identically from the probability distribution PS(s). The noisy channel

is memoryless, and is characterized by the transition probabilities PY |X(y|x).

Let λi = Pr(D(yN−10 ) 6= i|xN−10 = R(sN−10 , i)) be the decoding error probability

given data i. Let λ(N) be max
i∈D

λi. Let R = logM
N

be the code rate, and we say R is

achievable if there exists a (N, 2NR, q, d)ave code such that λ(N) → 0 as N → ∞. The

noisy rewriting capacity C(q, d)ave is the supremum of all achievable rates.

The noisy WEM problem is: given the average rewriting cost constraint d, find the

maximal rateR of reliable rewriting supported by the rewriter and the decoder despite the

noisy channel. Let P(q, d) be {PSX ∈ P(X × X ) : PS = PX , E(ϕ(S,X)) ≤ d}. When

there is no noise, C(q, d)ave isR(q, d)ave = max
PSX∈P(q,d)

H(X|S) [2].

6.2.3 Noisy WEM with a maximal rewriting cost constraint

The WEM code in definition 8.4.1.1 puts a constraint on the average rewriting cost.

We now define a code with a maximal rewriting cost constraint.

Definition 39. An (N,M, q, d) noisy WEM code for the storage channel P = (X ,Y ,

PY |X(y|x)) consists of
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• D and C =
⋃
i∈D Ci, where Ci ⊆ XN is the set of codewords representing data i. We

require ∀i 6= j, Ci
⋂
Cj = ∅.

• A rewriting function R(sN−10 , i) with d ∈ R+ an upper bound to the maximal rewrit-

ing cost, i.e., ϕ(sN−10 ,R(sN−10 , i)) ≤ d for any sN−10 ∈ C and i ∈ D.

• A decoding function D(yN−10 ).

The rate R and noisy rewriting capacity C(q, d) can be defined similarly as before.

When there is no noise, C(q, d) isR(q, d) = R(q, d)ave [2].

6.3 Characterizing Noisy Rewriting Capacity

In this section, we present the characterization of noisy rewriting capacity of C(q, d)

and C(q, d)ave, respectively.

The characterization of C(q, d) is presented below. It is effectively the generalization

of that of Gel’fand and Pinsker [32], which considers the problem without cost constraint.

The direct part proof is based on random coding and typical sequences; the converse part is

based on techniques of Fano’s inequality [16] and Csiszár sum identity [18], and auxiliary

random variables identification.

Lemma 40. For a given rewriting cost function ϕ(·, ·), C(q, d) = max
PU|S,x(u,s)
PSX∈P(q,d)

{I(Y ;U) −

I(U ;S)}, where U is an auxiliary random variable, and U → (X,S) → Y is a Markov

chain.

Proof. We first present some background about strong typical-sequences. For more de-

tails, interested readers are referred to [20].

Let xN−10 be a sequence with N elements drawn from X . Define the type of xN−10 by

π(x|xN−10 ) = |{i:xi=x}|
N

. The set T Nε (X) is defined as:

T Nε (X) = {xN−10 : |π(x|xN−10 )− PX(x)| ≤ ε,∀x}.
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That is, the set of sequences for which the empirical frequency is within ε of the probability

PX(x) for every x ∈ X .

Let (xN−10 , yN−10 ) be a pair of sequences with elements drawn from (X ,Y). Define

their joint type: π(x, y|xN−10 , yN−10 ) = |{i:(xi,yi)=(x,y)}|
N

for (x, y) ∈ X × Y . We denote

T Nε (XY ) = {(xN−10 , yN−10 ) : |π(x, y|xN−10 , yN−10 )− PXY (x, y)| ≤ ε,∀(x, y)}.

For xN−10 ∈ T Nε (X) and PY |X , we define the conditional typical sequence T NY |X(xN−10 ) =

{yN−10 : (xN−10 , yN−10 ) ∈ T Nε (XY )}.

i For a vector xN−10 , where xi is chosen i.i.d. ∼ PX ,

Pr(xN−10 ∈ T Nε (X))→ 1 as N →∞. (6.1)

ii For vectors xN−10 , yN−10 , where (xi, yi) is chosen i.i.d. ∼ PXY ,

Pr((xN−10 , yN−10 ) ∈ T Nε (XY ))→ 1 as N →∞. (6.2)

iii For xN−10 ∈ T Nε (X), and yN−10 is independently chosen according to PY , then

Pr((xN−10 , yN−10 ) ∈ T NY |X(xN−10 )) ∈ [2−N(I(X;Y )+λ), 2−N(I(X;Y )−λ)], (6.3)

for some λ(ε) > 0 with λ→ 0 as ε→ 0.

6.3.1 Proof of the direct part

The code construction We present details of the direct part by a random code construc-

tion. For a PU |S(u|s), let PU(u) be the marginal probability distribution of U under the

joint probability distribution of PS(s)PU |S(u|s). Independently generate a set of 2NQ vec-

tors of uN−10 from the typical sequence T Nε (U), where Q is to be determined. Randomly

106



partition such 2NQ vectors into 2NR subsets each with size 2N(Q−R):

{A0,A1...,A2NR−1}.

Rewriting function and its analysis For the rewriting part, given a current state vector

sN−10 ∈
⋃2NR−1
i=0 Ai and data to rewrite j ∈ D, randomly choose a vector uN−10 from Aj

that is jointly typical with sN−10 with PU,S . Select a vector xN−10 based on the function

x(u, s). Due to the definition of strong typical sequence, we know that ϕ(sN−10 , xN−10 =

R(sN−10 , i)) ≤ ND + ε. Therefore, the successful rewriting depends on whether such

uN−10 exist or not.

Next, we analyze the condition under which such uN−10 exists almost for sure. The

probability that we do not have a vector from Aj that is jointly typical with sN−10 is

P (Aj
⋂
T NU |S(sN−10 ) = ∅)

≤ P (Aj
⋂
T NU |S(sN−10 ) = ∅|sN−10 6∈ T Nε (S)) + P (Aj

⋂
T NU |S(sN−10 ) = ∅|sN−10 ∈ T Nε (S)),

≤ (1− P (uN−10 ∈ Aj
⋂
T NU |S(sN−10 )|sN−10 ∈ T Nε (S)))|Aj |,

≤ (1− 2−N(I(S;U)+λ))2
N(Q−R)

,

≤ exp{2−(Q−R−I(S;U)+λ)},

where the first inequation is based on the conclusions (6.1) and (6.3).

To ensure the success of rewriting, there have to be vectors in Aj , which are jointly

typical with sN−10 , and this implies that Q−R > I(U ;S).

Decoding function and its analysis For the decoding part, given a received vector yN−10 ,

decode it is j ∈ D if there exists some uN−10 ∈ Aj jointly typical with yN−10 for a unique

j.

Let us consider the probability of decoding error for rewriting data j, Pe(j). There are
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two cases: one is there is no vector in Aj jointly typical with yN−10 , and the other is there

are vectors in Ai for i 6= j jointly typical with yN−10 . Based on union bound, Pe(j)

≤ P ((uN−10 , yN−10 ) ∈ T Nε (UY )|uN−10 ∈ Ai, i 6= j) + P ((uN−10 , yN−10 ) 6∈ T Nε (UY )|uN−10 ∈ Aj),

≤
∑
uN−1
0
i6=j

P ((uN−10 , yN−10 ) ∈ T Nε (UY )|uN−10 ∈ Ai),

≤
∑

uN−1
0 ∈Ai
i 6=j

2−N(I(U ;Y )−λ),

≤ 2−N(I(U ;Y )−Q−λ),

where the first inequation is based on the conclusion (6.2), and the second inequation is

based on (6.3).

Therefore, the decoding error probability Pe(j) and further λN approach 0 if Q <

I(U ;Y ).

6.3.2 Proof of the converse part

The converse part is as follows: NR

= H(M), (6.4)

= H(M |yN0 ) + I(M ; yN0 ), (6.5)

≤ NεN + I(M ; yN−10 ), (6.6)

≤ NεN +
N−1∑
i=0

I(M ; yi|yi−10 ), (6.7)

≤
N−1∑
i=0

[I(yi; s
N−1
i+1 |M, yi−10 )− I(si; y

i−1
0 |M, sNi+1)] +NεN +

N−1∑
i=0

I(M ; yi|yi−10 ),(6.8)

=
N−1∑
i=0

[I(M, sNi+1; yi|yi−10 )− I(si; y
i−1
0 |M, sNi+1)] +NεN , (6.9)
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where

(6.4) follows from the assumption that M is uniformly distributed among D;

(6.5) follows from the definition of mutual information;

(6.6) follows from Fano’s inequality [16];

(6.7) follows from chain rule for mutual information[16], and so does equation (6.9);

(6.8) follows from Csiszár sum identity [18], which is

N−1∑
i=0

I(Ai;B
N−1
i+1 |Ai−10 ) =

N−1∑
i=0

I(Bi;A
i−1
0 |BN−1

i+1 ), (6.10)

where in inequation (6.6) Ai = yi, Bi = si, and by conditioning on M .

Define ui = (M, sN−1i+1 , y
i−1
0 ) and we know that ui → (xi, si) → yi, we continue

equation (6.7): I(M, sN−1i+1 ; yi|yi−10 )− I(si; y
i−1
0 |M, sN−1i+1 )

= H(yi|yi−10 )−H(yi|ui)−H(si|M, sN−1i+1 ) +H(si|ui),

≤ H(yi)−H(yi|ui)−H(si) +H(si|ui), (6.11)

= I(yi;ui)− I(si;ui),

where inequation (6.11) is based on the fact that si is independent of M and sN−1i+1 .

We now show that it suffices to maximize over PU |S(u|s) and functions x(u, s). Fix

PU |S(u|s), and note that

PY |U(y|u) =
∑
x,s

PS|U(s|u)PX|U,S(x|u, s)PY |X,S(y|x, s)

is linear in in PX|U,S(x|u, s). Since PU |S(u|s) is fixed, the maximization over the noisy

WEM formula is only over I(U, Y ), which is convex in PY |U(y|u) (PU(u) is fixed) and
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hence in PX|U,S(x|u, s). This implies that the maximum is achieved at an extreme point

of the set of PX|U,S(x|u, s), that is, using one of the deterministic mappings x(u, s). This

completes the proof of the converse.

The next lemma presents us the characterization of Cave(q, d), which is the same as

C(q, d). We omit its proof as any code for (N,M, q, d) is a code for (N,M, q, d)ave,

thereforeRave ≥ C(q, d). The converse part is the same as previous one.

Lemma 41. For a given rewriting cost functionϕ(·, ·), Cave(q, d) = C(q, d) = max
PU|S,x(u,s)
PSX∈P(q,d)

{I(Y ;U)−

I(U ;S)}, where U → (X,S)→ Y is a Markov chain.

6.4 A Code Construction for Binary Degraded and Symmetric Noisy WEM

Let Ps(q, d) = {PSX ∈ P(X × X ) : PS = PX , S ∼ U(q), E(ϕ(S,X)) ≤ d} be the

set of joint probabilities with uniform marginal distributions. Let symmetric rewriting ca-

pacity be defined asRs(q, d) = max
PSX∈Ps(q,d)

H(X|S). LetWSX be arg max
PXS∈Ps(q,d)

H(X|S).

We callW = (X ,X ,WX|S) the WEM channel.

We say Q = (X ,Z, QZ|X) is degraded with respect to W = (X ,Y ,WY |X) (which we

denote by Q 4W) if there exists a channel P = (Y ,Z, PY |Z) such that for all z ∈ Z and

x ∈ X , we have QZ|X(z|x) =
∑
y∈Y

WY |X(y|x) · PZ|Y (z|y).

In this section, we consider symmetric rewriting capacity, and present a code construc-

tion for noisy WEM when the WEM channelW is degraded with respect to the symmetric

storage channel P . We focus on binary cells, namely, |X | = 2. We call such WEM

a binary degraded and symmetric noisy WEM. (Note that when the flipping rates meet

WX|S > PY |X , the degradation condition is naturally satisfied.)
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6.4.1 A nested polar code construction for binary degraded and symmetric noisy WEM

with an average rewriting cost constraint

6.4.1.1 A brief introduction to binary polar codes [5]

Let W : X → Y be a binary-input discrete memoryless (DMC) channel. Let G⊗n2 be

n-th Kronecker product of
(
1 0
1 1

)
. Let Z(W ) =

∑
y∈Y

√
WY |X(y|0)WY |X(y|1).

The polar code CN(F, uF ) is {xN−10 = uN−10 G⊗n2 : uF c ∈ {0, 1}|F
c|}, where ∀F ⊆

{0, 1, · · · , N − 1}, uF is the subvector ui : i ∈ F , and uF ∈ {0, 1}|F |.

Let W (i)
N : {0, 1} → YN × {0, 1}i be a sub-channel with W

(i)
N (yN−10 , ui−10 |ui)

def
=

1
2N−1

∑
uN−1
i+1

N−1∏
i=0

WY |X(yi|(uN−10 G⊗n2 )i), and (uN−10 G⊗n2 )i denotes the i-th element of uN−10 G⊗n2 .

6.4.1.2 The code construction

We focus on the code construction with symmetric rewriting cost function, which sat-

isfies ∀x, y, z ∈ {0, 1}, ϕ(x, y) = ϕ(x + z, y + z), where + is the XOR operation over

GF(2). (Many cost functions, such as the Hamming-distance based cost function satisfies

this constraint.)

Algorithm 6.4.1 A code construction for binary degraded and symmetric noisy WEM and
storage channel P

1: Let CN(FP , uFP ) be a polar code [5] designed for the storage channel P , where FP =

{i ∈ {0, 1, · · · , N − 1} : Z(P(i)
N ) ≥ 2−N

β} and uFP is set to 0.
2: Let CN(FW , uFW ) be a polar code designed for the WEM channel W , where FW =

{i ∈ {0, 1, · · · , N − 1} : Z(W(i)
N ) ≥ 2−N

β} and FP ⊆ FW .
3: The (N,M, 2, d)ave code is C = CN(FP , uFP ) = {CN(FW/FP , uFW/FP (i))}, where
uFW/FP (i) is the binary representation form of i ∈ {0, · · · ,M − 1}.

The code construction is presented in Algorithm 6.4.1, where we use nested polar

codes (i.e., the polar code for channel coding [5] and the polar code for WEM [48]) to de-
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Figure 6.2: Illustration of relationship between FW and FP . The line represents the in-

dexes, and FW and FP are the frozen set for the WEM channelW and the storage channel

P , respectively.

sign noisy WEM codes. The fact that FP ⊆ FW follows from [43, lemma 4.7]. Figure 6.2

presents us a pictorial presentation of FW and FP .

The rewriting function is presented in Algorithm 6.4.2. It is very similar to that of [48]

except for how to set uF .

Algorithm 6.4.2 The rewriting operation yN−10 = R(xN−10 , i).

1: Let vN−10 = xN−10 + gN−10 , where gN−10 is a common and uniformly distributed mes-
sage, and + is over GF(2).

2: Apply SC (Successive Cancellation) encoding [43] to vN−10 , and this results in a vector
uN−10 = Û(vN−10 , uFW/FP (i)), that is, uj =

(uFW/FP (i))j if j ∈ FW/FP

0 if j ∈ FP
m with probability W(uj−1

0 ,vj−1
0 |m)∑

m′
W(uj−1

0 ,vN−1
0 |m′)

,

and ŷN−10 = uN−10 G⊗n2 .
3: yN−10 = ŷN−10 + gN−10 .

The decoding function is presented in Algorithm 6.4.3, where we use the SC (Succes-

sive Cancellation) decoding [5] to assure λ(N) → 0 as N → 0.
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Algorithm 6.4.3 The decoding operation uFW/FP (i) = D(xN−10 ).

1: ŷN−10 = xN−10 + gN−10 .
2: Apply SC decoding to ŷN−10 , and this results in yN−10 , i.e., yj ={

0 if j ∈ FP
argm maxP(j)

N (yj−10 , ŷN−10 |m) else

3: uFW/FP (i) = (yN−10 (G⊗n2 )−1)uFW/FP
.

6.4.1.3 Theoretical performance analysis

Theorem 42. For a binary degraded symmetric noisy WEM, fix d, ∀R ≤ Rs(2, d)ave −

H(PY |X) and any 0 < β < 1
2
, there exists a sequence of nested polar codes of length

N with rates R ≤ R so that under the above rewriting and decoding operations, D̄ ≤

d + O(2−N
β
), λ(N) ≤ O(2−N

β
), and the rewriting as well as the decoding operation

complexity is O(N logN).

Proof. Let ε and 0 < β < 1
2

be some constants. FP and FW are FW = {i : Z(W(i)
N ) ≥

2−N
β}, FP = {i : Z(P(i)

N ) ≥ 2−N
β}. Based on [43, lemma 2.6] lim

n→∞
Pr(Z(W(i)

N ) ≥

2−N
β
) = 1 − I(W) = Rs(2, d), thus |FW |

N
≤ Rs(2, d) + ε for sufficiently large N .

Similarly, |FP |
N
≥ H(PY |X)− ε for sufficiently large N .

As mentioned, FP ⊆ FW , thus R = |FW |−|FP |
N

≤ Rs(2, d)−H(PY |X).

Since the rewriting function is similar to that of [48], the rewriting cost is guaranteed

by [48, theorem 8], i.e., D̄ ≤ d+O(2−N
β
).

The error probability λ(N) is guaranteed by [5, theorem 4], that is λ(N) ≤
∑
i∈F cP

Z(P(i)
N ) ≤

O(2−N
β
).

Covering radius of polar codes In the following, we present covering radius to theo-

retically upper bound the maximal rewriting cost when the cost metric is the Hamming
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distance between old and new cell levels.

Let the polar code ensemble be CN(F ) = {CN(F, uF ) : uF ∈ {0, 1}|F |}. Let the cov-

ering radius ofCN(F ) (which we denote cH(CN(F ))) be max
i,j

min
xN−1
0 ∈CN (F,uF (i))

yN−1
0 ∈CN (F,uF (j))

dH(xN−10 , yN−10 ),

where dH(xN−10 , yN−10 ) is the Hamming distance between xN−10 and yN−10 .

Lemma 43. cH(CN(F )) = min
l∈F c

2wt(l), where wt(l) is the number of ones in (i.e., Ham-

ming weight of) the binary representation of l.

Proof. cH(CN(F ))

= max
i,j

min
xN−1
0 ∈CN (F,uF (i))

yN−1
0 ∈CN (F,uF (j))

dH(xN−10 , yN−10 ),

= max
i,j

min
xN−1
0 ∈CN (F,uF (i))

yN−1
0 ∈CN (F,uF (j))

wt(xN−10 − yN−10 ),

= max
i,j

min
zN−1
0 ∈CN (F,uF (i)+uF (j))

wt(zN−10 ),

= max
k

min
l∈F c

2wt(l), (6.12)

= min
l∈F c

2wt(l),

where eq. (6.12) is based on [43, lemma 6.2], i.e., the minimal distance of polar code

CN(F, uF ) is min
l∈F c

2wt(l).

The above results can be generalized to the following polar codesCN,M(F ) =
M−1⋃
i=0

CN(F, uF (i)),

where {uF (i)} forms a group under binary operations in GF(2).

6.4.1.4 Experimental performance

The experimental performance is presented in Figure 6.3, where the rewriting cost

function is the Hamming distance between old and new cell states, the upper bound of

C(2, d) is H(d) [2], the storage channel P is the binary symmetric channel with flipping

rate p = 0.001, and the lower bound is H(d)−H(p). λ(N) is set to be around 10−5.

114



Figure 6.3: Experimental performance for noisy WEM with an average cost constraint

for polar code with various lengths, where the x-axis is the rewriting rate, the y-axis

the average rewriting cost, and the theoretical points are those points (R, d) (R ∈

{0.2, 0.3, · · · , 0.9}) satisfying R = H(d)−H(0.001).

We can see that the rates and the average rewriting costs approach those of points of

H(d)−H(0.001) as the length of codeword increases. Longer codewords are needed for

further approaching the lower bound.

6.4.2 A nested polar code construction for binary degraded and symmetric noisy WEM

with a maximal rewriting cost constraint

The code construction in Algorithm 6.4.1, the rewriting function in Algorithm 6.4.2

and the decoding function in Algorithm 6.4.3 can be applied to noisy WEM codes with a

maximal rewriting cost constraint as well.

Similar to the analysis of Theorem 42, we obtain the following result for the theoretical
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Figure 6.4: Experimental performance for noisy WEM with a maximal cost constraint

with d = 0.32, 0.24 and 0.19, respectively, where the x-axis is the codeword length, and

y-axis is the empirical probability Q(ϕ(yN−10 , xN−10 ) ≥ 1.1d).

performance of the proposed code construction.

Theorem 44. For a binary degraded symmetric noisy WEM, fix d, δ, ∀R ≤ Rs(2, d) −

H(PY |X) and any 0 < β < 1
2
, there exists a sequence of nested polar codes of length N

with rates R ≤ R, so that under the above rewriting operation and decoding operation,

the probability that the rewriting cost between a current codeword ∀yN−10 and its updated

codeword xN−10 larger than d + δ is bounded by Q(ϕ(yN−10 , xN−10 ) ≥ d + δ) < 2−N
β ,

λ(N) ≤ O(2−N
β
), and the decoding and rewriting operations’ complexity of the code is

O(N logN).

We present our experimental results in Figure 6.4. The rewriting cost function, storage

channel P , and λ(N) are the same as those of the previous subsection. We let δ = 0.1d,

and d = 0.32, 0.24, and 0.19, respectively. The empirical probability Q(ϕ(yN−10 , xN−10 ) ≥

1.1d) is presented in Figure 6.4. As predicted by Theorem 44 it decreases (nearly exponen-
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tially) as the length of codeword increases. However, even longer codewords are needed

to make the probability to be truly negligible.

6.5 Concluding Remarks

In this work, we analyse the capacity for noisy WEM, and present a code construction

for binary degraded and symmatric noisy WEM. The code construction is both theoreti-

cally analyzed and experimentally verified. We are interested in extending the code con-

struction to q-ary cells, and to more general settings regarding channel degradation. Those

remain as our future research directions.
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7. WOM CODES AGAINST INTER-CELL INTERFERENCE IN NAND

MEMORIES

7.1 Introduction

Flash memories, especially the NAND flash memories, have become more and more

important during recent years. Their outstanding features – such as high density and so on

– facilitated their widespread use. Two combined technological efforts, aggressive scaling

and the introduction of multi-level-cell (MLC), are taken to attain a further higher density.

However, the high density does not come without a cost. In flash memories, electrons

are stored in floating gates (cells). The number of electrons stored in a floating gate deter-

mines the cell level, therefore single-level-cell (SLC) and MLC are distinguished by the

number of levels in per cell. In order to get a measurable cell level, the threshold voltage,

Vth, must be applied to the floating gate. Generally, the more electrons are stored in per

cell, the higher Vth is. As the ever-growing application of MLC NAND flash memories,

the precise controlling of Vth is becoming important. However, in reality Vth is disturbed

by three well-known major parasitic effects, of which cell-to-cell interference is dominant

[45]. In NAND Flash memories, the Vth shift of one floating-gate transistor can disturb the

threshold voltages of its neighboring floating-gate transistors through parasitic capacitance

– coupling effect, which is referred to as cell-to-cell interference.

Besides interference, another well-known challenge of NAND flash memories is its

limited life time, measured by the number of erasures experienced by a floating gate. In

NAND flash memories, cells are organized as the hierarchy of arrays, blocks and pages,

where one array is partitioned into many blocks, and each block contains a certain number

of pages. Data is programmed and fetched in the unit of page, where the page size ranges

from 512-B to 8- kB user data in current design practice. However, all memory cells within
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the same block must be erased at the same time, which is time and energy consuming.

Therefore, one research topic of flash memories is to treat flash memories as write-once

memories (WOM) [61], and we reuse them as many times as possible. WOM consists

of a number of “write-once” cells where each cell initially is in a ‘0’ state and can be

changed to a ‘1’ state irreversibly. SLC flash memories follow this model. WOM can be

generalized to q states per cell [25], and MLC flash memories follow this model. Since

Rivest and Shamir presented that we can write a 2-bit variable twice via a WOM-code

using 3 cells, lots of research has been done, e.g., [71], [72] and so on.

Currently, there is some research about interference, but most focuses on circuit [56]

or architecture level [22]. There has been some work [7] on constrained coding for com-

batting inter-cell interference. Generally speaking, constrained code [54] imposes a con-

straint on the sequence that are allowed to be recorded or transmitted. Shannon cover is

of great help in constrained coding, which uses the minimal number of states to represent

the constrained system. In this work, we study the joint coding for both rewriting data and

combatting inter-cell interference. To the best of our knowledge, this is the first work that

addresses this joint coding problem.

In this work, we explore WOM codes against cell-to-cell interference. We firstly define

the model in Section 7.2. We then introduce one generalized WOM codes, Delta-WOM,

in Section 7.3, which plays an important role in our analysis of code performance. We

present various bounds of the codes in Section 7.4. Finally we present code constructions

in Section 7.5, one of which is based on the efficient t successive writes Diamond-WOM

codes, which is proved to approach its rewriting capacity.

7.2 Cell-to-cell Interference Model

Figure 7.1 presents the basic structure of a block and the model of cell-to-cell interfer-

ence used in this paper. Each word-line forms a page, by adding voltages on certain word-
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Figure 7.1: Cell-to-cell interference

line and bit-line we can program a specific cell. The victim cell, A, can be disturbed by

its eight neighbors. According to [45], the threshold-voltage change of the victim cell due

to interference can be estimated as
∑

k ∆V
(k)
t

C(k)

Ctotal
, where ∆V

(k)
t is the threshold-voltage

change of its kth neighbor, C(k) is the parasitic capacitance between the kth interfering cell

and the victim cell, and Ctotal is the total capacitance of victim cell. In this paper, we only

consider the one dimension inter-cell interference, or more specifically the noise from the

same word-line. Because the cell level is proportional to its threshold-voltage, we can use

the change of cell level to estimate interference. In order to have inter-cell interference in

a controllable manner, we require that during each round of programming the sum of cell

level changes of victim’s neighbors be not greater than the change of the victim’s for some

predetermined threshold value, or equivalently for the q-ary flash cell
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∆q1 + ∆q2 −∆qA ≤ D, (7.1)

where D is the given threshold value, and ∆q1,∆q2 and ∆qA are the cell level change of

cell 1, 2 and A. We let q− 1 ≤ D ≤ 2(q− 1)− 1 such that all cells can be programmed to

level q−1 at the same time. The intuition behind this model is quite straightforward: if the

cell level gap between the victim cell and its neighbors is too large, then the neighbors will

‘drag’ the victim cell level upwards. Similar model has appeared in [7], where specific

programming orders are considered and constrained codes is used. Our model is a general

one, that is we do not consider specific programming order, and our research focus is that

we construct WOM codes to overcome interference, that is our codes satisfy (7.1).

7.3 The Rewriting Capacity of Delta-WOM

In this section, we introduce Delta-WOM. A t-write WOM codes can be written as

< v1, v2, ..., vt > /n, that is the a variable of cardinality vi for the ith write, its ith rate

is Ri = log2 vi
n

and total rates of t writes is
t∑
i=1

Ri. The maximal total rates, meaning the

maximal number of information bits stored in one cell during successive rewrites, is also

called rewriting capacity. The achievable values of the vector (R1, R2, ..., Rt) form the

rewriting capacity region.

The Delta-WOM is such a WOM code that cells at lower states can be programmed

directly to at most D higher states, or equivalently whose transition model is 0 → 0, 0 →

1, ..., 0→ D, 1→ 1, 1→ 2, ..., 1→ D + 1, ... (See (a) of Fig.7.2, where D equals 2). We

notice that when D is q − 1, this is actually the multi-level-cell WOM [25] (Any cells of

lower states can be changed irreversibly to all higher states), which can also be verified at

the end of this section.

To obtain the rewriting capacity of Delta-WOM, we use connectivity matrix, A =

(αij)q×q, where αij = 1 if there is an edge between vertex i and vertex j, and αij = 0
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Figure 7.2: Delta-WOM, Star-WOM and Diamond-WOM

otherwise. For instance, the connectivity matrix of (a) in Fig. 7.2 is

A =



1 1 1 0 0 0

0 1 1 1 0 0

0 0 1 1 1 0

0 0 0 1 1 1

0 0 0 0 1 1

0 0 0 0 0 1


.

Generally, A can be written asA = B−C, where B is the upper triangular matrix with all

ones in the upper, and C is the following matrix

 0 B(1+D)×(1+D)

0 0

 .

Fu and Yeung in [2] presented the rewriting capacity formula of deterministic WEM –

of which WOM is a special case (see [2] for more details) – during t successive rewrites,
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C(t) = log(a0 · At−1 · 1q
T

), where a0 is the first row ofA, and (·)T is the transpose of an

vector or matrix. Now we use this to obtain the rewriting capacity for q-ary Delta-WOM

during t successive rewrites, C(q,D, t), and for the detailed proof please see the appendix.

Theorem 45. C(q,D, t) =

log2

p∑
i=0

(
t− 1

i

)
(−1)i · {

(
t− 1 + q − i(1 +D)

t− 1

)
−
(
t− 1 + q − (i+ 1)(1 +D)

t− 1

)
},

where p = b q
1+D
c, and

(
m
n

)
is 0 if m < n.

Clearly, ifD = q−1,C(q,D, t) = log2

(
t−1+q
t−1

)
, which is exactly the rewriting capacity

of multi-level-cell WOM [61].

7.4 Bound Rewriting Capacity for Rewriting Codes

In this section we provide various bounds of the rewriting capacity for codes against

inter-cell interference.

7.4.1 Lower bounds based on delta-WOM

One strategy to eliminate interference is to use the Delta-WOM codes, that is having

some constraint on the cell level changed of each write, and if necessary combining with

the strategy of dividing cells into non-interfering groups.

7.4.1.1 One lower bound based on grouping cells and constraint on the cell level change

Given n q−ary WOM cells, ~c = (c0c1..., cn−1), the constraint parameter D as in (7.1)

and requirement of t rewrites, we divide ~c into three groups: Gi = {cj|j mod 3 = i},

where i = 0, 1, 2 and j = 0, 1, ..., n− 1, every time we only program one group cells with

the constraint, D, on cell level change of every rewrite. In this way, we can make sure

there is no interference during each rewriting. Clearly, according to Theorem 45, we have
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Figure 7.3: Comparison of lower bounds: The solid lines are for the lower bounds with

grouping as well as constraint on the cell level change, and the lines with circles are for

the lower bounds with the constraint on the cell level change only.

a lower bound for the rewriting capacity, cap

cap ≥ C(q,D, t/3). (7.2)

Figure 7.3 compares the two lower bounds we obtained above, from which we can see

that the bound (7.2) is tighter.

7.4.2 Lower bound based on constrained codes

We now bound the rewriting capacity based on the strategy of constrained codes. It is

clear that constrained codes are of great help if the codes are used to write data only once

[7]. In this paper, we extend constrained codes from one write to multiple writes, which is
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a highly nontrivial extension. For simplicity, we take the example of two writes.

The scheme is as follows: For the first write we require all the cell levels are in the

range [0, q1) for some cell level q1, and the second one is in [0, q). Denote the rewriting

capacity of q-ary constrained codes with the respect to the constraint (7.1) by C(q,D). It is

clear that the lower bound of the sum rate of the scheme is maxq1{C(q1, D)+C(q−q1, D)},

however, according to [1], we can show that it is exactly the rewriting capacity of this

scheme.

We now briefly present how to obtain the above result. Let S,X and Y be some finite

sets of states, the input alphabet and the output alphabet. We suppose that for any stuck

cells state ~s ∈ S, meaning that those stuck cell states will not be lowered in future writes,

there is a deterministic function φ~s defined on some subset X~s ⊂ X , such that φ~s(x) ∈ Y

for any x ∈ X~s. That is φ~s(x) transfers the input ~x to the output according to the state

~s. Let Y~s = {y = φ~s(x)|x ∈ X~s, ~s ∈ S}. The encoding f and decoding g are as

follows, f(u,~s) : {1, 2, ...,M} × S → X , and g(y) : Y → {1, 2, ...,M}. We consider the

maximum number Mφ of messages that can be transmitted with respect to the stuck cells.

The following lemma bounds the Mφ and the corresponding maximum transmission rate

Rφ = log2Mφ/n.

Lemma [1] 46. Let Nφ = min~s∈S |Ys|. Mφ is bounded as Nφ
ln(Nφ|S|)

≤ Mφ ≤ Nφ, where

| · | means the cardinality of a set.

For our WOM codes, it is easy to know the maximal transmission rate of the first write

R1 is C(q1, D). For the second write, we know

X = Y = En, E = {0, 1, 2, ..., q − 1}

S = {~s ∈ En|~s satisfies the constraint (7.1)}
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Figure 7.4: Shannon cover of q-ary constrained codes with constraint (7.1). (a) Graph

representation of the constrained q-ary codes. There are 1 + 4(q-1) -2D vertices. (b)

Additional edges between odd vertex i and even vertices i + 1, i + 3,..., and 4(q − 1) −

2D. (c) Additional edges between even vertex j and odd vertices 4(q − 1) − 2D − 1,...,

4(q − 1)− 2D − (j − 3). (d) Additional edges between any odd vertex and all other odd

vertices (including itself).

X~s = Y~s = {~y ∈ En|~y − ~s satisfies (7.1) and ~y ≥ ~s}

φ~s(~x) = ~x, for ~x ∈ X~s, ~s ∈ S

We know that Nφ = min~s∈S |Ys| = number of (q − q1)-ary constrained codewords sat-

isfying the constraint (7.1), denoting as M , and |S| = 2nC(q1,D). According to the above

lemma, we obtainM/ ln(M2nC(q1,D)) ≤Mφ ≤M , andR2 approaches C(q−q1, D) as n is

infinite. Thus the rewriting capacity of our WOM codes is maxq1{C(q1, D)+C(q−q1, D)}.

Figure (7.4) presents the Shannon cover of q-ary codes with respect to the constraint

(7.1), which has the same structure as [7]. We can easily obtain its capacity C(q,D)

126



according to the knowledge of constrained codes [54]. Obviously, this method can be

extended to general cases as long as we reuse the codes less than q − 1 times.

Naturally, there exist other techniques to bound the rewriting capacity using both

Delta-WOM and constrained codes: for example, we can divide cells into three groups

G0, G1 and G2, and we let G1, and G0 together with G2 be programmed separately. For

G1, we use Delta-WOM to bound its rewriting sum rate; forG0 andG2, we use constrained

codes to bound the rewriting sum rate.

7.4.3 An explicit upper bound scheme

In this part, we obtain an upper bound of the rewrite capacity. The idea is as fol-

lows: Instead of dividing cells into non-interfering groups, we form a giant non-overlapped

‘cell’ by grouping three consecutive cells, e.g., cell 0, 1 and 2 form one giant ‘cell’, and

another ‘cell’ consists of cell 3, 4 and 5. It is easy to obtain the connectivity matrix,

A3 = (αij)q3×q3 , where αij = 1 if we can program the giant ‘cell’ from ‘level’ i to ‘level’

j with respect to the constraint (7.1) and WOM codes. For example, for the binary WOM

codes with the constraint ∆q0+∆q2−∆q1 ≤ 1, we obtain the connectivity matrix of giant

‘cell’ as follows:

A3 =



1 1 1 1 1 0 1 1

0 1 0 1 0 1 0 1

...
...

...
...

...
...

...
...

0 0 0 0 0 0 0 1


,

where the first row shows the ways of programming the giant ‘cell’ from ‘level’ 000 to

8 possible ‘levels’ (including itself). Seven of them are possible except for the transfer-

ring from 000 to 101, which violates the constraint. Similar analysis can be applied to

other rows. Since all transformation ways of consecutive three cells in the WOM codes

against interference are contained in this matrix, but the codes formed by those giant
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‘cells’ might still generate interference due to the noise among boundaries of the giant

‘cells’, clearly it is the upper bound of WOM Codes against interference. We compute

rewriting capacity of the giant ‘cell’ based on the formula demonstrated by Fu and Ye-

ung, C(t) = log(a0 · At−1
3 · 1q

T
). Thus we can upper bound it by log(a0·At−1

3 ·1q
T
)

3
. Further

more, we can obtain its rewriting capacity as the size of giant ‘cell’ grows larger and larger.

7.5 Code Constructions

In this section, we present code constructions. According to the two strategies bound-

ing the rewriting capacity, there are two methods to construct WOM codes against inter-

ference.

7.5.1 Code construction based on diamond-WOM

One method to construct the codes is naturally using Delta-WOM codes, that is letting

non-interfering cell be programmed at most D or D/2 more levels. For the former codes,

it is the multi-level-cell WOM codes, however, no existing WOM codes reach its rewriting

capacity, although Wu [71] and others presented code constructions to reach the rewriting

capacity of binary WOM of twice rewrites; for the later (having the constraint of D/2),

there are no known WOM codes approaching its rewriting capacity either. In this subsec-

tion, we present an efficient code construction of Diamond-WOM, which can be proved to

approach its rewriting capacity, and construct WOM codes against interference based on

it.

Diamond-WOM is such a WOM codes that only cells at the ‘0’ state can be changed

directly to other states except the highest state (q − 1) irreversibly, all the non-zero states

can only be changed to (remain at) the high states (q−1), or equivalently whose transition

model is 0 → 0, 0 → 1, ..., 0 → q − 2, 1 → (q − 1), ..., (q − 1) → (q − 1) (see (c)

of Figure (7.2)). Actually, the Diamond-WOM can be regarded as position modulation

code [72] with fixed weight, where a certain number of binary WOM cells are grouped
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together as a symbol, and at the beginning of each rewrite all the non-zero symbols are

erased by setting them to all-one value. Similarly, for Diamond-WOM every time before

each rewrite, we erasure all the non-zero cells by programming them to the highest state

(q − 1), which can be thought of as a dummy state. Thus we get ‘clean’ cells every time

before each rewrite. Using these remaining cells, we encode the message by the number of

initial cells, and the positions of non-zero (except the ‘dummy state’ (q−1)) cells. Also, we

can see the connection between Diamond-WOM and Star-WOM (see (b) of Figure (7.2)):

the q-ary Diamond-WOM is equivalent to the (q − 1)-ary Star-WOM in that the non-zero

Star-WOM cells are stuck cells and they remain at their original states, while the non-zero

Diamond-WOM cells also are stuck cells but they have to stuck at state (q − 1). This can

also be verified from their rewriting capacity regions and rewrite capacities. Fu and Vinck

[26] formulated q-ary Star-WOM’s rewriting capacity region, which is

Ct = {(R1...Rt)|R1 ≤ h(~P (1))...Rt ≤
t−1∏
i=1

P0
(i)h( ~P (t))},

where ~P (i) = (P
(i)
0 , P

(i)
1 , ..., P

(i)
q−1)(i = 1, 2, 3, ....) is a probability vector, and P (i)

j implies

that at the ith rewrite at most P (i)
j fraction of available cells can be programmed from

initial state to state j. Its rewriting capacity is log2[1 + (q − 1)t].

The following two lemmas present the rewriting capacity region of Diamond-WOM

and its rewriting capacity, respectively.

Lamma 47. The rewriting capacity region of q-ary Diamond-WOM during t-successive

rewrites is

Ct = {(R1...Rt)|R1 ≤ h( ~p(1))...Rt ≤
t−1∏
i=1

p
(i)
0 h( ~p(t))}, (7.3)

where ~p(i) = (p
(i)
0 , p

(i)
1 , ..., p

(i)
q−1)(i = 1, 2, 3, ....) still is a probability vector, however,

according to the definition of Diamond-WOM, piq−1 = 0 for i ∈ {1, 2, ..., t}.
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Proof. Let S1, S2, ..., St be the random variables form a Markov chain, denoted as S1 ⇒

S2 ⇒ ... ⇒ St. According to [25] the rewriting capacity region is R1 ≤ h(S1), R2 ≤

h(S2|S1), ..., Rt ≤ h(St|S(t−1)). Let

p
(1)
j = Pr{S1 = j}, j = 0, 1, ..., q − 1

p
(i)
j = Pr{Si = j|Si−1 = 0}, j = 0...q − 1, i = 2, ..., t

~pi = (p
(i)
0 , p

(i)
1 ...p

(i)
q−1), i = 1, 2, ..., t

We note that Pr{S1 = q − 1} = 0 and

Pr{Si+1 = q − 1|Si = j} = 1, i = 1...t− 1, j = 1...q − 1.

Using the above known facts and the same proof of the rewriting capacity region for Star-

WOM [25], we can obtain the result.

Lemma 48. The rewriting capacity of successive t rewrites of q-ary Diamond-WOM is

log2(1 + (q − 2)t).

We briefly present its proof: the connectivity matrix of Diamond-WOM is

AD =

 1q−2 0

0(q−2)×(q−2) 1q−2

 .

Then it is easy to obtain the result according to C(t) = log(a0 · ADt−1 · 1q
T

) [2].

We summarize the optimal parameters in Table 7.1, and code construction of Diamond-

WOM in the following, and for more details interested readers please refer to the appendix.

We now illustrate how to use t successive writes Diamond-WOM codes to construct

codes against interference. Taking the example of having constraint D/2 on the cell level
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Algorithm 7.5.1 Code construction for Diamond-WOM.

1: Encode: For the data to write y (y ∈ [0, 2
n(
i−1∏
j=0

p
∗(j)
0 )h(p

∗(i)
0 ,

1−p∗(i)0
q−1

,...,
1−p∗(i)0
q−1

)

−1]), first flip
all non-zero state cells to state q−1, and then flip cells according to encoding function
f−1i (y).

2: Decode: With the cell state vector ~ci, the value y is y = fi(~ci).

Table 7.1: Optimal parameters for Diamond-WOM

i p
(i)
0 p

(i)
1 ... piq−2 p

(i)
q−1

1 1

1+ q−2

2RC1
e−(q−3)

1−p(1)0

q−2 ... 1−p(1)0

q−2 0

2 1

1+ q−2

2RC2
e−(q−3)

1−p(2)0

q−2 ... 1−p(2)0

q−2 0

... ... ... ... .̇. 0
t 1

q−1
1
q−1

1
q−1

1
q−1 0

change, we first use the Diamond-WOM codes in the cell level range [0, D/2 − 1] for t1

times, and then reuse the remaining cell in the level range [D/2, q − 1] for t2 times. It is

easy to know that using this method, the rewriting capacity is log2[1 + (D/2 − 2)t1] +

log2[1 + (q −D/2− 2)t2].

7.5.2 Code construction based on constrained codes

Another code construction is based on constrained codes. We take the example of two

writes WOM codes. Since the rewriting capacity is maxq1{C(q1, D) + C(q − q1, D)},

we can take the following simple approach. The first write is an q1-ary constrained codes

with respect to (7.1). We briefly discuss how to generate encoder and decoder according

to the Shannon cover graph, and see [54] for more details. Firstly, for the rate R, we find

the input data size k and the output data size of encoder l such that R = k/l ≤ C(q1, D);

Secondly, we multiply the Shannon cover graph such that every node has ql1 output edges;
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Finally, we assign input data to edges. Encoding and decoding are done by traversing the

graph. After the first write all cells are programmed to level q1, and we use the similar

method to generate the encoder and decoder for the (q − q1)−ary constrained codes with

respect the constraint (7.1).

7.6 Conclusion

WOM codes against cell-to-cell interference WOM codes are explored in this paper.

Based on Delta-WOM, and constrained coding, we present various bounds of the codes.

Also we present code constructions, one of which is based on the efficient t successive

writes Diamond-WOM codes, which is proved to approach its rewriting capacity.

7.7 Appendix

7.7.1 The proof of theorem 45

Proof. An = (B − C)n =
n∑

i=0

(
n
i

)
· Bn−i · Ci · (−1)i, thus we next try to get the expression

for Bn−i · Ci. By induction, we obtain that Ci equals

 0 Qi(q−i(1+D))×(q−i(1+D))

0 0

 ,

where Qi(q−i(1+D))×(q−i(1+D)) =



(
i−1
0

) (
i
1

)
...

(
i+q−i(1+D)−2
q−i(1+D)−1

)
0

(
i−1
0

)
...

(
i+q−i(1+D)−3
q−i(1+D)−2

)
...

... . . . ...

0 0 0
(
i−1
0

)


,
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and Bn−i equals Qn−iq×q. Thus after computation, we get Bn−i · Ci is

 0 Qn(q−i(1+D))×(q−i(1+D))

0 0

 .

Denoting b q
1+D
c = p, we obtain a0 · An · 1q =

p∑
i=0

a0

(
n
i

)
Bn−iCi1q

T(−1)i. Then we

compute the sum of the first (1 + D) rows of Bn−iCi. By induction, we compute the sum

of the jth row is, (
n− 1 + q − i(1 +D)− (j − 1)

q − i(1 +D)− 1− (j − 1)

)
,

where 1 ≤ j ≤ 1 + D. That leads to a0Bn−iCi1q =
1+D∑
j=1

(
n−1+q−i(1+D)−(j−1)
q−i(1+D)−1−(j−1)

)
=(

n+q−i(1+D)
n

)
−
(
n+q−(i+1)(1+D)

n

)
.

7.7.2 Code construction for diamond-WOM

In this section we present the code construction, t successive writes Diamond-WOM

codes.

7.7.2.1 Determining optimal parameters

Suppose we have n Diamond-WOM cells, all possible states are 0, 1, ..., q − 1, and

initially all cells are at state 0. For the jth (1 ≤ j ≤ t) rewrite, the number of cells flipped

from initial state to state i (0 < i ≤ q − 2) is a preset faction p(j)i of the remaining cells,

and p(j)q−1 is always 0.

The following lemmas present the optimal choices of parameters p(j)i (i 6= q − 1) such

that the total rate is maximal.

First we show that if we fix p(i)0 (i = 1, 2, ..., t−1), the formula (7.3) can be expressed in

a succinct way, and it presents the optimal choices for p(i)j (j 6= 0, q− 1 and i = 1, 2, ..., t).
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Lemma 49. Ct = {(R1, · · · , Rt)|R1 ≤ h(p
(1)
0 ,

1−p(1)0

q−2 , · · · ,
1−p(1)0

q−2 , 0), · · · ,

Ri ≤ (
i−1∏
j=1

p
(j)
0 )h(p

(i)
0 ,

1−p(i)0

q−2 , · · · ,
1−p(i)0

q−2 , 0), · · · , Rt ≤ (
t−1∏
i=1

p
(i)
0 ) log2 (q − 1)}.

Proof. Once p(i)0 (i = 1, 2, · · · , t−1) is fixed, we derive that h( ~p(i)) ≤ h(p
(i)
0 ,

1−p(i)0

q−2 , · · · ,
1−p(i)0

q−2 , 0)

by Jensen’s inequality and the fact that log2 x is a strictly convex function. Similarly, we

get h( ~p(t)) ≤ h( 1
q−1 , · · · ,

1
q−1 , 0) = log2 (q − 1).

The next lemma presents the optimal choices of p(j)0 (1 ≤ j ≤ t− 1).

Lemma 50. The total rate of t successive writes of Diamond-WOM of previous lemma,

C(t) =
t∑
i=1

Ri, is maximal when p
(j)
0 = 1

1+
(q−2)

2
RCj

eq−3

4
= p

∗(j)
0 , where j = 1, 2, · · · , t −

1, RCj can be recursively obtained by RCj−1 = h(p
∗(j−1)
0 ,

1−p∗(j−1)
0

q−2 , · · · , 1−p
∗(j−1)
0

q−2 , 0) +

p
∗(j−1)
0 RCj and RCt−1 = log2 (q − 1).

Proof. Proving this result involves finding p(1)0 , p
(2)
0 , ..., p

(t−1)
0 that maximize

h(p
(1)
0 ,

1− p(1)0

q − 2
, · · · , 1− p(1)0

q − 2
, 0) + · · ·+ (

t−2∏
i=1

p
(i)
0 )h(p

(t−1)
0 ,

1− p(t−1)0

q − 2
, · · · , 1− p(t−1)0

q − 2
, 0)

+(
t−1∏
i=1

p
(i)
0 ) log2 (q − 1).

We first fix p(1)0 , ..., p
(t−2)
0 , and find out p(t−1)0 maximizing h(p

(t−1)
0 ,

1−p(t−1)
0

q−2 , ...,
1−p(t−1)

0

q−2 , 0)+

p
(t−1)
0 log2 (q − 1). The answer is p∗(t−1)0 = 1

1+ q−2
q−1

e−(q−3) and

RCt−1 = h(p
∗(t−1)
0 ,

1− p∗(t−1)0

q − 2
, ...,

1− p∗(t−1)0

q − 2
, 0) + p

∗(t−1)
0 RCt.

Similarly, using this result and fixing p(1)0 , ..., p
(t−3)
0 , we will find p∗(t−2)0 = 1

1+ q−2

2
Ct−1

e−(q−3) .

Repeating this process, we finish verifying the correctness of this lemma.
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Combining the last two lemmas, the following theorem, which determines the optimal

parameters, holds immediately.

Theorem 51. The total rate of t successive writes of Diamond-WOM of EQ.(7.3), C(t) =
t∑
i=1

Ri, is maximal when p(j)i (1 ≤ j ≤ t and 0 ≤ i ≤ q − 2) are determined by the last

two lemmas.

The ith (0 ≤ i ≤ t) write is first to flip all non-zero cells to the state q − 1, and then

flip exactly the fraction (1− p∗(i)0 ) of remaining initial cells, which is n
i−1∏
j=0

p
∗(j)
0 , evenly to

nonzero states except the state q − 1.

Next, we analyze rate of the ith write, Ri (1 ≤ i ≤ t).

Theorem 52. Ri <
i−1∏
j=0

p
(j)
0 h(p

∗(i)
0 ,

1−p∗(i)0

q−2 , ...,
1−p∗(i)0

q−2 ).

Proof. We denote n′ as remaining cells at state 0 before the ith write, which is actually

n
i−1∏
j=0

p
∗(j)
0 . According to the writing scheme of the ith write, Ri =

log2 ( n′
k1,k1,...,kq−2

)
n

, where

k1 = k2 = ...kq−2 = n′
1−p∗(i)0

q−2 and we use the notation, Permutations of Multiset:

(
n

k1, ..., kq−2

)
=

n!

k1!k2!...kq−2!(n− k1 − ...− kq−2)!
.

Using this notation, the following polynomial can be expressed in a clean form: (1 +

2r1 + 2r2 + ...+ 2rq−2)n =
~n∑
~k=~0

2~r
~k
(

n
k1,...,kq−2

)
, where ~r~k is the inner product of two vectors

(r1, ..., rq−2) and (k1, ..., kq−2), ~k = ~0 means all its elements start from 0, and similarly,

~k = ~n indicates every element ki ends at n.

The outline of the proof isRi

(a)
<

log2

~q(i)n′∑
~k=~0

( n′
k1,k1,...,kq−2

)

n
≤

i−1∏
j=0

p
∗(j)
0 h(p

∗(i)
0 ,

1−p∗(i)0

q−2 , ...,
1−p∗(i)0

q−2 , 0),

where ~q(i) = (
1−p∗(i)0

q−2 , ...,
1−p∗(i)0

q−2 ). It is quit straightforward to see the correctness of the first

inequality (a). Now we prove the latter inequality.
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Since we have

2~r~q
(1)n′

~n′∑
~k= ~q(i)n′

(
n′

k1, k2, ..., kq−2

)
≤

~n′∑
~k= ~q(i)n′

(
n′

k1, k2, ..., kq−2

)
2~r
~k (7.4)

≤
~n′∑
~k=~0

(
n′

k1, k2, ..., kq−2

)
2~r
~k

= (1 + 2r1 + 2r2 + ...+ 2rq−2)n
′
,

~n′∑
~k= ~q(i)n′

(
n′

k1,k2,...,kq−2

)
≤ (2−~r~q

(i)
+ 2r1−~r~q

(i)
+ ...+ 2rq−2−~r~q(i))n

′ .

Choose rj = log2

p
(i)
j

1−
p−2∑
k=1

p
(i)
j

= log2

p
(i)
j

p
(i)
0

.

Then the sum above is not bigger than 2n
′h(~p(i))(p

(i)
0 +p

(i)
1 + ...+p

(i)
q−2)

n′ , which is equal

to 2n
′h(~p(i)).

Since
~q(i)n′∑
~k=~0

(
n′

k1,k2,...,kq−2

)
=

~n′∑
~k=~q(i)n′

(
n′

k1,k2,...,kq−2

)
, we getRi <

i−1∏
j=0

p
∗(j)
0 h(p

∗(i)
0 ,

1−p∗(i)0

q−2 , ...,
1−p∗(i)0

q−2 , 0).

Clearly, the following theorem holds:

Theorem 53. Our construction approaches the rewriting capacity of Diamond-WOM.

7.7.2.2 The index of cell state vector

One unsolved problem of the ith write is the decoding function and encoding function:

for the encoding we map the index to the cells state vector; for the decoding we obtain its

index from the cells state vector. Let

fi : ~c = (c0, c1, ..., cn−1)→ {0, 1, ..., 2nRi − 1}, (7.5)

be the function computing the index of a vector for the ith rewrite. The following example

presents the basic idea, which is an extension of [15].
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Consider the example where we have 7 Diamond-WOM 5-ary cells, and we can use

3 cells for the first write according to some distribution. We compute the index of the

sequence ~c = (0030201). Before that, we define some notations: the support for a q-ary n-

tuple ~c, supp(~c), that is supp(~c) = {i|i ∈ {0, 2, ..., n−1}; ci 6= 0}, and its complementary

set supp(~c) = {i|i ∈ {0, 2, ..., n − 1}; ci = 0}. For example, for previous ~c, supp(~c) =

{k0, k1, k2} = {2, 4, 6}. The basic idea of fi(·) is to count the number of sequences of

lower indexes, that is indexing them according to their alphabet order. We consider every

i ∈ supp(~c). For k0 = 2, corresponding to the state 3, if we flip it to lower states,

all the sequences are lexically before ~c: if we flip it to a nonzero state, there are (3 −

1)
(
6−2
3−1

)
(4 − 1)3−1 = 108 sequences; flipped to zero state, there are

(
6−2
3

)
(4 − 1)3 = 108

sequences. Similarly, for k1, k2 flipping them to lower states and leaving the preceding

cells unchanged, there are 1
(
6−4
2−1

)
(4− 1)1 +

(
6−4
2

)
(4−1)2 = 15 cells. Therefore, the index

of ~c is f(~c) = 108 + 108 + 15 = 221.

More generally, consider a vector ~ci = (c0c1...cn−1) of q states after the ith write, we

can obtain its sub-vector ~c′i = (c′0c
′
1...c

′

n
i−1∏
j=0

p
∗(j)
0 −1

), where c′i is some cj , not at state (q − 1),

and the support of ~c′ is {k0, k1, ..., kl−1}. We have fi(~ci) = fi(~c
′
i) =:

l−1∑
i=0

(n i−1∏
j=0

p
∗(j)
0 − 1− ki

l − i

)
(q − 1)l−i + (c′ki − 1)

(n i−1∏
j=0

p
∗(j)
0 − 1− ki

l − 1− i

)
(q − 1)l−1−i.

Conversely, we define f−1i (y) to the process of determining cell state vector corre-

sponding to data y. Given the data to write, y, and the cell state vector ~ci−1 after the

(i − 1)th write, in order to determine ∆~ci = (c0c1...cn−1) (according to which we flip

cells), we do the following things: first we flip all non-zero state cells to the state (q − 1),

and denote now the cell state vector as ~cfi; similarly, we can obtain its sub-vector ~c′fi,

which consists of all initial state cells, thus flipping cells according to ∆~ci is equiva-
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lent to flip cells as ∆~c′fi; we decide l, which is the number of cells we flip in the ith

time, n(1 − p
(i)
0 )

i−1∏
j=0

p
∗(j)
0 , and ease to obtain if we set a cell to remember the writing

times; ck0 ∈ {0, 1, ..., q − 2} is the largest integer and k0 is the smallest integer such that

(ck0 − 1)
(n i−1∏

j=0
p
∗(j)
0 −1−k0

l−1

)
(q− 1)l−1 +

(n i−1∏
j=0

p
∗(j)
0 −1−k0

l

)
(q− 1)l ≤ y..., until all ki and cki are

determined. ∆~c′fi consists of all cki (i ∈ [0, l − 1]). We use the function f−1i (y) to denote

the above process.
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8. CODING FOR SECURE WRITE-EFFICIENT MEMORIES

8.1 Introduction

Flash memories are becoming ubiquitous due to the advantages such as higher data

density, scaling size and non-volatility. The two most conspicuous challenges of flash

memories are its limited lifetime, i.e., the so called endurance problem, and the difficulty

of secure deletion, i.e., the so called insecure deletion. Such characteristics are different

from traditional storage media, and posing a threat to their further usages. In this work,

we propose a novel coding model here, secure write-efficient memory (WEM), to address

the two challenges jointly, and focus on information theoretical results, i.e., rewriting-rate-

equivocation region and its secrecy rewriting capacity.

In the following, we present the two challenges in detail (i.e.,endurance and insecure

deletion), which motivate us to propose the secure WEM model to solve them jointly.

8.1.1 Endurance and rewriting codes

Flash memories are significant non-volatile memory techniques. The unit of flash

memory is a cell. Each flash chip is composed of blocks, each block consists of pages, and

each page is made up of cells. There are three operations on flash cells, read, write/program

and erase. The granularity of read/write and erase is a page and a block, respectively.

The first challenge in flash memories is endurance. Endurance means flash memory

can only experience a limited number of program/erase cycles, beyond which the cell

quality degradation can no longer be accommodated by the memory system fault tolerance

capacity.

Rewriting code is a powerful coding technology to solve the endurance problem from

information theory and coding theory perspective. Figure 8.1 presents us the rewriting

code model, where the rewriter selects a new codeword yN−10 = (y0, y1, · · · , yN−1) based
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Figure 8.1: Rewriting code model, where M is the message to rewrite, xN−10 is the current

cell state, and yN−10 is the rewrite codeword.

on the message – which is M– to rewrite to the underlying storage medium, and current

cell state of the storage medium xN−10 = (x0, x1, · · · , xN−1) such that the predefined

constraint between xN−10 and yN−10 is satisfied.

Based on various constraints, different rewriting code models such as write-once mem-

ory (WOM) codes [61] and WEM codes [2] have been proposed, and optimal code con-

structions [9], [65] and [48] have been constructed for them, respectively. For WOM, the

constraint is yi ≥ xi for i = 0, 1, · · · , N − 1, that is the cell level can only increase but

not decrease. We repeat the definition of WEM as follows, before which we present some

notations.

LetX be the alphabet of the symbol stored in a cell. ∀x, y ∈ X , let the rewriting cost of

changing a cell’s level from x to y be ϕ(x, y), which may be time or energy taken. Given

N cells and xN−10 , yN−10 ∈ XN , let ϕ(xN−10 , yN−10 ) = 1
N

N−1∑
i=0

ϕ(xi, yi) be the rewriting cost

of changing the N cell levels from xN−10 to yN−10 .

Let D ⊆ N. We use D to denote the |D| possible values of the data stored in the N

cells. Let the decoding function be D : XN → D, which maps the N cells’ levels to the

data they represent. Let the rewriting function be R : XN ×D → XN , which changes the

N cells’ levels to represent the new input data. (Note that the rewriting function can be

either deterministic or stochastic.)

Definition 54. [2] An (N,M,D) write-efficient memory code consists of
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Figure 8.2: An example of (3, 4, 1) WEM, where two sequences of numbers inside a box

are codewords, the number outside a box is the data represented by the codewords inside

the box, e.g., both codewords (0, 0, 0) and (1, 1, 1) represent data (0, 0), the rewriting cost

metric is the Hamming distance, that is ϕ(0, 0) = ϕ(1, 1) = 0 and ϕ(0, 1) = ϕ(1, 0) = 1.

• D = {0, 1, · · · ,M − 1} and
⋃M−1
i=0 Ci, where Ci ⊆ XN is the set of codewords

representing data i. We require ∀i 6= j, Ci
⋂
Cj = ∅;

• A rewriting function R(i, xN−10 ) such that ϕ(xN−10 ,R(i, xN−10 )) ≤ D for any i ∈ D

and xN−10 ∈ XN ;

• A decoding function D(yN−10 ) such that D(R(xN−10 , i)) = i for any i ∈ D.

That is, the first condition indicates that each data is represented by a group of code-

words, the second one indicates that during each rewrite the average rewriting cost between

the current codeword xN−10 and the updated codeword yN−10 is less than a predefined num-

ber, and the third one indicates that the decoder knows the rewritting message given a

rewriting codeword. A concrete example of WEM is presented in Figure 8.2.

Although WEM is a reasonable model for solving endurance in phase-change memory

[44], it is worth noting that WEM can also be used in flash memories when the data
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representation scheme is rank modulation [36, 46]. On the other hand, as pointed out by Fu

et al [27], “the binary WOM and the generalized WOM are special cases of deterministic

WEM”. Therefore, in this work we focus on the WEM as our main tool for rewriting

codes.

8.1.2 Insecure deletion and wiretap codes

Flash memory is commonly accessed through a Flash Translation Layer (FTL) [31],

which is used in USB sticks, solid state drives, etc. One core function of FTL is to maintain

a physical-to-logical mapping table. FTLs access the raw flash memory directly by a Phys-

ical Address (PA), and the PA is mapped to a Logical Address (LA) that computer system

uses to access data. Other functions of FTL are wear leveling and garbage collection, etc.

The second challenge in flash memories is insecure deletion (or insecure erasure) ([70,

58, 39]). Insecure deletion means FTL produces multiple copies of data that can not be

deleted completely as they are either impossible or costly, however, a sophisticated attacker

can recover and obtain information about the data.

We illustrate the insecure deletion in detail here and we use Figure 8.3 to further il-

lustrate it. The first reason causing this is the existence of multiple copies of codewords

in flash memories. Flash memories are not perfect as there are various errors [49], thus

a strong error correcting code (e.g., BCH code or LDPC code) is used to combat errors.

Memory scrubbing [64] is also used to protect flash memories, which is to correct a noisy

codeword and write a new error-free codeword back to memories. However, due to the

out-of-place rewriting policy, the updated codeword is stored at a new physical address and

the original codeword remains in memories. Those mechanisms lead to multiple copies of

codewords existing in memories. Other reasons causing this are weal leveling and garbage

collection.

When the flash is attacked by an eavesdropper, who is able to trace any copy of code-
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Figure 8.3: Illustration of insecure deletion in flash memories

words, and is aware of all encoding and decoding algorithms, the sensitive information

can be leaked. Due to the imperfections of the physical erasure process and the FTL,

perfecting erasure data is either impossible or costly [39].

Recently, insecure deletion has attracted intensive research attention due to wild us-

age of non-volatile memories and the underlying log-structured file system [62]. Different

approaches from different levels, such as [70] from architecture level, [58] from operat-

ing system level, etc, have been proposed to solve this problem. Interested readers are

encouraged to refer to [39], a comprehensive survey of secure data deletion.

Wiretap codes [73] provide unconditional information-theoretic security. More pre-

cisely, in the wiretap code setting (see Figure 8.4), Alice wishes to send message M to

Bob through a main channel, but her transmissions are also accessible to an eavesdrop-

per Eve through another channel, wiretap channel. That is, Alice selects a codeword

yN−10 based on the message M and random bits to send through the main channel and the

wiretap channel. wN−10 and zN−10 are noisy codewords of yN−10 passing through the two
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Figure 8.4: Illustration of wiretap channel code.

channels, respectively. After receiving wN−10 , Bob maps it to an estimate of the original

message. The goal of wiretap channel codes is to design a reliable and secure communi-

cation scheme, that is, Bob can reliably recover the message, while the information leaked

to Eve is negligible.

Wiretap codes have been gaining escalating practical interest due to its two striking

benefits over conventional cryptography. One is no computational assumptions, which

provides long-term security even facing with the incoming quantum computing era, and

the other is no keys distribution, which is attractive for vulnerable and low-power devices.

Popular as wiretap code is for secure wireless communication [51], there is barely no

research work [14] considering its application to non-volatile memory storages.

8.1.3 Contribution and structure

In this paper, we first propose a novel coding model here – secure write efficient

memory– which has both properties of rewriting codes as well as wiretap channel codes

to jointly solve the endurance and the insecure deletion problem. Figure 8.5 presents us

the big picture of this setting, where the sensitive data M is encoded using rewriting code

yN−10 , noisy codewords of yN−10 are accessible to both a legal decoder, who can reliably
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Figure 8.5: Illustration of rewriting codes with security constraint in flash memories

retrieve M , and an eavesdropper, whose knowledge of M is negligible to satisfy the se-

curity constraint. Rigorous definition of the codes is deferred to the later section. To the

best knowledge of authors, this is the first work to study rewriting code with security con-

cern under the wiretap channel setting. To that end, in this work we mainly explore the

fundamental information theoretical results, i.e., achievable rate region and its capacity.

The rest of this paper is structured as follows. In Section 8.2, we formally define

the secure write-efficient memory model and we list the main results of this paper. In

Section 8.3, we study the achievable regions for secure WEM. In Section 8.4, we study the

secrecy rewriting capacities. The conclusion and future work are obtained in Section 8.5.

8.2 Definition of Secure WEM

In this section, we formally present the secure WEM model. We first present a secure

WEM model, where there is an upper bound on the rewriting cost of each rewriting. We
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then generalize the secure WEM by loosing the rewriting cost constraint, i.e., here only an

upper bound on the average rewriting cost constraint over all rewritings is required.

8.2.1 Secure WEM with a maximal rewriting cost constraint

The secure WEM model is illustrated in Figure 8.6. In this setting, Alice wishes to

store messages to a limited lifetime storage medium using a rewriting code, WEM [2],

the messages are accessible to Bob through a storage channel CH1, W = (X ,W ,WW |X),

but her transmissions also reach an eavesdropper Eve through a wiretap channel CH2,

P = (X ,Z, PZ|Y ), Y ∈ X . This is illustrated in Figure 8.6, wherein M is the message

that Alices wishes to store. Based on the messageM and the current cell level vector xN−10 ,

the rewriter maps M to a N -bit codeword yN−10 . This codeword is transmitted across the

storage channel and the wiretap channel resulting wN−10 and zN−10 . Finally, Bob estimates

yN−10 to recover the message M .

The goal of secure WEM codes is to design a coding scheme, i.e., a rewriting function

and a decoding function, such that it is possible to store messages cost-effectively and

securely as the length of codeword tends to infinity. Being cost-effective means for each

rewrite the defined rewriting cost, i.e., which is measured by ϕ(xN−10 , yN−10 ) for a defined

cost ϕ(·), has to be less than a predefined number to solve the endurance problem. Being

secure means the uncertainty of the eavesdropper about the messageM after observing the

wiretap channel output zN−10 , i.e., which is measured by 1
N
H(M |zN−10 ) [73], also satisfies

a predefined constraint to solve the insecure deletion problem.

Note that CH1 and CH2 model various errors proposed in [49] and CH2 is usually

more noisier than CH1. This is due to the fact that errors in flash memory are accumulated

with each flash operation, that is wN−10 at a legitimate decoder is usually the latest valid

codeword copy and thus has accumulated relatively few errors, while zN−10 is usually one

copy of out-of-date codewords and thus has accumulated relatively more errors [49]. For
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Figure 8.6: The secure WEM model. CH1, CH2 are the main channel and the wiretap

channel, respectively. M,xN−10 , yN−10 , zN−10 , wN−10 and M̂ are the message to rewrite, the

current cell states, the rewrite codeword, the wiretap channel’s output, the main channel’s

output and the estimated message, respectively.

simplicity, we assume that CH1 is noiseless, and leave the opposite case as the future work.

For this reason, we omit the rigorous definition of the notion more noisier, and interested

readers are referred to [8].

The formal definition of the secure WEM model is below.

Definition 55. An (N, 2NR, Re, D) secure write-efficient memory code with a wiretap

channel P = (X ,Z, PZ|Y ) and the rewriting cost function ϕ(·) consists of

• D = {0, 1, · · · , 2NR − 1} and
⋃2NR−1
i=0 Ci (∀i 6= j, Ci

⋂
Cj = ∅);

• R(M,xN−10 ) such that

– ϕ(xN−10 ,R(M,xN−10 )) ≤ D for any M ∈ D and xN−10 ∈ XN ;

– 1
N
H(M |zN−10 ) ≥ Re − ε for any M ∈ D, zN−10 ∈ Zn, ε > 0 as N →∞.
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• D(yN−10 ) such that D(R(xN−10 ,M)) = M for all M ∈ D and xN−10 ∈ XN .

Note that the first requirement of the rewriting function is the same as that of WEM [2],

and the second one is added here to consider the uncertainty of the message at the eaves-

dropper, therefore (N, 2NR, Re, D) codes are actually a subset of write-efficient memory

codes [2], and we term the code as secure WEM code.

Also note that in the above the security measure is the weak security condition. Be-

sides it, other security measures, such as the strong security condition [8] and the recently

proposed semantic security measure [6], also exist, and we leave them as future work.

Fixed D, the rewriting cost function ϕ(·) and the wiretap channel P = (X ,Z, PZ|X),

a tuple (R,Re) ∈ R2 is said to be achievable if there exists an (N, 2NR, Re, D) codes.

When Re = R, we say it achieves full secrecy. The set of all achievable tuples is de-

noted by Rswem, rewriting-rate-equivocation region. The secrecy rewriting capacity is

Cswem(D)
def
= supR{R : (R,R) ∈ Rswem}.

8.2.2 Secure WEM with an average rewriting cost constraint

The secure WEM code in definition 55 puts a constraint on the maximal rewriting cost

for each rewriting. We now define a code with an average rewriting cost constraint. Before

formally presenting its definition, we define the following terms.

Assume the sequence of data written to the storage medium is {M1, · · · ,Mt}, where

we assume Mi for 1 ≤ i ≤ t is uniformly distributed over D, and the average rewriting

cost is D̄ def
= lim

t→∞
1
t

t∑
i=1

ϕ(xN−10 (i),R(Mi, x
N−1
0 (i))), where xN−10 (i) is the current cell

states before the ith update. By assuming the stationary distribution of cell levels xN−10 is

π(xN−10 ), D̄ =
∑
xN−1
0

π(xN−10 )
∑
j∈D

D̄j(x
N−1
0 ), where D̄j(x

N−1
0 ) is the average rewriting cost

of updating cell levels xN−10 to a codeword representing j ∈ D.

Definition 56. An (N, 2NR, Re, D)ave secure write-efficient memory code for wiretap

channel P = (X ,Z, PZ|Y ) and the rewriting cost function ϕ(·) consists of
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• D = {0, 1, · · · , 2NR − 1} and
⋃2NR−1
i=0 Ci (∀i 6= j, Ci

⋂
Cj = ∅);

• R(M,xN−10 ) such that

– D̄ ≤ D;

– and 1
N
H(M |zN−10 ) ≥ Re−ε for any M ∈ D, zN−10 ∈ ZN , ε > 0 and N →∞.

• D(yN−10 ) such that D(R(xN−10 ,M)) = M for any M ∈ D and xN−10 ∈ XN .

That is, compared with (N, 2NR, Re, D) code, the rewriting cost constraint for each

rewrite is replaced by the average rewriting cost constraint over all rewritings.

Similarly, a tuple (R,Re)ave ∈ R2 is said to be achievable if there exists an (N, 2NR, Re, D)ave

codes. When Re = R, we say it achieves full secrecy. The set of all achievable tuples is

denoted byRswem
ave , and Cswem

ave (D)
def
= supR{R : (R,R)ave ∈ Rswem

ave }.

8.3 Achievable Region of Secure WEM

In this section, we present one of our main contributions, that is the achievable region

for secure WEM and its secrecy rewriting capacity and the proof of the achievable region

is defered to Section 7.4.

8.3.1 Characterizing the achievable region forRswem

Let P(X × X ) be the set of joint probability distributions over X × X . For a pair of

random variables (X, Y ) ∈ (X ,X ), let PXY , PX , PX|Y denote the joint probability distri-

bution, the marginal distribution, and the conditional probability distribution, respectively.

E(·) denotes the expectation operator. IfX is uniformly distributed over {0, 1, · · · , q−1},

denote it by X ∼ U(q).
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Theorem 57. DefineR(PXY ) =

{(R,Re) :

R ≤ H(Y |X)

Re ≤ H(Y |Z)

Re ≤ R

},

where PXY ∈ P(D)
def
= {PXY : PX = PY , E(ϕ(X, Y )) ≤ D}, the joint distribution

of X, Y, Z factorizes as PXPY |XPZ|Y , and the PZ|Y is given by wiretap channel P =

(X ,Z, PZ|Y ).

Then, the rewriting-rate-equivocation region of the secure WEM is the convex region:

Rswem =
⋃
PXY
R(PXY ).

The first inequality in Theorem 57 is the same as the rewriting rate for write-efficient

memories [2, Theorem 2], which is an immediate result as secure WEM is an especial case

of WEM. The second inequality is the major contribution of this paper.

The typical shape of the above achievable region R(PXY ) is presented in Figure 8.7:

type one is the case where H(Y |Z) ≤ H(Y |X) for a given PXY ∈ P(D), and type two is

the other case.

By specializing Theorem 57 to full secrecy, we obtain the following result for secrecy

rewriting capacity.

Corollary 58. The secrecy rewriting capacity of secure WEM (N, 2NR, Re, D) code with

wiretap channel P = (Z,Y ,PZ|Y) and the rewriting cost function ϕ(·) is:

Cswem(D) = max
PXY ∈P(D)

{min{H(Y |X), H(Y |Z)}},

where the definition of P(D) is the same as that of Theorem 57.

Let us examine some extreme cases: when the eavesdropper obtains the same obser-
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Figure 8.7: Typical shape of the achievable region in Theorem 57.

vation as the legitimate decoder, clearly no confidential messages can be securely trans-

mitted. From the above theorem, we know that Y = Z, then H(Y |Z) = 0, and thus

Cswem(D) = 0. On the other hand, when there is no eavesdropper, i.e., Z ∈ ∅, the re-

sult should be coinciding with original WEM code [2]. From theorem 57, we know that

Cwem(D) = max
PXY ∈P(D)

H(Y |X), which is exactly the rewriting capacity of WEM.

We define the following terms to obtain further simpler results for secrecy rewriting

capacity.

Definition 59. The WEM is more capable than wiretap channel P = (Z,Y , PZ|Y) if

I(X;Y ) ≥ I(Y ;Z) for every PXY ∈ P(D); The WEM is less capable than wiretap

channel P = (Z,Y ,PZ|Y) if I(X;Y ) ≤ I(Y ;Z) for every PXY ∈ P(D).

With the above notations, we have the following results for secrecy rewriting capacity.

Corollary 60. The secrecy rewriting capacityCswem(D) is maxPXY ∈P(D)H(Y |X) if WEM

is less capable than wiretap channel P, (which is effectively the rewriting capacity of write-

efficient memory [2, Theorem 2]) and H(Y |Z) for PXY ∈ P(D) if WEM is more capable

than wiretap channel.
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We present the following concrete example:

Example 61. Consider the following binary secure WEM (N, 2NR, Re, D), where the

rewriting cost function is the Hamming distance, that is ϕ(0, 0) = ϕ(1, 1) = 0, and

ϕ(0, 1) = ϕ(1, 0) = 1, and wiretap channel P is the binary symmetric channel with

flipping rate p. Based on [2, Theorem 4], the WEM rewriting capacity is R(D) = H(D)

in this case. Therefore, if WEM is less capable, then Cswem(D) = H(p); if WEM is more

capable, then Cswem(D) = H(D).

8.4 Proof of Theorem 57

8.4.1 Achievable regions for secure WEM

In this part, we show that the region presented in Theorem 57 is achievable. For sim-

plicity, we only present details of type one region of Figure 9.9, and present the sketch for

type two region of Figure 9.9 as it is similar to the previous one.

The proof for type one region is divided into the following three steps and we present

them in detail in the following parts:

• Step 1: We use a random-coding argument and show that the existence of a sequence

(N, 2NR, Re, D) code such that 1
N
L

def
= 1

N
H(M) − 1

N
H(M |zN−10 ) ≤ ε for some

ε > 0 and R ≤ H(Y |Z). This shows that the following sub-region of type one

region is achievable: R′(PXY )
def
=

{(R,Re) :
R ≤ H(Y |Z)

Re ≤ R
},

where PXY ∈ P(D).

• Step 2: We show that the entire type one region in Theorem 57 is achievable with a

minor modification of the code construction presented in step 1.
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• Step 3: We show that theRswem is convex.

8.4.1.1 Step 1: Achieving regionR′(PXY )

Background of strong typical-sequences We first present some background about strong

typical-sequences. For more details, interested readers are referred to [20].

Let xN−10 be a sequence with N elements drawn from X . Define the type of xN−10 by

π(x|xN−10 ) = |{i:xi=x}|
N

. The set T Nε (X) is defined as T Nε (X) = {xN−10 : |π(x|xN−10 ) −

PX(x)| ≤ ε,∀x}. That is, the set of sequences for which the empirical frequency is within

ε of the probability PX(x) for every x ∈ X .

Let (xN−10 , yN−10 ) be a pair of sequences with elements drawn from (X ,Y). Define

their joint type: π(x, y|xN−10 , yN−10 ) = |{i:(xi,yi)=(x,y)}|
N

for (x, y) ∈ X × Y . We denote

T Nε (XY ) = {(xN−10 , yN−10 ) : |π(x, y|xN−10 , yN−10 ) − PXY (x, y)| ≤ ε,∀(x, y)}. That is,

the set of sequence pairs for which the empirical frequency is within ε of the probability

PXY (x, y) for every x ∈ X and y ∈ Y .

For xN−10 ∈ T Nε (X) and PY |X , we define the conditional typical sequence T NY |X(xN−10 ) =

{yN−10 : (xN−10 , yN−10 ) ∈ T Nε (XY )}.

The following results will be used:

i For a vector xN−10 , where xi is chosen i.i.d. ∼ PX ,

Pr(xN−10 ∈ T Nε (X))→ 1 as N →∞. (8.1)

ii For vectors xN−10 , yN−10 , where (xi, yi) is chosen i.i.d. ∼ PXY ,

Pr((xN−10 , yN−10 ) ∈ T Nε (XY ))→ 1 as N →∞. (8.2)

iii For xN−10 ∈ T Nε (X), and yN−10 is independently chosen according to PY , then Pr((xN−10 , yN−10 ) ∈
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T NY |X(xN−10 )) ∈

[2−N(I(X;Y )+λ), 2−N(I(X;Y )−λ)], (8.3)

for some λ(ε) > 0 with λ→ 0 as ε→ 0.

iv For any xN−10 ∈ T Nε (X), we have |T NY |X(xN−10 )| ∈

[(N + 1)−|X ||Y|2NH(Y |X), 2NH(Y |X)]. (8.4)

Rewriting function being random to achieve full secrecy In this part, we explore one

desired property of rewriting function, i.e., it should be stochastic to achieve full secrecy.

For convenience, we write the rewriting function as yN−10 = R(M,xN−10 ,M1,M2)

where M1 and M2 are independent of M and xN−10 , are constant if R(·) is deterministic,

and at least one of them is a random variable otherwise. M1 and M2 play significant roles

in deriving the rewriting-rate-equivocation region, i.e., whether only M1, M2, or both M1

and M2 should be random, and how to determine their random values.
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In the following, we bound L using M,M1,M2 as follows, L

= I(M ; zN−10 ),

= I(MxN−10 M1M2; z
N−1
0 )

− I(M1M2x
N−1
0 ; zN−10 |M),

= I(yN−10 ; zN−10 )− I(M1M2x
N−1
0 ; zN−10 M),

= I(yN−10 ; zN−10 )−H(M1M2x
N−1
0 )

+ H(M1M2x
N−1
0 |zN−10 M),

= I(yN−10 ; zN−10 )−H(M1M2)−H(xN−10 )

+ H(M1M2x
N−1
0 |zN−10 M),

= I(yN−10 ; zN−10 )− I(yN−10 ;xN−10 )−H(M1)

− H(M2)−H(xN−10 |yN−10 )

+ H(M1M2|MzN−10 ) +H(xN−10 |M1M2MzN−10 ),

= NI(Y ;Z)−NI(Y ;X)−H(M1)

− H(M2)−H(xN−10 |yN−10 )

+ H(M1M2|MzN−10 ) +H(xN−10 |M1M2MzN−10 ),

≤ NI(Y ;Z)−NI(Y ;X)−H(M1)

− H(xN−10 |yN−10 ) +H(xN−10 |M1M2MzN−10 )

+ H(M1M2|MzN−10 ), (8.5)

where the third equation is due to yN−10 = R(M,xN−10 ,M1,M2), and M1,M2 and xN−10

are independent of M ; the last equation is due to (yN−10 , xN−10 ) is i.i.d according to PXY ∈

P(D), and the wiretap channel is memoryless.

155



Therefore, if
1

N
H(M1) = I(Y ;Z)− I(X;Y ) + σ1, (8.6)

which implies that the rewriting function R(M,xN−10 ,M1,M2) is random,

1

N
H(M1M2|zN−10 M) ≤ σ2, (8.7)

and

H(xN−10 |M1M2MzN−10 )−H(xN−10 |yN−10 ) ≤ σ3 (8.8)

for σi ≥ 0 for i = 1, 2, 3, the full secrecy is possible.

In the following parts, we present a code construction having all those properties to

achieve full secrecy.

Enhanced WEM The achievability of the regionR′(PXY ) is obtained by designing a spe-

cific random code construction for the following enhanced WEM such that the eqution (8.6),

and inequtions (8.7) and (8.8) hold.

We define the enhanced WEM (as shown in Figure 8.8) as follows:

Definition 62. (N, 2NR, 2NR1 , 2NR2 , D) code for type one enhanced WEM with a wiretap

channel P = (Y ,Z, PY |Z) and a rewriting cost function ϕ(·) consists of:

• A primary message set D = {0, 1, · · · , 2NR − 1}, a auxiliary message set R1 =

{0, 1, · · · , 2NR1 − 1} and a random message setR2 = {0, 1, · · · , 2NR2 − 1};

• A stochastic rewriting function for Alice: RA : R1 × D × XN → YN such that

ϕ(xN−10 ,RA(M1,M, xN−10 )) ≤ D for all M ∈ D,M1 ∈ R1 and xN−10 ∈ XN ;

• An auxiliary function for Alice to determine the random factor in RA, f : YN →

R2. And a deterministic rewriting function for Alice: R′A : R1 ×R2 ×D×XN →
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Figure 8.8: Type one enhanced WEM model. CH is the wiretap channel. M,M1 are

messages to rewrite, where M is the primary message, M1 is the auxiliary message and

may not carry information, xN−10 is the current cell states, yN−10 is the rewriting codeword,

M2 is the random factor determined by f(yN−10 ), zN−10 is the wiretap channel’s output,

M̂1, M̂2 and M̂ are estimated messages corresponding to M1, M2 and M , respectively.
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YN such that R′A(M1, f(RA(xN−10 ,M,M1)),M , xN−10 ) = RA(xN−10 ,M,M1) for

all M1 ∈ R1,M ∈ D, xN−10 ∈ XN ;

• A decoding function for Bob: DB : YN → D such that DB(RA(M1,M, xN−10 )) =

M for all M ∈ D,M1 ∈ R1 and xN−10 ∈ XN ;

• A virtual decoding function for Charlie: DC : ZN ×D → R1 ×R2.

That is, the original WEM is enhanced by 1) splitting the message set into D and

R1, and introducing a random variable M2 ∈ R2. Note that M1 ∈ R1 is a dummy

message to achieve full secrecy in this part, and carries partial information otherwise (see

the following part). That is, we scarify rewriting rate to gain full secrecy. M2 does not carry

any information; 2) for each stochastic rewriting codeword yN−10 = RA(M1,M, xN−10 ),

the implicit random variableM2 can be obtained by the auxiliary function f(·); 3) the same

rewriting codeword yN−10 = RA(M1,M, xN−10 ) can also be obtained by the deterministic

rewriting function R′A(M1,M2,M, xN−10 ); and 4) introducing a virtual decoder Charlie,

who accesses to zN−10 and the message M , and is to give estimates of M1 and M2, M̂1 and

M̂2.

The reliability of Charlie is measured by Pe = Pr((M1,M2) 6= (M̂1, M̂2)).

We present a random code construction for the above enhanced WEM and theoretical

analysis of the conditions under which the rewriting cost constraint is satisfied and Pe → 0

as N →∞ as follows, and we illustrate the code construction using Figure 8.9:

Random code construction for type one enhanced WEM

• Codebook generation: Random divide T Nε (X) into 2N(R+R1) bins B(M,M1) where

M ∈ D and M1 ∈ R1. Let R2 = H(X) − R − R1, and for each codeword in bin

B(M,M1), index it by M2 ∈ {0, 1, ..., 2NR2 − 1}. Abusing of notation, we index

xN−10 by B(M,M1,M2) or xN−10 (M,M1,M2);
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Figure 8.9: Illustration of binning structure, rewriting process for Alice and decoding

process for Charlie for type one enhanced secure WEM.
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• RA: given M , a dummy message M1 and xN−10 , random choose M2 such that

yN−10 = B(M,M1,M2) ∈ T NPY |X (xN−10 ) for any M2;

• f : given the rewriting codeword yN−10 = B(M,M1,M2), output M2. R′A is to

output B(M,M1,M2) with M,M1,M2;

• DB: given yN−10 , output M such that yN−10 = B(M,M1,M2) for any M2;

• DC : given M, zN−10 , output a unique M̂1, M̂2 such that yN−10 = B(M, M̂1, M̂2) ∈

T NPY |Z (zN−10 ).

Theoretical analysis of the random code construction Clearly, DB satisfies the constraint

DB(RA(M1,M, xN−10 )) = M . We next consider the rewriting function and virtual decod-

ing function of Charlie such that the rewriting cost constraint and the reliability require-

ment of Charlie are satisfied.

Firstly, let us consider the probability of rewriting failure, i.e., Pr(no yN−10 ∈ B(M,M1)

such that yN−10 ∈ T NPY |X (xN−10 ))

= (1− 1

2N(R+R1)
)
|T NPY |X (xN−1

0 )|
,

= (1− 1

2N(R+R1)
)
2N(R+R1)|T NPY |X (xN−1

0 )|2−N(R+R1)

,

≤ e−(2
NH(Y |X)−N(R+R1)), (8.9)

where inequation (8.9) is based on the property (8.4). Therefore, if R + R1 ≤ H(Y |X),

the above probability tends to be 0 and we have a desired yN−10 . We further know that

R2 ≥ I(X;Y ) since R2 = H(X)−R−R1.

Secondly, we analyze the condition under which the average error probabilityE(Pe) =

E(Pr(M1,M2) 6= (M̂1, M̂2)) = Pr((M1,M2) = (j, k))E(Pr((M̂1, M̂2) 6= (j, k)|(M1,M2) =

(j, k))) tends to be 0 as N → 0.
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By symmetry of the code construction, the average error probability does not depend

on (M1,M2), thus we assume (M1,M2) = (1, 1). Further, without less of generality, we

assume that M = 1.

Define the following events: E1,1
def
=

{(yN−10 , zN−10 ) ∈ T Nε (Y Z) and yN−10 = B(1, 1, 1)},

and Fj,k
def
=

{(yN−10 , zN−10 ) ∈ T Nε (Y Z) and yN−10 ∈ B(1, j, k)}.

By the union bound, E(Pr((M̂1, M̂2) 6= (1, 1)|(M1,M2) = (1, 1))

≤ Pr(Ec1,1) +
⋃

(j,k)6=(1,1)

Pr(Fj,k),

≤
∑
j,k

Pr((yN−10 , zN−10 ) ∈ T Nε (Y Z)|yN−10

= B(1, j, k)) + ε′, (8.10)

≤ 2N(R1+R2−I(Y ;Z)+λ) + ε′, (8.11)

where inequation (8.10) is based on the property (8.1), and inequation (8.11) is based on

the property (8.3).

Therefore, for our enhanced WEM codes when R1 + R2 ≤ I(Y ;Z), that is R1 =

I(Y ;Z)− I(X;Y ) + σ1, E(Pr((M̂1, M̂2) 6= (1, 1)|(M1,M2) = (1, 1))) ≤ ε.

Finally, let us back to analysis of eqution (8.6), and inequtions (8.7) and (8.8). Based

on the above analysis, we know that R ≤ H(Y |Z)+σ and R1 = I(Y ;Z)−I(X;Y )+σ1.

Based on Fano’s inequality[16, lemma 7.9.1], we obtain that 1
N
H(M1M2|zN−10 M) ≤

1
N

+Pr((M̂1, M̂2) 6= (M1,M2))(R1 +R2) ≤ σ2. Based on our code construction, yN−10 is

uniquely determined byM,M1,M2, thereforeH(xN−10 |MM1M2z
N−1
0 ) = H(xN−10 |yN−10 zN−10 ) ≤
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H(xN−10 |yN−10 ) + σ3. That is, 1
N
L ≤ σ1 + σ2 + σ3 based on inequation (8.5). Therefore,

(R,R) is achievable for R ≤ H(Y |Z).

8.4.1.2 Step 2: Achieving the entire type one regionR(PXY )

The key idea is to modify step 1 such that we let the dummy message M1 transmit

additional information.

The code construction is modified as follows,

• DB: given yN−10 , output M and M1 such that yN−10 = B(M,M1,M2) for any M2.

The remaining parts are the same as step 1.

The analysis of the above code construction is as follows.

By checking the analysis for rewriting cost constraint of step 1, we know that as long

as R +R1 ≤ H(Y |X), there exists a codeword satisfying the rewriting cost constraint.

Next, consider the equivocation rate:

1

N
H(MM1|zN−10 ) ≥ 1

N
H(M |zN−10 ),

=
1

N
H(M)− 1

N
I(M ; zN−10 ).

With similar techniques to step 1, i.e. I(M ; zN−10 ) ≤ σ, we can prove that 1
N
H(MM1|zN−10 ) ≥

R − σ. Thus, we obtain that (R + R1, R − σ) is achievable, where R + R1 ≤ H(Y |X)

and R ≤ H(Y |Z).

8.4.1.3 Step 3: Rswem is convex

We show that Rswem is convex by proving that, for any PX1Y1 , PX2Y2 ∈ P(D), the

convex hull ofR(PX1Y1) andR(PX2Y2) is inRswem.

Let (R1, Re1) ∈ R(PX1Y1) for some random variablesX1, Y1 and Z1 whose joint distri-

bution is such that ∀(x, y, z) ∈ X×Y×Z , PX1Y1Z1(x, y, z) = PX1(x)PY1|X1(y|x)PZ|Y (z|y).
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Similarly, let (R2, Re2) ∈ R(PX2Y2) for some random variables X2, Y2 and Z2 whose joint

distribution is such that ∀(x, y, z) ∈ X×Y×Z , PX2Y2Z2(x, y, z) = PX2(x)PY2|X2(y|x)PZ|Y (z|y).

Let

θ =


1 with probability λ,

2 with probability 1− λ,

thus we know that θ → Xθ → Yθ → Zθ forms a Markov chain and the joint distribution of

Xθ, Yθ andZθ satisfies ∀(x, y, z) ∈ X×Y×Z , PXθYθZθ(x, y, z) = PXθ(x)PYθ|Xθ(y|x)PZ|Y (z|y)

and PXθYθ ∈ P(D). Let X = Xθ, Y = Yθ and Z = Zθ. Then

H(Y |X) = H(Yθ|Xθ),

≥ H(Yθ|Xθ, θ),

= λH(Y1|X1) + (1− λ)H(Y2|X2),

= λR1 + (1− λ)R2, .

Similarly, we can prove that H(Y |Z) ≥ λRe1 + (1−λ)Re2. Hence, for any λ ∈ [0, 1],

there exist X, Y such that (λR1 + (1− λ)R2, λRe1 + (1− λ)Re2) ∈ R(PXY ) ⊆ Rswemn,

which finishes the proof.
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8.4.1.4 Sketch proof of achieving the entire regionR(PXY ) for type two region

In this case, we rewrite equation (8.5) as follows: L

= I(M ; zN−10 ),

= I(yN−10 ; zN−10 )− I(yN−10 ;xN−10 )−H(M1)

− H(M2)−H(xN−10 |yN−10 )

+ H(M1M2|MzN−10 ) +H(xN−10 |M1M2MzN−10 ),

≤ NI(Y ;Z)−NI(X;Y ) +H(M1M2|MzN−10 )

+ H(xN−10 |M1M2MzN−10 )−H(xN−10 |yN−10 ),

≤ NI(Y ;Z)−NI(X;Y ) +H(M1)

+ H(M2|MM1z
N−1
0 )

+ H(xN−10 |MM1M2z
N−1
0 )−H(xN−10 |yN−10 ),

where some repeated steps of equation (8.5) are skipped.

Therefore, if 1
N
H(M1) = I(Y ;X) − I(Y ;Z) + σ1, 1

N
H(M2|zN−10 MM1) ≤ σ2, and

H(xN−10 |M1M2MzN−10 )−H(xN−10 |yN−10 ) ≤ σ3 for σi ≥ 0 for i = 1, 2, 3, the full secrecy

is possible.

This motivates us to redefine the enhanced WEM (see Figure 8.10) as follows:

Definition 63. (N, 2NR, 2NR1 , 2NR2 , D) code for type two enhanced WEM with wiretap

channel P = (Y ,Z, PY |Z) and the rewriting cost function ϕ(·) consists of:

• A primary message set D = {0, 1, · · · , 2NR − 1}, an auxiliary random message set

R1 = {0, 1, · · · , 2NR1−1} and a primary random message setR2 = {0, 1, · · · , 2NR2−

1};

• A stochastic rewriting function for Alice: RA : D×XN → YN such thatϕ(xN−10 ,RA(M,xN−10 )) ≤
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D for all M ∈ D and xN−10 ∈ XN ;

• An auxiliary function for Alice to determine the random factor in RA, f : YN →

R1 ×R2. And a deterministic rewriting function for Alice: R′A : R1 ×R2 × D ×

XN → YN such that R′A(f(RA(xN−10 ,M)),M , xN−10 ) = RA(xN−10 ,M) for all

M ∈ D and xN−10 ∈ XN ;

• A decoding function for Bob: DB : YN → D such that DB(RA(M,xN−10 )) = M

for all M ∈ D and xN−10 ∈ XN ;

• A virtual decoding function for Charlie: DC : ZN ×D → R2 ×R1.

That is, compared with type one enhanced WEM, we let M1 be the random variable

instead of auxiliary message variable. The reliability for Charlie is measured by Pe =

Pr(M1 6= M̂1).

The remaining proof details are similar to those of previous subsections, and we omit

them.

8.4.2 Proof of the converse part

The proof for R is the same as that of [2], and for completeness, we present it here.

We first digress to prove the following conclusion:

NR = H(yN−10 |xN−10 ). (8.12)
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Figure 8.10: Type two enhanced WEM model. CH is the wiretap channel. M are mes-

sages to rewrite, xN−10 is the current cell states, yN−10 is the rewrite codeword, M1 and M2

are two random variables determined by f(yN−10 ), zN−10 is the wiretap channel’s output,

M̂1 and M̂ are estimated messages corresponding to M1 and M , respectively.
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NR

= H(M), (8.13)

= H(M |xN−10 ), (8.14)

= H(MxN−10 |xN−10 ), (8.15)

≥ H(yN−10 |xN−10 ), (8.16)

≥ H(M |xN−10 ), (8.17)

= NR,

where

(8.13) follows from the assumption that M is uniformly distributed among D;

(8.14) follows from the fact that M is independent of xN−10 ;

(8.16) follows from yN−10 = R(M,xN−10 ) and the fact that function never increases en-

tropy;

(8.17) follows from M = D(yN−10 ).

Next, we proceed the proof as follows: R = 1
N
H(yN−10 |xN−10 ) ≤ 1

N

N−1∑
i=0

H(yi|xi) ≤

H(Y |X).

Then, we consider the rewriting cost, ϕ(xN−10 , yN−10 ) = 1
N

N−1∑
i=0

ϕ(xi, yi) = E(ϕ(X, Y )) ≤

D, thus PXY ∈ P(D) = {PXY : PX = PY , E(ϕ(X, Y )) ≤ D}, where the fact that

PX = PY follows from the assumption that stationary distribution of xN−10 exists. There-

fore, R ≤ H(Y |X) for PXY ∈ P(D).

Let us consider Re ≤ 1
N
H(M |zN−10 ) ≤ 1

N
H(yN−10 |zN−10 ) ≤

N−1∑
i=0

H(yi|zi) ≤ H(Y |Z).

Meanwhile, we know that Re ≤ 1
N
H(M |zN−10 ) ≤ 1

N
H(M) = R, where the last in-

equality is based on the conclusion just obtained forH(M). Therefore,Re ≤ min{R,H(Y |Z)}.
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9. POLAR CODES FOR SECURE WRITE-EFFICIENT MEMORIES

9.1 Introduction

In this section, we present the background of secure Write-Efficient Memories in-

cluding their motivations and formal definitions, brief obtained information theory results

in [47], and show our contributions.

9.1.1 Motivation of secure write-efficient memories

Flash memories are significant non-volatile memory techniques. The smallest unit of

flash memory is a cell, which contains a control gate, a floating gate and so on. Data is

represented by the number of electrons trapped in the floating gate. There are three basic

operations on a cell, program, i.e., to eject electrons into the floating gate, read, i.e., to

measure the number of electrons in the floating gate, and erase, i.e., to remove electrons

from the floating gate. Each flash chip is composed of blocks, each block consists of

pages, and a page is made up of cells. Similarly, there are three operations for a block, i.e.,

program, read and erase, however, the unit of programming and reading is a page, and the

unit of erasing is a block.

There are two challenges in flash memories, one is the well-known endurance problem

and the other one is the less well-known insecure deletion problem. The endurance prob-

lem means flash memory can only experience a limited number of program/erase cycles

after which its reliability can not be guaranteed. The current code solution for endurance

is the rewriting codes, e.g., Write-Once Memories [61], and Write-Efficient Memories

(WEM) [2], etc. Recently there is a large amount of work for rewriting code [9, 48, 30]

showing the existance of optimal constructions for them and system work [79, 55, 78]

showing various benefits rewriting code bringing to flash memories.

Insecure deletion means Flash Translation Layer (FTL) produces multiple copies of
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data that can not be deleted completely as they are either impossible or costly, however, a

sophisticated attacker can recover and obtain information about the data.

We illustrate the insecure deletion in detail here. The first reason causing this is the

existence of multiple copies of codewords in flash memories. Flash memories are not

perfect as there are various errors, thus a strong error correcting code is used to combat

errors. Memory scrubbing is also used to protect flash memories, which is to correct a

noisy codeword and write a new error-free codeword back to memories. However, due

to the out-of-place rewriting policy, the updated codeword is stored at a new physical ad-

dress and the original codeword remains in memories. Those mechanisms lead to multiple

copies of codewords existing in memories. Other reasons causing this are weal leveling

and garbage collection. A recent study by Desnoyers [21] theoretically estimates that on

overage 3 ∼ 13 copies of codewords can be generated for one write issued by a user, and

the exact number depends on the work load traffic and various algorithms (e.g., garbage

collection algorithms) used.

For current flash memory solutions, when to delete data, it is either impossible or

costly to delete all copies of codewords corresponding to the data due to the imperfections

of the physical erasure process and the FTL [39, 70]. However, when the flash memory is

attacked by an eavesdropper, (who is able to trace all copies of codewords corresponding

to the same data, and is aware of all encoding and decoding algorithms, thus leading to

much stronger decoding ability than the decoder having access to a single codeword [50]),

the sensitive information can be leaked. Unfortunately, there is barely no coding solution

to solve the insecure deletion for flash memories.

In a recent paper [47], a new coding scheme was proposed, Secure Write-Efficient

Memories. The significance of secure WEM is two-fold, on the practical side it is the first

coding model combating both the endurance and the insecure deletion; on the theoretical

side it extends the current research scope of rewriting codes in a similar way as wiretap
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channel coding [73] extends the channel coding model.

9.1.2 Definition of secure WEM

In the secure WEM setting (shown in Figure 9.1), Alice wishes to store messages

in a limited lifetime storage medium using a rewriting code, WEM [2], the messages are

accessible to Bob through a storage channel, which is assumed noiseless for simplicity, but

her transmissions also reach an eavesdropper Eve through a wiretap channel. Alternatively,

let M be the message that Alice wishes to store. Based on the message M and the current

N cell state vector xN−10 , the rewriter maps M to an N -bit codeword yN−10 . This codeword

is transmitted through the noiseless storage channel and the wiretap channel resulting yN−10

and zN−10 . The decoder estimates yN−10 to recover the message M .

The goal of secure WEM codes is to design a rewriting coding scheme such that it is

possible to store messages cost-effectively and securely. Being cost-effective means for

each rewrite the defined rewriting cost, i.e., which is measured by ϕ(xN−10 , yN−10 ) for a

defined cost ϕ(·), has to be less than a predefined number to solve the endurance problem.

Being secure means the uncertainty of the eavesdropper about the message M after ob-

serving the wiretap channel output zN−10 , i.e., which is measured by 1
N
H(M |zN−10 ) [73],

also satisfies a predefined constraint to solve the insecure deletion problem.

The following notations will be used to define secure WEM. For Alice and Bob, let

X be the alphabet of the symbols stored in a cell, and Z be that for Eve. ∀x, y ∈ X , let

the rewriting cost of changing a cell’s level from x to y be ϕ(x, y), which may be time or

energy taken. Given N cells and xN−10 , yN−10 ∈ XN , let ϕ(xN−10 , yN−10 ) = 1
N

N−1∑
i=0

ϕ(xi, yi)

be the average rewriting cost of changing the N cell levels from xN−10 to yN−10 .

Let D ⊆ N and it denotes the |D| possible values of the data stored in the N cells. Let

the decoding function be D : XN → D, which maps the N cells’ levels to the data they

represent. Let the rewriting function be R : XN ×D → XN , which changes the N cells’
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Figure 9.1: The secure WEM model. CH is the wiretap channel. M,xN−10 , yN−10 , zN−10

and M̂ are the message to rewrite, the current cell states, the rewrite codeword, the wiretap

channel’s output and the estimated message, respectively.

levels to represent the new input data.

We present the definition of secure WEM codes in the following.

Definition 64. An (N, 2NR, Re, D) secure write-efficient memory code with a wiretap

channel P = (X ,Z, PZ|X) and the rewriting cost function ϕ(·) consists of

• D = {0, 1, · · · , 2NR − 1} and its corresponding codewords
⋃2NR−1
i=0 Ci, where Ci ⊆

XN is the set of codewords representing data i. We require ∀i 6= j, Ci
⋂
Cj = ∅;

• R(M,xN−10 ) such that

– ϕ(xN−10 ,R(M,xN−10 )) ≤ D for any M ∈ D and xN−10 ∈ XN ;

– 1
N
H(M |zN−10 ) ≥ Re − ε for any M ∈ D, zN−10 ∈ Zn, ε > 0 as N →∞.

• D(yN−10 ) such that D(R(xN−10 ,M)) = M for all M ∈ D and xN−10 ∈ XN .

That is, the first condition indicates that each data is represented by a group of code-

words, the first requirement of the rewriting function indicates that during each rewrite
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the average rewriting cost between the current codeword xN−10 and the updated codeword

yN−10 is less than a predefined number, the second requirement of the rewriting function

indicates that the leaked information of the message at the eavesdropper is limited, and

the last one indicates that the decoder knows the rewritting message given a rewriting

codeword.

9.1.3 Main results of secure WEM [47]

Previous work of [47] introduces us the model of secure WEM, and presents us some

information theory results, for which we recap in the following.

The following notations will be used. Let P(X × X ) be the set of joint probabil-

ity distributions over X × X . For a pair of random variables (X, Y ) ∈ (X ,X ), let

PXY , PX , PX|Y denote the joint probability distribution, the marginal distribution, and the

conditional probability distribution, respectively. E(·) denotes the expectation operator. If

X is uniformly distributed over {0, 1, · · · , q − 1}, denote it by X ∼ U(q).

Fixed D, ϕ(·) and P = (X ,Z, PZ|X), (R,Re) ∈ R2 is achievable if there exists an

(N, 2NR, Re, D) codes. The set of all achievable tuples is denoted by Rswem, rewriting-

rate-equivocation region. The secrecy rewriting capacity is Cswem(D)
def
= supR{R :

(R,R) ∈ Rswem}, i.e., the maximal R such that (R,R) is achievable.

TheRswem was obtained in [47] and shown in the following theorem:

Theorem [47] 65. DefineR(PXY ) =

{(R,Re) :

R ≤ H(Y |X)

Re ≤ H(Y |Z)

Re ≤ R

},

where PXY ∈ P(D)
def
= {PXY : PX = PY , E(ϕ(X, Y )) ≤ D}, the joint distribution

of X, Y, Z factorizes as PXPY |XPZ|Y , and the PZ|Y is given by P = (X ,Z, PZ|Y ). Then
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Figure 9.2: Typical shape ofR(PXY ).

Rswem =
⋃
PXY
R(PXY ).

The typical shapes of the above achievable regionR(PXY ) are presented in Figure 9.2:

type one is the case where H(Y |Z) ≤ H(Y |X) for a given PXY ∈ P(D), and type two is

the other case.

By specializing Theorem 65 to the case R = Re, we obtain the following result for

secrecy rewriting capacity.

Corollary 66. The secrecy rewriting capacity of secure WEM (N, 2NR, Re, D) code with

wiretap channel P = (X ,Z, PZ|Y ) and the rewriting cost function ϕ(·) is:

Cswem(D) = max
PXY ∈P(D)

{min{H(Y |X), H(Y |Z)}},

where the definition of P(D) is the same as above.
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9.1.4 Contribution and structure of this paper

In this paper, we present an optimal (i.e., achieve the whole rewriting-rate-equivocation

region) code construction based on polar codes for secure WEM for a large family of

secure WEM. The remaining of this paper is structured as follows: in Section 9.2, we

present a brief introduction of polar codes and some useful terms; in Section 9.3, we

present a polar code construction for secure WEM, which achieves the whole region of

secure WEM; the conclusion and possible future work are obtained in Section 9.4.

9.2 Polar Code Terms and Notations

Polar code [5] was invented by Arikan in 2008, and it is the first theoretically proven

capacity approaching code for symmetric channels. Polar code is being hailed as a mile-

stone in coding theory not only for its great success in channel coding but also for its

remarkable performances in lossy source coding [42] , wiretap channel coding [4, 19, 53],

write-once memories [9], etc. In this part, we present a brief introduction to polar codes

so that some terms can be understood later.

Let W = (X ,Y ,WY |X) be a binary-input discrete memoryless channel. Let G⊗n2

be n-th Kronecker product of
(
1 0
1 1

)
. Let Z(W ) =

∑
y∈Y

√
WY |X(y|0)WY |X(y|1) be the

Bhattacharyya parameter.

Let N = 2n, and the polar code CN(F, uF ) is {xN−10 = uN−10 G⊗n2 : uF c ∈ {0, 1}|F
c|},

where ∀F ⊆ {0, 1, · · · , N − 1}, uF is the subvector ui : i ∈ F , and uF ∈ {0, 1}|F |. By

convention, F is the frozen set and uF is the frozen set value.

DenoteW (i)
N : {0, 1} → YN×{0, 1}i the i-th sub-channel with input set {0, 1}, output

setYN×{0, 1}i, and the transition probabilityW (i)
N (yN−10 , ui−10 |ui)

def
= 1

2N−1

∑
uN−1
i+1

WN(yN−10 |uN−10 ),

where WN(yN−10 |uN−10 ) is
N−1∏
i=0

WY |X(yi|(uN−10 G⊗n2 )i), and (uN−10 G⊗n2 )i denotes the i-th

element of uN−10 G⊗n2 .
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Let β < 1/2 be a fixed positive constant, define a good sub-channel set as GN(W,β) =

{i ∈ {0, 1, · · · , N − 1} : I(W
(i)
N ) > 1

N
2−N

β}, and define a bad sub-channel set as

BN(W,β) = {i ∈ {0, 1, · · · , N − 1} : I(W
(i)
N ) ≤ 1

N
2−N

β}. By abusing notations, we

also define a good sub-channel set as G ′N(W,β) = {i ∈ {0, 1, · · · , N − 1} : Z(W
(i)
N ) <

1− ( 1
N

2−N
β
)2} and define a bad sub-channel set as B′N(W,β) = {i ∈ {0, 1, · · · , N − 1} :

Z(W
(i)
N ) ≥ 1− ( 1

N
2−N

β
)2}.

Based on [43, Lemma 2.6], lim
N→∞

1
N
|BN(W,β)| = lim

N→∞
1
N
|B′N(W,β)| = 1 − I(W ),

and lim
N→∞

1
N
|GN(W,β)| = lim

N→∞
1
N
|G ′N(W,β)| = I(W ).

9.3 Optimal Code Construction

In this section, we present a polar code construction for a special case of secure WEM

and prove that the code construction achieves the whole achievable region. Due to space

limitation, we only present the code constructions for type one rewriting-rate-equivocation

region of secure WEM.

9.3.1 Symmetric secure WEM

In this subsection, we define symmetric secure WEM, which is a large family of secure

WEM, and it is the symmetric secure WEM that our polar code construction is focusing

in this paper.

Recall that the rewriting capacity of WEM is R(D) = max
PXY ∈P(D)

H(Y |X) [2]. Anal-

ogous to a symmetric channel, a symmetric WEM is such a WEM that its rewriting ca-

pacity is achieved when current cell state alphabet (i.e., X) and updated cell state al-

phabet (i.e., Y ) are uniformly distributed. That is, for symmetric WEM its capacity is

determined as R(D) = max
PXY ∈Ps(D)

H(Y |X), where Ps(D)
def
= {PXY : PX = PY , X ∼

U(q), E(ϕ(X, Y )) ≤ D} and q is the number of states for X .

For a PXY achieving rewriting capacity of a symmetric WEM, it induces a channel

W = (X, Y,WY |X), and we term it WEM channel. A symmetric secure WEM is such a
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secure WEM model that both the WEM and the wiretap channel are symmetric. Further,

we consider the case where the WEM channel is stochastically degraded with respect to

the wiretap channel, i.e., the type one rewriting-rate-equivocation region of secure WEM.

Besides, the code construction presented here focuses on symmetric rewriting cost, i.e.,

ϕ(0, 1) = ϕ(1, 0), the Hamming distrance metric.

We present a concrete example of Symmetric secure WEM we are considering in the

following:

Example 67. Let the rewriting cost metric be the Hamming distance metric, i.e., ϕ(0, 1) =

ϕ(1, 0) = 1 and ϕ(0, 0) = ϕ(1, 1) = 0, in this case the capacity of symmetric WEM

is H(D) where 0 ≤ D ≤ 1/2 and the WEM channel induced is a Binary Symmetric

Channel (BSC) with parameter D. Let the wiretap channel P = (X ,Z, PZ|Y ) be a BSC

with flipping rate p (0 ≤ p ≤ 1/2). In this case, the secrecy capacity is H(p) based on

Corollary 66. When D > p, the WEM channel stochastically degrades with respect to the

wiretap channel, and it is one example of symmetric secure WEMs we are focusing in this

work.

9.3.2 Code construction

The outline of the code construction is presented in Figure 9.3: Given the WEM chan-

nel and the wiretap channel, we divide all sub-channels to three parts, i.e., sub-channels

bad for both channels, the sub-channel index set is denoted as setM ⊆ N, sub-channels

good for both channels, the sub-channel index set is denoted as setM2 ⊆ N, and remain-

ing sub-channels, the sub-channel index set is denoted as the setM1 ⊆ N. The intuition

behind the above division is based on the success of polar code on both WEM [48] and

wiretap channel [53]: the division of sub-channels for WEM is to divide sub-channels of

WEM channel into good sub-channels and bad sub-channels set, data is represented by bit

values of bad sub-channel indices, i.e., frozen set value, and bits in the good sub-channel

176



set are equipped with the successive cancellation encoding [43] to ensure the rewriting

constraint is satisfied; one division of sub-channels for wiretap channel coding is to divide

sub-channels of wiretap channel into good sub-channels and bad sub-channels set, sensi-

tive information is not represented by bits of good sub-channel bits to avoid information

leaking.

Then the polar code with frozen setM, and frozen set value uM represents data uM.

The rewriting function R(M,xN−10 ) is to fill in bits ofM by M , bits ofM1 by random

bits, and bits ofM2 by bits determined by successive cancellation encoding. The decoding

function D(yN−10 ) is to retrieve the value represented by bits ofM.

Formally, let G ′N(W, β) and GN(P, β) denote good sub-channel sets for the WEM

channel W and the wiretap channel P, and let B′N(W, β) and BN(P, β) denote the bad sub-

channels for them, respectively. When W is stochastically degraded with respect to P, it

implies that BN(P, β) ⊆ B′N(W, β) [43]. LetM def
= B′N(W, β)

⋂
BN(P, β) = BN(P, β),

M1
def
= B′N(W, β)

⋂
GN(P, β) andM2

def
= G ′N(W, β). We know that lim

N→∞
|M|
N

= H(Y |Z),

lim
N→∞

|M1|
N

= H(Y |X)−H(Y |Z) and lim
N→∞

|M2|
N

= I(X;Y ).

The code construction for binary symmetric secure WEM is presented below:

Algorithm 9.3.1 A code construction for binary symmetric secure WEM

1: The (N, 2NR, R,D)ave code is C = CN(M, uM), where CN(M, uM(M)) is a polar
code with the frozen setM as above, frozen set value M , the binary representation of
M is uM(M), and |M| = NR.

That is, the (N, 2NR, R,D) code is the polar code ensemble of codeword length N

and frozen set M determined above, and each polar code CN(M, uM(M)) (0 ≤ M ≤

2NR − 1) of the ensemble represents the data with the binary representation uM(M).

The rewriting operation yN−10 = R(M,xN−10 ) is below, where m1 is a random bit,
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Figure 9.3: Illustration of the polar code construction for symmetric secure WEM achiev-

ing the capacity, where the output yN−10 is permuted in such a way that sub-channels are

positioned as above.

uM(M)j is the jth bit of the binary representation of M , f(·) : {0, 1, ..., |M| − 1} →

M is a one-to-one mapping, and W (y|x) is determined by the WEM channel W =

(X, Y,WY |X).

That is, uN−10 is assembled by rewriting message M , auxiliary random message M1

(which is to make sure the security constraint is satisfied), and random message determined

by SC encoding (which is to make sure the rewriting cost constraint is satisfied).

The decoding function uM(M) = D(yN−10 ) is below:

That is, D(yN−10 ) is to retrieve the value represented by bits ofM.
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Algorithm 9.3.2 The rewriting operation yN−10 = R(M,xN−10 ).

1: Let vN−10 = xN−10 + gN−10 , where gN−10 is a common and uniformly distributed mes-
sage, and + is over GF(2).

2: Apply SC (Successive Cancellation) encoding [43] to (vN−10 )M2 , and this results in a
vector uN−10 = Û(vN−10 , uM(M)), that is, uj =

uM(M)f(j) if j ∈M
m1 if j ∈M1, m1 is randomly chosen,

m with probability W
(i)
N (uj−1

0 ,vN−1
0 |m)∑

m′
W

(i)
N (uj−1

0 ,vN−1
0 |m′)

,

and ŷN−10 = uN−10 G⊗n2 .
3: yN−10 = ŷN−10 + gN−10 .

Algorithm 9.3.3 The decoding operation uM(M) = D(yN−10 ).

1: ŷN−10 = yN−10 + gN−10 .
2: uM(M) = (ŷN−10 (G⊗n2 )−1)M.

9.3.3 Theoretical analysis of the code construction

In this part, we present the theoretical analysis showing that the presented code con-

struction is optimal. We start with calculating the probability of a random selected vector,

which is used to prove that the induced channel is symmetric, then with the symmetric

channel we proceed to prove the rewriting cost constraint as well as the security constraint

are satsified, and finally based on those we prove that the proposed code construction is

optimal.

The probability of a random vector being selected Let R = M1

⋃
M2, and let eR

denote the random bits determined by the above algorithm, and in this part we focus on

the probability eR is selected given the rewriting data M , P (eR|M).

Let eN−10 denote a vector by assembling a rewriting message M and eR, and we know
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that

P (eN−10 |vN−10 ) =
∏
i

PEi|Ei−1
0 ,V N−1

0
(ei|ei−10 , vN−10 ),

where vN−10 is the random vector determined in our rewriting function, and PEi|Ei−1
0 ,V N−1

0
(ei|ei−10 , vN−10 ) =

W
(i)
N (ei−1

0 ,vN−1
0 |ei)∑

e′
i

W
(i)
N (ei−1

0 ,vN−1
0 |e′i)

if i ∈M2, 1
2

if i ∈M1 and 1 otherwise.

The following lemma presents us the condition under which Û(vN−10 , uM(M1))Mc =

Û(wN−10 , uM(M2))Mc . Note that in the following + is over GF(2).

Lemma 68. LetM1,M2 ∈M, uM(M1), uM(M2) ∈ {0, 1}|M|, let vN−10 , wN−10 ∈ {0, 1}N

such that vN−10 +wN−10 = xN−10 G⊗n2 where (xN−10 )M = uM(M1)+uM(M2) and (xN−10 )Mc

is the zero vector, then under the coupling through a common source of randomness,

Û(vN−10 , uM(M1))Mc = Û(wN−10 , uM(M2))Mc .

Proof. Let eN−10 and fN−10 be the result of Û(vN−10 , uM(M1)) and Û(wN−10 , uM(M2)).

We prove that ei = fi + ((vN−10 +wN−10 )(G⊗n2 )−1)i for 0 ≤ i ≤ N − 1 by induction. This

holds true for i = 0.

Now suppose this also holds true for i − 1, and now consider the case for i. As ei =

fi + ((vN−10 + wN−10 )(G⊗n2 )−1)i holds true for i ∈M, we only consider i ∈Mc.

First consider i ∈ M1, since they have access to the same random source, clearly

ei = fi + ((vN−10 + wN−10 )(G⊗n2 )−1)i.

Second consider i ∈M2, and it is proved using a skill similar to [42, Lemma 8].
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W
(i)
N (vN−10 , ei−10 |1)

W
(i)
N (vN−10 , ei−10 |0)

=

∑
eN−1
i+1

WN(vN−10 |ei−10 1eN−1i+1 )∑
eN−1
i+1

WN(vN−10 |ei−10 0eN−1i+1 )
,

=

∑
eN−1
i+1

WN(wN−10 |ei−10 1eN−1i+1 + (vN−10 + wN−10 )(G⊗n2 )−1)∑
eN−1
i+1

WN(wN−10 |ei−10 0eN−1i+1 + (vN−10 + wN−10 )(G⊗n2 )−1)
,

=

∑
eN−1
i+1

WN(wN−10 |f i−10 1eN−1i+1 )∑
eN−1
i+1

WN(wN−10 |f i−10 0eN−1i+1 )
,

=
W

(i)
N (wN−10 , f i−10 |1)

W
(i)
N (wN−10 , f i−10 |0)

,

where the third equation is due to the assumption that ((vN−10 + wN−10 )(G⊗n2 )−1)Mc is the

zero vector and the assumption ej = fj + ((vN−10 + wN−10 )(G⊗n2 )−1)j for j ≤ i− 1.

Thus Û(vN−10 , uM(M1))i = Û(wN−10 , uM(M2))i when they have access to the same

random source. Thus we conclude ei = fi+((vN−10 +wN−10 )(G⊗n2 )−1)i, and Û(vN−10 , uM(M1))Mc =

Û(wN−10 , uM(M2))Mc .

Let P (eR|M) denote the average probability (over vN−10 ) that eR is chosen given M ,

and

P (eR|M) =
∑
vN−1
0

P (vN−10 )P (eN−10 |vN−10 ),

=
∑
vN−1
0

1

2N
P (eN−10 |vN−10 ),

as vN−10 is uniformly distributed.

The following theorem presents us on average the probability that eR is chosen given
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M is the same for any M .

Theorem 69. P (eR|M) is independent of M , i.e., P (eR|M1) = P (eR|M2) for any

M1,M2.

Proof. The correctness holds by the fact that for each vN−10 there is a unique wN−10 such

that eR = Û(vN−10 , uM(M1))Mc = Û(wN−10 , uM(M2))Mc based on the previous lemma.

As P (eR|M) is independent of M , hereafter we will omit M and write P (eR|M) as

P (eR).

The induced channel is symmetric The induced channel is pictorially presented in Fig-

ure 9.4, where the input isN−r bits uM, representing the rewriting data, and the output of

the channel is zN−10 , the output of yN−10 through the wiretap channel. Let (vN−r−10 , er−10 )

denote the vector uN−10 with uR = vN−r−10 and uRc = er−10 .

For this channel its channel transition probability is Q(zN−10 |uN−r−10 ) =

∑
er−1
0

P (er−10 )
N−1∏
i=0

P (zi|((uN−r−10 , er−10 )G⊗n2 )i),

where P (er−10 ) denotes the probability er−10 is selected given the rewriting data vector

uN−r−10 , it is determined as the previous part, and P (z|x) is determined by the wire-

tap channel P = (X ,Z, PZ|X). For convenience, we denote our channel as Q(P,R) =

(XN−r,ZN ,QZN |UN−r). where X = {0, 1}.

Note that our definition of Q(P,R) shares some similarities with the induced channel

in [53, Subsection C of Section VI], that is, the inputs of both channels are data communi-

cated to decoders, and the outputs of them are both noisy codewords through the wiretap

channel. However, the channels differ in their transition probabilities, which stems from

how the random bits are determined, i.e., for channel in [53], the random bits are chosen
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Figure 9.4: Illustration of the induced channel, where the output yN−10 is permuted the

same way as before such that sub-channels are positioned as the above figure; and where

the channel inputs are uN−r−10 (i.e., rewriting data) and the channel outputs are zN−10 (i.e.,

noisy codeword of yN−10 though wiretap channel).

independently and uniformly, and for our channel, the random bits are partially determined

by successive cancellation encoding and are partially determined independently and uni-

formly.

We now present the main result in the following theorem, which presents us Q(P,R)

is symmetric.

Theorem 70. Q(P,R) is symmetric.

Proof. Given a channel (X ,Y ,WY |X), we first recall the definition of symmetric channel

from group theory. A group action of an abelian groupA on a set Y is a functionA×Y →

Y , denoted (a, y)→ a · y, with the following properties:

• 0 · y = y for all y ∈ Y , where 0 is the unit of A;

• (a + b) · y = a · (b · y) for all a, b ∈ A and all y ∈ Y , where + denotes the group

operation for A.
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The following result from [53, Theorem 11] states a necessary condition under which

the channel is symmetric.

Let (X ,Y ,WY |X) be a discrete memoryless channel, and suppose that X

is an abelian group under the binary operation +. Further, suppose that there

exists a group action · of X on Y such that

W (y|a+ x) = W (a.y|x)

for all a, x ∈ X and all y ∈ Y . Then (X ,Y ,WY |X) is a symmetric channel.

For Q(P,R) = (XN−r,ZN ,QZN |UN−r), we first explore an action of XN−r, denoted as ·,

such that (XN−r, ·) is an abelian group, and we then explore a group action, denoted as ◦

of the abelian group XN−r on ZN , such that Q(P,R) is symmetrical based on the above

cited result

Let π1 be a permutation on Z and it is an involution, that is π1 = π−11 . Let π0 be the

identity permutation onZ . Following Arikan [5], let the group action of the additive group

of X = {0, 1} on the set Z be x · z = πx(z) for all x ∈ X and z ∈ Z . The group action

has the property (x+ y) · z = x · (y · z) and (x · y) · z = x · (y · z) which can be verified

based on enumeration. Therefore, the additive group X with the operation · is an abelian

group.

Similarly, let xN−10 · zN−10 = (x0 · z0, · · · , xN−1 · zN−1) for all xN−10 ∈ XN and

zN−10 ∈ ZN . The action has the property (xN−10 + yN−10 ) · zN−10 = xN−10 · (yN−10 · zN−10 )

based on the property (x+y)·z = x·(y ·z), and (xN−10 ·yN−10 )·zN−10 = xN−10 ·(yN−10 ·zN−10 )

based on the property (x · y) · z = x · (y · z). Therefore, the additive group XN with the

operation · is an abelian group.

Define ◦ as xN−r−10 ◦ zN−10

def
= (xN−r−10 , 0r−10 )G⊗n2 · zN−10 . We can verify that the

defined action is a group action as it satisfies the following two requirements.
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• 0N−r−10 ◦ zN−10 = zN−10 ;

• (xN−r−10 + yN−r−10 ) ◦ zN−10 = xN−r−10 ◦ (yN−r−10 ◦ zN−10 ),

where the second item is due to (xN−r−10 + yN−r−10 ) ◦ zN−10

= ((xN−r−10 , 0r−10 ) + (yN−r−10 , 0r−10 ))G⊗n2 · zN−10

= (xN−r−10 , 0r−10 )G⊗n2 · ((yN−r−10 , 0r−10 )G⊗n2 · zN−10 )

= xN−r−10 ◦ (yN−r−10 ◦ zN−10 ),

where the second equation is based on the property (xN−10 +yN−10 ) ·zN−10 = xN−10 · (yN−10 ·

zN−10 ).

We proceed the proof as follows:

Q(zN−10 |aN−r−10 + xN−r−10 )

=
∑
er−1
0

P (er−10 )
∏
i

P (zN−10 |(((aN−r−10 , 0r−10 ) + (xN−r−10 , er−10 ))G⊗n2 ))i, (9.1)

=
∑
er−1
0

P (er−10 )
∏
i

P ((aN−r−10 , 0r−10 )G⊗n2 · zN−10 |(xN−r−10 , er−10 )G⊗n2 ))i, (9.2)

=
∑
er−1
0

P (er−10 )
∏
i

P (aN−r−10 ◦ zN−10 |(xN−r−10 , er−10 )G⊗n2 ))i, (9.3)

= Q(aN−r0 ◦ zN−10 |xN−r−10 ),

where

(9.1) follows from the definition of Q(zN−10 |uN−r−10 );

(9.2) follows from [5, Proposition 12]. i.e., PN(zN−10 |(aN−10 +xN−10 )G⊗n2 ) = PN(aN−10 G⊗n2 ·

zN−10 |xN−10 G⊗n2 ) and PN(zN−10 |xN−10 ) =
∏N−1

i=0 P (zi|xi);

(9.3) follows from our definition of the operation ◦, and also from Theorem 69.
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Rewriting cost constraint and security constraint We first focus on the rewriting cost

constraint. From [48, Theorem 9], we know that as long asM2 ⊆ G ′N(W, β), with high

probability ϕ(xN−10 , yN−10 ) ≤ D for arbitrary xN−10 , yN−10 , i.e., Pr(ϕ(xN−10 , yN−10 ) ≥ D+

σ) < 2−N
β for σ > 0. Therefore based on our selection ofM2, which isM2 = G ′N(W, β),

the rewriting cost constraint is satisfied with high probability.

We next focus on the security constraint, and we apply a skill similar to [19, 53].

I(M ; zN−10 )

≤ I(ûM ; ẑN−10 ), (9.4)

= I(ūM ; z̄N−10 ), (9.5)

=

|M|∑
i=0

I(ūi; z̄
N−1
0 |ū0, · · · , ūi−1), (9.6)

=

|M|∑
i=0

I(ūi; z̄
N−1
0 ūi−10 ), (9.7)

=

|M|∑
i=0

C(P
(i)
N ), (9.8)

where

(9.4) follows from the channel Q(P,R) is symmetric, and ûM and ẑN−10 denote versions

of uM and zN−10 when ui and zi are uniformly and independently distributed;

(9.5) is due to the permutation such that uN−10 is arranged as Figure 9.3;

(9.6) is due to the chain rule of mutual information;

(9.7) is due to ūi is independent of each other;
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(9.8) is due to P(i)
N is i-th virtual bit channel induced by the wiretap channel P = (X ,Z, PZ|Y )

(refer to Section 9.2 for its definition).

Based on our selection ofM, which is BN(P, β), we know that C(P(i)
N ) ≤ 2−N

β and

further obtain I(M ;zN−1
0 )

N
≤ |BN (P,β)|

N
2−N

β , which is approaching 0 as N →∞.

Therefore, we can conclude that the security constraint is satisfied since 1
N
H(M |zN−10 ) =

1
N
H(M)− 1

N
I(M ; zN−10 )→ R as N →∞.

Capacity approaching property When the WEM channel is stochastically degraded

with respect to the wiretap channel, the secrecy capacity is H(Y |Z) [47], as lim
N→∞

|M|
N

=

H(Y |Z), our code construction is achieving the secrecy capacity asymptotically.

Theoretical performance conclusion Thus based on analysis from a) ∼ d), we have

the following conclusion for theoretical performance of our proposed code construction:

Theorem 71. For any symmetric secure WEM, when the WEM channel is stochastically

degraded with respect to the wiretap channel, there exists a polar code achieving the se-

crecy capacity.

9.3.4 Optimal code construction achieving the whole region

In this subsection, we extend the above code construction to achieve the whole rewriting-

rate-equivocation region.

Given a ∀(R,Re) ∈

{(R,Re) :

R ≤ H(Y |X)

Re ≤ H(Y |Z)

Re ≤ R

H(Y |Z) ≤ H(Y |X)

}, (9.9)

for a PXY ∈ Ps(D), we know that based on the code construction in the previous sub-

187



section, we can construct a code construction for (N, 2NRe , Re, D) symmetric secure

WEM, and partition the set {0, 1, · · · , N − 1} into B′N(W, β)
⋂
BN(P, β) = BN(P, β),

B′N(W, β)
⋂
GN(P, β) and G ′N(W. We know that Re =

|B′N (W,β)
⋂
BN (P,β)|

N
. Our code con-

struction for an (N, 2NR, Re, D) symmetric secure WEM is as follows:

• letM1 = B′N(W, β)
⋂
BN(P, β) of size NRe;

• letM2 ⊆ B′N(W, β)
⋂
GN(P, β) of size N(R − Re) whose elements have lowest

I(W(i)
N );

• letM =M1
⋃
M2;

• letM1 = B′N(W, β)
⋂
GN(P, β)−M2;

• letM2 = G ′N(W, β);

• the (N, 2NR, Re, D)ave code is C =
⋃
M

CN(M, uM(M)), where CN(M, uM(M)) is

a polar code with the frozen setM and frozen set value M with its binary represen-

tation uM(M).

That is, comparing with the previous code construction, the only difference is that bits

of B′N(W, β)
⋂
GN(P, β) in this case also represent user information, i.e., in Figure 9.3,

some auxiliary message bits carry information.

The rewriting function and the decoding function are the same as previous ones. We

conclude its performance in the following theorem.

Theorem 72. For any symmetric secure WEM code (R,Re) satisfying (9.9), when the

WEM channel is stochastically degraded with respect to the wiretap channel, there exists

a polar code achieving the whole region.
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Proof. We present the sketch proof as follows. We first focus on the rewriting cost con-

straint: sinceM2 ⊆ G ′N(W, β) (the same as the previous subsection), similarly based on

[48, Lemma 7] or [42, Theorem 1] we obtain the average rewriting cost D̄ ≤ D+O(2−N
β
).

Next we focus on the security constraint: with similar arguments of a) ∼ c) of the

previous subsection, we can prove that the channel Q(P,R) is still symmetric in this case;

similarly, we obtain

I(M ; zN−10 )

≤
|M1

⋃
M2|∑

i=0

C(P(i)
N ), (9.10)

≤
|M2|∑
i=0

C(P(i)
N ) +

|BN(P, β)|
N

2−N
β

, (9.11)

≤ N(R−Re) + ε, (9.12)

where

(9.10) follows from the similar arguments of d) in the previous subsection;

(9.11) is due to the selection ofM1 and the definition of BN(P, β);

(9.12) is due to the selection ofM2 and the definition of GN(P, β).

Thus we further obtain 1
N
H(M |zN−10 ) ≥ Re + ε as desired.

9.4 Conclusion

In this work, we present a construction based on polar codes has been proposed for

symmetric secure WEM and prove that it is achieving its capacity.

We list some possible future work here:

• In this work we assume that the main channel is perfect for simplicity, and it is

interesting to explore the case when both channels are noisy.
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• Another possible future work is to explore other code construction based on other

codes, e.g., LDPC codes.

• It is interesting to explore the similarity between secure WEM and wiretap channel

codes [73]: wiretap channel codes expand channel codes by a security constraint

to ensure messages can be communicated both reliably and securely, and similarly

secure WEM codes expand WEM codes also by a security constaint to guarantee that

messages can be communicated both cost-effectively and securely. We are interested

in further connection between them.
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10. CONCLUDING REMARKS AND FUTURE WORK

Storage systems are experiencing a historical paradigm shift from hard disk to non-

volatile memories. Those changes are due to their advantages such as higher density,

scaling size and its non-volatility, etc.

On the other hand, there are serious challenges (such as endurance, reliability and

security) to solve due to flash memories characteristics, such as block erasure, unique

noise, out-of-place update and etc.

In this dissertation, as a step in this direction, we first study noise modeling and capac-

ity analysis for NAND flash memories, which gains us some insight on how flash memo-

ries are working and their unique noise; Second, based on the characteristics of content-

replication in flash memories, we propose a joint decoder to enhance the flash memories

reliability; Third, we explore data representation schemes in flash memories and optimal

rewriting code constructions in order to solve the endurance problem; Fourth, in order

to make our rewriting code more practical, we study noisy write-efficient memories and

WOM codes against inter-cell interference in NAND memories; Finally, motivated by the

secure deletion problem in flash memories, we study coding schemes to solve both the

endurance and the security issues in flash memories.

My prior work has established an effective framework for flash memory storage sys-

tem as well as some potentially challenging research directions that I plan to address in

the near future. Examples of those topics include designing code model to address the

endurance, the reliability and the security simultaneously, and designing more practical

rewriting codes to make them appealing for industry. In the long term, I intend to have a

flexible and adaptable research agenda to tackle emerging challenges.

Examples of research directions in the next one year are summarized below:
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Secure Noisy Write-Efficient Memory As shown in prior work, optimal codes have

been obtained for rewriting code, enhanced rewriting codes with functions either error

correcting or avoid information leaking have also explored. It is natural to explore the

rewriting code model having both functionalists. To that goal, the first work is to have a

theoretical study to explore the possibility of this code model and to investigate its best

performance, and the next work is to explore efficient code constructions.

Making rewriting code possible in product Research work in rewriting code has

been around ten years, and various efficient and even optimal code construction schemes

have been proposed. However, there is still a long way to go before we can put rewriting

code into products, and reasons include the rate of rewriting code is too low, and the write

latency is too large. Challenging as they are, meanwhile they provide me further research

opportunities to make rewriting code more practical.

Examples of research directions in the next three years are summarized below:

Efficient RAIN for flash Memory Besides error correction codes, another scheme to

protect data in flash memory is traditional Redundant Array and Independent Disk (RAID)

method where some industries are employing in their products. However, as its name sug-

gests, RAID was designed specifically for hard disk not for flash memories, therefore

methods like Redundant Array and Independent NAND flash memories (RAIN) are nec-

essary and urgent. There is plenty of research work can be done, for example the first work

is to understand why RAID is not suitable for flash memories by doing experiments, and

after that more work can be done to design an efficient RAIN.

Integrating machine learing in decoding algorithms Efficient soft decoding error

correction codes like LDPC have been employed in flash memories and show great ad-

vantages over traditional hard decoding algorithms, however, one great challenge is the

difficulty of obtaining soft information, which is in essence to estimate a probability den-

sity function. As is well known that machine learning is an efficient tool to extract desired
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information from large amount of data and currently is used in various areas, it will be

helpful and interesting to integrating machine learning in decoding algorithms. However,

as many machine learning algorithms are computation intensive, thus the challenging is to

design an efficient machine learning algorithm suitable for current flash memories.

To conclude this dissertation, we firmly believe that flash memories represent a signif-

icant change and they bring us lots of challenges and endless opportunites for industry and

academia.
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