27,685 research outputs found

    Score-Informed Source Separation for Music Signals

    Get PDF
    In recent years, the processing of audio recordings by exploiting additional musical knowledge has turned out to be a promising research direction. In particular, additional note information as specified by a musical score or a MIDI file has been employed to support various audio processing tasks such as source separation, audio parameterization, performance analysis, or instrument equalization. In this contribution, we provide an overview of approaches for score-informed source separation and illustrate their potential by discussing innovative applications and interfaces. Additionally, to illustrate some basic principles behind these approaches, we demonstrate how score information can be integrated into the well-known non-negative matrix factorization (NMF) framework. Finally, we compare this approach to advanced methods based on parametric models

    Online score-informed source separation in polyphonic mixtures using instrument spectral patterns

    Get PDF
    [EN] Soundprism is a real-time algorithm to separate polyphonic music audio into source signals, given the musical score of the audio in advance. This paper presents a framework for a Soundprism implementation. A study of the sound quality of the online score-informed source separation is shown, although a real-time implementation is not carried out. The system is compound of two stages: (1) a score follower that matches a MIDI score position to each time frame of the musical performance; and (2) a source separator based on a nonnegative matrix factorization approach guided by the score. Real audio mixtures composed of an instrumental quartets were employed to obtain preliminary results of the proposed system.Ministerio de Economía y Competitividad. Grant Number: TEC2015-67387-C4-{1, 2, 3}-RMuñoz-Montoro, A.; Vera-Candeas, P.; Cortina, R.; Combarro, EF.; Alonso-Jordá, P. (2019). Online score-informed source separation in polyphonic mixtures using instrument spectral patterns. Computational and Mathematical Methods. 1-10. https://doi.org/10.1002/cmm4.1040S11

    Real-time Soundprism

    Full text link
    [EN] This paper presents a parallel real-time sound source separation system for decomposing an audio signal captured with a single microphone in so many audio signals as the number of instruments that are really playing. This approach is usually known as Soundprism. The application scenario of the system is for a concert hall in which users, instead of listening to the mixed audio, want to receive the audio of just an instrument, focusing on a particular performance. The challenge is even greater since we are interested in a real-time system on handheld devices, i.e., devices characterized by both low power consumption and mobility. The results presented show that it is possible to obtain real-time results in the tested scenarios using an ARM processor aided by a GPU, when this one is present.This work has been supported by the "Ministerio de Economia y Competitividad" of Spain and FEDER under projects TEC2015-67387-C4-{1,2,3}-R.Muñoz-Montoro, AJ.; Ranilla, J.; Vera-Candeas, P.; Combarro, EF.; Alonso-Jordá, P. (2019). Real-time Soundprism. The Journal of Supercomputing. 75(3):1594-1609. https://doi.org/10.1007/s11227-018-2703-0S15941609753Alonso P, Cortina R, Rodríguez-Serrano FJ, Vera-Candeas P, Alonso-González M, Ranilla J (2017) Parallel online time warping for real-time audio-to-score alignment in multi-core systems. J Supercomput 73:126. https://doi.org/10.1007/s11227-016-1647-5Carabias-Orti JJ, Cobos M, Vera-Candeas P, Rodríguez-Serrano FJ (2013) Nonnegative signal factorization with learnt instrument models for sound source separation in close-microphone recordings. EURASIP J Adv Signal Process 2013:184. https://doi.org/10.1186/1687-6180-2013-184Carabias-Orti JJ, Rodriguez-Serrano FJ, Vera-Candeas P, Canadas-Quesada FJ, Ruiz-Reyes N (2015) An audio to score alignment framework using spectral factorization and dynamic time warping. In: 16th International Society for Music Information Retrieval Conference, pp 742–748Díaz-Gracia N, Cocaña-Fernández A, Alonso-González M, Martínez-Zaldívar FJ, Cortina R, García-Mollá VM, Alonso P, Ranilla J (2014) NNMFPACK: a versatile approach to an NNMF parallel library. In: Proceedings of the 2014 International Conference on Computational and Mathematical Methods in Science and Engineering, pp 456–465Díaz-Gracia N, Cocaña-Fernández A, Alonso-González M, Martínez-Zaldívar FJ, Cortina R, García-Mollá VM, Vidal AM (2015) Improving NNMFPACK with heterogeneous and efficient kernels for β\beta β -divergence metrics. J Supercomput 71:1846–1856. https://doi.org/10.1007/s11227-014-1363-yDriedger J, Grohganz H, Prätzlich T, Ewert S, Müller M (2013) Score-informed audio decomposition and applications. In: Proceedings of the 21st ACM International Conference on Multimedia, pp 541–544Duan Z, Pardo B (2011) Soundprism: an online system for score-informed source separation of music audio. IEEE J Sel Top Signal Process 5(6):1205–1215Duong NQ, Vincent E, Gribonval R (2010) Under-determined reverberant audio source separation using a full-rank spatial covariance model. IEEE Trans Audio Speech 18(7):1830–1840. https://doi.org/10.1109/TASL.2010.2050716Ewert S, Müller M (2011) Estimating note intensities in music recordings. In: Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, pp 385–388Ewert S, Pardo B, Mueller M, Plumbley MD (2014) Score-informed source separation for musical audio recordings: an overview. IEEE Signal Process Mag 31:116–124. https://doi.org/10.1109/MSP.2013.2296076Fastl H, Zwicker E (2007) Psychoacoustics. Springer, BerlinGanseman J, Scheunders P, Mysore GJ, Abel JS (2010) Source separation by score synthesis. Int Comput Music Conf 2010:1–4Goto M, Hashiguchi H, Nishimura T, Oka R (2002) RWC music database: popular, classical and jazz music databases. In: ISMIR, vol 2, pp 287–288Goto M (2004) Development of the RWC music database. In: Proceedings of the 18th International Congress on Acoustics (ICA 2004), ppp 553–556Hennequin R, David B, Badeau R (2011) Score informed audio source separation using a parametric model of non-negative spectrogram. In: 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) pp 45–48. https://doi.org/10.1109/ICASSP.2011.5946324Itoyama K, Goto M, Komatani K et al (2008) Instrument equalizer for query-by-example retrieval: improving sound source separation based on integrated harmonic and inharmonic models. In: ISMIR. https://doi.org/10.1136/bmj.324.7341.827Marxer R, Janer J, Bonada J (2012) Low-latency instrument separation in polyphonic audio using timbre models. In: International Conference on Latent Variable Analysis and Signal Separation, pp 314–321Miron M, Carabias-Orti JJ, Janer J (2015) Improving score-informed source separation for classical music through note refinement. In: ISMIR, pp 448–454Ozerov A, Févotte C (2010) Multichannel nonnegative matrix factorization in convolutive mixtures for audio source separation. IEEE Trans Audio Speech Lang Process 18:550–563. https://doi.org/10.1109/TASL.2009.2031510Ozerov A, Vincent E, Bimbot F (2012) A general flexible framework for the handling of prior information in audio source separation. IEEE Trans Audio Speech Lang Process 20:1118–1133. https://doi.org/10.1109/TASL.2011.2172425Pätynen J, Pulkki V, Lokki T (2008) Anechoic recording system for symphony orchestra. Acta Acust United Acust 94:856–865. https://doi.org/10.3813/AAA.918104Raphael C (2008) A classifier-based approach to score-guided source separation of musical audio. Comput Music J 32:51–59. https://doi.org/10.1162/comj.2008.32.1.51Rodriguez-Serrano FJ, Duan Z, Vera-Candeas P, Pardo B, Carabias-Orti JJ (2015) Online score-informed source separation with adaptive instrument models. J New Music Res 44:83–96. https://doi.org/10.1080/09298215.2014.989174Rodriguez-Serrano FJ, Carabias-Orti JJ, Vera-Candeas P, Martinez-Munoz D (2016) Tempo driven audio-to-score alignment using spectral decomposition and online dynamic time warping. ACM Trans Intell Syst Technol 8:1–20. https://doi.org/10.1145/2926717Sawada H, Araki S, Makino S (2011) Underdetermined convolutive blind source separation via frequency bin-wise clustering and permutation alignment. IEEE Trans Audio Speech Lang Process 19(3):516–527. https://doi.org/10.1109/TASL.2010.2051355Vincent E, Araki S, Theis F et al (2012) The signal separation evaluation campaign (2007–2010): achievements and remaining challenges. Signal Process 92:1928–1936. https://doi.org/10.1016/j.sigpro.2011.10.007Vincent E, Bertin N, Gribonval R, Bimbot F (2014) From blind to guided audio source separation: how models and side information can improve the separation of sound. IEEE Signal Process Mag 31:107–115. https://doi.org/10.1109/MSP.2013.229744

    Audio source separation techniques including novel time-frequency representation tools

    Get PDF
    The thesis explores the development of tools for audio representation with applications in Audio Source Separation and in the Music Information Retrieval (MIR) field. A novel constant Q transform was introduced, called IIR-CQT. The transform allows a flexible design and achieves low computational cost. Also, an independent development of the Fan Chirp Transform (FChT) with the focus on the representation of simultaneous sources is studied, which has several applications in the analysis of polyphonic music signals. Dierent applications are explored in the MIR field, some of them directly related with the low-level representation tools that were analyzed. One of these applications is the development of a visualization tool based in the FChT that proved to be useful for musicological analysis . The tool has been made available as an open source, freely available software. The proposed Transform has also been used to detect and track fundamental frequencies of harmonic sources in polyphonic music. Also, the information of the slope of the pitch was used to define a similarity measure between two harmonic components that are close in time. This measure helps to use clustering algorithms to track multiple sources in polyphonic music. Additionally, the FChT was used in the context of the Query by Humming application. One of the main limitations of such application is the construction of a search database. In this work, we propose an algorithm to automatically populate the database of an existing Query by Humming, with promising results. Finally, two audio source separation techniques are studied. The first one is the separation of harmonic signals based on the FChT. The second one is an application for which the fundamental frequency of the sources is assumed to be known (Score Informed Source Separation problem)

    Score-Informed Source Separation for Musical Audio Recordings [An overview]

    Get PDF
    (c) 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works

    Structured Dropout for Weak Label and Multi-Instance Learning and Its Application to Score-Informed Source Separation

    Full text link
    Many success stories involving deep neural networks are instances of supervised learning, where available labels power gradient-based learning methods. Creating such labels, however, can be expensive and thus there is increasing interest in weak labels which only provide coarse information, with uncertainty regarding time, location or value. Using such labels often leads to considerable challenges for the learning process. Current methods for weak-label training often employ standard supervised approaches that additionally reassign or prune labels during the learning process. The information gain, however, is often limited as only the importance of labels where the network already yields reasonable results is boosted. We propose treating weak-label training as an unsupervised problem and use the labels to guide the representation learning to induce structure. To this end, we propose two autoencoder extensions: class activity penalties and structured dropout. We demonstrate the capabilities of our approach in the context of score-informed source separation of music

    Multimodal music information processing and retrieval: survey and future challenges

    Full text link
    Towards improving the performance in various music information processing tasks, recent studies exploit different modalities able to capture diverse aspects of music. Such modalities include audio recordings, symbolic music scores, mid-level representations, motion, and gestural data, video recordings, editorial or cultural tags, lyrics and album cover arts. This paper critically reviews the various approaches adopted in Music Information Processing and Retrieval and highlights how multimodal algorithms can help Music Computing applications. First, we categorize the related literature based on the application they address. Subsequently, we analyze existing information fusion approaches, and we conclude with the set of challenges that Music Information Retrieval and Sound and Music Computing research communities should focus in the next years
    • …
    corecore