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ABSTRACT

Storage systems are experiencing a historical paradigm shift from hard disk to non-
volatile memories due to its advantages such as higher density, smaller size and non-
volatility. On the other hand, Solid Storage Disk (SSD) also poses critical challenges
to application and system designers. The first challenge is called endurance. Endurance
means flash memory can only experience a limited number of program/erase cycles, and
after that the cell quality degradation can no longer be accommodated by the memory sys-
tem fault tolerance capacity. The second challenge is called reliability, which means flash
cells are sensitive to various noise and disturbs, i.e., data may change unintentionally after
experiencing noise/disturbs. The third challenge is called security, which means it is im-
possible or costly to delete files from flash memory securely without leaking information
to possible eavesdroppers.

In this dissertation, we first study noise modeling and capacity analysis for NAND
flash memories (which is the most popular flash memory in market), which gains us some
insight on how flash memories are working and their unique noise. Second, based on
the characteristics of content-replication codewords in flash memories, we propose a joint
decoder to enhance the flash memory reliability. Third, we explore data representation
schemes in flash memories and optimal rewriting code constructions in order to solve the
endurance problem. Fourth, in order to make our rewriting code more practical, we study
noisy write-efficient memories and Write-Once Memory (WOM) codes against inter-cell
interference in NAND memories. Finally, motivated by the secure deletion problem in
flash memories, we study coding schemes to solve both the endurance and the security
issues in flash memories. This work presents a series of information theory and coding

theory research studies on the aforesaid three critical issues, and shows that how coding
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theory can be utilized to address these challenges.
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1. INTRODUCTION

Non-volatile memories are becoming ubiquitous due to their advantages such as higher
density, scaling size and non-volatility, etc. However, challenges also exist, among which
the most serious ones are the endurance, the reliability and the security. In this dissertation

we present a series of information theory and coding theory studies on those challenges.
1.1 Opportunities and Challenges

The unit of flash memory is a cell. Data is represented by the number of charge in a cell.
A flash chip is composed of blocks, each block consists of pages, and each page consists
of cells. There are three basic operations on flash memory cells: program/write, read and
erase. The granularity of read/program and erasure is a page and a block, respectively.

The writes on flash memory are made in out-of-place fas hion, i.e., instead of modi-
fying existing data, the previous data is marked as invalid and the new data is written in
another block.

There are three main challenges in flash memories:

e Endurance. Endurance means flash memory can only experience a limited number
of program/erase cycles, beyond which the cell quality degradation can no longer be

accommodated by the memory system fault tolerance capacity.

e Reliability. Reliability means flash cells are sensitive to various noise and disturbs,

i.e., data may change unintentionally after experiencing noise/disturbs.

e Security. Security means it is impossible or costly to delete files from flash memory

securely without leaking information to possible eavesdroppers.

Those problem are serious especially when flash memories are scaling down, and become

even worse with the era of three-dimention flash memories. On the other hand, those



problems are hard to solve by traditional methods due to the dramatic differences between
flash memories and traditional storage media. This research not only provides a feasible
solution to flash memory challenges but also shows how it expands the coding theory
scope.

In this dissertation we present a series of research studies on the aforesaid three critical

issues to address these challenges. Our research work makes the following contributions.
1.2 Research Contributions
1.2.1 Noise modeling and capacity analysis for NAND flash memories

In order to solve the reliability challenge in flash memories, we first have to understand
various types of error mechanisms in flash memories, which have drastically different
characteristics from traditional communication channels. Understanding the error models
is necessary for developing better coding schemes in the complex practical setting. This
work endeavors to survey the noise and disturbs in NAND flash memories, and construct
channel models for them. The capacity of flash memory under these channel models is
analyzed, particularly regarding capacity degradation with flash operations, the trade-off of

sub-thresholds for soft cell-level information, and the importance of dynamic thresholds.
1.2.2 Joint decoding of content-replication codes for flash memories

In order to solve the reliability challenge in flash memories, we present the content-
replication codeword problem, and it leads to a novel joint decoding scheme proposed.
We focus on the joint decoding algorithm designs and study their theoretical decoding
performances in this work. The proposed scheme is new for storage systems especially for
flash memories, and we show their reliability can be enhanced by increasing the diversity

of error-correcting codes.



1.2.3 Compressed rank modulation

In order to solve the endurance challenge in flash memories, we present a new data
representation scheme, Compressed Rank Modulation (CRM). CRM stores information in
the multiset permutation induced by the charge levels of cells. The only allowed charge-
placement method is the minimal-push-up aiming to minimize the increase of highest

charge levels. CRM achieves a higher capacity and a longer endurance.
1.2.4 Polar codes are optimal for Write-Efficient Memories

In order to present efficient code constructions for Write-efficient memory (WEM)
to solve the endurance challenge in flash memories, we conduct this research. WEM is
a model for storing and updating information on a rewritable medium with constraints.
CRM is an example of WEM. A optimal and efficient coding scheme for WEM using

polar codes is designed. The coding scheme achieves capacity.
1.2.5 Coding on noisy Write-Efficient Memories

To jointly solve the endurance and the reliability problem, we propose a new coding
model, noisy WEM. We construct an efficient coding scheme for it. Its decoding and

rewriting operations can be done efficiently.
1.2.6 WOM codes against inter-cell interference in NAND memories

This is another work to jointly solve the endurance and the reliability problem, how-
ever, the error type here is specified as inter-cell interference. In this work, we study
Write-Once Memories (WOM) codes against cell-to-cell interference. We derive bounds
of the rewriting capacity of WOM codes based on the new WOM codes, Delta-WOM, and
constrained codes. We also explore efficient WOM code constructions: one construction
is based on our Diamond-WOM codes construction, which can be proven to approach its

known rewriting capacity; the other one is based on constrained codes.



1.2.7 Coding on secure Write-Efficient Memories

Endurance and security are two serious challenges for non-volatile memories such as
flash memories. Write-Efficient Memory (WEM) is an important rewriting code model
to solve the endurance problem. Aiming at jointly solving the endurance and the secu-
rity issues in non-volatile memories, this work focuses on rewriting code with a security
constraint. To that end, a novel coding model, secure WEM, is proposed. We explore its

rewriting-rate-equivocation region and its secrecy rewriting capacity in this work.
1.2.8 Polar codes for secure Write-Efficient Memories

This work is to present an optimal code construction for secure WEM to solve both the
endurance and the secureity challenges in flash memories. This nested code construction
is based on optimal code constructions for WEM and wiretap channel codes, and the code

construction approaches the secrecy rewriting capacity for a large family of secure WEM.
1.3 Organization of the Dissertation

The rest of this dissertation is organized as follows. In Section 2, we discuss our the-
oretical study on the noise modeling in flash memories and its impact on the capacity.
In Section 3, we present our work to improve the flash memory repliability through joint
decoding of content-replicated codes. In Section 4, we discuss Compressed Rank Modu-
lation. In Section 5, we show that Polar codes can be used to construct an optimal code
construction for Write-Efficient Memories, and Write-Efficient Memories with error cor-
recting ability is discussed in Section 6. In Section 7, we explore Write-Once Memroies
against intra-cell interference. In Section 8, we present Secure Write-Efficient Memories
and its efficient code construction in Section 9. Finally, conclusion is obtained in Sec-

tion 10.



2. NOISE MODELING AND CAPACITY ANALYSIS FOR NANS FLASH
MEMORIES

2.1 Introduction

Flash memories have become a significant storage technology, mainly due to their
high speed, physical robustness and non-volatility. Various coding techniques have been
developed for them, including codes for error correction [37, 77], rewriting [9, 76], rank
modulation [36], etc. Despite their wide applications, flash memories are far from ideal. In
particular, they have various reliability issues, some of which get more serious with each
new generation of flash memories due to the scaling of flash cell sizes [13]. Flash mem-
ories have quite a few noise or disturb mechanisms, including retention errors, inter-cell
interference, random noise, programming errors, read and write disturbs, and stuck cells
[10, 12]. These mechanisms have quite different characteristics from traditional commu-
nication channels.

It i1s important to understand the channel models for the noise and disturbs in flash
memories, in order to design better coding schemes in the complex practical setting. How-
ever, information-theoretical work on channel modeling for flash memories has been lim-
ited. This paper is an endeavor to survey the various noise and disturb mechanisms for
NAND flash memories, and build their corresponding channel models. We analyze the
capacity of flash memories under these models, and show how it evolves with read and
write operations. While conventional storage media (e.g., magnetic and optical recording)
typically have noise accumulated over time [54], in flash memories, significant noise ac-
cumulates with flash operations and causes the storage capacity to degrade. We also show
that there is a trade-off for using sub-thresholds for obtaining more soft information on

analog cell-levels due to read disturbs. Furthermore, as the noise in flash cell is highly
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Figure 2.1: (a) The structure of NAND flash cell. (b) A symbol for NAND flash cell,
where “CG”, “ FG”, “S”, “D” and “P” stand for control gate, floating gate, source, drain

and P-substrate, respectively.

correlated and not symmetric, it is important to use dynamic thresholds to achieve higher
capacity.

The rest of this work is organized as follows. In Section 2.2, we introduce the funda-
mental structures and operations in flash memories. In Section 2.3, we model various types
of noise and disturbs. In Section 2.4, we analyze the special features of storage capacity

in flash memories. In Section 2.5, we present concluding remarks.
2.2 Fundamental Concepts of Flash Memories

In this section, we briefly survey the fundamental concepts on NAND flash memories,

which are necessary for understanding the channel models of noise and disturbs.
2.2.1 Structure and operations of flash memory cell

A flash memory cell is a MOS transistor with a floating-gate layer. Its structure is
illustrated in Figure 2.1 (a). We represent it with the simplified symbol in Figure 2.1 (b).

A flash cell stores data by storing charge in its floating-gate layer. And the mount
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Figure 2.2: A typical distribution of the analog levels of MLC.

of charge affects its threshold voltage, which is a minimum required voltage added to
CG to open the gate. When electrons are stored, the more electrons are trapped in the
floating-gate layer, the higher the threshold voltage is. We call the analog value of a cell’s
threshold voltage its analog level. In practice, a cell’s analog levels are quantized into
discrete values to represent one or more bits. We denote the ¢ discrete levels of a cell
by level 0, 1, ---, ¢ — 1. When ¢ = 2, 4, 8, the flash memory cells are called SLC
(Single-Level Cell), MLC (Multi-Level Cell) and TLC (Triple-Level Cell), respectively.
We illustrate a typical distribution of the analog levels of MLC in Figure 2.2. A cell’s
discrete level is read by comparing it to several reference levels. For g-level cells, ¢ — 1
reference levels are needed. (The three reference levels for MLC are shown as dotted
vertical lines in Figure 2.2.) If more reference levels are used, more soft information about
the analog levels can be obtained, which can be useful for coding schemes, but at the cost
of longer read delays and more read disturbs.

There are three basic operations on a flash cell: read, write and erase. To read a
cell’s level, a reference voltage is applied to its control gate to see if the gate opens or
not. (When ¢ > 2, multiple such reads with different reference voltages may be needed.)

To write a cell (also called programming, which means to inject charge into a cell), the
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Figure 2.3: The estimates of voltage biases on S, CG, P and D during flash operations

Fowler-Nordheim (FN) [13] tunneling mechanism is used by applying a high voltage to
the control gate. To erase a cell (which means to remove all stored charge from the cell),
a high negative voltage is applied to the control gate. Some typical configurations of
voltages applied to the four ends of a flash cell are shown in Figure 2.3 for read, write and

erase, respectively.
2.2.2  Structure and operations of flash-cell array

The cells in a flash memory are organized as (often tens of thousands or more) blocks,
where every block is a two dimensional array. We illustrate a block in Figure 2.4. There ev-
ery vertical wire BL is called a bitline, and every horizontal wire WL is called a wordline.
In addition, there are two horizontal wires BSL (Bitline Select Line) and GSL (Grounded
Select Line). Each row of a page is called a page, which is the unit of read and write
operations. A block usually has 32, 64 or more pages, and a page stores thousands of bits.
An erase operation is applied to a whole block, and therefore called block erasure.

More specifically, the read, write and erase operations are performed as follows:

e Read. To read a page of cells, a positive voltage V,..q is applied to the page’s
corresponding WL (wordline). For the other pages, a higher voltage V), 1s applied
to their WLs.
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Figure 2.4: Structure of a NAND flash memory block

e Write. To write a page of cells (more specifically, a subset of the cells in the page),

a high voltage V)., 1s applied to its corresponding WL. For the programmed cells

in that page, their corresponding BLs are grounded; for the remaining cells, their

corresponding BLs are set to a positive voltage V.. For the remaining pages, which

are not programmed, a positive voltage Vs, 18 applied to their WLs.

e FErase. To erase a block, all the WLs are grounded, and a high positive voltage is

applied to all the BLs.

We illustrate the typical voltage configurations for read and write in Figure 2.5 (a), (b),

respectively. Please note that the exact voltage numbers may vary from company to com-

pany.
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Figure 2.5: (a) A typical voltage configuration for the read operation. Here the i-th page
shown in the figure is being read. (b) A typical voltage configuration for the write oper-
ation. Here the i-th page is being programmed. (In particular, the programmed cells are

shown in circles)

10



Table 2.1: Basic notations

Notation Meaning

q Number of discrete levels of a cell

W Number of WLs in a block

4% The 7-th WL in a block

B Number of BLs in a block

B; The j-th BL in a block

Cij The cell in the i-th page (corresponding to the ¢-th WL W) and

the j-th column (corresponding to the j-th BL B;)
Vi.;(0) The analog level of cell ¢; ; right after it is programmed
Vi, () The analog level of cell ¢; ; after time ¢ has elapsed
since it was programmed
Vij A simplified notation of V; ;(t)
Vi The average analog level of the -th discrete level

2.3 Channel Modeling for Errors in Flash Memories

In this section, we survey the various noise and disturb mechanisms, and present chan-

nel models for them.

In this subsection, we briefly overview the errors in flash memories. Their details

will be introduced later. Throughout the paper, a number of notations will be used; for

2.3.1 Overview of error models

convenience, we summarize them in Table 2.1.

The various types of noise and disturbs in flash memories include:

1. Inaccurate programming. When cells are programmed, the analog levels they obtain
usually deviate from the target level. Even for cells programmed the same way, their
obtained analog levels are typically different due to cell heterogeneity, the difference

in their original analog levels after the previous erasure operation and other reasons

(e.g., inter-cell interference).

2. Retention error. After cells are programmed, the charge stored in them leaks away

11




gradually. When cells experience more program/erase (P/E) cycles, their quality

degrades, and charge leakage becomes more serious.

3. Cell-to-cell interference. There is coupling capacitance between adjacent cells. As
a result, the analog level of a cell depends not only on its own storage charge, but
also the charge in neighboring cells. For a cell ¢; ;, the more charge its neighbors
have, the higher its analog levels becomes due to the interference. The interference
becomes particularly serious when the neighbors of ¢; ; are programmed after ¢; ;

itself because that makes it impossible to program c; ; adaptively.

4. Read disturb. When the i-th page is read, the other pages are unintentionally and
weakly programmed because of the positive voltage V.55 applied to their wordlines,

making their analog levels higher.

5. Program disturb. When a page is programmed, — more specifically, when a subset
of the cells in that page are programmed, — the other cells in that page are unin-
tentionally and weakly programmed because of the voltage difference between their

control gates and P-substrates, making their analog levels higher.

6. Pass disturb. When a page is programmed, the other pages are unintentionally and

weakly programmed because of the positive voltage V.5, applied to their wordlines.

Flash memory cells also have random noise and stuck-at errors. The latter is caused by
the degradation of cell quality, which makes it impossible to change the levels of stuck-at
cells.

In the following, we analyze the errors in more detail, and present information-theoretic

models.

12



2.3.2 Inaccurate programming

For cells of ¢ levels, for k = 0,1, ...,q — 1, when we program a cell to the k-th level
(for k = 0 it is actually the erasure state), let V}, denote the target analog level. For a cell
¢;,; programmed to the k-th level, let V; ;(0) denote its actual programmed analog level.
We call

Z = Vi;(0) = Vi, 2.1)

the programming noise. For simplicity, we assume Z;, ~ N (0, o) has a Gaussian distri-

bution. Similar bell-shape models have appeared in [11, 74].
2.3.3 Retention error

It is reported in [17] that the number of leaked electrons depends on the leaking time
t and the initial number of electrons n(0). The number of electrons at time ¢, n(t), can be
modeled as n(t) = n(0)e™"*, where v is a constant parameter. This parameter v can vary
for cells. So for cell ¢; ;, we use v; ; to denote its corresponding value of v.

Note that the number of leaked electrons does not always strictly follow the above
smooth function. Therefore, we use an additive noise Z,. to denote the corresponding
noise term. Based on the linear relationship between the analog level and the number of
electrons in the cell’s FG (see [13] for details), we model V; ; (t) — the analog level of cell

c; ; after time ¢ has elapsed since it was programmed — as

Vi) = Vig(0)e ™" + Z,.. (2.2)

For simplicity, we assume Z,. ~ N (0, 0,..) has a Gaussian distribution.

13
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Figure 2.6: Illustration of cell-to-cell interference

Cell-to-cell interference is a complex issue for flash memories. The analog level we
can read from a cell depends not only on the cell’s own level, but also the levels of its
neighboring cells. This is due to the parasitic capacitance-coupling effect between neigh-
boring cells. For this reason, we differentiate the concept of intrinsic analog level from
the extrinsic analog level of a cell. By intrinsic (respectively, extrinsic) analog level, we
refer to the cell’s analog level when there is no (respectively, there is) interference from

neighboring cells. For cell ¢; j, we use IA/” to denote its intrinsic analog level, and use V; ;

to denote its extrinsic analog

A model for cell-to-cell interference is proposed in [11], where a cell is interfered by
its eight neighboring cells, as shown in Fig. 2.6. Here B,, B, and B,, refer to coupling
parameters between neighboring cells in the row direction, the column direction and the

diagonal direction, respectively. We model the effect of cell-to-cell interference as

2.3.4 Cell-to-cell interference

level.
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Vij = Vij+ Bo(Vijoa + Vig) + By(Vin,
+ Vz‘+1,j) + Bacy(‘z—l,j-i-l + Vz‘-1,j-1

+ Vi+1,j+1 + Vi+1,j—1) + Zinter, (2.3)

where the noise Z;,;., accounts for the possible deviation from the above linear model.
For simplicity, we assume Z;,er ~ N (0, Ginter)-

For two neighboring cells A and B, if A is programmed before B, when B is pro-
grammed, the interference from A can be compensated by programming because the read-

able level of cell B is already its extrinsic analog level.
2.3.5 Read disturb

When the k-th page is read (for & € {0,1,--- , W — 1}), the other pages are softly
programmed due to the voltage V)., added on their control gates. For a disturbed cell ¢; ;
(fori e {0,1,--- , W —1} —{k}and j € {0,1,--- , B — 1}), we denote its analog level
before the read disturb by V; ;, and denote that after the read disturb by V/;. We model
read disturb as

Vi =Vij + 715+ Zra, (2.4)

l?]

where ~/ ? is a parameter that depends on the time interval for the read operation, the
strength of the electrical field between cell ¢; ;’s control gate and P-substrate, and the cell’s
capacitance; and the noise Z,; accounts for the possible deviation from the above simple

linear model. For simplicity, we assume Z,.q ~ N (0, 0,4) has a Gaussian distribution.
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2.3.6 Program disturb

When the i-th page is programmed (fori € {0,1,--- , W —1}),letS € {0,1,--- , B—
1} denote the indices of those programmed cells in that page. The unprogrammed cells
in that page, which have indices in {0,1,--- , B — 1} — &, will be softly programmed,
which is called program disturb. For a disturbed cell ¢; ; (for j € {0,1,--- ,B —1} = S),
we denote its analog level before the program disturb by V; ;, and denote that after the

program disturb by V/,. We model program disturb as

Vi = Vig 905+ Zyroas (2.5)

l?]

where 77"

;; has a similar meaning as in function (2.4) (although it may have a different

value due to changed parameters such as the time interval for programming). Here the
noise Z,.,q accounts for the possible deviation from the above simple linear model. For

simplicity, we assume Z,,,q ~ N (0, 0,r0q) has a Gaussian distribution.
2.3.7 Pass disturb

When the k-th page is programmed, the other pages are softly programmed due to the
voltage V), added on their control gates. The process is similar to read disturb, and we
model it as

Vi = Vig #2005 4 Zpasa. 2.6)

pasd

where v;

i; hasa similar meaning as in function (2.4) (but with possible different values,

as for program disturb). And as before, Z,,,4 accounts for the additive noise term, and for

simplicity we assume Zpq5q ~ N(0, Opasd)-
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2.4 Capacity Analysis for Flash Memories

In this section, we analyze the storage capacity of flash memories. In particular, we
focus on its special features: how the storage capacity degrades with flash operations, the
trade-off between instantaneous capacity and read disturbs when sub-thresholds are used,

and the importance of dynamic thresholds.
2.4.1 Basic model for write and read operations

The storage capacity of flash cells is affected by a number of factors, including the
number of cell levels, the specific implementation of read and write operations, etc. In
this section, we focus on fundamental features of flash channels. So for simplicity, we
consider the following simplistic write/read model for an SLC block of W pages. We first
program the W pages sequentially from W, to Wy _1, and we assume every cell has an
equal likelihood of being programmed to O or 1. We then have n — 1 rounds of reading;
in each round, we read the pages Wy, Wi, - - - , Wy _;1 sequentially. Although the noise in
cells is correlated (e.g., via inter-cell interference), when we compute capacity, we treat
them as having independent noise. (This is, of course, a restrictive model for capacity.)
Furthermore, when we analyze capacity, we assume B (the number of cells in a page)
approaches infinity.

The above simple model for SLC can be extended to MLC and TLC and to more
complex read/write patterns. However, the basic observations derived here still hold for

more general cases.
2.4.2 Capacity degradation with flash operations

In conventional storage media such as hard disk, noise typically accumulates over time.
In flash memories, however, significant noise is accumulated due to flash operations. So

frequent operations will lead to large noise, thus degrade the storage capacity significantly.
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In this subsection, we analyze how the analog-level distribution of cells changes with
more and more write/read operations (under the model introduced earlier), and compute
the corresponding storage capacity. (Note that P/E cycles degrade cells’ quality, which is
another source of capacity degradation, but we do not consider it here.)

We assume that the W writes and (n — 1)WW reads in our model happen at time
0,1,--- W —=1,W,W+1,--- (n—1)W — 1, respectively. So for the i-th page W,,
it was programmed at time ¢ and was read at time ¢ + W, i +2W,--- i+ (n—1)I¥. For a
cell ¢; ;, which is intended to be programmed to V;, € {Vp, Vi }, let V; ;(k, t) be the analog
level of ¢; ; after the ¢-th operation. We first present the recursive formula for V; ;(0,t)

below. (For simplicity, we assume 0 < ¢ < W — 1 to avoid boundary cases)

e When t < i, ¢;; has not been programmed. It is at discrete level 0, and Vi,j(k, t)
deviates from V{ due to inaccurate programming (of erasure in this case). Thus,

V;.;(0,t) = Vo + Z, based on function (2.1).

e When ¢ = 1, ¢; ; does not need to be programmed, but it suffers from program

disturb. Thus, V; ;(0,t) = V; ;(0,t — 1) 4+ Z,,,q based on function (2.5).

e When ¢ =i+ 1, W,y is being programmed. ¢; ; deviates even further from V|, by
cell-to-cell interference from ¢; 41 j_1, ¢i+1,; and ¢;41 j41 and pass disturb from W, ;.
Based on the models of cell-to-cell interference, i.e., function (2.3) and pass disturb,
i.e., function (2.6), V; ;(0,t) = V; ;(0,t—1)+ B, Vi1, (k1,t) + Bay(Vier jo1(ka, ) +

V;—i—l,j-‘,—l(k?n t)) + Zinter + ’Vﬁ?Sd + Zpasda where k17 kQa k3 € {07 1}

e Whent € [i + 2, W — 1], W, is being programmed. ¢; ; is distorted by pass disturb
from W,. Thus based on the model of pass disturb, i.e., function (2.6), V; ;(0,t) =
‘/i»j(()?t - 1) + 7£?Sd + Zpasd-

e Whent = W +mi, wherem = 1,2,--- ,n—1, ¢; ; is being read. There is no noise

18



for ¢; ;; thus V; ;(0,t) = V; ;(0,t — 1).

e Whent € [W,nW —1]—{W +mi}, wheren € N*,n >2andm =1,2,--- ,n—1,
cells of W, wmoa w are being read. c; ; is distorted by read disturb from W, 104 w-
Thus based on the model of read disturb, i.e., function (2.4), V; ;(0,t) = V; ;(0,t —

D)+ 9+ Za

We conclude the above as follows: V; ;(0,t) =

Vo + 2y t <1,

Vij(kit = 1)+ Zprod t =1,

Vij(k,t = 1) 4+ ByVig1,; (k1. t)

+ By (Vis1,j-1(ka, t)+

Vit1+1(ks, 1)) + Zinter 2.7)
P4+ Zpasa t=i+1,

Vij(kt = 1) + % + Zposa tE€[i+2,W —1],

Vii(k,t—1) t =W +mi,

Vij(k,t —1) + 7{? + Za otherwise.

The formula for V; (1, ¢) can be obtained similarly with the only difference that V; ;(1,4) =
Vi + Z; due to the inaccurate programming. Therefore, we know that V; ;(1,7) = Vi + Z;
and V; ;(0,7) = Vo + Zo + Zproa. Furthermore, V; ;(k, t) (fort =0, 1, - - - ) form a Markov
chain.

In order to obtain the probability distribution for V; ;(k,t), we make the following as-
sumptions for simplicity: for cell-to-cell interference, B, is negligible compared to B,;

given any i and j, 77"

;g and~y/ ¢ are constant over time, so they have no effect on V; ;(k, 1)’s
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probability distribution; V; ;(k,t) is independent of j, and we write it as V;(k,t) some-
times. Thus, V;;(0,t) ~ N (Vo(1 + By),0,(0,t)) or V; ;(0,t) ~ N (Vo + B,Vi,0:(0,t))

with equal probability, where o2(0, t) =

.
08 t <1,

07(0,t = 1) + 07 0g t =1,

02(0,t — 1) + (Byoi1(k, 1))?

02 0sd + Tinter t=i+1ke{0,1}, (2.8)
07(0,t = 1) + 02, teli+2,W -1,

02(0,t —1) t =W +mi,

\05(0, t—1) + o2, otherwise.

Probability of analog level Probability of analog level
(@) (b)

Figure 2.7: (a) SLC with one reference level; (b) SLC with three reference levels (i.e.,

three sub-thresholds).

Suppose the reference voltage for reading (that separates the two levels) is V,.. Also
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suppose ¢; ; represents 1 if V; ;(k,t) > V, and 0 otherwise (see Fig. 2.7 (a)). P*(Y|X)
(Y, X € {0,1}) is the probability that ¢; ; (which is intended to be programmed to Vy €

{Vb, Vi }) represents data Y after ¢ operations. Thus, P*(1|0) =

V, = Vo(1+ B,y)
Ui(ovt)

V., — (Vo + B,W1)
Ui(0>t)

S )+ Q ) @29

where Q(z) = = [ et

With a similar process and assumptions as above, we obtain that V; ;(1,t) ~ N (Vj, 09)
when t < i. V;;(1,t) ~ N(Vi(1 + By),0:(1,t)) or V; ;(1,t) ~ N (Vi + B, Vo, 0:(1, 1))

with equal probability when ¢ > i, where 02(1,t) =

(

2 .
o1 t =1,

0'1-2(1, t— 1) —+ (By0'1+1<k, t))2

+0pasd + Tinter t=i+1ke{01}, .10
o7 (1t = 1) + 07 tefi+2,W—1j,
o2(1,t —1) t =W + mi,
\af(l,t —1) + o2, otherwise.
PYO1) =
- Q) et @.11)

(QUELEED) + Q) 12,

1—

1
2

Let X =) = {0, 1}, and our channel model is P = (X', ), PY(Y|X)). An example is

presented in Figure 2.8 (a).
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Figure 2.8: (a) Noise channel model with single reference voltage; (b) Noise channel

model with three reference voltages.

Thus, the capacity of W, after the ¢-th operation is

Git) = I(X;Y) = H(X)— H(X|Y),

= 1- H(X|Y), (2.12)
1 PLY|X)

= 1-5 Y PYIX)log =
2 oo >ox PHY]X)

where equation (2.12) is based on the assumption that X is uniformly distributed over
{0,1}. Due to data-processing inequality [16, chapter 2], we conclude that C;(t + 1) <
Ci(t) fort € N,

Let V, be 1.4 and the remaining parameters be fixed values in Table 2.2. We numer-
ically calculate Co(t) for t = 0,1,---,127 as shown by the solid line of Figure 2.9 (a)
and (b). We can clearly see that the storage capacity Co () decreases with more and more

operations.
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Figure 2.9: (a), (b) Comparison between the fixed-reference-voltage scheme and the
dynamic-reference-voltage scheme during sequential write operations ((a)) and sequen-
tial read operations ((b)). Here the x-axis is the discrete time when write or read op-
erations happen, the y-axis is the storage capacity, the solid curve corresponds to Co(t)
t =0,1,---,127 for fixed reference voltage, and the dashed curve corresponds to CS(t)
for dynamic reference voltage. (c) The trade-off between the number of sub-thresholds

(reference voltages) and capacity (note that the y-axis is scaled).

23



Table 2.2: Parameters used in computing C(t)

0(2] 0% O-Z'Znter ] Upu,sd i 072'11 0-1217*0{1 i

2 1 O9x103|5x103]107*|8x1073
(Byoi1(0,1))* | (Byoiga(1,1)) B, Vo Vi w
1073 103 0.01 0 2.5 64

2.4.3 The impact of sub-threshold for flash capacity

Recently, the usage of sub-thresholds (e.g., [69, 23, 24]) in flash memories has at-
tracted great research interest. With sub-thresholds, there are multiple reference voltages
between adjacent discrete levels (e.g., in Figure 2.7 (b) there are three reference voltages
Vi, Viy, Vi, between two adjacent cell level distributions). The purpose of sub-thresholds
is to obtain more soft information on cell levels, and improve coding performance (e.g., for
LDPC codes). However, we observe that there is also a trade-off. Sub-thresholds lead to
more reads, and therefore causes more read disturbs. Although having sub-thresholds can
increase the precision of reading at the moment, the additional noise caused by read dis-
turbs also distorts cell levels and is accumulated for future reading. Therefore, there is an
optimal way to set sub-thresholds to maximize capacity over the flash memory’s lifetime
(which is not necessarily the more sub-thresholds the better).

In this subsection, we explore the impact of sub-thresholds for flash capacity, focusing
on the trade-off between read precision and read disturbs. (How to set the positions of sub-
thresholds is beyond the scope of this paper, and there is already a significant body of work
on it [69, 24, 23].) Consider SLC, for [ = 1,3,5,---, let V(I) = {V,,, Viy, -+, Vo, }
denote the set of [ sub-thresholds we use for separating discrete level 0 from level 1.
Let V, be the single sub-threshold when [ = 1. We require the sub-thresholds in V(1) be

symmetric with respect to V,.; we also require V({—1) C V() so that more soft information
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can be obtained with more sub-thresholds (if no read disturb is considered). Specifically,
we make all the sub-thresholds fall in the region [V, + (HE2VotV) fyy oy (B0t Vi)
Let L be the maximum number of sub-thresholds used. Let § = Y42, We set V(I — 1) as
Vi, =V — (4] —k)dlk=0,1,--- ,1—2}.

An SLC with [ sub-thresholds can be modeled by a 2-input (I + 1)-output channel,
where the (I 4+ 1) outputs— 0, 1,--- ,[— corresponds to [ + 1 regions separated by the [
sub-thresholds. Let X = {0,1}, Y = {0,1,---,l}, and P(Y|X) (X € X, Y € )) be
the probability that ¢; ; (which is intended to be programmed to Vx € {Vj, Vi }) is read as
Y € Y after ¢ operations. P*(Y|X) can be obtained in a similar way as before. (With the
same setting and the similar analysis of the previous subsection, we obtain that V; ;(k, t) =
Vij(k,t—1)+ Vi ? + 1 x Z,.; when it is suffered from read disturbs. The remaining cases of
V;.j(k,t) are the same as those of the previous subsection.) Our proposed channel model
is P" = (X,Y, P(Y|X)). Figure 9.4 (b) presents an illustration of the channel model
with three sub-thresholds.

Let the capacity of the ¢-th page VV; (with [ sub-thresholds) after ¢ write/read operations
be C;(I,t) = I(X;Y). With parameters listed in Table 2.2 except 02 = o} = 1, we present
Cy(1,500) for different [ in Figure 2.9 (c). (The capacity for other values of i and ¢ has
similar shapes.) As shown in Figure 2.9(c), there is a trade-off between the number of

sub-thresholds and storage capacity. When there are too many sub-thresholds, the impact

of read disturbs becomes dominant, and the corresponding capacity decreases.
2.4.4 Dynamically adjust reference threshold voltages

It can be seen from the error models that flash disturbs are highly correlated (both in
time and space), and the noise has a tendency to be non-symmetric (e.g., disturbs tend to
increase cell levels). Therefore, it is important to set reference voltages adaptively over

time to reduce errors and maximize capacity. Such a scheme is called dynamic threshold,
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and has been studied before [80, 75]. In this subsection, we study how dynamic thresholds
can help improve storage capacity based on our flash models.

Let V,.(t) be the reference voltage we adaptively choose for the ¢-th operation. Let
E Ry (t) denote the error probability of quantizing V;(k,t) (for simplicity, we assume ¢ >
i). Therefore E Ry (t) =

Vi (t)—We B Vi—(Vo+By, Vi
(Q(UBEEB ) (=00 B))) - k=0,

D=

(2.13)

Vi (£)—Vi(14+By Vi —(Vi+B, Vi o
1— HQ(HAGHE) 4 Q(Y=tilo))) f =,

Assume that k£ is uniformly distributed over {0, 1}. Thus the total quantizing error

probability for the ¢-th operation is TER(t) = 5+

Lo Velt) = Vo(l + By) Vi(t) = (Vo + B, 1)

1@ or(0.1) )+ Q( 7:(0.1) )
1 Vi(t) —Vi(1 + By) Vi(t) — (Vi + B,Wo)
— (@ oo(1L1) )+ Q( oi(1,¢) )

The objective of dynamic reference voltage is to choose V,(¢) such that TER(t) is

minimized, therefore V,.(¢) should satisfy

8(@( Vr(t)*Vo(HBy)) + Q( Ve ()= (Vo+By Vi) ))

7:(0,t) i(0,t)
oV,.(1)
QAT + QT A) (2.14)
Vi(0) |

Similarly, we can obtain the probability distribution of V; ;(k,t), and P*(Y|X) for
XeX={0,1}andY € Y = {0, 1}. The channel model of W, for dynamic reference
voltages is denoted by P? = (X, Y, P{(Y|X)), and its capacity is C4(t) = [(X;Y). With
parameters of Table 2.2, we numerically compute C4(¢), which is shown by the dashed

curve in Figure 2.9 (a) and (b). We can see that after dynamically adjusting the refer-

26



ence voltages, the channel (with quantization) becomes less noisy and the storage capacity

increases correspondingly.
2.5 Concluding Remarks

In this paper, we explore various noise and disturb mechanisms in NAND flash mem-
ories, and build their corresponding information-theoretic channel models. We further
study the storage capacity of flash memory under these channels. In particular, we show
the impact of read/write operations on flash capacity, as well as the intriguing effect of sub-
thresholds and dynamic thresholds. It is important to design coding schemes adaptively
corresponding to the special properties of flash memories. That remains as our future

work.
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3. JOINT DECODING OF CONTENT-REPLICATION CODES FOR FLASH
MEMORIES

3.1 Introduction

One challenge for flash memories is the data reliability as several types of noise [49]
exist. Besides a strong error correcting code, e.g., LDPC code, another mechanism to pro-
tect flash memories is memory scrubbing [64], i.e., while errors accumulate in a codeword,
with the next block erasure, the codeword is corrected and a new error-free codeword is
written back to the memory. However, in flash memory rewrites are made in an out-
of-place fashion, i.e., an updated codeword is stored at a new physical address and the
original codeword remains in the memory. Those mechanisms lead to multiple copies of
codewords, i.e., the content-replicated codeword problem. Besides memory scrubbing,
other factors also may cause the content-replication problem such as garbage collection,
weal-leveling, etc, and it is estimated that on average 3 ~ 13 (i.e., the exact number de-
pends on the work load traffic and various algorithms used) copies of content-replicated
codewords can be generated [21].

In this work, we enhance the flash memory reliability by utilizing the existence of two
content-replicated codewords for decoding, including an old codeword and a new code-
word storing the same information. We aim at designing a joint decoding scheme having
access to both content-replicated codewords, and explore its decoding performance. This
leads to reliability improvement in flash memories. We further study a new paradigm
where the two content-replicated codewords have different forms for better performance.
The significance of this paper is two-fold: on the practical side, the new coding scheme
utilizes the unique properties of flash memories; on the theoretical side, we show that

increasing the diversity of error-correcting codes in the storage system can improve the re-
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liability of replicated data even if there exist constraints in their joint decoding algorithms.

The rest of this paper is organized as follows, in Section 3.2 we present the problem
statement; we then present various joint decoding algorithms and study their theoretical
decoding performances in Section 3.3 for Binary Erasure Channel and Additive White
Gaussian Noise channel in Section 3.4, respectively; the conclusion and future work are

presented in Section 3.5.
3.2 Problem Statement

In this section, we first define some notations used throughout this paper, and then
formally define the problem.

Let D = {0,1,---,M — 1} be the message set for M € N, and let X and ) be
two alphabets of the symbols stored in a cell. Let two encoders be f; : D — XV and
fo : D — X%, and the desired joint decoder be h : YV x YN — D, where N is the
length of codewords. Let P = (X, Y, Py|x) and Q = (X,), Qy|x) be two independent
channels.

We illustrate the model in Figure 3.1. Here, m is a common message to both encoders,
the N-dimensional vectors x3 (1), z) ~*(2) € X" are two codewords obtained through
two encoders (those encoders are not necessarily identical), and g3’ ~*(1), y)'~*(2) are two
noisy codewords through P and Q. The task is to design a joint decoder to give a reliable
estimation the message m, which is denoted as 17, giving 33" ~*(1) and ' ~*(2).

The problem statement is presented below:

Definition 1. Given two (N, 2¥%) error-correcting codes, a message set D = {0, 1,-- -,
2N 1}, their encoding functions f; : D — X and f, : D — X'V, and two idependent
channels P and Q, the task is to design a joint decoding scheme h : YN x YN — D such
that Pr(h(yy (1), 55 '(2)) # ilzg " (1) = f1(i), 25 (2) = fo(d))) — Ofori € Das

N — oo.
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That is a new decoding algorithm h(-) is required to design which is due to the presence
of content-replicated codewords. For simplicity we assume that such a joint decoding
scheme always exists, i.e., Pr(h(y) '(1),4 1(2)) # iz 1(1) = fi(i), ) *(2) =
f2(i))) — 0 fori € Das N — oo, and leave the exact condition under which this holds
as our future work.

We point out two implicit requirements for the joint decoder in the above definition:
The first is the rate of the given code should be larger than the capacities of underline
two channels, i.e., R > C(P) and R > C(Q), therefore reliable decoding is impos-
sible for individual decoders, ie., 3 g1 : XN — Dand B g» : XN — D such that
Pr(gi (s (1) # 1,2 7 (2)) # ila) (1) = fi(i), 2} 7H2) = fold))) - O for
1 € Das N — oo. Otherwise, the joint decoder degenerates to the individual decoder
in channel coding model; The second one is the same encoders to which reliable individ-
ual decoders corresponding exist when channels are not degrading too much are required
here. More precisely, given the same parameters N, R, we require fi(-) and f>(-) meet
up with the condition that when R < C(IP,) and R < C(Q,) for some P; and Q, there
exist g; : XY — Dand g, : XY — D such that Pr(g(y) (1)) # i, g2(v) 1 (2)) #
i|2d (1) = f1(i), 20 71(2) = fa(i))) — Ofori € Das N — oo.

The above requirements are due to the motivations of joint decoders: the joint decoder
is not to replace existing individual decoders (as it is possible that individual decoders
suffice to reliably decode when channels do not degrade too much, and also the content-
replicated codewords can not always be guaranteed to exist) but to replace individual de-
coders when they fail. It is also those requirements that differentiate the joint decoder from
other coding models like Multiple Access Channels with correlated sources by Splepian
and Wolf [66] and Fountain code [52].

In the following, assume [P and Q are Binary Erasure Channels with the same param-

eter ¢, and both encoders are LDPC encoders. The following notations will be used: let
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the rate of two LDPC codes be % let G, G, be the encoding matrices, and H;, Hy de-
notes their parity check matrices. Let )" (1), %) '(2) € {0,1,?}" be two codewords

received.

N—1

XO 43}
Encoder 1 Channel P

N—-1
Yo

=Y

Common Source Decoder

1

X[;\Ti(z) N-1
Channel Q Y, @

Encoder 2

Figure 3.1: Illustration of joint decoding content-replicated codewords.

3.3 Joint Decoder for BEC Channels

In this section, we present various joint decoder designs when PP and QQ are Binary

Erasure Channels with the same parameters.
3.3.1 Joint decoder of identical content-replicated codes

In this subsection, we start the joint decoder design with identical content-replicated

codes, i.e., the two encoders are identical.
3.3.1.1 Joint decoder design and its performance

The given codes are identical in this case, i.e., G; = G, and H; = H,.

Given y)' (1) and v} ~'(2), a combined codeword 3! is obtained as follows, for
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Z.:Oa]-?"'vN_]-vyi:

? if y;(1) = v:(2) =7,
yi(1) if y;(2) =7 and y;(1) #7?,

yi(2) else

\

The parity check matrix for yév ~!is H,. The decoding result is obtained by applying belief
propagation to 3"~ with H; and initial erasure probability €2.
Let A(z) and p(x) be degree distributions for the LDPC codes used, let ¢#7 (), p) be

its original threshold as in [60], and e2F (X, p) be the threshold for our joint decoder. The

iden

comparison of 2P (), p) and €87 (), p) for some regular LDPC codes is presented in the

iden

BP > EBP.

second and the third columns of Table 3.1, and we have ¢,

Note that the above scheme can be generalized to cases when P and QQ are with different

€, and due to space limitation we do not present that here.

: : BP _BP BP

Table 3.1: Comparison of €7, €;7.,, and €5
BP BP BP
(dv, de) | € €iden €dif

(3.4) 0.6474 | 0.8046 | 0.8741
(3.5) 0.5176 | 0.7194 | 0.7594
(3,6) 0.4294 | 0.6553 | 0.6600
(4,6) 0.5061 | 0.7114 | 0.7335
4,8) 0.3834 | 0.6192 | 0.5814

3.3.2 Joint decoder of different content-replicated codes

In the above subsection, the two codes are identical, which are effectively repetition

codes, and this motivates us to explore another joint decoder design when the two encoders
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are different.
3.3.2.1 Joint decoder design

The given codes are different in this case, i.e., G; # Gg and H; # Hj, but codewords

carry identical systematic information bits, that is, two encoding functions are =3 (1) =

uf Gy and 20 71(2) = ul ' Go.

Let 7,, Z, € {0,1,--- , N — 1} be the information bit index sets for ' *(1) and
y~1(2), and let P, and P, be their parity check bit index sets. Let y3'*(1)z, = (y:(1) :
i € T,), ie., information bits of y)' (1), and similar notations apply to 73" *(2)z,,
Yy (1)p, and v '(2)p,. Let g(-) : I — T, be a one-to-one mapping such that
2;(1) = w4 (2) for i € Z;. Similar to the previous section, we define (y)' ')z, where
Yi =

? if y; (1) = ye0)(2) =7,

yi(1) if y4(:)(2) =7 and y;(1) #7,

Ygi(2) else

Then, a constructed combined codeword is %2 %~ = [(y3 Dz, yd 7 (D)p,, vo " H(2)p, ).
That is, y3" ~* ! is constructed by extracting information bits from y; ~*(1) and v ~*(2),
and appending parity check bits from yév ~1(1) and yév ~1(2). An example is illustrated in
Figure 3.2.

Let Hi = Hyo,Hy1,--- \Hinyq], let Hi 7, = [Hy; : i € Z4], and let Hy p, =
H,, : i € Py]. Similarly, we divide H, into Hy 7, and Hy p,. Then, the parity check
matrix H for 32 %! is of the form in Figure 3.3. An example is illustrated in Figure 3.2.

The decoding result is obtained by applying belief propagation to ygN K1 with H,

the initial erasure probability €2 for (y)' ')z, and € for y5' ~*(1)p, and ' 1 (2)p,.

33



1110100 ]
H=|1011010
—1 10 10 01

S o 00 O -
OO0 O o = O
OO0 50—~ O ©
oo =0 o ©
o~ @ o o ©
- o © o o ©

-0 O = = o

Figure 3.2: Illustration of constructed y2" ~*~' and H. (a) The Tanner graph and H, for
yY7'(1), where information bits are black and parity check bits are red; (b) The Tanner
graph and H, for y)"~*(2), where information bits are black and parity check bits are
green; (c) The constructed Tanner graph and H based on (a) and (b), where information

bits are black, parity check bits from y.' ~*(1) are red, and parity check bits from 3’ *(2)

are green.

34



aw
[l
Z
|
A
|
o

Figure 3.3: Illustration of the parity check matrix H.

3.3.2.2 Performance analysis by density evolution

In a Tanner graph of an LDPC code, for an edge if its one end connects to an informa-
tion bit of variable nodes, we call it information edge; If it connects to a parity check bit of
variable nodes, we call it parity edge. For example, in Fig. 3.2 (c), the edges connecting
to ¢y, 1, C9, 3 are information edges and the remaining edges are parity edges.

For information edges (resp. parity edges), let )\ (resp )\ ) be the fraction of edges

connecting to an variable node with degree . Let \(V)(z) = Z /\ D21, where Z )\(

& ‘ &
and AP (z) = S AP 2-1 where S AP = 1, be the degree distribution functions from
i=1 i=1

the edge perspective. For example, A\ (z) = Za? + 2% + 225 and AP (z) = 1in

Figure 3.2 (c).
Let p; . be the fraction of edges connecting to a check node with degree j + k, of which

j edges are information edges and k edges are parity edges. Let p(z,y) = Z P y",
J’
where > p;r = 1, denote the edge degree distribution functions from the check node
ok
perspective. For example, p(z,y) = 222y + 2oy in Figure 3.2 (¢).

Let p§p,2 = —1—2312'—0—1@ and sz)g ik ’;j”: = et p(z,y) = ij ) pi—lyk Whert—zjzlgpy,)C =1

and j > 1,k > 0, and p?(z,y) = ijkxj k= 1whereZp]k =1landj >0,k > 1. For
7,k
example, p(z,y) = La?y + 21:cy and pP)(z,y) = 223 + 2o in Figure 3.2 (c), where

p®)(x,y) happens to be the same as p¥)(z, y) for this example.
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Lemma 2. Given two regular (d,, d.) LDPC codes (which are not necessarily the same),
the edge degree distributions of constructed the combined LDPC code are: A\ (z) =

2?0 AP () = o and pjy = (V17) (47 %)7 ()", where j + k = d..

Proof. Based on the construction presented, for the Tanner graph of 32 %!, both check

nodes of ' (1) and 3" ~*(2) connect to information bits of variable nodes of 32V

thus those node degrees are doubled; The degree of parity check bit of variables nodes of

yaN~5~1 remains the same as those of ' ~*(1) and y)' *(2).

The result for p; ;. follows from that for a random edge it is an information edge with

—d

probability dcd—cv, a parity edge with probability Z—Z’ and the probability distribution that j

out of j + k edges are from information edges is a binomial distribution. 0

From Lemma 2, we know that A\())(2) and A\")(z) are not identical, the initial effective

erasure probability is €2 for information bits of 32 %! and ¢ for parity bits of y2" ~*~,

thus the probabilities of a parity bit and an information bit being an erasure at the /-round
of belief propagation decoding are not the same (We show this point in Figure 3.4 through

a simulation with both (3, 6) LDPC code and initial erasure probability 0.6).
O]

Let 7, be the average probability of an information bit of y2¥~*~! being an erasure

after the [-round of belief propagation decoding, and similarly let xz(,l) be that for a parity

check bit of y2V 51,

Our main result based on density evolution [60] is presented below:
Theorem 3. For our joint decoding of different content-replicated codes, the average era-
sure probabilities after [-round of belief-propagation decoding are given by

20 = D1 - pO(1 — gD 1 - gDy,

D i

2O = AP(1 = p®(1 = 20D 1 40Dy,

i p
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Figure 3.4: Density evolution comparision of information bits and parity bits for joint
decoder of different content-replicated (3,6) LDPC codes with initial erasure probability

0.6.

Proof. We break the proof into two steps.
)

First, let y;’ be the average probability of being an erasure under belief-propagation
decoding after [ rounds for an output edge from a check node to an information bit of
variable node. It is given by 5 = 3~ pi") (1 — (1 — &)/ ~1(1 — 2))%) = 1 - p(1 -
xy),l —x;”). "

Similarly, let yl(f) be the average probability of erasure under belief-propagation de-
coding after [-round for an output edge from a check node to a parity check bit of variable
node. It is given by yz(,l) =1—p®(1— xﬁl), 1-— xg)).

Second, the average probability of erasure for the output message of an information bit

of variable nodes is given by z\” = ¢2 37 AW (y)im1 = )0 (),
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Similarly, the average probability of erasure for the output message of an parity check
bit of variable nodes is given by xz(,l) — e\ <y](jl*1))'

Combining the above two steps, we obtain the desired results. [

The following theorem presents us the existence of density evolution threshold.

Theorem 4. Based on Theorem 3, one sees density evolution updates are given by f;(¢, z,y) =
EXD(1 - p(1 — 2,1 —y)) and f,(e,z,y) = AP (1 — pP (1 — 2,1 — y)). We observe

the following:

1. fi(e,x,y) and f,(€, x,y) are non-decreasing in all arguments for ¢, z,y € [0, 1] and

strictly increasing if €, z,y € (0, 1).

2. For any xg,yo, € € [0, 1], the sequence z;41 = fi(e, 2, y) and yip1 = fo(€, 2, u1)

are monotonic in /.

3. Letx;41(€) and y;11 (€) be defined recursively by x;.1(€) = fi(e, z;(€), yi(€)), yir1(€) =
fole,zi(€),ui(€)), wo(e) = €* and yo(e) = e. Then, z;11(€) and y;41(€) are non-

decreasing in €.

4. The function z.(€) = llim zi(€) and Yy (€) = llim (yi(€)) exist and are non-decreasing
—00 —00

forall e € [0, 1].

Proof. For 1), we observe that < f; (e, z,y) = 2eA? (1 — p)(1 — 2,1 — y)) is not negative
fore,z,y € [0,1], and £ f,(e,z,y) = AP/ (1 — p®)(1 — 2,1 — y)) are positive for z,y €
0,1, Lfile,z,y) = EXV (1 — pD(1 — 2,1 —y)))p' (1 — 2,1 — y) is positive for
e,z,y € (0,1) and £ f (e, z,y) = eA? (1 — p® (1 — 2,1 — y))p®' (1 — 2,1 — y) is also
positive for €, z,y € (0, 1). Similarly, we can prove d%fi(e, x,y) and d%fp(e, x,y) are also
positive for e, z,y € (0, 1).

For 2), the monotonicity of f;(e, z,y) and f,(¢, z,y) implies that z;1 = f;(€, z;, y1) %

>
xpand x40 = fi(€, 2101, Yi+1) < z141. Therefore, monotonicity holds inductively and the
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direction of z; depends only on the first step. Similarly, we can prove y,11 = f,(€,2,)
are monotonic.

For 3), we first observe that x(€) and y,(€) are non-decreasing in €. Next, we proceed
by induction, for any € < €, tosee that x;,1(€) = fi(e, z(€),yi(€)) < fi(¢', i (€),yi(€)) =
x141(€'). Similarly, we can prove that y; (¢) is non-decreasing in €.

For 4), the limit exists because 2) implies the sequence x;(¢) is monotonic and bounded
for all e € [0,1]. The limit function is non-decreasing because 3) implies that, for any
e < €, wehave 2, (€) = llgc{lo xi(€) < llim x1(€') = x(€'). The same process applies for

—00

the sequence y;(¢). O

Let e27 (A9, p®) = sup{e € [0,1] : zo(e) = 0} (which is clearly equal to sup{e €
[0,1] : yso(€) = 0}) be the threshold defined by the density evolution. We compute

EBP BP _BP

B
s €idens €dif » where €

}D is based on the recursive functions defined in Theorem 3, for

some regular LDPC codes in the fourth column of Table 3.1. Comparing with previous

results, we can see that 7} > €/} is possible.
3.3.3 Joint decoder of related content-replicated codes

In this section, we further explore another joint decoder when the two encoders are

related, i.e., not only their parity check bits but also information bits are related.
3.3.3.1 Related encoder design

The two codes are related in this case. More specially, let G3 be an intermediate LDPC
generator matrix with the rate % Similarly, let Z, and P; denote the information bit index

set and parity check bit index set for codes with G;, i = 1,2, 3. The encoding algorithm

is below, where (2’ ~1)p, denotes the subvector (z; : i € Ps).

1 fi 2 1(1) = ui'Gy.
2. vf Tt = (uf TrGs) .
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Figure 3.5: Tllustration of constructed y3" ~* and H. (a) The Tanner graph and H; for
y~1(1), where information bits are black and parity check bits are red; (b) The Tanner
graph and H, for yév ~1(2), where information bits are green and parity check bis are blue;
(c) The Tanner graph and Hj for v !, where information bits are black and parity check

bits are blue; (d) The constructed Tanner graph and H for y2V .

3. fgl ,T(])V_l(Q) = Ué(_lG‘Q.
That is, (z) ~'(1))z, and (z ~'(2))z, are related through Gs. Refer to Figure 3.5 for an
example.
3.3.3.2 Joint decoder design

A combined codeword is obtained by assembling 3 ~'(1) and y'~*(2) in the follow-

ing way, 55" " = (o (Der vy (Dze vy e vy (2)z)-
Let H3 be the parity check matrix corresponding to G3. Then, the parity check matrix

H for 2V ~! is of the form in Figure 3.6. An example is presented in Figure 3.5.
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The decoding result is obtained by applying belief propagation to ySN ~! with H and

initial erasure probability e.

Figure 3.6: Illustration of parity check matrix H

3.3.3.3 Performance analysis by density evolution
For individual LDPC codes )%, let \(2) = Y \a™!, AP (z), p®)(z,y) and
p%(x,7) be the same notations used as subsection B of the previous section. For the
intermediate LDPC code u{ ', let A3(z) = 3 A\3;2°~! and p3(7) be the usual degree dis-
tribution functions from the edge perspective. We define a new degree distribution function
for the combined LDPC code A(x,y) = >_, ; AiAs j2°~'y/. We have the following results

for density evolution, where we use the same notations as the previous section.

Theorem S. For our joint decoding of related content-replicated codes, the average erasure

probabilities after [-round of belief-propagation decoding are given by
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20— @O = pi(1 = g0 1 = gDy

Na(1 = ps(1— ")),

Proof. The proof is the similar to that of the previous theorem, and thus we present its
sketch as follows.

Let yy) (resp. y,(f)) denote the average probability of being an erasure after the [*"
round of belief propagation decoding for an output edge from a check node of 33" (1) or

yév ~1(2) to an information bit (resp. parity check bit) of variable node of ySN ~1. Clearly,

they follow the same formulas as Theorem 3. [
Similarly, we obtain the following convergence results:

Theorem 6. Based on Theorem 5, one sees density evolution updates are given by f;(e, z,y) =
EXD(1—pW(1—2,1—9)) - A3(1—ps(1—2)) and f, (e, 7, y) = AP (1—pP) (1 -2, 1—y)).

We observe the following:

1. fi(e,x,y) and f,(€, z, y) are non-decreasing in all arguments for ¢, z,y € [0, 1] and

strictly increasing if €, z,y € (0, 1).

2. For any zg,yo,€ € [0,1], the sequence x;11 = fi(e, 2, y) and y41 = fp(€,33z,3/l)

are monotonic in /.

3. Letx;41(€) and y;11 (€) be defined recursively by x;.1(€) = fi(e, zi(€), yi(€)), yit1(€) =
fo(e,i(€),ui(e)), xo(e) = €* and yo(e) = e. Then, x;41(€) and y;11(e) are non-

decreasing in e.
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4. The function z.(€) = llim zi(€) and Y (€) = llim (yi(€)) exist and are non-decreasing
—00 — 00

forall e € [0, 1].

Let 2P(A\D p)) = sup{e € [0,1] : z5(e) = 0} be the threshold defined by the
density evolution. We calculate several €2F based on the recursive functions defined in
Theorem 6 in Table 3.2, where the first row indicates the regular LDPC for G, and the
first column indicates the regular LDPC code for G; and Gs. For example, the result
0.8918 is the threshold when LDPC codes for G; and G- are (3,4) regular codes, and

the intermediate LDPC code is (2,4) code in Table 3.2. From this table, we see that

BP

ehl > elib > el > €PF is possible with appropriate Gs. That is the threshold can be

improved by increasing the diversity of the underlying error-correcting codes.

Table 3.2: Calculation of eZ”

(dv,de) | (1.2) (2.4) (3.6) (4.8)
(3,4) | 0.8741 | 0.8918 | 0.8794 | 0.8754
(3,5) | 0.7594 | 0.8169 | 0.7928 | 0.7771
(3,6) | 0.6600 | 0.7569 | 0.7327 | 0.7085
(4,6) | 0.7335 | 0.7976 | 0.772 | 0.7543
4,8) | 0.5814 | 0.7082 | 0.6917 | 0.662

3.4 Joint Decoders for AWGN Channels

In this section, we proceed the joint decoder designs for AWGN channel with the
insight provided in previous sections. In the following, we assume that both Q and Q
are AWGN channels with the same parameters, let the rates of two LDPC codes still
be %, let G;, G be the encoding matrices, and let H;, H, denote their parity check

matrices. Let #)' (1) and 2"~ (2) be all zeros due to the channel symmetry, v’ *(1) and
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yY~(2) are noisy codewords through P and Q, respectively, thus ;(1), v;(2) ~ N(0, 0?)
fore =0,--- , N —1.

3.4.1 Joint decoder of identical content-replicated codes

We first present the joint decoder design and its theoretical performance for the case
when encoders are identical, i.e., G; = G, and H; = H,.

Given noisy codewords ' (1), y5' *(2) € RY of the same codeword x{ ", the log-

plyiM]zi=1) _ 2y:(1)
p(yi(1)|zi=0) o

likely-ratio (LLR) message from channel P, denoted as up, (i) , is In
i.e., Gaussian with mean % 2 and variance 2, and so is for the LLR message from channel

Q, denoted as ug, (7). Therefore, by averaging of LLR messages from P and Q, we can

wpy (i) +ug, (i)

obtain the combined LLR message as ug(i) = 5

, i.e., Gaussian with mean %
and variance 0—22

The decoding result is obtained by applying sum-product algorithm with H; and initial
LLR messages (i) fori = 0,--- , N —1. That s, let v be a LLR message from a variable
node (with initial LLR u((7)) to a check node, then v = wug(i) + ZZ ', where u;,
1=1,---,d, — 1, are the incoming LLRs from the neighbors of the variable node except
the check node that gets the message v, and v is updated by tanh(3) = Hdc ! tanh (%),
where v;, 7 = 1,--- ,d. — 1, are the incoming LLRs from d. — 1 neighbors of a check
node.

Let u(l) be the average of LLRs from a check node to a variable node at the /-th round
of sum-product decoding, let A(z) and p(x) be degree distribution functions for the LDPC
code used, define 032 (X p) = sup{o : u(l) — ocoasl — oo} be the threshold for

our joint decoder. a2 (X, p) can be obtained through the methods provided by Fu [28],

compare it with 0P (), p) in the Table 3.3, and we conclude o527 (X, p) > oBF(\, p).
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3.4.2 Joint decoder for different content-replicated codes

In this part, we present the joint decoder design for different content-replicated codes.
We use two (d,, d..) regular LDPC codes to simplify the analysis of decoding algorithm.

The two content-replicated codes are different in this way, i.e, G| # Go, H; # Ho.
3.4.2.1 Joint decoder design

Let Z,,Z,, P1, P2 and g(-) be the same notations as before, for the combined codeword

obtained, y2V 571 = (yz,, v " (1)p,, ) 1 (2)p,), we have initial LLR from channel
u; ~ N(%, %) for i € Z; (that is by combining LLRs from YY1 (1)1, and )71 (2)1,),
uj, u, ~ N (%, %) for j € Py and k € P,. The decoding result is obtained by applying
sum-product decoding algorithm on ygN ~K-1 with H demonstrated in Figure 3.3 with Uz,

up, and up, specified as above.
3.4.2.2 Theoretical performance analysis by density evolution

In sum-product decoding algorithm, for variable nodes of 32V %!, let vgl) be the
average log-likely-ratio (LLR) from an information bit to parity nodes at the /-round, and
similarly let vf.l) be that from a parity check bit of ygN KL

For a parity node connecting to j information edges and k parity edges, let ,ugl) (7, k)
and ug) (j, k) be its LLR sent to an information and a parity bit at [-round, respectively.

Thus, we have

0 N0

10, k) = 2 tanh™! <(tanh ”; )~1(tanh %)’C)
SO0
u®(j, k) = 2 tanh ™" ((tanh L) (tanh %)’H). 3.1)

Let u!" be the average LLR from a parity nodes to an information bit at the /-round,

7

and similarly let u,()l) be that from a parity check node to a parity bit. Then, by averaging
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LLR from a check node to a information and parity bit, we have
de
! SOYE
u = ST (G k),
j=1
de
uf) =3 pB (i k), (3.2)
j=1

where pgll)e and pg.p ,3 are the same as previous sections.

Thus we obtain our main result of this subsection as below:

Theorem 7. For our joint decoding of different content-replicated codes (i.e., the two
LDPC codes are both (d,, d.) LDPC codes), the LLRs after [-round of sum-product de-

coding at the variable node are given by

= s =)
v = )+ (do— 1)y,

where 1{”) is the initial LLR for information bits of y2¥ %', and 4\’ is that for parity

bits.

Check nodes are updated as equation (3.2).

In this part, we present an approximate algorithm to obtain the density evolution based
on Theorem 7.

For calculation of density evolution of LDPC codes, there is several work so far, such
as [59], [63] and [28]. The method presented in [59] obtains thresholds with the Fourier
transform, which is computationally intensive and thus not very practical. The method
presented in [63] obtains approximate thresholds for AWGN channels with sum-product
decoding based on two assumptions of the LLR passed: one is their densities are approxi-

mately Gaussian when the channel is AWGN, and the other one is the so-called symmetry
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Figure 3.7: m and o2 of LLR for joint decoding of different content-replicated codes.

condition which requires a density function f(z) to satisfy f(z) = f(—xz)e” (By enforc-
ing this condition for Gaussian with mean m and variance o2, this condition reduces to
0% = 2m). As pointed by Fu in [28] this method is not very accurate as the Gaussian
assumption does not always hold especially for LLR from check nodes.

For our analysis of density evolution, we turn to the method presented in [28] to obtain
the approximate threshold, and this is not only as Gaussian assumption is invalid but also as
the symmetry condition property does not hold for our case, which is verified by intensive
numerical calculations as shown in Figure 3.7 (i.e., from this figure clearly the assumption
that 02 = 2m does not hold). Also the update rules stated by Theorem 7 and the initial

50) and ,uéo) are stationary (i.e., invariant with respect to the iteration number),

samples of 1
thus we know that those update rule preserves ergodicity. Therefore, based on the well-
known property of ergodicity, i.e, any statistical parameter of the random process can be

arbitrarily closely approximated by averaging over a sufficient number of samples, we

have the following approximate algorithm for density evolution.

1. Step 0: choose a large number n, generate an initial n samples of ,u(O) accord-

7
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ing to NV(2/02 2/5?), and similarly generate a n samples of 11 according to

N(2/02,4/0?).

)

%

and copy ,ul(,o) to v,(,l)

2. Step 1 (for variable nodes): For iteration 0, copy pgo) to v
as shown by variable update formula of Theorem 7. For other iterations, take the n

samples of u](f_l) and uz(-l_l) from the previous iteration, randomly interleave (d, — 1)

0 ) ( @

samples up,’ and (2d, — 1) samples v, ’, respectively. Then, update vil) and v,’ by
variable update formula Theorem 7.
3. Step 2 (for check nodes): For each iteration, take the n samples of vgl) and v,(f) as

calculated above. Randomly interleave (d. — 1) samples of them, and then compute
the n samples of ugl) and uél) based on equation (3.1) and check update formula

Theorem 7.

Let 07 (A, p) be the threshold for our joint decoder with (), p) being degree distribution
functions for our different LDPC codes. We calculate a(ﬁ-ﬂf (A, p) based on the method
presented above and compare it with 0?7 (), p) and 6BF (), p) in the Table 3.3. From the

iden

table we can see that unlike the BEC case, here it is possible that 0.}; (X, p) > /35 (A, p).

iden
We also observed that v/} is slightly larger than VIIJ for each round of sum product de-
coding, and we show this by the results of the (3, 5) different content-replication codes in

Figure 3.8.
3.4.3 Joint decoder for related content-replicated codes

In this subsection, we present the joint decoder design for related content-replicated

codes under AWGN channel and present its theoretical analysis.
3.4.3.1 Joint decoder design

Similar as the BEC case, an intermediate generator matrix G3 with rate 1/2 is used to

connect two LDPC generator matrices G; and G, and the encoding process is exactly the
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Figure 3.8: Comparison of LLR of information bits and parity bits for the joint decoder of

different content-replication codes.

same as the BEC counterpart.

The decoding process is presented here: given 3 ' (1) and y)' ~*(2), a combined code-

word 2" ! is constructed the same as before, i.e., 42" ' = (y0' " (1)p,, v0 " (Dzy, v (2)p,

¥ "1(2)1,). The decoding result is obtained by applying sum-product decoding algorithm

2N—-1

to Y, with the parity check matrix H (constructed the same as Figure 3.6) and the

initial LLR message ug ~ N (%, 25).
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3.4.3.2 Theoretical performance analysis by density evolution

For density evolution, we assume that (d,, d.,) regular LDPC code is used to connect

v e

two (d,, d.) regular LDPC codes.

For one (d,, d.) LDPC code, let vi(l) be the average LLR from an information bit to its

)

parity nodes (not the intermediate ones) at the [-round, and similarly let vz(ol be that from a

parity check bit. For a parity node connecting to j information edges and £ parity edges,
)

let ;' (7, k) and ,ug)( j, k) be its LLR sent to an information and a parity bit at /-round,
respectively. Similarly, their values can be expressed the same as equation (3.1).
For the intermediate (d’,, d’) LDPC code, let (") be the average LLR sent to its parity

nodes and let y) be the average LLR sent to its variable nodes at the I-round of sum-

product decoding. Thus we have

x(l) — Iu(o) + dv . uglil) + (d;} — 1) . y(lil)’

W
y = 2tanh_1(tanh%)dﬂ’1,

where 11(%) is the initial LLR for bits of y2¥ '

We have the following result for the density evolution of our joint decoder:

Theorem 8. For our joint decoding of related content-replicated codes (i.e., the two LDPC
codes are both (d,, d.) LDPC codes and the intermediate LDPC code is (d, d.) LDPC

code), the LLRs after [-round of sum-product decoding at the variable node are given by

o = WO (dy = 1) T Y

(1

where u; ) and u},l) are updated as equation (3.2).
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We present the approximated algorithm for density evolution based on Theorem 8

below.

1. Step 0: choose a large number n, generate an initial n samples of 1(%) according to
N(2/c% 4/0?).

0)

2. Step 1 (for variable nodes): For iteration 0, copy (¥ to z/i(l), z© and V; as shown

by variable update formula of Theorem 8 and equation (3.2). For other iterations,

DG

take the n samples of ug_ ,u;  and y~Y from the previous iteration, randomly

@

7 9

interleave (d, — 1) samples u ", u{"~"

vg) and z() by variable update formula of Theorem 8 and equation (3.2).

and y~ 1, respectively. Then, update v

(@

3. Step 2 (for check nodes): For each iteration, take the n samples of v;", x® and v,(f)

as calculated above. Randomly interleave the samples of them, and then compute

@

the n samples of u;’, z(!) and uz(,l) based on equation (3.2) and check update formula

of Theorem 8 and equation (3.2).

Let 07" (X, p) be the threshold for our joint decoder with (), p) being degree distribution
functions for our LDPC codes and (d., d.,) as the intermediate LDPC code. We calcu-

late 01", (A, p) based on the method presented above and compare it with o”(, p),

BP

(A, p) and o777 (X, p) in the Table 3.3. From the results, we can see that it is possible

that o117, (X, p) > afil, (A, p) with appropriate (d;,, d).
3.5 Conclusion and Future Work

In this paper, we study two codewords carrying the same message problem, and present
various joint decoding schemes and their performances. We propose the following future

work:

e For our joint decoder designs, we assume that the two channels are the same for

simplification, which is not true in practice. Therefore, it is interesting to explore
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Table 3.3: Thresholds o* of AWGN channels for joint decoders

(dv,de) | 0% | Oigen | Oaify | 024 | 05 | Ous
(34) | 1261 | 1555 | 1.69 | 1.655 | 1.5 | 145
(3,5) | 1.004 | 1.264 | 1.379 | 1.462 | 1.267 | 1.201
(3,6) | 03880 | 1.116 | 1.19 | 1.358 | 1.161 | 1.085
4,6) |1.002 | 1242 | 1.3 |1.382|1.207 | 1.145

(4,8) | 0.838 | 1.044 | 1.065 | 1.3 | 1.091 | 1.007

joint decoder designs with channels of the same type but with different parameters

or even different channels.

e For the joint decoder design over AWGN channel case, we just focus on the regular
LDPC codes for simplicity and thus to explore the joint decoder performance of

content-replication codes consisting of irregular LDPC codes is another future work.

e It is interesting to explore other joint decoder design schemes with better perfor-

mances.

e The current joint decoders are for LDPC codes, and we are curious whether similar

results can be obtained for other codes (e.g., BCH and Polar codes).
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4. COMPRESSED RANK MODULATION

4.1 Introduction

Flash memories are nonvolatile memories both electrically programmable (charge place-
ment) and electrically erasable (charge removal). Elements of flash memories are called
cells, and data is represented by the charge level of a cell: let n flash memory cells denoted
by 1,2,...,n. ¢; € R denotes the charge level of cell 7, T'h; denotes a threshold charge
level, cell i represents information ‘0’ if ¢; > T'hy, and ‘1’ otherwise. Such scheme is
called Single-Level Cell, or SLC; generally, by setting ¢ — 1 (¢ > 2) increasing threshold
charge levels, Thy < Thy < ... < Thy_1, cell i represents information ‘0” if ¢; > T'h,_1,
‘q-1"if ¢; < Thy,and € { ‘1’,2, ..., ‘q-2’ } if ¢; € (Thg—j—1, Thy—;]. Such scheme is
called Multi-Level Cell (MLC).

Flash memories have the conspicuous property that the programming and the erasing
are asymmetric: while adding charge to a cell is easy, removing charge has to be done with
a large number (between 2'° and 2'®) of cells.

One problem of the MLC scheme incurred by the asymmetry is the overshooting:
since flash memory technologies usually do not support charge removals from individual
cells, the charge placement has to be done in a cautious approach to avoid the charge level
exceeding the threshold charge level and the global erases.

Another problem caused by the asymmetry is the limited lifetime of flash memories: it
is found that after a certain number of erasing, typical quoted at 10* to 10° depending on
the specific device, the performance of flash memories becomes unreliable [13] e.g., bits in
a flash chip will fail. Therefore, one research area of flash memories (e.g., [35, 72, 71]) is
to treat flash memories as the memories with the charge level can only be increased, which

is the well-known Write-Once Memories, or WOM [61]. Theoretical work on WOM can
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be found in [26, 25, 33].

Rank Modulation (RM) codes [36] are proposed in the context of flash memories to
eliminate mainly the overshooting problem, and they can be applied to other nonvolatile
memories, such as Phase Change Memories. Besides eliminating the overshooting prob-
lem, RM has other advantages such as a faster programming speed and a better reliability.

Contrary to the MLC scheme, data of RM is represented not by the charge level but by
the permutation induced by n cells’ charge levels. Let S,, denote the set of n! permutations
over {1,2,....,n}. n cells’ charge levels, ¢" et (¢1,...,¢,) € R”, induce a permutation
a € §, in the following way: the induced permutation is a = (a1,as,...,a,) € S, if and
only if ¢, > ¢4y > ... > ¢4, 1.€., cell a; has the highest charge level, and cell a,, has the
lowest charge level. In this way, no discrete levels are needed (i.e., no need for threshold
levels), thus it eliminates the overshooting problem.

Supposing a RM scheme represents any data of D = {1, 2, ..., D}, the decoding func-
tion, d : S, — D, is to map the given permutation a € S, to data z € D. The rewriting
function, r : S, x D — &, is defined as given the current permutation a € S,, and data
to rewrite x € D, we are seeking b = r(a,z) € S, such that d(b) = z. The decoding
performance is done by a charge-comparing operation to obtain the permutation and by
the mapping function. The rewriting performance can be done by various ways, e.g., by
a series of push-to-the-top [36] operations (raising the charge level of one cell above the
current highest one).

In this work, we propose a generalization of RM, Compressed Rank Modulation (CRM)
scheme, where the similar idea was independently presented by E. En Gad et al. [29]. For
RM, in order to tolerate noise, there is a sufficiently large gap between every two analog
charge levels, and thus if constraints its capacity since every rank has one cell. This moti-
vates us to study CRM, where we let multiple cells share the same rank to achieve a higher

capacity, and meanwhile it maintains the advantages of RM.
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We first define the following terms. For m,n € N, [n] is defined as the set {1, 2, ..., n},
and if m > n, [n, m] is defined as the set {n,n+1,...,m}. Sy, is the (mn)! permutations
over [mn|. Given a vector m” = (my,ma,....,m,) € N*and N = i m;, we define
Syn as the set {(s1,82,...,8n)|8i = {Si1, . Sim; } C {1,2, ...,N},Siﬁlsj = (fori #

j,and UUsi = {1,2,..., N}}. When m; = my = ... = m,, = m, Sy, is denoted
=1

as S,.m. For example, S5 = {({1,2},{3,4}), ({1,3},{2,4}), ({1,4},{2,3}), ({2,3},
{1.4}), ({2, 4}, {1,2}), ({3,4},{1,2}) }.

We define CRM as follows: given N = > m; cells, denoted as 1, 2, ..., N, their charge
=1

levels, ¢V = (c1,¢2,...,cy) € RY, and a permutation a = (ay, ..., a,) € Sy, ¢ induces
aifand only if ¢,y ; > oy, > oo > Co,;, Torji € [mul,jo € [mal, ..., ju € [m,], ie.,
the first m, highest charge level cells are in a;, the next my highest charge level cells are
in a,, and the last m,, highest charge level cells are in a,,. For example, if let the charge
levels of 4 cells be (3.04,2.56,0.98,2.96) and m” = (2, 2), then the induced permutation
is ({1,4},{2,3}) € Sa.

The decoding performance of CRM is similar to that of RM, that is though charge-
comparing operations. The rewriting performance is not by the push-to-the-top operations
but by the minimal-push-up operations, which is first presented in [46], to obtain a longer
lifetime. In order to better understand it, we define virtual level and rewriting cost as
follows.

As mentioned, there is no need to quantize continous cell levels for CRM, which makes
it safe for overshooting, however, also makes it hard for theoretical analysis. In order to
allow easy and fair analysis, we use the virtual level concept similar to [38], which is
formally defined as follows.

Given a permutation u = (uy, ..., u,) € S;» With N = i m,;, the virtual level of u,

=1

IV, is a vector (lh, ..., In) € N that satisfies the following conditions:
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e V1 <i¢<mnandj,j2 €u; wehavel; =1;;
o V1 <1y <iy <n,j € and jp € u,,, we have [, > [;,.

Besides the two conditions, the following condition is required rewriting u to v:

e Given a permutation v € S,,» representing data to rewrite, its virtual level, 'Y =

(1}, ...,1%y), should not decrease, i.e., [; > [; for i € [N].

The basic operation of changing u to v is a push-up: for cell ¢ with rank £, ¢ € uy, the
push-up operation over 7 is to make its charge level higher than that of all other mj; — 1
cells in uy. Our objective is to increase the highest charge level or virtual level as few as
possible to obtain a longer lifetime.

With this purpose, we define rewriting cost from u to v, C(u — v), as min {max [, —

UN N “e[N]
g{aﬁ l;}, where I'N and [V are virtual levels of v and u, respectively. For easy and fair
analysis, we assign the virtual level of u by letting n,n — 1,...;1 to uy, us, ..., u,,. The
virtual level of v is determined as arg r%n{zrel[%]( I/ — n}. Minimal-push-up operations are
the push-up operations that achieve rewriting cost.

The following example makes the above notions more concrete:

Example 9. Let m" = (3,2, 1), two permutations are u = ({1,2,3},{4,5},{6}) and
v = ({1,3,6},{2,5},{4}). Let us consider the virtual levels of u and v that achieve
C(u — v). We assign the virtual level of u as (3,3, 3,2,2, 1), and the virtual level of v
can be assigned as (4,3,4,2,3,4),(5,3,5,2,3,5) or others satisfying its definition. It is

easy to verify that (4, 3,4, 2, 3, 4) is the one making C(u — v) = 1.

The remaining of this work is structed as follows: in Section 4.2, the programming
method with the minimal cost and the closed-form formula for rewriting cost are presented;

in Section 4.3, the incoming ball size and the outgoing ball size over S,, ,,, are presented; in
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Section 4.4, asymptotical rate analysis of rewriting codes and an optimal code construction

are presented; the conclusion is obtained in Section 4.5.
4.2 Rewriting Data with Minimal Cost

In this section, we present the way to program from u to v such that push-up operations
are minimal-push-up operations, and the closed-form formula to compute rewriting cost

from the given permutations directly.
4.2.1 Minimal-push-up operations

Given two permutations u, v € S,,,» with m"™ = (mq, ms, ...,m,) and N = i m;, we
first present the way to program from u to v such that push-up operations arel :rrllinimal—
push-up operations.

Let u = (uy,us,...,u,), 7 € [n] and j € [my], u(i, ) ) arg ming{[{v|v € u;,v =
1,2,....,k}| = j}. Thatis, u(3, j) is the function to obtain the index of the cell, which is the
4" (in lexical order) among the ' rank cells of u. For example, letu = ({1,2,3},{4,5},{6}),
then u(2,2) = argming{|{v|v € uy,v =1,2,...,k}| = 2}, which is 5.

Reversely, let i € [N], and ™' () be the function to obtain the rank of cell 7 in u such
that 2 € w,-1(;).

According to the definition, the virtual level of cell u(i, j), I, ;) fori € [n] and j €
[m;], of u is determined as follows:

fort =1,2,...,ndo:

forj =1,2,...,m; do:
lugij) < n+1—1.

Then, we program u to v rank by rank, from rank n to rank 1, and an example is shown
in Figure 4.1 to illustrate the programming process.

We first identify the virtual level of the n'* rank cells in v, l,(, ;) for i € [m,]:

fori=1,2,...,m, do:
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Figure 4.1: An example of programming from u = ({1,2,3},{4,5},{6}) to v =

({1,3,6},{2,5},{4}) via minimal-push-up operations.

Lo(n,i) max Lo(nj)-
That is, the virtual level of the rank 7 cells in v is the highest virtual level of those cells
of u, which rank n in v. For example, in Figure 4.1, [,31) = l4 = 2.
We next identify the rest cell virtual levels:
fori=n—1,n—2,...,1do:
forj =1,2,...,m; do:
Logi gy = max{lya gy + 1 loig) )
That is, if the virtual level of one cell is already higher than that of the next rank cells, it
should stay at its original virtual level (e.g., cell 2 in Figure 4.1), otherwise the virtual level
has to be higher than that of the next rank cells by 1 (e.g., cell 1, 3, 5, and 6 in Figure 4.1).

The fact that the above programming process is minimal-push-up operations can be

proved briefly as follows. It is easy to obtain that to minimize the increase of [, j,), we
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have to minimize that of (5 j,) and Ly j,), -, lo(n,j,) for j1 € [mu], g2 € [mal, ..., Jn €
[my,] since lya,5,) > lo@,jo) > --- > ly(n,j,)- Thus the push-up operations minimizing the
increase of [,(; j) for i € [n] and j € [m;], which is a greedy approach, are minimal-push-

up operations.
4.2.2 The closed-form formula for rewriting cost

Next, we present the closed-form formula to compute rewriting cost directly from the
given permutations.

According to the presented programming process, we have C(u — V) = ly1,;) — n.
The next theorem presents that C(u — v) can be obtained directly from u and v, instead
of their virtual levels. It is actually an extention of Theorem 1 in [46], but for completeness

we present its proof here:

Theorem 10. C(u — v) = max (k—u"t(v(k,j))).

kel,n],j€[my)
Proof. First, we prove by induction on i that [,; ) is

n+1l—i+ max (k—u(v(k1))).
keli,n],le[my]

The base case is ¢ = n. Based on the programming process, we know [, ;) = lrrfax] ly(n,1)s
e\mn

whichisn+1—n+ ln%ax](n —u'(v(n,1))) according to the fact that l,,; ;) =n+1—i.
Elmn

Thus, the assumption for the base case is correct.

Now, we assume it is correct for ¢ = h, and we are proving the case for: = h — 1.

-1y = max{lyng) + 1, loi-1,)}
= max{n+1—(h—1)+ max
ke[h,n],l€[mg]

(k—u " (v(k,1)),n+1—u" (v(h = 1,5))},
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where the first equation is based on minimal-push-up operations; the second equation is
by the assumption when ¢ = / and substituting /,,,—1 ;) by its original virtual level in u,
n+1—utvh-1,75).

Then, we proceed as:

= n+1—(h—1)+max{k [hm]%x[ ]
clh,n|,lemyg

(k—ut(v(k,0),h —1—ut(v(h—1,5))}

=n+1—(h—1)+ max (k—u "(v(k1))),

ke[h—1,n],l€[mg]

thus the conclusion about /,,; ;) is correct.

Therefore,

Clu—=v)=lay—n= max (k—u"(v(k,1))).

- ke[n],le[my]

O

From the above theorem, we know that C(u — v) is equal to the maximal rank increase
of cells from u to v, and that C(u — v) € [n — 1].

Given u € S;n, v € Syn with m” # m/™ and N = imi = zn:mfi, we now

i=1 i=1

generalize the above results to the rewriting case from u to v, which will be used in the
next section.

After applying virtual levels to u and v, rewriting cost C(u — v) is still defined as
arg %}Ilvn{zrel% Il — n} with the objective to increase the highest virtual level as few as
possible, where I’V is the virtual level for v. Extending notations of index function as

well as its inverse function to u and v, we obtain that minimal-push-up operations are

lv(i,j) = maX{lv(H_le) -+ 17lv(i,j)} fori € [n], jl S [m;Jrl} andj € [m;] Using the skill
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similar to Theorem 10, we obtain that C(u — v) = . [n]qlzm[c }(k —u vk, 1))).
€[n],le[m),

4.3 Analyzing Ball Sizes for Rewriting Codes

In this section, we present the exact number of permutations that Yu € S, ,,, can be
programmed to (reps. from) v € S, ,, with rewriting cost constraint .

Givenu € S,,,, and r € [n — 1], we define the outgoing ball (reps. the incoming
ball) centered at u with radius r as Bﬁfifﬁf}r(u) = {v € §,,/C(u — v) < r} (reps.
B (1) = {v € SpmlC(v = u) < 1}

The following theorem presents us the size of an outgoing ball over S, ,,, using com-

binatorial skills, and it is worthy to note that E. En Gad et al. [29] derived the same result

independently using the induction method.

Theorem 11. |B,(fﬁf)r(u)| = ((T+1)m)””” (rm)!

m m!”

Proof. We list B,(lo,“,f)r(u) by the following steps, and we use the example of Figure 4.2 to

illustrate it.

r+1
(@) Given Y(lIy,1ly,...,0,41) € N""! such that > I; = m, program [; cells of u; to rank
=1

1=

i (1 € [2,7 + 1]) obtaining a cell state a € S,,», where m™ = (l;,m + ly,...,m +

lr+1,m, ,m) A déf {a} C Smn

(b) Ya € A and uy, ..., u,, define u’ = (u'y,...,u,1) € S_1,, With U/, = u;4y (@ €
[n — 1]) as the set of permutations over | J;_, u;. Recursively, program u’ to v/ =
(v'1,v'9, .., V1) € Sp—1m such that C(u’ — V') <.

With v/ € S,,_1,,, the obtained cell state, b € S,,», consists of v/, with b= (v/(i, 7)) =
i+ 1fori € [n—1]and j € [m], and u; with b='(i) = a~'(i) for ¢ € uy, where

m® = (L, m + loy ey + by, m, ym). B {b} € Spn.

(c) Vb € B with its corresponding v’ specified in (b), program [; cells of v;_, for i €

[2,7 4 1] to rank 1 obtaining a cell state ¢c € S,, ,,,. C = {c} C Spm.
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Figure 4.2: An example for the outline of Theorem 11: Given u = ({1, 2}, {3,4}, {5,6})
€ Sz where cells in the same row are in the same rank, we list all v € S35 satisfying
Clu — v) < 1. (a) (1) — (2)): program some cells of rank 1 to rank 2, and there are
four possible ways; (b) ((2) — (3)): cell 3, 4, 5, and 6 in u can be regarded as u’ =
({3,4},{5,6}) € Sy2. For each cell state in (2), recursively, we program u’ to v/ € S, 5
such that C(u’ — v’) < 1 and keep the remaining cell ranks still; (c) ((3) — (4)): after (b)
the cell states are not valid permutations of S; 5, e.g., ({2}, {1, 3,4}, {5,6}), thus cells of
rank 2 are programmed to the rank 1 to make it a valid permutations of Ss 5, €.g., cell 3 and
cell 4in ({2}, {1, 3,4}, {5,6}) are programmed to rank 1 forming ({2, 3}, {1, 4}, {5,6})
and ({2,4},{1,3},{5,6}), respectively.
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(out) (out)

We are proving C = B, mr(u), compute |C|, thus |C| = | By m.r(u)].
Fist, based on the outline, Vc € C, C(u — ¢) < r since any cell rank of c is increased
by r at most. Therefore ¢ € B, (u), C C BY4).(u) and |C| < |BY4), (u)).
(out)

Second, we will prove Bn m 7«( ) C C.

Define the following two terms:
e The set of hybrid states

The set of hybrid states of u,v € S,,,, is denoted as Sy(u,v) C S,,», where m™ =
(m — i N, M+ Na, ...,m + ny,) and n; = |{v(4, g)|v(i,g) = u(1,7) for g, 5 € [m]}| for
€ [2,127.

Given u and v, Vm € S;,(u, v) can be specified via its ranks, m~' () for i € [mn], as
follows:

fori=1,2,...,mn do:

ifi = u(l,j) =v(h,g) forj,g € [m],and h € [n], m~'(i) + h.
else if i = u(h, g) for h € [n] and g € [m], m~*(i) + h.

That is, m is obtained by programming cells of u; to their ranks in v, and keeping the
remaining cell ranks still. For example, the state of (2) in Figure 4.3 is the hybrid state of
uand v.

Clearly, m is uniquely determined by v and u, thus |S,(u, v)| = 1.

(out)

Furthermore, given Vv € By my(u), Sp(u,v) C A since the cell ranks of u; are

increased by r at most.
e The set of near destination states

The set of near destination states from u’ € S;,» tov € S, ,,, with r € [n — 1] is denoted

as S, (U, v,r), where m"™ = (m — > n;,m+na,...m+n,)and n; = |{v(i, g)|v(i,g) =
i=2

u(1,7) for g, j € [m]}| fori € [2,n].
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Given ', v and 7, Vm € S,(u’,v,r) can be specified via its ranks, m~'(i) for i €
[mn], as follows:
fori=1,2,...,mn do:
if i = /(1,h) = v(1,g) for h € [m — > n] and g € [m], m~1(3) 1.
ifi =wv(h,g) forh € [2,n]and g € [TrZ]:,Qm‘l(i) < h.
else if i = u/(h,g) for h € [n] and g € [m + ny), m™ (i) — h <.
That is, m is obtained by programming cells, which are in u) as well as in v; (e.g. cell
12 in Figure 4.3 if u’ is the permutation of (2)), and cells of v, for i € [2,n] (e.g. cell 10,
1,2,5,11, 6, 3,4, 7 in Figure 4.3), to their ranks in v, and increasing the remaining cells
(which are not in u’; but in vy, e.g. cell 8, 9 in Figure 4.3) by r at most. For example, both
states of (3) in Figure 4.3 are near destination states from u’ to v with parameter 2.
Let k; = [{u/ (4, j)|v(1,1) = u/(¢,7) for j € [m +n;],l € [m]}| fori € [r+ 1], that is

among the m cells in vy, the numbers of cells from u’; for i € [r + 1] are ky, ko, ..., Ky i1,

m—k1

Ko K k’r+1). For example, in Fig. 4.3, let u’ be the

respectively. Thus |S, (0, v,7)| = (
state of (2), |S,(u',v,2)| = 2.

For Vw € 8,(Sy,(u, v),v,r), it is easy to obtain that for ¢ € uy, w=*(i) = v=1(7), that
is the cell ranks of u; are the same in w and v. Therefore, the permutations obtained by
applying (b) on Sy, (u, v) must contain w. Thus S,,(Si(u, v),v,7) C B.

Given Vv € B4, (u), v can be obtained by first programming u to S, (u, v), Sp(u, v)
to Vw € S,(Sp(u,v),v,r), and w to v. The example of Fig. 4.3 makes this process
more concrete. Since Sp(u,v) C A, and S,,(S(u,v),v,r) C B, obtain that v € C,
B (w) C C, and |BY, ()| < |C.

Finally, we compute |C]|.

First, consider permutations without duplications.

For (a), let the numbers of cells in u; programmed to the 1%, the 2¢,..., the (r + 1)
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Figure 4.3: An example of changing u to v in three steps, where r = C(u — v) = 2. The
state of (2) is the hybrid state of u and v, and two states of (3) are near destination states

from the state of (2) to v with parameter 2.

ranks be l1, s, ..., [, 1, respectively, thus |A| = 3 (11 L +1).
ltetlppr=m 7

B| = > (11,12,7?,1,.“) |B§ﬁ3m,r B

li+...+lrp1=m
For (c), rank ¢ has (") ways to select and program cells to the 1! rank, thus the result

i

m m m (out)
Z <l1"”7l7‘+1) (l2)”'<lr+l)’[5ﬂ1,m,r"

l1+---+l7‘+1:m

For (b),

is

Next, we consider duplicated permutations in our scheme: duplications come from

m—I1

) for each com-
l2,l3, 5lr 1

multiple near destination states, the number of which equals to (
bination of [y, ls, ..., [,,.

Thus, |BY), (1) can be written as

Z (11,..7’;7«4_1) (;Z) (l:;fl) |B(Out)

m—l n—l,m,r(uQ"un)|
Lbh+. . +lp1=m (lg,...,l,,qu)
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m ou
= ) B
1 lT
li+...+lrp1=m

= (s,
_ ((7" + 1)m> " (rm)

m mlr

Y

where the first equation holds by simple recursive calculations, the second equation holds

by the fact that > (- (" ) equals to the coefficient of ™ in ((1 4 x)™)" !,

I l
li+.. +lr+1 m rH

which is (“*1), and the last one is because 1B () =B (L)) = Tt O

rym,r—1 mlr

Similarly, we have:

Lemma 12. |B{7) .(u)| = ("+1 )"_TM.

mlr

4.4 Rewriting Codes with Bounded Cost

In this section, we study codes where the cost of the rewriting operation is limited by
r. We present three rewriting codes, we study one rewriting code in detail including its
asymptotical rate analysis and one code construction, and the skills can be extent to two

other variants easily. For simplicity, the analysis is mainly focus on S,, ,,,.
4.4.1 (n,m,M,r) rewriting codes
Denote a code in S,, ,,, with rewriting cost r and cardinality M as an (n, m, M, r) code,

and we formally define it as follows:

Definition 13. An (n, m, M, r) rewriting code for CRM, where € [n — 1], is a collection

of subsets B = {B;|i € [M]} where B; C S,,.,,, and it represents data i, such that

M
e B,N\B;=0fori+#j,and |J B; = Spm-

i=1

M
e Yue |JB;,andVj € [M],3v € B, such that C(u — v) <.

i=1
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M
e Yue |JB;,andVj € [M],3v € B, such that C(v — u) <.

i=1

That is, we partition S, ,,, into M disjoint sets, each set represents data, and every
permutation can be programmed o0 and from some permutation of any set 3; for ¢ € [M]
with the cost constraint . Construction 1 of this subsection presents us an example of
(3,2,30,1) code.

The reason that we use set B; to represent data ¢ is to increase the possibility that such
permutation with the cost constraint 7 can be found during rewriting.

According to the definition, we know that for Vu € S, ,,, every B; contains at least one
element of B,(lo,qf,f)r(u) as well as that of Br(i%r(u), thus we have the following corollary

immediately:
Corollary 14. For (n,m, M, r) code, M < B (u)| and M < |BS™). ()|

4.4.1.1 Asymptotical rate analysis

The rate of the (n, m, M, r) code is defined as R = bi#mM, and its asymptotical rate,
. . BT logy M
denoted as storage capacity, R(n,r), is defined as R(n,r) = lim =2~

m—ro0

Let two random variables X,Y € [n], Pxy, Px and Py x denote the joint, marginal
and conditional distribution, respectively. If X is uniformly distributed in the set [n], we
denote it as X ~ U(1,n). We define a joint probability distribution set with parameters r
and n, P(n,r) = {Pxy|Px = Py, X ~U(1,n),P(Y|X) =0if |Y — X| > r+ 1}. For

example, the following probability transition matrix

1 2 3
1{2/9 1/9 0

P=211/9 1/9 1/9
3\ o 1/9 2/9
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gives us an element of P; 3, where every entry p;; stands for P(X =14,Y = j).
The next lemma derives the characterization for R(n, ), and its proof uses the skill

similar to [2, 3].

Lemma 15. R(n,r) = max H(Y|X).

Pxy €P(n,r)
Proof. First, we list some notations and one property of typical sequences, and for more
details please refer to [16].
Let 2" be a sequence with n elements drawn from the alphabet X'. Define the type of
" by m(z|z") = @ Suppose the distribution of elements in X’ is P(X’), denote it

as X ~ P(X), and the set 75 of n-sequence with type X ~ P(X) is defined as,
Tp, = {2"|n(z|z") = P(x),Vr}.

Let (z",y") be a pair of sequences with elements drawn from alphabets (X', )). Define

their joint type: 7(z, y|z", y™) = M for (z,y) € X x ). We denote
Py (@) ={y" |7 (@, yla", y") = P(z,y),V(z,y)}.
The following property is useful:
(n+ 1)—\X||y|2nH(Y|X) < |7;gxy(xn)| < onHYIX), 4.1)

For convenience, given Yu € S,, ,,,, write it as a mn sequence, thatis u = (u~'(1),- -,
u~t(mn)).

Now, we formally prove Lemma 15 as follows:
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Proof of the direct part

M
Yu € |J B;, we have M < |B7(l°?rf)r(u)\ according to corollary 14, and thus R <
=1
logy [ BL s (u)|

Let () be some joint probability distribution of X,Y € [n], and it has a marginal
distribution Px. Define 77" (u) = {v € S|Py = Q} foru € S, ,,, where P,
denotes the joint type of u and v.

Consider the following set of joint types P (u, v) = {P,,|v € Bffﬁf)r(u)} Define
the following set of joint types P (n,r) = {Pxy|Px = Py, X ~ U(1,n), P(Y|X) =
0if Y — X > r 4 1}. Clearly, P(n,r) C P (n,r).

e Now, we prove that P (u, v) = Pl (n, r).

First, givenu € §,,,,, and Vv € Bé?umt,)r(u), consider P, . According to the definition

of S,,.m, the marginal distributions of P, v, Px, Py, satisfy Px = Py and X ~ U(1,n).
Basedonv € Bﬁfﬁf)r(u) and Theorem 11, we conclude that P(Y|X) =0if Y —X > r+1.
Therefore, P, € P (n,r) and P (u,v) C P (n,r).

Next, given V@) € P (n,r), and u € S, ,,, consider the typical sequence with joint
type @, 75" (u). Based on Px = Py, X ~ U(1,n), we obtain that 7" (u) € S,
according to the definition of S,,,,. According to P(Y|X) = 0ifY — X > r + 1,
T4 (u) € B, (u) based on Theorem 11. Thus Q € P©)(u,v) and P (n,r) C
Plout) (u, v). O

Now, we partition B, (u) as follows:

Buw, ()= ) (B () N7 (w).

QEePLut) (n,r)

Since the total number of the joint types among 73" (u) is up bounded by (mn + 1)"2

MNIAX 1 5 (out) (y, ) H(Y|X)

[16], and the size of each joint type is up bounded by 2 according
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to (4.1), we obtain that

|B(out) ( )| < (mn+ 1)n22mnmaxp,ep(out)(nm) H(Y\X)‘

n,m,r

That is,

log, | Bty (w)

nm
1 1
2 0gy mn + n

IN

max  H(Y|X). 4.2)
mn Preplout) (n,r)

On the other hand, Yu € ALJle B;, we have M < |BS%T(u)| based on corollary 14, thus
R < M. Similarly, we consider the following set of joint types P(™(u,v) =
{Paslv € Bi ()} = P (n,r) <
0if X —Y > r + 1}. Clearly, P(n,r) C P (n,r).

{PXY|PX Py, X ~ U(1>”)>P(Y|X) =

Using the same technique as above, we can obtain that

log, | Bl (w)]

R <
nm
1 1
< 28T ke H(Y|X). 4.3)
mn PePlin) (n,r)
By (4.2) and (4.3), we know that
o logy mn +1
R<n"—=——+ max H(Y|X).
mn PeP(n,r)

Proof of the converse part
We prove this part by a random code construction.
e We first prove that random codes satisfying the first two conditions of (n, m, M, r)
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codes exist.

Now label the elements of S, ,,, independently and uniformly with probability 1/M using
one of the numbers 1,2, ..., M. The elements labeled with ¢ form the set B;. M will be
determined below.
We first calculate the probability Pr(u,) that for a fixed u there does not exist a
v € BN B, ().
Clearly,
1

(out)
P 1 1__|Bnmr( )‘
(i) = (1 - )

Then, the probability that we do not have such random code satisfying the first two condi-

M
tions of (n,m, M,r) codeis >, > Pr(u,i), whichis

uES,,m i=1

. 1 (out)
D D Pr(wi) = |Sum[ M1 — o)t <,

uESy,m =1

if M < (2108, |Snm|) ! [Bith (w)].

With the same skill of partitioning B (1), we obtain that | B\ (u)]

=1 U BY.w75" ()
QePlout) (n,r)

> max 2"V (4 1)
QePlout) (n,r)

based on (4.1), thus we can choose M such that

1 ! 1
log, M < max  H(Y|X) - n—g2 L 4.4)
nm

Qeplout) (nr) m
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and in this case we make sure that there exists random code satisfying the first two condi-
tions of (n, m, M, r) codes. O

By using similar techniques, we can choose M such that

1 1 1
— log, M < max  H(Y|X) —n-220 2 4.5)
nm QE’P(V’I) (nJ‘) m

in which case we assure that there are random codes satisfying the first and the third
condition of (n, m, M, r) codes.

Thus, according to (4.4) and (4.5) we can choose M such that

1 1 1
—log, M < max H(Y|X) —nw.
nm QEeP(n,r) m

to make sure there are random codes satisfying all three conditions of (n, m, M, r) codes.

]

Note that the same skill to obtain (4.2) and (4.4) can be used to prove part of Lemma
22, and the skill to obtain (4.3) and (4.5) can be applied to part of Lemma 20.

The next lemma presents us the exact value of R (n, r), where the matrix A 2t (@i jlnxns
a;; = 1if |i — j| < r, and O otherwise, and )4 is the largest eigenvalue of the matrix A.
The proof skills are similar to those of [2, 40], which can be applied to remaining parts of

Lemma 22 and Lemma 20. Figure. 4.4 presents us a surface plot of R(n, ) forn, r € [50].

Lemma 16.

R(n,r) = logy Aa.

Proof. Let (X,Y) be a pair of random variables with Pxy € P(n,r). Fori,j € [n],
denote Pr(X =1i,Y = j) = ¢;j, Pr(X =1i) = p;, and Pr(Y = j|X = i) = w;;. Then

¢ij = pi - Wij, and W = [w],,xn, is a stochastic matrix.
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R(n,r)

Figure 4.4: Surface plot of R(n,r) for n,r € {1,2,...,50}.

According to lemma 15, R(n, ) can be written down as the following form:

max —Z Z qij10g2(qij/ Z (Zij),

=1 j:|j—i|<r Jili—il<r
st. gy >0, forj:|j—i <randie€ [n|,

qij =0, forj:|j—i|>r+1landi€ [n],

n

Z Z ¢ij =1,

i=1 j:|j—il<r

Z% = Z qji = 57] € [n]. (4.6)
i=1 itlj—i|<r

We solve this via Lagrange multiplier function:
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= =Y Y aylogy(ay/ > aiy)

=1 j:|j—il<r Jili—il<r

+ 5> > Qij+ztj(ZQij_ > g

=1 j:|j—i|<r w:|j—i|<r

Thus, we get
oL

8%’]’

:—logzwij—u—l—tj—ti:O,

({7 fi =gl < =) = s.

where = (In2) 7}

n
1=

Then,

wiy = 29747k for j: |j —i| <, and i € [n].

Since ) w;; = 1fori € [n], we have
J:li—il<r

> 24 =212" fori € [n],

jilj—il<r

and
ot o )
wij = wforj )i —i <randi € [n].

l:|l—i|<r

4.7)

(4.8)

We interpret eq. (4.8) as indicating that {2} is an eigenvector of the matrix A =

@i jlnxn, Where a; ; = 11if|j — | < r and O otherwise, thus 2" is the eigenvalue corre-

sponding to {2%}.

The fact that W = [w;;],xn 1S a stochastic matrix implies that (%, ey %) 1s its stationary

distribution, which is actually p;. This ensures that eq.(4.6) can be satisfied.

Substituting eq. (4.7) into the objective function and by simple arithmetic calculations,

we obtain that

N Z Z ij logQ(Qij/ Z qij) = log, 2".

=1 j:|j—il<r Jli—il<r
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4.4.1.2 Code construction forn =3,m =2,andr = 1

Given u,v € S, ,, and the cost constraint , u dominates v if C(v — u) < r. Given
asetC C S, ,andau € S§,,, if 3v € C such that u dominates v, then u dominates C.
C C S, is a dominating set if Yu € S,,,,,, 3v,w € C such that u dominates v and w
dominates u. Our goal is to divide S, ,,, into the maximal number of disjoint dominating
sets. In the following, we write a permutation of S, ,, as that of S,,,, e.g., we write

({1,2}, {3,4}) as (1234).

Construction 17. Divide the 90 codes of S; 5 into 30 sets of 3 codes each, where each set is
a coset of ((135)(246)), the cyclic group generated by (135)(246), e.g., (123456), (345612)

and (561234) is a cyclic group. Map each set to a different symbol.
Theorem 18. Code construction 17 is optimal.

Proof. Let g = (135)(246) and G = (g) = {4¢° g', g*}, where ¢° = I is the identical
permutation. Yu € S35, uG = {ug®, ug', ug?} is the set of codes.

First, we prove that uG is a dominating set. Denote uG = {x,y,z}, then x3,y3, Z3
forms a partition of {1,2,...,6}. Thus Vv € S35, 3w € uG such that v (w3 # (), then
v dominates wg or w.

Similarly, Vv € S32, 3w € uG such that v (| wy # (), then v is dominated by wg or
w. This finishes the dominating set proof.

|B§f;7)1(u)| = 36, thus the dominating set size should be at least | 53| = 3. Therefore

the code is optimal. [

4.42 Two variants of (n,m, M,r) codes

In this subsection, we present two variants of worst case rewriting codes including

their definitions, storage capacity characterizations, and their exact values. Since the cor-
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responding proofs are exactly the same as subsection A of section 4.4, we omit them.
4.4.2.1 Variant one

Denote a code in S, ,, with rewriting cost r and cardinality M as an (n,m, M, T)(i”)

code, and we formally define it as follows:

Definition 19. An (n,m, M, )™ rewriting code for CRM, where r € [n — 1], is a col-
lection of subsets B = {B;|i € [M]|} where B; C S, ,,, and it represents data i, such
that

M
o B,(\B;=0fori+#j,and |J B; = Sym-

=1

M
e Vuec | B;,andVj € [M],3v € B;suchthat C(v — u) <r

i=1 -
That is, we partition S, ,,, into M disjoint sets, each set represents data, and every
permutation can be programmed from some permutation of any set B; for i € [M| with the

cost constraint 7.

The rate of the (n, m, M, 7)™ code is defined as R(™ = %, and its storage ca-
pacity, R™(n, r), is defined as R (n,r) = Jim g M
Alin) %] [aggl)]nm, agff) = 1if i — 7 < r, and 0 otherwise, and \ 4 is the largest

eigenvalue of the matrix A . The following lemma presents us the characterization and

the exact value of R™(n, r).

Lemma 20. R (n,r) =  max  H(Y|X) = logy A sin).
nyeP(W(n,r)

4.4.2.2 Variant two

Denote a code in S, ,,, with rewriting cost r and cardinality M as an (n,m, M, r)lout)

code, and we formally define it as follows:
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Definition 21. An (n,m, M, )" rewriting code for CRM, where r € [n — 1], is a
collection of subsets B = {B;|i € [M]} where B; C S,,.,», and it represents data 7, such

that

M
o B,\B;=0fori+#j,and |J B; = Sym-

i=1

M
e Yuec | B;,andVj € [M],3v € B, such that C(u — v) < r.

i=1
That is, we partition S, ,,, into M disjoint sets, each set represents data, and every
permutation can be programmed fo some permutation of any set 5; for i € [M] with the

cost constraint 7.

The rate of the (n,m, M, ) code is defined as R(®") = %%#M, and its storage
capacity, R°"(n, ), is defined as R°*) (n,r) = lim %
m—0o0
Alout) 4/ [aggl)]nm, agf;l) = 1if j — i < r, and O otherwise, and \ 4w is the largest

eigenvalue of the matrix A°“). The following lemma presents us the characterization and

the exact value of R (n,r).

Lemma 22. R (n,r) = max  H(Y|X) = logy A ycout.
nyep(f’“f)(n,r)

4.5 Conclusion

We explore a generalized scheme of RM, CRM. General worst case code construction,

average case code construction, and error correction codes are our future work.
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5. POLAR CODES ARE OPTIMAL FOR WRITE-EFFICIENT MEMORIES

5.1 Introduction

Write-efficient memories (WEM) are models for storing and updating information on
a rewritable medium with constraints. WEM is widely used in data storage area: in flash
memories, write-once memories (WOM) [61], and the recently proposed compressed rank
modulation (CRM) [46] are examples of WEM; for phase change memories, they are fit
for WEM: changing the cell state in one direction does not cost anything, while changing
states in the opposite direction has a cost, and some cost constraint during updating is
required considering issues of reliability and endurance [44]. The recent proposed scheme,
that polar codes are constructed for WOM codes achieving capacity [9], motivates us to

construct codes for WEM.
5.1.1 'WEM with a maximal rewriting cost constraint

Let X = {0,1,...,¢ — 1} be the storage alphabet. R, = [0,+00),and ¢ : X x X —
R 1s the rewriting cost function, measuring the time or enery cost of changing from one
state to another state. Suppose that a memory consists of /V cells. Given one cell state,
x) ! def (20,21, ..., xn_1) € XN, and another cell state y)' ' € X'V, the rewriting cost
of changing from x' " to y)' ! is measured by p(z) ",y ') = ]El o(xi, ys).

Let D C N. We use D to denote the |D| possible values of thze:(c)lata stored in the N
cells. Let the decoding function be D : XV — D, which maps the N cells’ levels to the

data they represent. Let the rewriting function be R : XV x D — XV, which changes the

N cells’ levels to represent the new input data.
Definition 23. [27] An (N, M, q,d) WEM code consists of
e D ={0,1,--- ,M — 1} and Uij\iglci, where C; C XV is the set of codewords
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representing data i. We require Vi # j, C; [ C; = 0;

e A rewriting function R(i, z) ') such that o(z) !, R(i, 2} ")) < Nd for any i €

Dand z) ' € XN,
e A decoding function D(y) ) such that D(R(x)"~!,4)) = i for any i € D.

The rewriting rate of an (IV, M, q,d) WEM code is defined as R = %, ‘R is achiev-
able if there exists an (N, M, ¢, d) code as N — oo, and the rewriting capacity function,
R(q,d), is the supremum of all achievable rates.

Let P(X x X) be the set of joint probability distributions over X x X'. For a pair of
random variables (X,Y) € (X, X), let Pxy denote the joint probability distribution, let
Py denote the marginal distribution, Py x denote the conditional probability distribution,
and F/(-) denote the expectation operator. If X is uniformly distributed over {0, 1, ...,q —
1}, denote it as X ~ U(q).

Define P(q,d) = {Pxy € P(X x X) : Px = Py, E(p(X,Y)) < d}. R(q,d) is
determined as [27]: R(q,d) = nyné%)(cq’d) H(Y|X).

For WOM codes, the cell state can only increase but not decrease. WOM codes are
special cases of WEM codes with the cost function defined appropriately: for a WOM cell
if we update it from z € X to y € X, the cost is measured by ¢(x,y) = 0if y > z, and
oo otherwise. Therefore, WOM codes are such WEM codes with ¢(-) defined previously,
and d is equal to 0.

In this work, we focus on symmetric WEM. Recall that the rewriting capacity of WEM
isR(D) = le;ng)xw) H(Y'|X) [2]. Analogous to a symmetric channel, a symmetric WEM
is such a WEM that its rewriting capacity is achieved when current cell state alphabet (i.e.,

X) and updated cell state alphabet (i.e., Y') are uniformly distributed. That is, the rewriting

capacity of symmetric WEM is R*(q, d):
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Definition 24. For X,Y € & with Px, Py and Pxy,and ¢ : X x X — R, R*(q,d) =

max  H(Y|X), where P*(q,d) & {Pxy € P(X x X) : Px = Py, X ~ Ulq),
Pxy €Ps(q,d)

E(p(X,Y)) < d}.

We present an example of WEM with R*(q, d) below.

m

m
— —_——
Denote by S, ., the set of (Z?q)! permutations over {1, 1,...,1,...,9,q, ..., ¢}. We abuse
. 1 d .
the notation of ud™ Ldef [0, Ut ..., Ugm—1] to denote an element of S, ,,, which denotes

the mapping ¢ — ;.

Example 25. A rewriting code for CRM with the maximal rewriting cost constraint,
(q,m, M, d), is defined by replacing X" by S, ¢(-) by Chebyshev distance between

gm—1 gm—1 gm—1 gm—1 dif
Ug U € Sqm» doo(ug” 0" ") = max Ju; — v
j€{0,1,....gqm—1}

, and Nd by d in
definition 8.4.1.1.

Note that (¢, m, M, d) is actually an instance of WEM by defining ¢(+) and d appropri-
ately: forz,y € X, let p(z,y) = 0if |z —y| < d, and oo otherwise. Now the (¢, m, M, d)
CRM is an (gm, M, q,0) WEM with X" replaced by S, ., and (-) is defined previously.

Denote the rewriting capacity function for CRM with the maximal rewriting cost con-
straint as R°(q, d), which is the largest d-admissible rate when m — oo, and it is proved

that R¢(q, d) = R*(q, d) [46].
5.1.2 'WEM with an average rewriting cost constraint

Assume the sequence of data written to the storage medium is { M, - -+, M;}, where

we assume M; for 1 < ¢ < ¢ is uniformly distributed over D, and the average rewriting

_ de t
costis D % lim ! (271 (4), R(M;, 2571 (i))), where 2/ ~'(4) is the current cell
1

states before the i*" update. By assuming the stationary distribution of cell levels z) ' is

m(zy ™), D=3 w(x) ™) S Dj(x) ), where D;(x~") is the average rewriting cost

a1 jED

of updating cell levels ) ' to a codeword representing j € D.

The definition of WEM with an average rewriting cost constraint is defined as follows:
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Definition 26. An (N, M, q, d).,. WEM code consists of

e D =1{0,1,---,M — 1} and UiﬂialCi, where C; € XN is the set of codewords

representing data i. We require Vi # j, C; [ C; = 0;
e A rewriting function R (i, z) ') such that D < d.

e A decoding function D(y) ') such that D(R(x)'~!,4)) = i for any i € D.

The rewriting rate of an (N, M, q,d)a. code is defined as R,pe = %, and its
rewriting capacity function, R,,.(q, d), is defined as the largest d-admissible rate when
N — oo. Itis proved that R,..(q,d) = R(q, d) [2]. Similarly, we focus on the symmetric

rewriting capacity function, R;,.(q, d), as defined in definition 24.

5.1.3 The outline

The connection between rate-distortion theorem and rewriting capacity theorem is pre-
sented in Section 5.2. The binary polar WEM codes with an average rewriting cost con-
straint and a maximal rewriting cost constraint are presented in subsection A and B of
Section 5.3, respectively. The g-ary polar WEM codes, based on the recently proposed
g-ary polar codes [57], are presented in subsection A and B of Section 5.4 for an aver-
age rewriting cost constraint and a maximal rewriting cost constraint, respectively. The

conclusion is obtained in Section 5.5.
5.2 Lossy Source Coding and its Duality with WEM

In this section, we present briefly background of lossy source coding and its duality
with WEM, which inspires code constructions for WEM.

Let X also denote the variable space, and ) denotes the reconstruction space. Let
N-1

d:Y x X — R, denote the distortion function, and the distortion among a vector z;,

N-1
and its reconstructed vector y' ' is d(z) "yl ) = & 0 d(wi, i)
i=0
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A (¢N!, N) rate distortion code consists of an encoding function fy : XY — {0,1,-- |
¢V — 1} and a reproduction function gy : {0,1,...,¢"® — 1} — Y. The associated
distortion is defined as E(d(X) !, gn(fa (X)), where the expectation is with re-
spect to the probability distribution on XV. R(q, D) is the infimum of rates R such that
B(d(X) ™ gy (fn(XY71))) is at most D as N — oo.

Let P(q, D) Y {Pyy € P(X x ) : E(d(X,Y)) < D}, and R(q, D) is determined
as  min I(X;Y)[16].

PXYGP(qu)

We focus on lossy compression with the double symmetric rate-distortion R*(q, D). Tt
is defined as for (X,Y) € (X x X) and d(z,y), R*(¢,D) = min I(Y;X), where
Pxy€ePs(q,D)
P*(¢, D) ™ {Pxy € P(X x X) : Px = Py, X ~ U(q), E(d(X.Y)) < D}.
The duality between R°(q, D) and R*(q, D) is captured b