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Abstract: A new server-based approach incorporated in Heterogeneous Servers. Current 

cloudinfrastructures are mostly homogeneous composed of a large number of machines of the same type 

– centrally managed and made available to the end user.In a cloud computing pattern, multiple resources 

types were utilizing. Users may have diverse resource needs. Furthermore, diversity in server 

properties/capabilities may mean that only a subset of servers may be usable by a given user. In platforms 

with such heterogeneity, we identify important limitations in existing multi-resource fair allocation 

mechanisms, notably Dominant Resource Fairness and its follow-up work. To overcome such limitations, 

we propose a new server-based approach; each server allocates resources by maximizing a per-server 

utility function. We propose a specific class of utility functions which, when appropriately parameterized, 

adjusts the trade-off between efficiency and fairness, and captures a variety of fairness measures. We 

establish conditions for the proposed mechanism to satisfy certain properties that are generally deemed 

desirable, e.g., envy-freeness, sharing incentive, bottleneck fairness, and Pareto optimality. To implement 

resource parameterized mechanism, we develop an iterative algorithm which is shown to be globally 

convergent on Heterogeneous server dependencies. 
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INTRODUCTION 

A. Cloud computing 

It is the on-demand availability of computer system 

resources, especially data storage (cloud storage) and 

computing power, without direct active management 

by the user. The term is generally used to describe 

data centers available to many users over the Internet. 

Large clouds, predominant today, often have 

functions distributed over multiple locations from 

central servers. If the connection to the user is 

relatively close, it may be designated an edge server. 

Clouds may be limited to a single organization, or be 

available to multiple organizations (public cloud). 

Cloud computing relies on sharing of resources to 

achieve coherence and economies of scale. Advocates 

of public and hybrid clouds note that cloud computing 

allows companies to avoid or minimize up-front IT 

infrastructure costs. Proponents also claim that cloud 

computing allows enterprises to get their applications 

up and running faster, with improved manageability 

and less maintenance, and that it enables IT teams to 

more rapidly adjust resources to meet fluctuating and 

unpredictable demand, providing the burst computing 

capability: high computing power at certain periods of 

peak demand. 

Cloud computing has become increasingly popular as 

high-performance computing systems. As the 

workloads to data-centers housing cloud computing 

platforms are intensively growing, developing an 

efficient and fair allocation mechanism which 

guarantees quality-of-service for different workloads 

has become increasingly important. Efficient and fair 

resource allocation in such a shared computing system 

is particularly challenging because of (a) the presence 

of multiple types of resources, (b) diversity in the 

workloads’ needs for these resources, (c) 

heterogeneity in the resource capacities of servers, 

and (d) placement constraints on which servers may 

be used by a workload. In the following four 

paragraphs we briefly elaborate on each of these 

complexities. 

The multi-resource needs of cloud workloads imply 

thatconventional single-resource oriented notions of 

fairnessare inadequate [1]. Dominant Resource 

Fairness (DRF) isthe first allocation mechanism 

which describes a notion offairness for allocating 

multiple types of resources for a singleserver system. 

Using DRF users receive a fair share of theirdominant 

resource [1]. Of all the resources requested by theuser 

(for every unit of work called a task), its 

dominantresource is the one with the highest demand 

when demandsare expressed as fractions of the overall 

resource capacities. DRF is shown to achieve several 

properties that arecommonly considered desirable 

from a multi-resource fairallocation mechanism. 

Heterogeneity of workloads’ resource demands is 

anothercomplexity which results in a trade-off 

between efficiencyand fairness. Specifically, 

heterogeneity of users’ demandsmay preclude some 

resources from being fully utilized.Hence, the DRF 

allocation may result in a poor resourceutilization 

even when there is only one server [2], [3], [4].To 

address this issue, [2] proposed to allocate resources 

byapplying the so-called α-proportional fairness 

(instead ofmax-min fairness [5]) on dominant shares. 

The proposedmechanism, when appropriately 

parameterized, adjusts thetrade-off between efficiency 
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and fairness. However, it isapplicable only to a single 

server/resource-pool.In the case of multiple 

heterogeneous servers, there are several studies 

investigating/extending DRF allocation whenthere is 

no placement constraint [6], [7], [8]. In all of 

theseworks, fairness is defined in terms of a global 

metric, a scalarparameter defined in terms of different 

resources across allservers. E.g., [7] presents an 

extension to DRF where thedominant resource for 

each user is identified as if all resources were 

concatenated at one server, and subsequentlythe 

resources are allocated by applying max-min fairness 

onthe dominant shares. Since such a global metric 

may notperfectly capture the impact of server 

heterogeneity, suchapproaches may lead to an 

inefficient resource utilization. Moreover, such 

mechanisms maynot be readily implementable in a 

distributed fashion [9],as each server needs 

information on the available resourcesover all servers. 

Such information may not be available ateach server, 

especially in a cloud computing environmentwhere 

the resource capacities (and even activity of 

servers)might be churning. 

There are limited works in the literature 

investigatingmulti-resource fair allocation in the 

presence of user placement constraints [10], [11]. In 

this case, it is yet unclear howto globally identify the 

dominant resource as well as thedominant share for 

different users, as each one may have access only to a 

subset of servers. Work in [11] presents an extension 

to DRF identifying the user share by ignoring 

placement constraints and applying a similar approach 

as in an unconstrained setting. We show that this 

approach may not achieve fairness in the specific case 

that one of the resources serve as a bottleneck (see 

Section 2.2). In [12] we proposed a multi-resource 

fair allocation mechanism, called Per-Server 

Dominant Share Fairness (PSDSF), which is 

applicable to heterogeneous servers in the presence of 

placement constraints. The intuition behind PSDSF is 

to capture the impact of server heterogeneity 

bymeasuring the total allocated resources to each user 

explicitly from the perspective of each server. 

Specifically, PS-DSF 

identifies a virtual dominant share (VDS) for each 

user with respect to each server (as opposed to a 

single system-wide dominant share in DRF). The 

VDS for user n with respectto server iis defined as the 

ratio of xn- the total number of tasks allocated to user 

n - over the number of tasks executable by user n 

when monopolizing server i. Then the resources at 

each server are allocated by applying max-minfairness 

on VDS.This approach is amenable to a distributed 

implementation. It results in an enhanced performance 

over the existing mechanisms, and satisfies certain 

properties essential for fairallocation of resources 

[12]. 

 

 

B.Contributions 

In this paper, we build upon and generalize our 

proposed PS-DSF allocation mechanism [12] to 

capture the trade-off between efficiency and fairness. 

We concisely summarize ourcontributions. 

• We propose a new server-based formulation (which 

includes PS-DSF as a special case) to allocate 

resources while capturing server heterogeneity. The 

new formulation can be viewed as a concave game 

among different servers, where each server allocates 

resources by maximizing a per-server utility function. 

• We study a specific class of utility functions which 

results in an extension of α-proportional fairness on 

VDS. We show how the resulting allocation, which we 

call αPF-VDS, captures the trade-off between 

efficiency and fairnessby adjusting the parameter α. 

We show that αPF-VDS satisfies bottleneck fairness, 

envy-freeness and sharing incentive properties (as 

defined in Section 2.1) for α ≥ 1,and Pareto optimality  

forα = 1. 

• We develop a (centralized) convergent algorithm to 

implement our proposed mechanism. Towards this, 

we introduce an equivalent formulation for which we 

derive an iterative solution (Section 4 and 5.1). 

• We propose a simple heuristic to develop a 

distributed implementation for our resource allocation 

mechanism (Section 5.2). 

• We carry-out extensive simulations, driven by real-

worldtraces, to show the enhanced performance of our 

proposed mechanism (Section 6). 

C. Game – Theoretic Approach: 

There are several works in the literature which study 

the resource allocation problem in a cloud computing 

environment with a game-theoretic approach. Among 

these, [13], [14], [15] are limited to a single-

resourcesetting, while [16], [17], [18] consider a 

multi-resource environment. In these studies, the 

multi-resource allocation problem is formulated as a 

game, where each server strives to maximize a per-

server utility function. The utility function at each 

server is defined as the summation of resource 

utilization, minus the variance of a fairness-related 

metric for different users.  

The work in [16] aims at minimizing the variance of 

global dominant shares for different users. 

However, since it chooses DRF as the underlying 

notion of fairness, it has the same limitations as DRF 

for heterogeneous servers (see Section 2.2 for a 

discussion of such limitations). In [17], [18], a two-

stage mechanism is proposed wherein each user is 

initially assigned to a server/coalitionof-servers. 

Then, each server/coalition-of-servers strives to 

minimize the variance of the local dominant shares for 

the 

assigned users, while maximizing the resource 

utilization. Such a local implementation of DRF, 

however, may not satisfy bottleneck fairness in the 
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whole system. Moreover,these works need to solve an 

extensive form game with a huge strategy set space 

[16], [18], which may not be implementable in a 

distributed fashion. 

D. Single-resource fair scheduling  

There are some recentworks investigating max-min 

fair scheduling for one type of resource while 

respecting placement constraints [19], [20], [21], [22], 

[23]. A deadline-aware scheduler is also proposed in 

[24] which assign CPU cores to different users in a 

waythat their deadlines are met in a fair manner. 

These single resource schedulers could be useful in a 

multi-resource setting when one of the resources (e.g. 

CPU) is dominantly requested by all users.  

Implementation: 

Consider a set K of K heterogeneous 

servers/resourcepools1 each containing M types of 

resources. We denoteby ci,r≥ 0, the capacity (i.e., 

amount) of resource r(1, 2, · · · , M) on server i. We 

make thereasonable assumption that all resources on 

each server are arbitrarily divisibleamong the users 

running on it. Let N denote the set of Nactive users. 

Let φn>0 denote the weight associated withuser n. 

The eights reflect the priority of users with respectto 

each other. Let dn= [dn,r] denote the per task 

demandvector for user n ∈  N, i.e., the amount of each 

resourcerequired for executing one task for user n. Let 

xn,i∈R+denote the number of tasks that are allocated 

to user n fromserver i. Assuming linearly 

proportionate resource-needs2,xn,idn = [xn,idn,r] 

gives the amounts of different resourcesdemanded by 

user n from server i. 

Due to heterogeneity of users and servers, each user 

maybe restricted to get service only from a subset of 

servers.  

 

Fig. 1: A heterogeneous multi-resource system with 

two servers and four equally weighted users. 

For example, users may not run tasks on servers 

which lack some required resources. Furthermore, 

each user may have some special hardware/software 

requirements (e.g., public 

IP address, a particular kernel version, GPU, etc.) 

which further restrict the set of servers that the user’s 

tasks may run on. Let Ni = ∅ denote the set of eligible 

users for server i. The placement constraints imply 

that xn,i= 0, n / ∈  Ni, ∀ i. Such constraints are referred 

to as hard placement-constraints.  

Soft-constraints, such as data-locality, are another 

type of constraints which describe preferences of each 

user over different servers [19]. For instance, consider 

the example in Fig. 1, where three types of resources, 

CPU, RAM, and network bandwidth are available 

over two servers in the amounts of c1 =[12 cores, 

4GB, 75Mb/s] and c2 =[8 cores, 16GB, 0Mb/s], 

where no communication bandwidth is available over 

the second server; four users with their own demand 

vectors are also shown in the figure. In this example, 

the first two users require network bandwidth for 

execution of their tasks, so they are not eligible to run 

tasks on the second server. However, the last two 

users may run tasks on both servers. 

DOMINANT RESOURCE FAIRNESS 

Multi-resource fair allocation was originally studied 

in [1]under the assumption that all resources are 

aggregatedat one resource-pool. Specifically, let 

crdenote the totalcapacity of resource r. Let an = 

[an,r] denote the amountsof different resources 

allocated to user n under some allocation mechanism. 

The utilization of user n of its allocatedresources, 

Un(an), is defined as the number of tasks, xn,which 

could be executed using an, that is:Un(an) xn= 

minran,rdn,r. (1) 

In [1] the following properties are deemed desirable 

for amulti-resource allocation mechanism. 

• Sharing incentive: Each user is able to run more 

taskscompared to a uniform allocation where each 

user n isallocated a φn/ m φmfraction of each 

resource. 

• Envy freeness: A user should not prefer the 

allocationvector of another user when adjusted 

according to theirweights, i.e., it should hold that 

Un(an) ≥ Un( φφmnam) forall n, m. 

• Bottleneck fairness: If there is one resource which is 

dominantly requested by every user, then the 

allocation satisfiesmax-min fairness for that resource. 

• Pareto optimality: It should not be possible to 

increase thenumber of tasks xnfor any user n, without 

decreasing xmfor some other user(s). 

• Strategy proofness: Users should not be able to 

increasetheir utilization by erroneously declaring their 

resourcedemands. 

The reader is referred to [1] or [25] for further 

details.Sharing incentive provides some sort of 

performance isolation, as it guarantees a minimum 

utilization for eachuser irrespective of the demands of 

the other users. Envyfreeness embodies the notion of 

fairness. Bottleneck fairnessdescribes anecessary 

condition which applies to a specificcase that one 

resource is dominantly requested by every 

user, so that a single-resource notion of fairness is 

applicable.These three properties are essential to 

achieve fairness. So,we refer to them as essential 

fairness-related properties. Paretooptimality is a 
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benchmark for maximizing system utilization. Finally, 

strategy proofness prevents users from gaming 

the allocation mechanism. In our view these 

properties areapplicable mainly for private settings. In 

public settings,users pay explicit costs for their usage 

or allocations andthe provider’s goal is to maximize 

its profits subject to allocation guarantees for users. 

Even for private clouds, strategy 

proofness would only be necessary in settings where 

usersact selfishly. In many private settings, users are 

cooperativeand here strategy proofness is not needed. 

In view of this,we will not consider strategy 

proofness. 

DRF is the first multi-resource allocation 

mechanismsatisfying all the above 

properties.Specifically, for everyuser n, the Dominant 

Resource (DR) is defined as [1]:ρ(n) := 

argmaxrdn,r/cr, (2) that is, the resource whose 

greatest portion is required forexecution of one task 

for user n. The fraction of the DR thatis allocated to 

user n is defined as its dominant 

share:sn:=an,ρ(n)cρ(n). (3) 

Without loss of generality, we may restrict ourselves 

tonon-wasteful allocations, i.e., an = xndn, ∀n. 

Hence, anallocation {xn} is feasible when: nxndn,r≤ 

cr, ∀ r. (4) 

Definition 1. An allocation {xn} satisfies DRF, if it is 

feasibleand the weighted dominant share for each 

user, sn/φncannot beincreased while maintaining 

feasibility without decreasing smforsome user m with 

sm/φm≤ sn/φn[1]. 

DRF is a restatement of max-min fairness in terms of 

dominant shares. What make it appealing are the 

desirable properties which are satisfied by this 

allocation mechanism. 

A. Existing challenges with heterogeneous 

serversand placement constraints 

In case of heterogeneous servers (whether there are 

anyplacement constraints or not), a naturalapproach to 

extendDRF is to identify a system-wide dominant 

resource for each user, as if all resources were 

concatenated within a single virtual server. 

Specifically, let cr:= ici,rdenote the total capacity of 

resource r within such a virtual server. Then, one may 

identify the dominant resource for each user n 

according to (2). Furthermore, the global dominant 

share for user n is given by: sn= xnmaxrdn,rcr, (5) 

where xnis the total number of tasks that are allocated 

to user n from different servers, that is xn:= ixn,i. As 

in Definition 1, one may find an allocation {xn,i} 

which satisfies max-min fairness in terms of the 

global dominant shares [7]. Such an allocation, 

referred to as DRFH (DRF for Heterogeneous servers 

[7]), is shown to achieve Pareto optimality and envy 

freeness.  

However, it fails to provide sharing incentive [7]. We 

believe that the definition of bottleneck fairness 

employed by DRFH (with respect to a single virtual 

server that aggregates all resources) is also 

controversial. Specifically, if all users have the same 

dominant resource (with respect to the above 

mentioned virtual server), then DRFH satisfies max-

min fairness with respect to such a resource [7].  

In case of heterogeneous servers with placement 

constraints, however, one may consider other 

conditions under which a resource serves as a 

bottleneck. 

Definition 2. A resource ρ is said to be a bottleneck if 

for everyserveri:dn,ρci,ρ≥dn,rci,r, r, n, Ni. (6) 

If there exists a bottleneck resource, then the 

allocation should satisfy max-min fairness with 

respect to that resource. Unfortunately, DRFH does 

not satisfy bottleneck fairness in the sense of 

Definition 2. To appreciate this shortcoming of the 

DRFH mechanism, consider the example in Fig. 1, 

where the second resource (RAM) is dominantly 

requested by eligible users at each server. According 

to Definition 2, RAM is identified as the bottleneck 

resource in this example. 

To allocate the RAM resources in a fair manner, each 

user should be allocated x1 = x1,1 = 2 (i.e., two tasks 

from the first server), x2 = x2,1 = 6, x3 = x3,2 = 8 and 

x4 = x4,2 = 8 tasks, respectively (This allocation 

results from our proposed PS-DSF allocation 

mechanism [12]).  

On the otherhand, the DRFH mechanism would 

instead identify network bandwidth as the dominant 

resource for the first two users and RAM as the 

dominant resource for the last twousers. To achieve 

max-min fairness in terms of dominant shares, the 

DRFH mechanism allocates x1 = x2 = 3 and x3 = x4 

= 8 tasks to each user. Under such an allocation, the 

RAM resources are not allocated in a fair manner to 

the first two users. 

Yet another extension of DRF, which applies to 

heterogeneous servers in the presence of placement 

constraints, is TSF [11].  

As in [11], we letγn,iLet γn:= iγn,ibe defined as the 

number of tasks executable for user n when 

monopolizing all servers as if there were no 

placement constraints. An allocation is said to satisfy 

Task Share Fairness (TSF), when xn/γnsatisfies max-

min fairness [11]. When there is onlyone server, then 

xn/γnresults in the dominant share for each user n. In 

such a case, TSF reduces to DRF. In case of 

heterogeneous servers with placement constraints, 

TSF is shown to satisfy Pareto optimality, envy 

freeness and sharing incentive properties [11]. 

However, we show by example that this mechanism 

may not satisfy bottleneck fairness (neither in the 

sense of Definition 2, nor in the conventional sense 
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based on considering a single virtual server introduced 

above [12]). 

For instance, consider again the example in Fig. 1, 

where the second resource is identified as a bottleneck 

according to Definition 2. The number of tasks that 

each user may run in the whole cluster isγ1 = 4, γ2 = 

12, and γ3 = γ4 =4+ 16 = 20 tasks, respectively. 

Hence, each user is allocatedx1 = x1,1 = 5/3, x2 = x2,1 

= 5, x3 = x3,1+x3,2 = 8+1/3 =25/3 and x4 = x4,1 

+x4,2 = 8+1/3 = 25/3 tasks, accordingto the TSF 

mechanism, which differs from the fair allocationin 

this example. 

B. Per-server dominant share fairness (PS-DSF) 

In this subsection, we describe PS-DSF which we 

introduced in [12]. PS-DSF is an extension to DRF 

which is applicable for heterogeneous servers in the 

presence of placement constraints. The core idea of 

this mechanism is to introduce a “virtual dominant 

share” for every user, with respect to each server. 

Towards this, we first identify the dominant resource 

for every user n with respect to each serveri,  

ρ(n,i):=argmaxrdn,rci,r. (7) 

It is assumed that γn,i>0 for all n / Ni. We set γn,i= 0 

ifn / N 

 

Definition 3. The Virtual Dominant Share (VDS) for 

user n Niwith respect to server i, sn,i, is defined as: 

(9) 

where xn= j∈Kxn,jis the total number of tasks that 

areallocated to user n from every server j ∈  K.We 

have the following conditions on anallocation, x:= 

 
Definition 4. An allocation x satisfies PS-DSF, if it is 

feasibleand the allocated tasks to each user, xncannot 

be increased (whilemaintaining feasibility) without 

decreasing xm,ifor some user mand server i with 

sm,i/φm≤ sn,i/φn.Intuitively, sn,igives a measure of 

the total allocatedresources to user n from the 

perspective of server i. Inparticular, sn,igives the 

normalized share of the dominant resource for user n 

with respect to server iwhich should be allocated to it 

as if xntasks were allocated resources solely from 

server i(see the right hand side of (9)). The reader may 

note that sn,icould be possibly greater than 1, as some 

tasks might be allocated to user n from other servers. 

According to PS-DSF, the available resources at each 

server i are allocated by applying (weighted) max-min 

fairness on {sn,i}. It can be seen that PS-DSF reduces 

to DRF when there is only one server. 

 

To gain more intuition, consider again the example 

inFig. 1, but this time let d4 = [1, 0.5, 0]. In this case, 

each usermay run γ1,1 = 4, γ2,1 = 12, γ3,1 = 4, γ4,1 = 

8 tasks whenmonopolizing server 1. The third and the 

fourth users eachmay run γ3,2 = 16 and γ4,2 = 8 tasks 

when monopolizingserver 2. In order to satisfy PS-

DSF, each user should beallocated x1 = x1,1 = 2, x2 = 

x2,1 = 6, x3 = x3,2 = 32/3and x4 = x4,2 = 16/3 tasks, 

respectively. Therefore, theVDS (c.f. Definition 3) for 

each user with respect to the firstserver is s1,1 = s2,1 

= 0.5, s3,1 = 8/3 and s4,1 = 2/3. Also,the VDS for 

user 3 and 4 with respect to the second serveris s3,2 = 

s4,2 = 2/3. The reader can verify that for eachserver 

ithe allocated tasks to any user may not be increased 

without decreasing the allocated tasks to another user 

witha less or equal VDS. 

Intuitively, the RAM resources are dominantly 

requested by eligible users of the first server in this 

example.  

To achieve per-server dominant share fairness, the 

first server strives to allocate the RAM resources in a 

fair manner. Towards this, the last two users are not 

allocated resources from the first server, since there 

exists enough RAM for them over the second server. 

On the other hand, the second server identifies RAM 

as the dominant resource for User 3 and CPU as the 

dominant resource for User 4. To achieve PS-DSF, 

the second server needs to balance the respective 

dominant shares for User 3 and User 4. The resulting 

PS-DSF allocation is shown in Fig. 2. The DRFH and 

TSF allocations for this example are also illustrated in 

Fig. 2. Besides its desirable performance in terms of 

fairness, the PS-DSF allocation is observed to be more 
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efficient in utilizing different resources compared to 

the DRFH and TSF mechanisms. 

Table 1: Properties of different allocation mechanisms 

in case ofheterogeneous servers with placement 

constraints: sharing incentive(SI), envy freeness (EF), 

Pareto optimality (PO), and bottleneck fairness (BF). 

Property  DRFH  TSF  PS-DSF 

SI   Yes Yes 

EF   Yes Yes  Yes 

PO   Yes Yes  

BF    Yes 

Table 1:Compares essential sharing properties 

which are satisfied under different allocation 

mechanisms [12]. The reader may note that PS-DSF 

does not satisfy Pareto optimality in general. It is 

worth noting that Pareto optimality may not also be 

satisfied in other works, e.g., [17], [18], which aim at 

developing a distributed implementation for DRFH. 

PS-DSF not only is amenable to distributed 

implementation (as we show in [12]), but also may 

lead to moreefficient utilization of resources 

compared to the DRFH and TSF mechanisms [12] (as 

also can be observed in Fig. 2, or in the trace-driven 

simulations in Section 6). The intuitive reason for this 

is that each of the DRFH and TSF allocation 

mechanisms allocates resources based on a global 

metric. 

Since a global metric throws away information about 

the actual distribution of resources across servers, 

approaches based on it may not perfectly capture the 

impact of server heterogeneity, and therefore may 

lead to an inefficient resource utilization in 

heterogeneous settings. 

In summary, PS-DSF has been shown to satisfy the 

essential fairness-related properties, i.e., envy-

freeness, sharing incentive and bottleneck fairness, 

has been observed to offer highly efficient utilization 

of resources, and is amenable to distributed 

implementation [12]. 

PARAMETERIZED UTILITY TECHNIQUE ON 

HETEROGENEOUS SERVER DEPENDENCY 

As already discussed, in most of the existing multi-

resource allocation mechanisms, fairness is defined in 

terms of a global metric, a scalar parameter defined 

for each user in terms of different resources across all 

servers. Such mechanisms may not succeed in 

satisfying all the essential fairness-related properties 

(c.f. Section 2.2), may not readily be implementable 

in a distributed fashion, and may lead to inefficient 

resource utilization. In this section, we propose a new 

formulation for multi-resource allocation problem 

which is based on a per-server metric (as opposed to a 

global metric) for different users, so that server 

heterogeneity is captured. The proposed allocation 

mechanism is built upon our proposed PS-DSF 

allocation mechanism [12], which was briefly 

described in the previous section. It generalizes 

PSDSF in order to address the trade-off between 

efficiency and fairness. Furthermore, it inherits all the 

properties that are satisfied by PS-DSF. 

The properties of the αPF-VDS allocation mechanism 

In this section, we investigate different properties 

which are satisfied by the αPF-VDS mechanism6. In 

case of heterogeneous servers with placement 

constraints, we need to extend the notion of sharing 

incentive property. The notion of bottleneck fairness 

has been extended by Definition 2. Other properties, 

Pareto optimality and envy freeness follow the same 

definitions as described in Section 2. To generalize 

the sharing incentive property, consider a uniform 

allocation, where a fraction φn/ m φm of the available 

resources over each server (whether this server is 

eligible or not) is allocated to each user n. An 

allocation is said to satisfy sharing incentive, when 

each user is able to run more tasks compared to such a 

uniform allocation. 

A. Adjusting the resource utilization 

As discussed in Section 3.2 and shown in the example 

ofFig. 3, the resource utilization improves as the 

parameter αin the αPF-VDS mechanism gets smaller. 

In this subsectionwe further investigate this effect 

when applying this mechanism to real-world 

workloads. 

In the Bitbrain workload, users become 

active/incactivewith a relatively low rate. So, the 

resources could be allocated to different users/virtual-

machines in a semi-staticmanner. In this case, we do 

several experiments for differentsets of active users 

chosen at random instants of time. Inparticular, for 

each set of active users we find the αPF-

VDSallocation for α = 1, α = 3 and α = ∞. In case of α 

= 1and α = 3 we employ the distributed iterative 

algorithm proposed. 

 

Fig. 2: A data-center distributed over three different 

locations. 

There are three types of servers, where the 

configuration of resources (CPU and memory 
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respectively) for each type of server is as follows: (4 

GHz, 12 GBytes) for type 1, (8 GHz, 8 GBytes) for 

type 2, (16 GHz, 4 GBytes) for type 3. The storage 

devices are of two different types, where the 

read/write bandwidth for type 1, used at the first and 

the last cluster locations, is 32 MB/s, and for type 2, 

used at the second location, is 100 MB/s. Finally, 

there are two types of broadband connections, where 

the first type provides a bandwidth of 100 Mb/s (and 1 

Gb/s respectively) to send (receive) data, while the 

second type provides a bandwidth of 1 Gb/s (and 2 

Gb/s respectively) to send (receive) data. 

For α = ∞, we use the customized algorithm proposed 

in [12] to implement PS-DSF. The latter is also 

available open-source at [34], where it is prototyped 

for cluster scheduling with Apache-Mesos. Fig. 5 

shows the average processing time to find the PSDSF 

allocation and the αPF-VDS allocation for the 

computing cluster of Fig. 4, and for an expanded 

cluster where thenumber of users and servers are 

doubled. It can be observedthat the convergence time 

for the distributed iterative algorithm of Section 5.2 

increases as α gets larger. Such anoverhead (which is 

less than 1 second in a cluster withthousands of users) 

is acceptable for modest values of α,especially in a 

semi-static setting where the same allocationcan be 

used for at least a few minutes. For the case α = ∞,the 

customized PS-DSF allocation algorithm offers 

muchless processing time (around 0.03 second), 

which remainsin the same range even for the 

expanded cluster. 

In Fig. 2 we report the overall resource utilization 

thatis achieved on average over different servers and 

over100 runs, for different variants of αPF-VDS. As 

expected,the αPF-VDS results in a greater utilization 

of differentresources for smaller values of α. In this 

experiment, theimprovement in utilization could be 

significant as α rangesfrom ∞ to 1. 

For the Google workload, we allocate resources in 

asemi-dynamic manner. In particular, consider the 

computing cluster described in Table 3, where 2% of 

users from theGoogle traces are randomly chosen as 

the input workload. 

In such a setting, we decide to (re)allocate resources 

from the servers to demanding jobs (at least) every 5 

minutes. 

Specifically, given the resource usage for different 

tasks of each job by the Google traces, we may find 

the demand vector for each job (at the beginning of 

each 5 minutes interval) as the summation of the 

resource usage for different tasks (different tasks of 

the same job usually have proportional demands [32]). 

Given the total demand for each job, dn = [dn,r], we 

define an execution quantum for job n as a block of 

resources in the amount of d˜n := dn/ maxrdm,r 

that is allocated to job n for 1 second. Accordingly, 

job n demands qn := 300 maxrdm,r execution quanta 

for the next 5 minutes interval. We use the normalized 

demand vectors, {d˜n}, as the input to the αPF-VDS 

mechanism in order to find the number of tasks that 

are allocated to each job under this mechanism. Given 

the allocated tasks to each job, the completion time 

for job n is given by qn/xn. If a job leaves the system 

during the 5 minutes period, the released resources are 

reallocated among the remaining jobs.  

The number of execution quanta demanded by 

different jobs, and also their activity duration, span a 

quite wide range. Our observations over an interval of 

24 hours show that around 38% of jobs are completed 

within a 5 min period, while 16% of them are active 

more than 24 hours. 

 

Fig. 3: The average processing time to find the PS-

DSF allocation and the αPF-VDS allocation in the 

computing cluster of Fig. 2, and in an expanded 

cluster where the number of users and servers are 

doubled. The average is calculated over 10 different 

runs. The 95% confidence interval is shown at the top 

of each bar. 

 

Fig. 4: The overall resource utilization, averaged over 

different servers of the computing cluster of Fig. 4 

(serving the Bitbrain workload) and over 100 runs, for 

different variants of αPF-VDS: α = 1 (proportional 

fairness), α = 3, α = ∞ (PS-DSF). The 95% confidence 

interval is shown at the top of each bar. 

COMPARISON WITH EXISTING 

MECHANISMS 

In this subsection, we compare our proposed 

mechanismin terms of resource utilization against the 

known-proposedmulti-resource fair allocation 

mechanisms, which briefly described in Section 2.2. 
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Specifically, we compare the PS-DSFmechanism 

(which is the least efficient variant of αPF-

VDS),against the DRFH and TSF allocation 

mechanisms (whichall are applicable to heterogeneous 

servers in the presence ofplacement constraints). First, 

consider the computing clusterof Fig. 3feeded by the 

Bitbrain workload. We employ eachof the 

aforementioned mechanisms to allocate resources 

ofthe servers in Fig. 3 to different sets of active users 

chosenat random instants of time. The overall 

utilization thatis achieved by of each of these 

mechanisms for differentresources, is shown in Fig. 4, 

when averaged over differentservers and over 100 

runs. It can be observed that thePS-DSF allocation 

mechanism outperforms the two othermechanisms in 

terms of the achieved utilization for 

differentresources. In particular, the resource 

utilization is enhancedby the PS-DSF mechanism for 

up to 20% for some resources. 

We make similar observations with the Google 

traces.Specifically, consider again the computing 

cluster describedin Table 3, where 2% of jobs in the 

Google traces are randomly chosen as the input 

workload. We employ each of thePS-DSF, DRFH and 

TSF allocation mechanisms to allocate 

resources of the specified servers in Table 3 to 

demandingjobs over an interval of 24 hours. Fig. 4 

compares theoverall resource utilization (averaged 

over different servers)that is achieved by different 

allocation mechanisms. It canbe observed that PS-

DSF is again more efficient in utilizingdifferent 

resources, compared to the DRFH and TSF allocation 

mechanisms, while the achieved resource 

utilizationby DRFH and TSF mechanisms is almost 

the same11. Theoverall resource utilization that is 

achieved on average overthe 24 hour period is shown 

in Fig. 4 for different allocation mechanisms. The 

resource utilization over the last twoclasses of servers 

is also shown in Fig. 5. It can be observedthat the PS-

DSF allocation improves the resource utilizationover 

the last two classes of servers more significantly. 

 

Fig.5 The overall resource utilization, averaged over 

different servers of the computing cluster of Fig. 6 

(serving the Bitbrain workload) and over 100 runs, for 

different allocation mechanisms. The 95% confidence 

interval is shown at the top of each bar. 

 

Fig. 6: The overall resource utilization (averaged over 

different servers of the Google cluster) that is 

achieved by different allocation 

mechanisms during an interval of 24 hours. To get a 

better view, a moving average with a window size of 

1 hour is applied to all plots. 

Intuitively, the PS-DSF allocation mechanism 

allocatesresources at each server based on the per-

server virtualdominant shares. So, at each server it 

gives more priority tousers which may run more tasks 

(c.f. (9)). Hence, one mayexpect that the PS-DSF 

allocation mechanism results in agreater resource 

utilization compared to the DRFH and 

TSFmechanisms, especially when the resources are 

heterogeneously distributed over different servers. 

That is the reasonwhy a more significant increase in 

utilization is achieved bythe PS-DSF allocation over 

the last two classes of servers,where the resources are 

more heterogeneously distributed(the available 

resources over the first two classes of servers. 

 

Fig. 7: The overall resource utilization that is achieved 

on average inthe Google cluster over an interval of 24 

hours. 

in Table 3 are almost proportional to the overall 

resourcecapacities). This is also consistent with our 

observation inthe first experiment (with the Bitbrain 

workload), wherethe variety of resources along with 

the heterogeneity ofservers results in a significant 

outperformance by the PSDSF mechanism. 

CONCLUSION 

We studied an Appropriate Parameterized Utility 

Technique on Heterogeneous Server Dependencies in 

thepresence of placement constraints. We identified 

potential limitations in the existing multi-resource fair 

allocation and parameterized mechanisms, DRF and 
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its follow up work, when used in suchenvironments. 

In certain occasions, they may not succeed 

insatisfying all of the essential fairness-related 

parameterized properties, maynot be readily 

implementable in a distributed fashion, andmay lead 

to inefficient resource utilization. We proposeda new 

server-based approach to efficiently allocate 

resourceswhile capturing server heterogeneity. We 

showed how ourproposed αPF-VDS mechanism could 

be parameterized (byα) to adjust the trade-off between 

efficiency and fairness. 

Distributed parameterized implementation usually 

comes at the price ofdegrading the performance. Our 

proposed mechanism notonly is amenable to 

distributed implementation, but alsoresults in an 

enhanced resource utilization compared to theexisting 

mechanisms. We carried out extensive 

simulations,driven by real-world traces, to 

demonstrate and implementable in a distributed 

fashion. 
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