25 research outputs found

    Virtual learning process environment (VLPE): a BPM-based learning process management architecture

    Get PDF
    E-learning systems have significantly impacted the way that learning takes place within universities, particularly in providing self-learning support and flexibility of course delivery. Virtual Learning Environments help facilitate the management of educational courses for students, in particular by assisting course designers and thriving in the management of the learning itself. Current literature has shown that pedagogical modelling and learning process management facilitation are inadequate. In particular, quantitative information on the process of learning that is needed to perform real time or reflective monitoring and statistical analysis of students’ learning processes performance is deficient. Therefore, for a course designer, pedagogical evaluation and reform decisions can be difficult. This thesis presents an alternative e-learning systems architecture - Virtual Learning Process Environment (VLPE) - that uses the Business Process Management (BPM) conceptual framework to design an architecture that addresses the critical quantitative learning process information gaps associated with the conventional VLE frameworks. Within VLPE, course designers can model desired education pedagogies in the form of learning process workflows using an intuitive graphical flow diagram user-interface. Automated agents associated with BPM frameworks are employed to capture quantitative learning information from the learning process workflow. Consequently, course designers are able to monitor, analyse and re-evaluate in real time the effectiveness of their chosen pedagogy using live interactive learning process dashboards. Once a course delivery is complete the collated quantitative information can also be used to make major revisions to pedagogy design for the next iteration of the course. An additional contribution of this work is that this new architecture facilitates individual students in monitoring and analysing their own learning performances in comparison to their peers in a real time anonymous manner through a personal analytics learning process dashboard. A case scenario of the quantitative statistical analysis of a cohort of learners (10 participants in size) is presented. The analytical results of their learning processes, performances and progressions on a short Mathematics course over a five-week period are also presented in order to demonstrate that the proposed framework can significantly help to advance learning analytics and the visualisation of real time learning data

    Rich media content adaptation in e-learning systems

    Get PDF
    The wide use of e-technologies represents a great opportunity for underserved segments of the population, especially with the aim of reintegrating excluded individuals back into society through education. This is particularly true for people with different types of disabilities who may have difficulties while attending traditional on-site learning programs that are typically based on printed learning resources. The creation and provision of accessible e-learning contents may therefore become a key factor in enabling people with different access needs to enjoy quality learning experiences and services. Another e-learning challenge is represented by m-learning (which stands for mobile learning), which is emerging as a consequence of mobile terminals diffusion and provides the opportunity to browse didactical materials everywhere, outside places that are traditionally devoted to education. Both such situations share the need to access materials in limited conditions and collide with the growing use of rich media in didactical contents, which are designed to be enjoyed without any restriction. Nowadays, Web-based teaching makes great use of multimedia technologies, ranging from Flash animations to prerecorded video-lectures. Rich media in e-learning can offer significant potential in enhancing the learning environment, through helping to increase access to education, enhance the learning experience and support multiple learning styles. Moreover, they can often be used to improve the structure of Web-based courses. These highly variegated and structured contents may significantly improve the quality and the effectiveness of educational activities for learners. For example, rich media contents allow us to describe complex concepts and process flows. Audio and video elements may be utilized to add a “human touch” to distance-learning courses. Finally, real lectures may be recorded and distributed to integrate or enrich on line materials. A confirmation of the advantages of these approaches can be seen in the exponential growth of video-lecture availability on the net, due to the ease of recording and delivering activities which take place in a traditional classroom. Furthermore, the wide use of assistive technologies for learners with disabilities injects new life into e-learning systems. E-learning allows distance and flexible educational activities, thus helping disabled learners to access resources which would otherwise present significant barriers for them. For instance, students with visual impairments have difficulties in reading traditional visual materials, deaf learners have trouble in following traditional (spoken) lectures, people with motion disabilities have problems in attending on-site programs. As already mentioned, the use of wireless technologies and pervasive computing may really enhance the educational learner experience by offering mobile e-learning services that can be accessed by handheld devices. This new paradigm of educational content distribution maximizes the benefits for learners since it enables users to overcome constraints imposed by the surrounding environment. While certainly helpful for users without disabilities, we believe that the use of newmobile technologies may also become a fundamental tool for impaired learners, since it frees them from sitting in front of a PC. In this way, educational activities can be enjoyed by all the users, without hindrance, thus increasing the social inclusion of non-typical learners. While the provision of fully accessible and portable video-lectures may be extremely useful for students, it is widely recognized that structuring and managing rich media contents for mobile learning services are complex and expensive tasks. Indeed, major difficulties originate from the basic need to provide a textual equivalent for each media resource composing a rich media Learning Object (LO). Moreover, tests need to be carried out to establish whether a given LO is fully accessible to all kinds of learners. Unfortunately, both these tasks are truly time-consuming processes, depending on the type of contents the teacher is writing and on the authoring tool he/she is using. Due to these difficulties, online LOs are often distributed as partially accessible or totally inaccessible content. Bearing this in mind, this thesis aims to discuss the key issues of a system we have developed to deliver accessible, customized or nomadic learning experiences to learners with different access needs and skills. To reduce the risk of excluding users with particular access capabilities, our system exploits Learning Objects (LOs) which are dynamically adapted and transcoded based on the specific needs of non-typical users and on the barriers that they can encounter in the environment. The basic idea is to dynamically adapt contents, by selecting them from a set of media resources packaged in SCORM-compliant LOs and stored in a self-adapting format. The system schedules and orchestrates a set of transcoding processes based on specific learner needs, so as to produce a customized LO that can be fully enjoyed by any (impaired or mobile) student

    A service-orientated architecture for adaptive and collaborative e-learning systems

    Get PDF
    This research proposes a new architecture for Adaptive Educational Hypermedia Systems (AEHS). Architectures in the context of this thesis refer to the components of the system and their communications and interactions. The architecture addresses the limitations of AEHS regarding interoperability, reusability, openness, flexibility, and limited tools for collaborative and social learning. It presents an integrated adaptive and collaborative Web-based learning environment. The new e-learning environment is implemented as a set of independent Web services within a service-oriented architecture (SOA). Moreover, it uses a modern Learning Management System (LMS) as the delivery service and the user interface for this environment. This is a two-way solution, whereby adaptive learning is introduced via a widely adopted LMS, and the LMS itself is enriched with an external - yet integrated - adaptation layer. To test the relevance of the new architecture, practical experiments were undertaken. The interoperability, reusability and openness test revealed that the user could easily switch between various LMS to access the personalised lessons. In addition, the system was tested by students at the University of Nottingham as a revision guide to a Software Engineering module. This test showed that the system was robust; it automatically handled a large number of students and produced the desired adaptive content. However, regarding the use of the collaborative learning tools, the test showed low levels of such usage

    A framework for the assembly and delivery of multimodal graphics in E-learning environments

    Get PDF
    In recent years educators and education institutions have embraced E-Learning environments as a method of delivering content to and communicating with their learners. Particular attention needs to be paid to the accessibility of the content that each educator provides. In relation to graphics, content providers are instructed to provide textual alternatives for each graphic using either the “alt” attribute or the “longdesc” attribute of the HTML IMG tag. This is not always suitable for graphical concepts inherent in technical topics due to the spatial nature of the information. As there is currently no suggested alternative to the use of textual descriptions in E-Learning environments, blind learners are at a significant disadvantage when attempting to learn Science, Technology, Engineering or Mathematical (STEM) subjects online. A new approach is required that will provide blind learners with the same learning capabilities enjoyed by their sighted peers in relation to graphics. Multimodal graphics combine the modalities of sound and touch in order to deliver graphical concepts to blind learners. Although they have proven successful, they can be time consuming to create and often require expertise in accessible graphic design. This thesis proposes an approach based on mainstream E-Learning techniques that can support non-experts in the assembly of multimodal graphics. The approach is known as the Multimodal Graphic Assembly and Delivery Framework (MGADF). It exploits a component based Service Oriented Architecture (SOA) to provide non experts with the ability to assemble multimodal graphics and integrate them into mainstream E-Learning environments. This thesis details the design of the system architecture, information architecture and methodologies of the MGADF. Proof of concept interfaces were implemented, based on the design, that clearly demonstrate the feasibility of the approach. The interfaces were used in an end-user evaluation that assessed the benefits of a component based approach for non-expert multimodal graphic producers

    A service-orientated architecture for adaptive and collaborative e-learning systems

    Get PDF
    This research proposes a new architecture for Adaptive Educational Hypermedia Systems (AEHS). Architectures in the context of this thesis refer to the components of the system and their communications and interactions. The architecture addresses the limitations of AEHS regarding interoperability, reusability, openness, flexibility, and limited tools for collaborative and social learning. It presents an integrated adaptive and collaborative Web-based learning environment. The new e-learning environment is implemented as a set of independent Web services within a service-oriented architecture (SOA). Moreover, it uses a modern Learning Management System (LMS) as the delivery service and the user interface for this environment. This is a two-way solution, whereby adaptive learning is introduced via a widely adopted LMS, and the LMS itself is enriched with an external - yet integrated - adaptation layer. To test the relevance of the new architecture, practical experiments were undertaken. The interoperability, reusability and openness test revealed that the user could easily switch between various LMS to access the personalised lessons. In addition, the system was tested by students at the University of Nottingham as a revision guide to a Software Engineering module. This test showed that the system was robust; it automatically handled a large number of students and produced the desired adaptive content. However, regarding the use of the collaborative learning tools, the test showed low levels of such usage

    A note on organizational learning and knowledge sharing in the context of communities of practice

    Get PDF
    Please, cite this publication as: Antonova, A. & Gourova, E. (2006). A note on organizational learning and knowledge sharing in the context of communities of practice. Proceedings of International Workshop in Learning Networks for Lifelong Competence Development, TENCompetence Conference. September 12th, Sofia, Bulgaria: TENCompetence. Retrieved June 30th, 2006, from http://dspace.learningnetworks.orgThe knowledge management (KM) literature emphasizes the impact of human factors for successful implementation of KM within the organization. Isolated initiatives for promoting learning organization and team collaboration, without taking consideration of the knowledge sharing limitations and constraints can defeat further development of KM culture. As an effective instrument for knowledge sharing, communities of practice (CoP) are appearing to overcome these constraints and to foster human collaboration.This work has been sponsored by the EU project TENCompetenc

    From collaborative virtual research environment SOA to teaching and learning environment SOA

    Get PDF
    This paper explores the extension of the CORE VRE SOA to a collaborative virtual teaching and learning environment (CVTLE) SOA. Key points are brought up to date from a number of projects researching and developing a CVTLE and its component services. Issues remain: there are few implementations of the key services needed to demonstrate the CVTLE concept; there are questions about the feasibility of such an enterprise; there are overlapping standards; questions about the source and use of user profile data remain difficult to answer; as does the issue of where and how to coordinate, control, and monitor such a teaching and learning syste

    Semantic and pragmatic characterization of learning objects

    Get PDF
    Tese de doutoramento. Engenharia Informática. Universidade do Porto. Faculdade de Engenharia. 201

    Extensión de la especificación IMS Learning Design desde la adaptación e integración de unidades de aprendizaje

    Get PDF
    IMS Learning Design (IMS-LD) representa una corriente actual en aprendizaje online y blended que se caracteriza porque: a) Es una especificación que pretende estandarizar procesos de aprendizaje, así como reutilizarlos en diversos contextos b) Posee una expresividad pedagógica más elaborada que desarrollos anteriores o en proceso c) Mantiene una relación cordial y prometedora con Learning Management Systems (LMSs), herramientas de autoría y de ejecución d) Existe una amplia variedad de grupos de investigación y proyectos europeos trabajando sobre ella, lo que augura una sostenibilidad, al menos académica Aun así, IMS Learning Design es un producto inicial (se encuentra en su primera versión, de 2003) y mejorable en diversos aspectos, como son la expresividad pedagógica y la interoperabilidad. En concreto, en esta tesis nos centramos en el aprendizaje adaptativo o personalizado y en la integración de Unidades de Aprendizaje, como dos de los pilares que definen la especificación, y que al mismo tiempo la potencian considerablemente. El primero (aprendizaje adaptativo) hace que se puedan abordar itinerarios individuales personalizados de estudio, tanto en flujo de aprendizaje como en contenido o interfaz; el segundo (integración) permite romper el aislamiento de los paquetes de información o cursos (Unidades de Aprendizaje, UoL) y establecer un diálogo con otros sistemas (LMSs), modelos y estándares, así como una reutilización de dichas UoLs en diversos contextos. En esta tesis realizamos un estudio de la especificación desde la base, analizando su modelo de información y cómo se construyen Unidades de Aprendizaje. Desde el Nivel A al Nivel C analizamos y criticamos la estructura de la especificación basándonos en un estudio teórico y una investigación práctica fruto del modelado de Unidades de Aprendizaje reales y ejecutables que nos proporcionan una información muy útil de base, y que mayormente adjuntamos en los anexos, para no interferir en el flujo de lectura del cuerpo principal. A partir de este estudio, analizamos la integración de Unidades de Aprendizaje con otros sistemas y especificaciones, abarcando desde la integración mínima mediante un enlace directo hasta la compartición de variables y estados que permiten una comunicación en tiempo real de ambas partes. Exponemos aquí también las conclusiones de diversos casos de estudio basados en adaptación que se anexan al final de la tesis y que se vuelven un instrumento imprescindible para lograr una solución real y aplicable. Como segundo pilar de la tesis complementario a la integración de Unidades de Aprendizaje, estudiamos el aprendizaje adaptativo: Los tipos, los avances y los enfoques y restricciones de modelado dentro de IMS-LD. Por último, y como complemento de la investigación teórica, a través de diversos casos prácticos estudiamos la manera en que IMS-LD modela la perzonalización del aprendizaje y hasta qué punto. Este primer bloque de análisis (general, integración y aprendizaje adaptativo) nos permite realizar una crítica estructural de IMS-LD en dos grandes apartados: Modelado y Arquitectura. Modelado apunta cuestiones que necesitan mejora, modificación, extensión o incorporación de elementos de modelado dentro de IMS-LD, como son procesos, componentes y recursos de programación. Arquitectura engloba otras cuestiones centradas en la comunicación que realiza IMS-LD con el exterior y que apuntan directamente a capas estructurales de la especificación, más allá del modelado. Aunque se encuentra fuera del núcleo de esta tesis, también se ha realizado una revisión de aspectos relacionados con Herramientas de autoría, por ser este un aspecto que condiciona el alcance del modelado y la penetración de la especificación en los distintos públicos objetivo. Sobre Herramientas, no obstante, no realizamos ninguna propuesta de mejora. La solución desarrollada, se centra en las diversas cuestiones sobre Modelado y Arquitectura encontradas en el análisis. Esta solución se compone de un conjunto de propuestas de estructuras, nuevas o ya existentes y modificadas, a través de las que se refuerza la capacidad expresiva de la especificación y la capacidad de interacción con un entorno de trabajo ajeno. Esta investigación de tres años ha sido llevada a cabo entre 2004 y 2007, principalmente con colegas de The Open University of The Netherlands, The University of Bolton, Universitat Pompeu Fabra y del departamento Research & Innovation de ATOS Origin, y ha sido desarrollada parcialmente dentro de proyectos europeos como UNFOLD, EU4ALL y ProLearn. La conclusión principal que se extrae de esta investigación es que IMS-LD necesita una reestructuración y modificación de ciertos elementos, así como la incorporación de otros nuevos, para mejorar una expresividad pedagógica y una capacidad de integración con otros sistemas de aprendizaje y estándares eLearning, si se pretenden alcanzar dos de los objetivos principales establecidos de base en la definición de esta especificación: La personalización del proceso de aprendizaje y la interoperabilidad real. Aun así, es cierto que la implantación de la especificación se vería claramente mejorada si existieran unas herramientas de más alto nivel (preferiblemente con planteamiento visual) que permitieran un modelado sencillo por parte de los usuarios finales reales de este tipo de especificaciones, como son los profesores, los creadores de contenido y los pedagogos-didactas que diseñan la experienicia de aprendizaje. Este punto, no obstante, es ajeno a la especificación y afecta a la interpretación que de la misma realizan los grupos de investigación y compañías que desarrollan soluciones de autoría. _____________________________________________IMS Learning Design (IMS-LD) is a current asset in eLearning and blended learning, due to several reasons: a) It is a specification that points to standardization and modeling of learning processes, and not just content; at the same time, it is focused on the re-use of the information packages in several contexts; b) It shows a deeper pedagogical expressiveness than other specifications, already delivered or in due process c) It is integrated at different levels into well-known Learning Management Systems (LMSs) d) There are a huge amount of European research projects and groups working with it, which aims at sustainability (in academia, at least) Nevertheless, IMS-LD is roughly an initial outcome (be aware that we are still working with the same release, dated on 2003). Therefore, it can and must be improved in several aspects, i.e., pedagogical expressiveness and interoperability. In this thesis, we concentrate on Adaptive Learning (or Personalised Learning) and on the Integration of Units of Learning (UoLs). They both are core aspects which the specification is built upon. They also can improve it significantly. Adaptation makes personalised learning itineraries, adapted to every role, to every user involved in the process, and focus on several aspects, i.e., flow, content and interface. Integration fosters the re-use of IMS-LD information packages in different contexts and connects both-ways UoLs with other specifications, models and LMSs. In order to achive these goals we carry out a threephase analysis. First, analysis of IMS-LD in several steps: foundations, information model, construction of UoLs. From Level A to Level C, we analyse and review the specification structure. We lean on a theoretical frameword, along with a practical approach, coming from the actual modeling of real UoLs which give an important report back. Out of this analysis we get a report on the general structure of IMS-LD. Second, analysis and review of the integration of UoLs with several LMSs, models and specifications: we analyse three different types of integration: a) minimal integration, with a simple link between parts; b) embedded integration, with a marriage of both parts in a single information package; and d) full integration, sharing variables and states between parts. In this step, we also show different case studies and report our partial conclusions. And third, analysis and review of how IMS-LD models adaptive learning: we define, classify and explain several types of adaptation and we approach them with the specificacion. A key part of this step is the actual modeling of UoLs showing adaptive learning processes. We highlight pros and cons and stress drawbacks and weak points that could be improved in IMS-LD to support adaptation, but also general learning processes Out of this three-step analysis carried out so far (namely general, integration, adaptation) we focus our review of the IMS-LD structure and information model on two blocks: Modeling and Architecture. Modeling is focused on process, components and programming resources of IMS-LD. Architecture is focused on the communication that IMS-LD establishes outside, both ways, and it deals with upper layers of the specification, beyong modeling issues. Modeling and Architecture issues need to be addressed in order to improve the pedagogical expressiveness and the integration of IMS-LD. Furthermore, we provide an orchestrated solution which meets these goals. We develop a structured and organized group of modifications and extensions of IMS-LD, which match the different reported problems issues. We suggest modifications, extensions and addition of different elements, aiming at the strength of the specification on adaptation and integration, along with general interest issues. The main conclusion out of this research is that IMS-LD needs a re-structure and a modification of some elements. It also needs to incorporate new ones. Both actions (modification and extension) are the key to improve the pedagogical expressiveness and the integration with other specifications and eLearning systems. Both actions aim at two clear objectives in the definition of IMS-LD: the personalisation of learning processes, and a real interoperability. It is fair to highlight the welcome help of high-level visual authoring tools. They can support a smoother modeling process that could focus on pedagogical issues and not on technical ones, so that a broad target group made of teachers, learning designers, content creators and pedagogues could make use of the specification in a simpler way. However, this criticism is outside the specification, so outside the core of this thesis too. This three-year research (2004-2007) has been carried out along with colleagues from The Open University of The Netherlands, The University of Bolton, Universitat Pompeu Fabra and from the Department of Research & Innovation of ATOS Origin. In addition, a few European projects, like UNFOLD, EU4ALL and ProLearn, have partially supported it
    corecore