thesis

A framework for the assembly and delivery of multimodal graphics in E-learning environments

Abstract

In recent years educators and education institutions have embraced E-Learning environments as a method of delivering content to and communicating with their learners. Particular attention needs to be paid to the accessibility of the content that each educator provides. In relation to graphics, content providers are instructed to provide textual alternatives for each graphic using either the “alt” attribute or the “longdesc” attribute of the HTML IMG tag. This is not always suitable for graphical concepts inherent in technical topics due to the spatial nature of the information. As there is currently no suggested alternative to the use of textual descriptions in E-Learning environments, blind learners are at a significant disadvantage when attempting to learn Science, Technology, Engineering or Mathematical (STEM) subjects online. A new approach is required that will provide blind learners with the same learning capabilities enjoyed by their sighted peers in relation to graphics. Multimodal graphics combine the modalities of sound and touch in order to deliver graphical concepts to blind learners. Although they have proven successful, they can be time consuming to create and often require expertise in accessible graphic design. This thesis proposes an approach based on mainstream E-Learning techniques that can support non-experts in the assembly of multimodal graphics. The approach is known as the Multimodal Graphic Assembly and Delivery Framework (MGADF). It exploits a component based Service Oriented Architecture (SOA) to provide non experts with the ability to assemble multimodal graphics and integrate them into mainstream E-Learning environments. This thesis details the design of the system architecture, information architecture and methodologies of the MGADF. Proof of concept interfaces were implemented, based on the design, that clearly demonstrate the feasibility of the approach. The interfaces were used in an end-user evaluation that assessed the benefits of a component based approach for non-expert multimodal graphic producers

    Similar works