407 research outputs found

    Time-predictable Chip-Multiprocessor Design

    Get PDF
    Abstract—Real-time systems need time-predictable platforms to enable static worst-case execution time (WCET) analysis. Improving the processor performance with superscalar techniques makes static WCET analysis practically impossible. However, most real-time systems are multi-threaded applications and performance can be improved by using several processor cores on a single chip. In this paper we present a time-predictable chipmultiprocessor system that aims to improve system performance while still enabling WCET analysis. The proposed chip-multiprocessor (CMP) uses a shared memory with a time-division multiple access (TDMA) based memory access scheduling. The static TDMA schedule can be integrated into the WCET analysis. Experiments with a JOP based CMP showed that the memory access starts to dominate the execution time when using more than 4 processor cores. To provide a better scalability, more local memories have to be used. We add a processor local scratchpad memory and split data caches, which are still time-predictable, to the processor cores. I

    Speculative Segmented Sum for Sparse Matrix-Vector Multiplication on Heterogeneous Processors

    Full text link
    Sparse matrix-vector multiplication (SpMV) is a central building block for scientific software and graph applications. Recently, heterogeneous processors composed of different types of cores attracted much attention because of their flexible core configuration and high energy efficiency. In this paper, we propose a compressed sparse row (CSR) format based SpMV algorithm utilizing both types of cores in a CPU-GPU heterogeneous processor. We first speculatively execute segmented sum operations on the GPU part of a heterogeneous processor and generate a possibly incorrect results. Then the CPU part of the same chip is triggered to re-arrange the predicted partial sums for a correct resulting vector. On three heterogeneous processors from Intel, AMD and nVidia, using 20 sparse matrices as a benchmark suite, the experimental results show that our method obtains significant performance improvement over the best existing CSR-based SpMV algorithms. The source code of this work is downloadable at https://github.com/bhSPARSE/Benchmark_SpMV_using_CSRComment: 22 pages, 8 figures, Published at Parallel Computing (PARCO

    WCET Analysis of a Parallel 3D Multigrid Solver Executed on the MERASA Multi-Core

    Get PDF
    To meet performance requirements as well as constraints on cost and power consumption, future embedded systems will be designed with multi-core processors. However, the question of timing analysability is raised with these architectures. In the MERASA project, a WCET-aware multi-core processor has been designed with the appropriate system software. They both guarantee that the WCET of tasks running on different cores can be safely analyzed since their possible interactions can be bounded. Nevertheless, computing the WCET of a parallel application is still not straightforward and a high-level preliminary analysis of the communication and synchronization patterns must be performed. In this paper, we report on our experience in evaluating the WCET of a parallel 3D multigrid solver code and we propose lines for further research on this topic

    Compiler and Runtime for Memory Management on Software Managed Manycore Processors

    Get PDF
    abstract: We are expecting hundreds of cores per chip in the near future. However, scaling the memory architecture in manycore architectures becomes a major challenge. Cache coherence provides a single image of memory at any time in execution to all the cores, yet coherent cache architectures are believed will not scale to hundreds and thousands of cores. In addition, caches and coherence logic already take 20-50% of the total power consumption of the processor and 30-60% of die area. Therefore, a more scalable architecture is needed for manycore architectures. Software Managed Manycore (SMM) architectures emerge as a solution. They have scalable memory design in which each core has direct access to only its local scratchpad memory, and any data transfers to/from other memories must be done explicitly in the application using Direct Memory Access (DMA) commands. Lack of automatic memory management in the hardware makes such architectures extremely power-efficient, but they also become difficult to program. If the code/data of the task mapped onto a core cannot fit in the local scratchpad memory, then DMA calls must be added to bring in the code/data before it is required, and it may need to be evicted after its use. However, doing this adds a lot of complexity to the programmer's job. Now programmers must worry about data management, on top of worrying about the functional correctness of the program - which is already quite complex. This dissertation presents a comprehensive compiler and runtime integration to automatically manage the code and data of each task in the limited local memory of the core. We firstly developed a Complete Circular Stack Management. It manages stack frames between the local memory and the main memory, and addresses the stack pointer problem as well. Though it works, we found we could further optimize the management for most cases. Thus a Smart Stack Data Management (SSDM) is provided. In this work, we formulate the stack data management problem and propose a greedy algorithm for the same. Later on, we propose a general cost estimation algorithm, based on which CMSM heuristic for code mapping problem is developed. Finally, heap data is dynamic in nature and therefore it is hard to manage it. We provide two schemes to manage unlimited amount of heap data in constant sized region in the local memory. In addition to those separate schemes for different kinds of data, we also provide a memory partition methodology.Dissertation/ThesisPh.D. Computer Science 201

    Code generation for multi-phase tasks on a multi-core distributed memory platform

    Get PDF
    International audienceEnsuring temporal predictability of real-time systems on a multi-core platform is difficult, mainly due to hard to predict delays related to shared access to the main memory. Task models where computation phases and communication phases are separated (such as the PRedictable Execution Model), have been proposed to both mitigate these delays and make them easier to analyze. In this paper we present a compilation process, part of the Prelude compiler, that automatically translates a high-level synchronous data-flow system specification into a PREM-compliant C program. By automating the production of the PREM-compliant C code, low-level implementation concerns related to task communications become the responsibility of the compiler, which saves tedious and error-prone development efforts

    A RECONFIGURABLE AND EXTENSIBLE EXPLORATION PLATFORM FOR FUTURE HETEROGENEOUS SYSTEMS

    Get PDF
    Accelerator-based -or heterogeneous- computing has become increasingly important in a variety of scenarios, ranging from High-Performance Computing (HPC) to embedded systems. While most solutions use sometimes custom-made components, most of today’s systems rely on commodity highend CPUs and/or GPU devices, which deliver adequate performance while ensuring programmability, productivity, and application portability. Unfortunately, pure general-purpose hardware is affected by inherently limited power-efficiency, that is, low GFLOPS-per-Watt, now considered as a primary metric. The many-core model and architectural customization can play here a key role, as they enable unprecedented levels of power-efficiency compared to CPUs/GPUs. However, such paradigms are still immature and deeper exploration is indispensable. This dissertation investigates customizability and proposes novel solutions for heterogeneous architectures, focusing on mechanisms related to coherence and network-on-chip (NoC). First, the work presents a non-coherent scratchpad memory with a configurable bank remapping system to reduce bank conflicts. The experimental results show the benefits of both using a customizable hardware bank remapping function and non-coherent memories for some types of algorithms. Next, we demonstrate how a distributed synchronization master better suits many-cores than standard centralized solutions. This solution, inspired by the directory-based coherence mechanism, supports concurrent synchronizations without relying on memory transactions. The results collected for different NoC sizes provided indications about the area overheads incurred by our solution and demonstrated the benefits of using a dedicated hardware synchronization support. Finally, this dissertation proposes an advanced coherence subsystem, based on the sparse directory approach, with a selective coherence maintenance system which allows coherence to be deactivated for blocks that do not require it. Experimental results show that the use of a hybrid coherent and non-coherent architectural mechanism along with an extended coherence protocol can enhance performance. The above results were all collected by means of a modular and customizable heterogeneous many-core system developed to support the exploration of power-efficient high-performance computing architectures. The system is based on a NoC and a customizable GPU-like accelerator core, as well as a reconfigurable coherence subsystem, ensuring application-specific configuration capabilities. All the explored solutions were evaluated on this real heterogeneous system, which comes along with the above methodological results as part of the contribution in this dissertation. In fact, as a key benefit, the experimental platform enables users to integrate novel hardware/software solutions on a full-system scale, whereas existing platforms do not always support a comprehensive heterogeneous architecture exploration
    • …
    corecore