655 research outputs found

    Ultra-Reliable Low Latency Communication (URLLC) using Interface Diversity

    Full text link
    An important ingredient of the future 5G systems will be Ultra-Reliable Low-Latency Communication (URLLC). A way to offer URLLC without intervention in the baseband/PHY layer design is to use interface diversity and integrate multiple communication interfaces, each interface based on a different technology. In this work, we propose to use coding to seamlessly distribute coded payload and redundancy data across multiple available communication interfaces. We formulate an optimization problem to find the payload allocation weights that maximize the reliability at specific target latency values. In order to estimate the performance in terms of latency and reliability of such an integrated communication system, we propose an analysis framework that combines traditional reliability models with technology-specific latency probability distributions. Our model is capable to account for failure correlation among interfaces/technologies. By considering different scenarios, we find that optimized strategies can in some cases significantly outperform strategies based on kk-out-of-nn erasure codes, where the latter do not account for the characteristics of the different interfaces. The model has been validated through simulation and is supported by experimental results.Comment: Accepted for IEEE Transactions on Communication

    Resource Allocation in 4G and 5G Networks: A Review

    Get PDF
    The advent of 4G and 5G broadband wireless networks brings several challenges with respect to resource allocation in the networks. In an interconnected network of wireless devices, users, and devices, all compete for scarce resources which further emphasizes the fair and efficient allocation of those resources for the proper functioning of the networks. The purpose of this study is to discover the different factors that are involved in resource allocation in 4G and 5G networks. The methodology used was an empirical study using qualitative techniques by performing literature reviews on the state of art in 4G and 5G networks, analyze their respective architectures and resource allocation mechanisms, discover parameters, criteria and provide recommendations. It was observed that resource allocation is primarily done with radio resource in 4G and 5G networks, owing to their wireless nature, and resource allocation is measured in terms of delay, fairness, packet loss ratio, spectral efficiency, and throughput. Minimal consideration is given to other resources along the end-to-end 4G and 5G network architectures. This paper defines more types of resources, such as electrical energy, processor cycles and memory space, along end-to-end architectures, whose allocation processes need to be emphasized owing to the inclusion of software defined networking and network function virtualization in 5G network architectures. Thus, more criteria, such as electrical energy usage, processor cycle, and memory to evaluate resource allocation have been proposed.  Finally, ten recommendations have been made to enhance resource allocation along the whole 5G network architecture

    Quality of experience-centric management of adaptive video streaming services : status and challenges

    Get PDF
    Video streaming applications currently dominate Internet traffic. Particularly, HTTP Adaptive Streaming ( HAS) has emerged as the dominant standard for streaming videos over the best-effort Internet, thanks to its capability of matching the video quality to the available network resources. In HAS, the video client is equipped with a heuristic that dynamically decides the most suitable quality to stream the content, based on information such as the perceived network bandwidth or the video player buffer status. The goal of this heuristic is to optimize the quality as perceived by the user, the so-called Quality of Experience (QoE). Despite the many advantages brought by the adaptive streaming principle, optimizing users' QoE is far from trivial. Current heuristics are still suboptimal when sudden bandwidth drops occur, especially in wireless environments, thus leading to freezes in the video playout, the main factor influencing users' QoE. This issue is aggravated in case of live events, where the player buffer has to be kept as small as possible in order to reduce the playout delay between the user and the live signal. In light of the above, in recent years, several works have been proposed with the aim of extending the classical purely client-based structure of adaptive video streaming, in order to fully optimize users' QoE. In this article, a survey is presented of research works on this topic together with a classification based on where the optimization takes place. This classification goes beyond client-based heuristics to investigate the usage of server-and network-assisted architectures and of new application and transport layer protocols. In addition, we outline the major challenges currently arising in the field of multimedia delivery, which are going to be of extreme relevance in future years

    Delay tolerant video upload from public vehicles

    Get PDF
    In this paper we study a surveillance system for public transport vehicles, which is based on the collection of on-board videos, and the upload via wireless transmission to a central security system of video segments corresponding to those cameras and time intervals involved in an accident. We assume that vehicles are connected to several wireless interfaces, provided by different Mobile Network Operators (MNOs), each charging a different cost. Both the cost and the upload rate for each network interface change over time, according to the network load and the position of the vehicle. When a video must be uploaded to the central security, the system has to complete the upload within a deadline, deciding i) which interface(s) to use, ii) when to upload from that interface(s) and iii) at which rate to upload. The goal is to minimize the total cost of the upload, which we assume to be proportional to the data volume being transmitted and to the cost of using a given interface. We formalize the optimization problem and propose greedy heuristics. Results are generated, using real wireless bandwidth traces, showing that one of the proposed greedy heuristics comes very close to the optimal solution

    Delphi: A Software Controller for Mobile Network Selection

    Get PDF
    This paper presents Delphi, a mobile software controller that helps applications select the best network among available choices for their data transfers. Delphi optimizes a specified objective such as transfer completion time, or energy per byte transferred, or the monetary cost of a transfer. It has four components: a performance predictor that uses features gathered by a network monitor, and a traffic profiler to estimate transfer sizes near the start of a transfer, all fed into a network selector that uses the prediction and transfer size estimate to optimize an objective.For each transfer, Delphi either recommends the best single network to use, or recommends Multi-Path TCP (MPTCP), but crucially selects the network for MPTCP s primary subflow . The choice of primary subflow has a strong impact onthe transfer completion time, especially for short transfers.We designed and implemented Delphi in Linux. It requires no application modifications. Our evaluation shows that Delphi reduces application network transfer time by 46% for Web browsing and by 49% for video streaming, comparedwith Android s default policy of always using Wi-Fi when it is available. Delphi can also be configured to achieve high throughput while being battery-efficient: in this configuration, it achieves 1.9x the throughput of Android s default policy while only consuming 6% more energy

    Optimized traffic scheduling and routing in smart home networks

    Get PDF
    Home networks are evolving rapidly to include heterogeneous physical access and a large number of smart devices that generate different types of traffic with different distributions and different Quality of Service (QoS) requirements. Due to their particular architectures, which are very dense and very dynamic, the traditional one-pair-node shortest path solution is no longer efficient to handle inter-smart home networks (inter-SHNs) routing constraints such as delay, packet loss, and bandwidth in all-pair node heterogenous links. In addition, Current QoS-aware scheduling methods consider only the conventional priority metrics based on the IP Type of Service (ToS) field to make decisions for bandwidth allocation. Such priority based scheduling methods are not optimal to provide both QoS and Quality of Experience (QoE), especially for smart home applications, since higher priority traffic does not necessarily require higher stringent delay than lower-priority traffic. Moreover, current QoS-aware scheduling methods in the intra-smart home network (intra-SHN) do not consider concurrent traffic caused by the fluctuation of intra-SH network traffic distributions. Thus, the goal of this dissertation is to build an efficient heterogenous multi-constrained routing mechanism and an optimized traffic scheduling tool in order to maintain a cost-effective communication between all wired-wireless connected devices in inter-SHNs and to effectively process concurrent and non-concurrent traffic in intra-SHN. This will help Internet service providers (ISPs) and home user to enhance the overall QoS and QoE of their applications while maintaining a relevant communication in both inter-SHNs and intra-SHN. In order to meet this goal, three key issues are required to be addressed in our framework and are summarized as follows: i) how to build a cost-effective routing mechanism in heterogonous inter-SHNs ? ii) how to efficiently schedule the multi-sourced intra-SHN traffic based on both QoS and QoE ? and iii) how to design an optimized queuing model for intra-SHN concurrent traffics while considering their QoS requirements? As part of our contributions to solve the first problem highlighted above, we present an analytical framework for dynamically optimizing data flows in inter-SHNs using Software-defined networking (SDN). We formulate a QoS-based routing optimization problem as a constrained shortest path problem and then propose an optimized solution (QASDN) to determine minimal cost between all pairs of nodes in the network taking into account the different types of physical accesses and the network utilization patterns. To address the second issue and to solve the gaps between QoS and QoE, we propose a new queuing model for QoS-level Pair traffic with mixed arrival distributions in Smart Home network (QP-SH) to make a dynamic QoS-aware scheduling decision meeting delay requirements of all traffic while preserving their degrees of criticality. A new metric combining the ToS field and the maximum number of packets that can be processed by the system's service during the maximum required delay, is defined. Finally, as part of our contribution to address the third issue, we present an analytic model for a QoS-aware scheduling optimization of concurrent intra-SHN traffics with mixed arrival distributions and using probabilistic queuing disciplines. We formulate a hybrid QoS-aware scheduling problem for concurrent traffics in intra-SHN, propose an innovative queuing model (QC-SH) based on the auction economic model of game theory to provide a fair multiple access over different communication channels/ports, and design an applicable model to implement auction game on both sides; traffic sources and the home gateway, without changing the structure of the IEEE 802.11 standard. The results of our work offer SHNs more effective data transfer between all heterogenous connected devices with optimal resource utilization, a dynamic QoS/QoE-aware traffic processing in SHN as well as an innovative model for optimizing concurrent SHN traffic scheduling with enhanced fairness strategy. Numerical results show an improvement up to 90% for network resource utilization, 77% for bandwidth, 40% for scheduling with QoS and QoE and 57% for concurrent traffic scheduling delay using our proposed solutions compared with Traditional methods

    QOS-Aware and Status-Aware Adaptive Resource Allocation Framework in SDN-Based IOT Middleware

    Get PDF
    «L’Internet des objets (IdO) est une infrastructure mondiale pour la société de l’information, qui permet de disposer de services évolués en interconnectant des objets (physiques ou virtuels) grâce aux technologies de l’information et de la communication interopérables existantes ou en évolution. »[1] La vision de l’Internet des Objets est d’étendre l’Internet dans nos vies quotidiennes afin d’améliorer la qualité de vie des personnes, de sorte que le nombre d’appareils connectés et d’applications innovantes augmente très rapidement pour amener l’intelligence dans différents secteurs comme la ville, le transport ou la santé. En 2020, les études affirment que les appareils connectés à Internet devraient compter entre 26 milliards et 50 milliards d’unités. [2, 3] La qualité de service d’application IoT dépend non seulement du réseau Internet et de l’infrastructure de communication, mais aussi du fonctionnement et des performances des appareils IoT. Par conséquent, les nouveaux paramètres de QoS tels que la précision des données et la disponibilité des appareils deviennent importants pour les applications IoT par rapport aux applications Internet. Le grand nombre de dispositifs et d’applications IoT connectés à Internet, et le flux de trafic spontané entre eux rendent la gestion de la qualité de service complexe à travers l’infrastructure Internet. D’un autre côté, les dispositifs non-IP et leurs capacités limitées en termes d’énergie et de transmission créent l’environnement dynamique et contraint. De plus, l’interconnexion de bout en bout entre les dispositifs et les applications n’est pas possible. Aussi, les applications sont intéressées par les données collectées, pas à la source spécifique qui les produit. Le Software Defined Networking (SDN) est un nouveau paradigme pour les réseaux informatiques apparu récemment pour cacher la complexité de l’architecture de réseau traditionnelle (par exemple de l’Internet) et briser la fermeture des systèmes de réseau dans les fonctions de contrôle et de données. Il permet aux propriétaires et aux administrateurs de réseau de contrôler et de gérer le comportement du réseau par programme, en découplant le plan de contrôle du plan de données. SDN a le potentiel de révolutionner les réseaux informatiques classiques existants, en offrant plusieurs avantages tels que la gestion centralisée, la programmabilité du réseau, l’efficacité des coûts d’exploitation, et les innovations. Dans cette thèse, nous étudions la gestion de ressources sur l’infrastructure IoT, y compris les réseaux de transport/Internet et de détection. Nous profitons de la technologie SDN comme le futur d’Internet pour offrir un système de support QoS flexible et adaptatif pour les services IoT. Nous présentons un intergiciel basé sur SDN pour définir un cadre de gestion de QoS pour gérer les besoins spécifiques de chaque application à travers l’infrastructure IoT. De plus, nous proposons un nouveau modèle QoS qui prend en compte les préférences de QoS des applications et l’état des éléments de réseau pour allouer efficacement les ressources sur le réseau transport/Internet basé sur SDN tout en maximisant les performances du réseau.----------ABSTRACT: The Internet of Things (IoT) is an integration of various kinds of technologies, wherein heterogeneous objects with capabilities of sensing, actuation, communication, computation, networking, and storage are rapidly developed to collect the data for the users and applications. The IoT vision is to extend the Internet into our everyday lives, so the number of connected devices and innovative applications are growing very fast to bring intelligence into as many domains as possible. The QoS for IoT application not only depends on the Internet network and communication infrastructure, it is also impacted by the operation and performance of IoT sensing infrastructure. Therefore, the new QoS parameters such as data accuracy, sampling rate, and device availability become important for the IoT applications compared to the Internet applications. The huge number of the Internet-connected IoT devices and application, and the spontaneous traffic flow among them make the management of the quality of service complex across the Internet infrastructure. On the other hand, the non-IP devices and their limited capabilities in terms of energy and transmission create the dynamic environment and hinder the direct interaction between devices and applications. The quality of service is becoming one of the critical non-functional IoT element which needs research and studies. A flexible and scalable QoS management mechanism must be implemented in IoT system to keep up with the growth rate of the Internet-connected IoT devices and applications as well as their heterogeneity and diversity. The solution should address the IoT application requirements and user satisfaction while considering the system dynamism, limitations, and characteristics. Software-Defined Networking (SDN) is an emerging paradigm in computer networking which separates the control plane and the data plane of the network elements. It makes the network elements programmable via the centralized control plane. This approach enables more agile management and control over the network behavior. In this thesis, we take advantage of SDN technology as the future of the Internet to offer a flexible and adaptive QoS support scheme for the IoT services. We present an SDN-based middleware to define a QoS management framework to manage the application specific QoS needs across the IoT infrastructure including transport and sensing network. Also, we propose a new QoS model that takes into account the application QoS preferences and the network elements status to allocate effectively the resources for the applications across SDN network while maximizing network performance

    An Appropriate Parameterized Utility Technique On Heterogeneous Server Dependencies

    Get PDF
    A new server-based approach incorporated in Heterogeneous Servers. Current cloudinfrastructures are mostly homogeneous composed of a large number of machines of the same type – centrally managed and made available to the end user.In a cloud computing pattern, multiple resources types were utilizing. Users may have diverse resource needs. Furthermore, diversity in server properties/capabilities may mean that only a subset of servers may be usable by a given user. In platforms with such heterogeneity, we identify important limitations in existing multi-resource fair allocation mechanisms, notably Dominant Resource Fairness and its follow-up work. To overcome such limitations, we propose a new server-based approach; each server allocates resources by maximizing a per-server utility function. We propose a specific class of utility functions which, when appropriately parameterized, adjusts the trade-off between efficiency and fairness, and captures a variety of fairness measures. We establish conditions for the proposed mechanism to satisfy certain properties that are generally deemed desirable, e.g., envy-freeness, sharing incentive, bottleneck fairness, and Pareto optimality. To implement resource parameterized mechanism, we develop an iterative algorithm which is shown to be globally convergent on Heterogeneous server dependencies
    • …
    corecore