10 research outputs found

    Scientific exploration in the era of ocean observatories

    Get PDF
    Journal ArticleSociety's critical and urgent need to better understand the world's oceans is amply documented and has led to a unique convergence of operational and scientific interests in the US, organized around the concept of ocean observatories: cyber-­facilitated integrations of observations, simulations, and stakeholders. In particular, programs are emerging aimed at creating an operational Integrated Ocean Observing System (IOOS)1 to address broad society needs and an open, ocean-observing research infrastruc­ture (the Ocean Observatories Initia­tive [OOI]).

    Estimating behavior in a black box : how coastal oceanographic dynamics influence yearling Chinook salmon marine growth and migration behaviors

    Get PDF
    Ocean currents or temperature may substantially influence migration behavior in many marine species. However, high-resolution data on animal movement in the marine environment are scarce; therefore, analysts and managers must typically rely on unvalidated assumptions regarding movement, behavior, and habitat use. We used a spatially explicit, individual-based model of early marine migration with two stocks of yearling Chinook salmon to quantify the influence of external forces on estimates of swim speed, consumption, and growth. Model results suggest that salmon behaviorally compensate for changes in the strength and direction of ocean currents. These compensations can result in salmon swimming several times farther than their net movement (straight-line distance) would indicate. However, the magnitude of discrepancy between compensated and straight-line distances varied between oceanographic models. Nevertheless, estimates of relative swim speed among fish groups were less sensitive to the choice of model than estimates of absolute individual swim speed. By comparing groups of fish, this tool can be applied to management questions, such as how experiences and behavior may differ between groups of hatchery fish released early vs. later in the season. By taking into account the experiences and behavior of individual fish, as well as the influence of physical ocean processes, our approach helps illuminate the “black box” of juvenile salmon behavior in the early marine phase of the life cycle

    Evaluating Streaming Strategies for Event Processing across Infrastructure Clouds

    Get PDF
    International audienceInfrastructure clouds revolutionized the way in which we approach resource procurement by providing an easy way to lease compute and storage resources on short notice, for a short amount of time, and on a pay-as-you-go basis. This new opportunity, however, introduces new performance trade-offs. Making the right choices in leveraging different types of storage available in the cloud is particularly important for applications that depend on managing large amounts of data within and across clouds. An increasing number of such applications conformto a pattern in which data processing relies on streaming the data to a compute platform where a set of similar operations is repeatedly applied to independent chunks of data. This pattern is evident in virtual observatories such as the Ocean Observatory Initiative, in cases when new data is evaluated against existing features in geospatial computations or when experimental data is processed as a series of time events. In this paper, we propose two strategies for efficiently implementing such streaming in the cloud and evaluate them in the contextof an ATLAS application processing experimental data. Our results show that choosing the right cloud configuration can improve overall application performance by as much as three times

    Evaluating Streaming Strategies for Event Processing across Infrastructure Clouds

    Get PDF
    Abstract-Infrastructure clouds revolutionized the way in which we approach resource procurement by providing an easy way to lease compute and storage resources on short notice, for a short amount of time, and on a pay-as-you-go basis. This new opportunity, however, introduces new performance trade-offs. Making the right choices in leveraging different types of storage available in the cloud is particularly important for applications that depend on managing large amounts of data within and across clouds. An increasing number of such applications conform to a pattern in which data processing relies on streaming the data to a compute platform where a set of similar operations is repeatedly applied to independent chunks of data. This pattern is evident in virtual observatories such as the Ocean Observatory Initiative, in cases when new data is evaluated against existing features in geospatial computations or when experimental data is processed as a series of time events. In this paper, we propose two strategies for efficiently implementing such streaming in the cloud and evaluate them in the context of an ATLAS application processing experimental data. Our results show that choosing the right cloud configuration can improve overall application performance by as much as three times

    JetStream: Enabling high throughput live event streaming on multi-site clouds

    Get PDF
    International audienceScientific and commercial applications operate nowadays on tens of cloud datacenters around the globe, following similar patterns: they aggregate monitoring or sensor data, assess the QoS or run global data mining queries based on inter-site event stream processing. Enabling fast data transfers across geographically distributed sites allows such applications to manage the continuous streams of events in real time and quickly react to changes. However, traditional event processing engines often consider data resources as second-class citizens and support access to data only as a side-effect of computation (i.e. they are not concerned by the transfer of events from their source to the processing site). This is an efficient approach as long as the processing is executed in a single cluster where nodes are interconnected by low latency networks. In a distributed environment, consisting of multiple datacenters, with orders of magnitude differences in capabilities and connected by a WAN, this will undoubtedly lead to significant latency and performance variations. This is namely the challenge we address in this paper, by proposing JetStream, a high performance batch-based streaming middleware for efficient transfers of events between cloud datacenters. JetStream is able to self-adapt to the streaming conditions by modeling and monitoring a set of context parameters. It further aggregates the available bandwidth by enabling multi-route streaming across cloud sites, while at the same time optimizing resource utilization and increasing cost efficiency. The prototype was validated on tens of nodes from US and Europe datacenters of the Windows Azure cloud with synthetic benchmarks and a real-life application monitoring the ALICE experiment at CERN. The results show a 3x increase of the transfer rate using the adaptive multi-route streaming, compared to state of the art solutions

    Explorative coastal oceanographic visual analytics : oceans of data

    Get PDF
    The widely acknowledged challenge to data analysis and understanding, resulting from the exponential increase in volumes of data generated by increasingly complex modelling and sampling systems, is a problem experienced by many researchers, including ocean scientists. The thesis explores a visualization and visual analytics solution for predictive studies of coastal shelf and estuarine modelled, hydrodynamics undertaken to understand sea level rise, as a contribution to wider climate change studies, and to underpin coastal zone planning, flood prevention and extreme event management. But these studies are complex and require numerous simulations of estuarine hydrodynamics, generating extremely large datasets of multi-field data. This type\ud of data is acknowledged as difficult to visualize and analyse, as its numerous attributes present significant computational challenges, and ideally require a wide range of approaches to provide the necessary insight. These challenges are not easily overcome with the current visualization and analysis methodologies employed by coastal shelf hydrodynamic researchers, who use several software systems to generate graphs, each taking considerable time to operate, thus it is difficult to explore different scenarios and explore the data interactively and visually. The thesis, therefore, develops novel visualization and visual analytics techniques to help researchers overcome the limitations of existing methods (for example in understanding key tidal components); analyse data in a timely manner and explore different scenarios. There were a number of challenges to this: the size of the data, resulting in lengthy computing time, also many data values becoming plotted on one pixel (overplotting). The thesis presents: (1) a new visualization framework (VINCA) using caching and hierarchical aggregation techniques to make the data more interactive, plus explorative, coordinated multiple views, to enable the scientists to explore the data. (2) A novel estuarine transect profiler and flux tool, which provides instantaneous flux calculations across an estuary. Measures of flux are of great significance in oceanographic studies, yet are notoriously difficult and time consuming to calculate with the commonly used tools. This derived data is added back into the database for further investigation and analysis. (3) New views, including a novel, dynamic, spatially aggregated Parallel Coordinate Plots (Sa-PCP), are developed to provide different perspectives of the spatial, time dependent data, also methodologies for developing high-quality (journal ready) output from the visualization tool. Finally, (4) the dissertation explored the use of hierarchical data-structures and caching techniques to enable fast analysis on a desktop computer and to overcome the overplotting challenge for this data
    corecore