
Nava Ravi Kiran* et al.

 (IJITR) INTERNATIONAL JOURNAL OF INNOVATIVE TECHNOLOGY AND RESEARCH

Volume No.9, Issue No.1, December – January 2021, 9847-9856.

2320 –5547 @ 2013-2021 http://www.ijitr.com All rights Reserved. Page | 9847

An Appropriate Parameterized Utility Technique

On Heterogeneous Server Dependencies
NAVA RAVI KIRAN

Student of M.Tech (CSE), Department of Computer

Science & Engineering, Kakinada Institute of

Engineering & Technology, Korangi, AP

D . SRINUVAS
Asst. Prof, Dept. of Computer Science & Engineering,

Kakinada Institute of Engineering & Technology,

Korangi, AP

Abstract: A new server-based approach incorporated in Heterogeneous Servers. Current

cloudinfrastructures are mostly homogeneous composed of a large number of machines of the same type

– centrally managed and made available to the end user.In a cloud computing pattern, multiple resources

types were utilizing. Users may have diverse resource needs. Furthermore, diversity in server

properties/capabilities may mean that only a subset of servers may be usable by a given user. In platforms

with such heterogeneity, we identify important limitations in existing multi-resource fair allocation

mechanisms, notably Dominant Resource Fairness and its follow-up work. To overcome such limitations,

we propose a new server-based approach; each server allocates resources by maximizing a per-server

utility function. We propose a specific class of utility functions which, when appropriately parameterized,

adjusts the trade-off between efficiency and fairness, and captures a variety of fairness measures. We

establish conditions for the proposed mechanism to satisfy certain properties that are generally deemed

desirable, e.g., envy-freeness, sharing incentive, bottleneck fairness, and Pareto optimality. To implement

resource parameterized mechanism, we develop an iterative algorithm which is shown to be globally

convergent on Heterogeneous server dependencies.

Key words: Heterogeneous Server; Cloud computing pattern; Utility function;

INTRODUCTION

A. Cloud computing

It is the on-demand availability of computer system

resources, especially data storage (cloud storage) and

computing power, without direct active management

by the user. The term is generally used to describe

data centers available to many users over the Internet.

Large clouds, predominant today, often have

functions distributed over multiple locations from

central servers. If the connection to the user is

relatively close, it may be designated an edge server.

Clouds may be limited to a single organization, or be

available to multiple organizations (public cloud).

Cloud computing relies on sharing of resources to

achieve coherence and economies of scale. Advocates

of public and hybrid clouds note that cloud computing

allows companies to avoid or minimize up-front IT

infrastructure costs. Proponents also claim that cloud

computing allows enterprises to get their applications

up and running faster, with improved manageability

and less maintenance, and that it enables IT teams to

more rapidly adjust resources to meet fluctuating and

unpredictable demand, providing the burst computing

capability: high computing power at certain periods of

peak demand.

Cloud computing has become increasingly popular as

high-performance computing systems. As the

workloads to data-centers housing cloud computing

platforms are intensively growing, developing an

efficient and fair allocation mechanism which

guarantees quality-of-service for different workloads

has become increasingly important. Efficient and fair

resource allocation in such a shared computing system

is particularly challenging because of (a) the presence

of multiple types of resources, (b) diversity in the

workloads’ needs for these resources, (c)

heterogeneity in the resource capacities of servers,

and (d) placement constraints on which servers may

be used by a workload. In the following four

paragraphs we briefly elaborate on each of these

complexities.

The multi-resource needs of cloud workloads imply

thatconventional single-resource oriented notions of

fairnessare inadequate [1]. Dominant Resource

Fairness (DRF) isthe first allocation mechanism

which describes a notion offairness for allocating

multiple types of resources for a singleserver system.

Using DRF users receive a fair share of theirdominant

resource [1]. Of all the resources requested by theuser

(for every unit of work called a task), its

dominantresource is the one with the highest demand

when demandsare expressed as fractions of the overall

resource capacities. DRF is shown to achieve several

properties that arecommonly considered desirable

from a multi-resource fairallocation mechanism.

Heterogeneity of workloads’ resource demands is

anothercomplexity which results in a trade-off

between efficiencyand fairness. Specifically,

heterogeneity of users’ demandsmay preclude some

resources from being fully utilized.Hence, the DRF

allocation may result in a poor resourceutilization

even when there is only one server [2], [3], [4].To

address this issue, [2] proposed to allocate resources

byapplying the so-called α-proportional fairness

(instead ofmax-min fairness [5]) on dominant shares.

The proposedmechanism, when appropriately

parameterized, adjusts thetrade-off between efficiency

Nava Ravi Kiran* et al.

 (IJITR) INTERNATIONAL JOURNAL OF INNOVATIVE TECHNOLOGY AND RESEARCH

Volume No.9, Issue No.1, December – January 2021, 9847-9856.

2320 –5547 @ 2013-2021 http://www.ijitr.com All rights Reserved. Page | 9848

and fairness. However, it isapplicable only to a single

server/resource-pool.In the case of multiple

heterogeneous servers, there are several studies

investigating/extending DRF allocation whenthere is

no placement constraint [6], [7], [8]. In all of

theseworks, fairness is defined in terms of a global

metric, a scalarparameter defined in terms of different

resources across allservers. E.g., [7] presents an

extension to DRF where thedominant resource for

each user is identified as if all resources were

concatenated at one server, and subsequentlythe

resources are allocated by applying max-min fairness

onthe dominant shares. Since such a global metric

may notperfectly capture the impact of server

heterogeneity, suchapproaches may lead to an

inefficient resource utilization. Moreover, such

mechanisms maynot be readily implementable in a

distributed fashion [9],as each server needs

information on the available resourcesover all servers.

Such information may not be available ateach server,

especially in a cloud computing environmentwhere

the resource capacities (and even activity of

servers)might be churning.

There are limited works in the literature

investigatingmulti-resource fair allocation in the

presence of user placement constraints [10], [11]. In

this case, it is yet unclear howto globally identify the

dominant resource as well as thedominant share for

different users, as each one may have access only to a

subset of servers. Work in [11] presents an extension

to DRF identifying the user share by ignoring

placement constraints and applying a similar approach

as in an unconstrained setting. We show that this

approach may not achieve fairness in the specific case

that one of the resources serve as a bottleneck (see

Section 2.2). In [12] we proposed a multi-resource

fair allocation mechanism, called Per-Server

Dominant Share Fairness (PSDSF), which is

applicable to heterogeneous servers in the presence of

placement constraints. The intuition behind PSDSF is

to capture the impact of server heterogeneity

bymeasuring the total allocated resources to each user

explicitly from the perspective of each server.

Specifically, PS-DSF

identifies a virtual dominant share (VDS) for each

user with respect to each server (as opposed to a

single system-wide dominant share in DRF). The

VDS for user n with respectto server iis defined as the

ratio of xn- the total number of tasks allocated to user

n - over the number of tasks executable by user n

when monopolizing server i. Then the resources at

each server are allocated by applying max-minfairness

on VDS.This approach is amenable to a distributed

implementation. It results in an enhanced performance

over the existing mechanisms, and satisfies certain

properties essential for fairallocation of resources

[12].

B.Contributions

In this paper, we build upon and generalize our

proposed PS-DSF allocation mechanism [12] to

capture the trade-off between efficiency and fairness.

We concisely summarize ourcontributions.

• We propose a new server-based formulation (which

includes PS-DSF as a special case) to allocate

resources while capturing server heterogeneity. The

new formulation can be viewed as a concave game

among different servers, where each server allocates

resources by maximizing a per-server utility function.

• We study a specific class of utility functions which

results in an extension of α-proportional fairness on

VDS. We show how the resulting allocation, which we

call αPF-VDS, captures the trade-off between

efficiency and fairnessby adjusting the parameter α.

We show that αPF-VDS satisfies bottleneck fairness,

envy-freeness and sharing incentive properties (as

defined in Section 2.1) for α ≥ 1,and Pareto optimality

forα = 1.

• We develop a (centralized) convergent algorithm to

implement our proposed mechanism. Towards this,

we introduce an equivalent formulation for which we

derive an iterative solution (Section 4 and 5.1).

• We propose a simple heuristic to develop a

distributed implementation for our resource allocation

mechanism (Section 5.2).

• We carry-out extensive simulations, driven by real-

worldtraces, to show the enhanced performance of our

proposed mechanism (Section 6).

C. Game – Theoretic Approach:

There are several works in the literature which study

the resource allocation problem in a cloud computing

environment with a game-theoretic approach. Among

these, [13], [14], [15] are limited to a single-

resourcesetting, while [16], [17], [18] consider a

multi-resource environment. In these studies, the

multi-resource allocation problem is formulated as a

game, where each server strives to maximize a per-

server utility function. The utility function at each

server is defined as the summation of resource

utilization, minus the variance of a fairness-related

metric for different users.

The work in [16] aims at minimizing the variance of

global dominant shares for different users.

However, since it chooses DRF as the underlying

notion of fairness, it has the same limitations as DRF

for heterogeneous servers (see Section 2.2 for a

discussion of such limitations). In [17], [18], a two-

stage mechanism is proposed wherein each user is

initially assigned to a server/coalitionof-servers.

Then, each server/coalition-of-servers strives to

minimize the variance of the local dominant shares for

the

assigned users, while maximizing the resource

utilization. Such a local implementation of DRF,

however, may not satisfy bottleneck fairness in the

Nava Ravi Kiran* et al.

 (IJITR) INTERNATIONAL JOURNAL OF INNOVATIVE TECHNOLOGY AND RESEARCH

Volume No.9, Issue No.1, December – January 2021, 9847-9856.

2320 –5547 @ 2013-2021 http://www.ijitr.com All rights Reserved. Page | 9849

whole system. Moreover,these works need to solve an

extensive form game with a huge strategy set space

[16], [18], which may not be implementable in a

distributed fashion.

D. Single-resource fair scheduling

There are some recentworks investigating max-min

fair scheduling for one type of resource while

respecting placement constraints [19], [20], [21], [22],

[23]. A deadline-aware scheduler is also proposed in

[24] which assign CPU cores to different users in a

waythat their deadlines are met in a fair manner.

These single resource schedulers could be useful in a

multi-resource setting when one of the resources (e.g.

CPU) is dominantly requested by all users.

Implementation:

Consider a set K of K heterogeneous

servers/resourcepools1 each containing M types of

resources. We denoteby ci,r≥ 0, the capacity (i.e.,

amount) of resource r(1, 2, · · · , M) on server i. We

make thereasonable assumption that all resources on

each server are arbitrarily divisibleamong the users

running on it. Let N denote the set of Nactive users.

Let φn>0 denote the weight associated withuser n.

The eights reflect the priority of users with respectto

each other. Let dn= [dn,r] denote the per task

demandvector for user n ∈ N, i.e., the amount of each

resourcerequired for executing one task for user n. Let

xn,i∈R+denote the number of tasks that are allocated

to user n fromserver i. Assuming linearly

proportionate resource-needs2,xn,idn = [xn,idn,r]

gives the amounts of different resourcesdemanded by

user n from server i.

Due to heterogeneity of users and servers, each user

maybe restricted to get service only from a subset of

servers.

Fig. 1: A heterogeneous multi-resource system with

two servers and four equally weighted users.

For example, users may not run tasks on servers

which lack some required resources. Furthermore,

each user may have some special hardware/software

requirements (e.g., public

IP address, a particular kernel version, GPU, etc.)

which further restrict the set of servers that the user’s

tasks may run on. Let Ni = ∅ denote the set of eligible

users for server i. The placement constraints imply

that xn,i= 0, n / ∈ Ni, ∀ i. Such constraints are referred

to as hard placement-constraints.

Soft-constraints, such as data-locality, are another

type of constraints which describe preferences of each

user over different servers [19]. For instance, consider

the example in Fig. 1, where three types of resources,

CPU, RAM, and network bandwidth are available

over two servers in the amounts of c1 =[12 cores,

4GB, 75Mb/s] and c2 =[8 cores, 16GB, 0Mb/s],

where no communication bandwidth is available over

the second server; four users with their own demand

vectors are also shown in the figure. In this example,

the first two users require network bandwidth for

execution of their tasks, so they are not eligible to run

tasks on the second server. However, the last two

users may run tasks on both servers.

DOMINANT RESOURCE FAIRNESS

Multi-resource fair allocation was originally studied

in [1]under the assumption that all resources are

aggregatedat one resource-pool. Specifically, let

crdenote the totalcapacity of resource r. Let an =

[an,r] denote the amountsof different resources

allocated to user n under some allocation mechanism.

The utilization of user n of its allocatedresources,

Un(an), is defined as the number of tasks, xn,which

could be executed using an, that is:Un(an) xn=

minran,rdn,r. (1)

In [1] the following properties are deemed desirable

for amulti-resource allocation mechanism.

• Sharing incentive: Each user is able to run more

taskscompared to a uniform allocation where each

user n isallocated a φn/ m φmfraction of each

resource.

• Envy freeness: A user should not prefer the

allocationvector of another user when adjusted

according to theirweights, i.e., it should hold that

Un(an) ≥ Un(φφmnam) forall n, m.

• Bottleneck fairness: If there is one resource which is

dominantly requested by every user, then the

allocation satisfiesmax-min fairness for that resource.

• Pareto optimality: It should not be possible to

increase thenumber of tasks xnfor any user n, without

decreasing xmfor some other user(s).

• Strategy proofness: Users should not be able to

increasetheir utilization by erroneously declaring their

resourcedemands.

The reader is referred to [1] or [25] for further

details.Sharing incentive provides some sort of

performance isolation, as it guarantees a minimum

utilization for eachuser irrespective of the demands of

the other users. Envyfreeness embodies the notion of

fairness. Bottleneck fairnessdescribes anecessary

condition which applies to a specificcase that one

resource is dominantly requested by every

user, so that a single-resource notion of fairness is

applicable.These three properties are essential to

achieve fairness. So,we refer to them as essential

fairness-related properties. Paretooptimality is a

Nava Ravi Kiran* et al.

 (IJITR) INTERNATIONAL JOURNAL OF INNOVATIVE TECHNOLOGY AND RESEARCH

Volume No.9, Issue No.1, December – January 2021, 9847-9856.

2320 –5547 @ 2013-2021 http://www.ijitr.com All rights Reserved. Page | 9850

benchmark for maximizing system utilization. Finally,

strategy proofness prevents users from gaming

the allocation mechanism. In our view these

properties areapplicable mainly for private settings. In

public settings,users pay explicit costs for their usage

or allocations andthe provider’s goal is to maximize

its profits subject to allocation guarantees for users.

Even for private clouds, strategy

proofness would only be necessary in settings where

usersact selfishly. In many private settings, users are

cooperativeand here strategy proofness is not needed.

In view of this,we will not consider strategy

proofness.

DRF is the first multi-resource allocation

mechanismsatisfying all the above

properties.Specifically, for everyuser n, the Dominant

Resource (DR) is defined as [1]:ρ(n) :=

argmaxrdn,r/cr, (2) that is, the resource whose

greatest portion is required forexecution of one task

for user n. The fraction of the DR thatis allocated to

user n is defined as its dominant

share:sn:=an,ρ(n)cρ(n). (3)

Without loss of generality, we may restrict ourselves

tonon-wasteful allocations, i.e., an = xndn, ∀n.

Hence, anallocation {xn} is feasible when: nxndn,r≤

cr, ∀ r. (4)

Definition 1. An allocation {xn} satisfies DRF, if it is

feasibleand the weighted dominant share for each

user, sn/φncannot beincreased while maintaining

feasibility without decreasing smforsome user m with

sm/φm≤ sn/φn[1].

DRF is a restatement of max-min fairness in terms of

dominant shares. What make it appealing are the

desirable properties which are satisfied by this

allocation mechanism.

A. Existing challenges with heterogeneous

serversand placement constraints

In case of heterogeneous servers (whether there are

anyplacement constraints or not), a naturalapproach to

extendDRF is to identify a system-wide dominant

resource for each user, as if all resources were

concatenated within a single virtual server.

Specifically, let cr:= ici,rdenote the total capacity of

resource r within such a virtual server. Then, one may

identify the dominant resource for each user n

according to (2). Furthermore, the global dominant

share for user n is given by: sn= xnmaxrdn,rcr, (5)

where xnis the total number of tasks that are allocated

to user n from different servers, that is xn:= ixn,i. As

in Definition 1, one may find an allocation {xn,i}

which satisfies max-min fairness in terms of the

global dominant shares [7]. Such an allocation,

referred to as DRFH (DRF for Heterogeneous servers

[7]), is shown to achieve Pareto optimality and envy

freeness.

However, it fails to provide sharing incentive [7]. We

believe that the definition of bottleneck fairness

employed by DRFH (with respect to a single virtual

server that aggregates all resources) is also

controversial. Specifically, if all users have the same

dominant resource (with respect to the above

mentioned virtual server), then DRFH satisfies max-

min fairness with respect to such a resource [7].

In case of heterogeneous servers with placement

constraints, however, one may consider other

conditions under which a resource serves as a

bottleneck.

Definition 2. A resource ρ is said to be a bottleneck if

for everyserveri:dn,ρci,ρ≥dn,rci,r, r, n, Ni. (6)

If there exists a bottleneck resource, then the

allocation should satisfy max-min fairness with

respect to that resource. Unfortunately, DRFH does

not satisfy bottleneck fairness in the sense of

Definition 2. To appreciate this shortcoming of the

DRFH mechanism, consider the example in Fig. 1,

where the second resource (RAM) is dominantly

requested by eligible users at each server. According

to Definition 2, RAM is identified as the bottleneck

resource in this example.

To allocate the RAM resources in a fair manner, each

user should be allocated x1 = x1,1 = 2 (i.e., two tasks

from the first server), x2 = x2,1 = 6, x3 = x3,2 = 8 and

x4 = x4,2 = 8 tasks, respectively (This allocation

results from our proposed PS-DSF allocation

mechanism [12]).

On the otherhand, the DRFH mechanism would

instead identify network bandwidth as the dominant

resource for the first two users and RAM as the

dominant resource for the last twousers. To achieve

max-min fairness in terms of dominant shares, the

DRFH mechanism allocates x1 = x2 = 3 and x3 = x4

= 8 tasks to each user. Under such an allocation, the

RAM resources are not allocated in a fair manner to

the first two users.

Yet another extension of DRF, which applies to

heterogeneous servers in the presence of placement

constraints, is TSF [11].

As in [11], we letγn,iLet γn:= iγn,ibe defined as the

number of tasks executable for user n when

monopolizing all servers as if there were no

placement constraints. An allocation is said to satisfy

Task Share Fairness (TSF), when xn/γnsatisfies max-

min fairness [11]. When there is onlyone server, then

xn/γnresults in the dominant share for each user n. In

such a case, TSF reduces to DRF. In case of

heterogeneous servers with placement constraints,

TSF is shown to satisfy Pareto optimality, envy

freeness and sharing incentive properties [11].

However, we show by example that this mechanism

may not satisfy bottleneck fairness (neither in the

sense of Definition 2, nor in the conventional sense

Nava Ravi Kiran* et al.

 (IJITR) INTERNATIONAL JOURNAL OF INNOVATIVE TECHNOLOGY AND RESEARCH

Volume No.9, Issue No.1, December – January 2021, 9847-9856.

2320 –5547 @ 2013-2021 http://www.ijitr.com All rights Reserved. Page | 9851

based on considering a single virtual server introduced

above [12]).

For instance, consider again the example in Fig. 1,

where the second resource is identified as a bottleneck

according to Definition 2. The number of tasks that

each user may run in the whole cluster isγ1 = 4, γ2 =

12, and γ3 = γ4 =4+ 16 = 20 tasks, respectively.

Hence, each user is allocatedx1 = x1,1 = 5/3, x2 = x2,1

= 5, x3 = x3,1+x3,2 = 8+1/3 =25/3 and x4 = x4,1

+x4,2 = 8+1/3 = 25/3 tasks, accordingto the TSF

mechanism, which differs from the fair allocationin

this example.

B. Per-server dominant share fairness (PS-DSF)

In this subsection, we describe PS-DSF which we

introduced in [12]. PS-DSF is an extension to DRF

which is applicable for heterogeneous servers in the

presence of placement constraints. The core idea of

this mechanism is to introduce a “virtual dominant

share” for every user, with respect to each server.

Towards this, we first identify the dominant resource

for every user n with respect to each serveri,

ρ(n,i):=argmaxrdn,rci,r. (7)

It is assumed that γn,i>0 for all n / Ni. We set γn,i= 0

ifn / N

Definition 3. The Virtual Dominant Share (VDS) for

user n Niwith respect to server i, sn,i, is defined as:

(9)

where xn= j∈Kxn,jis the total number of tasks that

areallocated to user n from every server j ∈ K.We

have the following conditions on anallocation, x:=

Definition 4. An allocation x satisfies PS-DSF, if it is

feasibleand the allocated tasks to each user, xncannot

be increased (whilemaintaining feasibility) without

decreasing xm,ifor some user mand server i with

sm,i/φm≤ sn,i/φn.Intuitively, sn,igives a measure of

the total allocatedresources to user n from the

perspective of server i. Inparticular, sn,igives the

normalized share of the dominant resource for user n

with respect to server iwhich should be allocated to it

as if xntasks were allocated resources solely from

server i(see the right hand side of (9)). The reader may

note that sn,icould be possibly greater than 1, as some

tasks might be allocated to user n from other servers.

According to PS-DSF, the available resources at each

server i are allocated by applying (weighted) max-min

fairness on {sn,i}. It can be seen that PS-DSF reduces

to DRF when there is only one server.

To gain more intuition, consider again the example

inFig. 1, but this time let d4 = [1, 0.5, 0]. In this case,

each usermay run γ1,1 = 4, γ2,1 = 12, γ3,1 = 4, γ4,1 =

8 tasks whenmonopolizing server 1. The third and the

fourth users eachmay run γ3,2 = 16 and γ4,2 = 8 tasks

when monopolizingserver 2. In order to satisfy PS-

DSF, each user should beallocated x1 = x1,1 = 2, x2 =

x2,1 = 6, x3 = x3,2 = 32/3and x4 = x4,2 = 16/3 tasks,

respectively. Therefore, theVDS (c.f. Definition 3) for

each user with respect to the firstserver is s1,1 = s2,1

= 0.5, s3,1 = 8/3 and s4,1 = 2/3. Also,the VDS for

user 3 and 4 with respect to the second serveris s3,2 =

s4,2 = 2/3. The reader can verify that for eachserver

ithe allocated tasks to any user may not be increased

without decreasing the allocated tasks to another user

witha less or equal VDS.

Intuitively, the RAM resources are dominantly

requested by eligible users of the first server in this

example.

To achieve per-server dominant share fairness, the

first server strives to allocate the RAM resources in a

fair manner. Towards this, the last two users are not

allocated resources from the first server, since there

exists enough RAM for them over the second server.

On the other hand, the second server identifies RAM

as the dominant resource for User 3 and CPU as the

dominant resource for User 4. To achieve PS-DSF,

the second server needs to balance the respective

dominant shares for User 3 and User 4. The resulting

PS-DSF allocation is shown in Fig. 2. The DRFH and

TSF allocations for this example are also illustrated in

Fig. 2. Besides its desirable performance in terms of

fairness, the PS-DSF allocation is observed to be more

Nava Ravi Kiran* et al.

 (IJITR) INTERNATIONAL JOURNAL OF INNOVATIVE TECHNOLOGY AND RESEARCH

Volume No.9, Issue No.1, December – January 2021, 9847-9856.

2320 –5547 @ 2013-2021 http://www.ijitr.com All rights Reserved. Page | 9852

efficient in utilizing different resources compared to

the DRFH and TSF mechanisms.

Table 1: Properties of different allocation mechanisms

in case ofheterogeneous servers with placement

constraints: sharing incentive(SI), envy freeness (EF),

Pareto optimality (PO), and bottleneck fairness (BF).

Property DRFH TSF PS-DSF

SI Yes Yes

EF Yes Yes Yes

PO Yes Yes

BF Yes

Table 1:Compares essential sharing properties

which are satisfied under different allocation

mechanisms [12]. The reader may note that PS-DSF

does not satisfy Pareto optimality in general. It is

worth noting that Pareto optimality may not also be

satisfied in other works, e.g., [17], [18], which aim at

developing a distributed implementation for DRFH.

PS-DSF not only is amenable to distributed

implementation (as we show in [12]), but also may

lead to moreefficient utilization of resources

compared to the DRFH and TSF mechanisms [12] (as

also can be observed in Fig. 2, or in the trace-driven

simulations in Section 6). The intuitive reason for this

is that each of the DRFH and TSF allocation

mechanisms allocates resources based on a global

metric.

Since a global metric throws away information about

the actual distribution of resources across servers,

approaches based on it may not perfectly capture the

impact of server heterogeneity, and therefore may

lead to an inefficient resource utilization in

heterogeneous settings.

In summary, PS-DSF has been shown to satisfy the

essential fairness-related properties, i.e., envy-

freeness, sharing incentive and bottleneck fairness,

has been observed to offer highly efficient utilization

of resources, and is amenable to distributed

implementation [12].

PARAMETERIZED UTILITY TECHNIQUE ON

HETEROGENEOUS SERVER DEPENDENCY

As already discussed, in most of the existing multi-

resource allocation mechanisms, fairness is defined in

terms of a global metric, a scalar parameter defined

for each user in terms of different resources across all

servers. Such mechanisms may not succeed in

satisfying all the essential fairness-related properties

(c.f. Section 2.2), may not readily be implementable

in a distributed fashion, and may lead to inefficient

resource utilization. In this section, we propose a new

formulation for multi-resource allocation problem

which is based on a per-server metric (as opposed to a

global metric) for different users, so that server

heterogeneity is captured. The proposed allocation

mechanism is built upon our proposed PS-DSF

allocation mechanism [12], which was briefly

described in the previous section. It generalizes

PSDSF in order to address the trade-off between

efficiency and fairness. Furthermore, it inherits all the

properties that are satisfied by PS-DSF.

The properties of the αPF-VDS allocation mechanism

In this section, we investigate different properties

which are satisfied by the αPF-VDS mechanism6. In

case of heterogeneous servers with placement

constraints, we need to extend the notion of sharing

incentive property. The notion of bottleneck fairness

has been extended by Definition 2. Other properties,

Pareto optimality and envy freeness follow the same

definitions as described in Section 2. To generalize

the sharing incentive property, consider a uniform

allocation, where a fraction φn/ m φm of the available

resources over each server (whether this server is

eligible or not) is allocated to each user n. An

allocation is said to satisfy sharing incentive, when

each user is able to run more tasks compared to such a

uniform allocation.

A. Adjusting the resource utilization

As discussed in Section 3.2 and shown in the example

ofFig. 3, the resource utilization improves as the

parameter αin the αPF-VDS mechanism gets smaller.

In this subsectionwe further investigate this effect

when applying this mechanism to real-world

workloads.

In the Bitbrain workload, users become

active/incactivewith a relatively low rate. So, the

resources could be allocated to different users/virtual-

machines in a semi-staticmanner. In this case, we do

several experiments for differentsets of active users

chosen at random instants of time. Inparticular, for

each set of active users we find the αPF-

VDSallocation for α = 1, α = 3 and α = ∞. In case of α

= 1and α = 3 we employ the distributed iterative

algorithm proposed.

Fig. 2: A data-center distributed over three different

locations.

There are three types of servers, where the

configuration of resources (CPU and memory

Nava Ravi Kiran* et al.

 (IJITR) INTERNATIONAL JOURNAL OF INNOVATIVE TECHNOLOGY AND RESEARCH

Volume No.9, Issue No.1, December – January 2021, 9847-9856.

2320 –5547 @ 2013-2021 http://www.ijitr.com All rights Reserved. Page | 9853

respectively) for each type of server is as follows: (4

GHz, 12 GBytes) for type 1, (8 GHz, 8 GBytes) for

type 2, (16 GHz, 4 GBytes) for type 3. The storage

devices are of two different types, where the

read/write bandwidth for type 1, used at the first and

the last cluster locations, is 32 MB/s, and for type 2,

used at the second location, is 100 MB/s. Finally,

there are two types of broadband connections, where

the first type provides a bandwidth of 100 Mb/s (and 1

Gb/s respectively) to send (receive) data, while the

second type provides a bandwidth of 1 Gb/s (and 2

Gb/s respectively) to send (receive) data.

For α = ∞, we use the customized algorithm proposed

in [12] to implement PS-DSF. The latter is also

available open-source at [34], where it is prototyped

for cluster scheduling with Apache-Mesos. Fig. 5

shows the average processing time to find the PSDSF

allocation and the αPF-VDS allocation for the

computing cluster of Fig. 4, and for an expanded

cluster where thenumber of users and servers are

doubled. It can be observedthat the convergence time

for the distributed iterative algorithm of Section 5.2

increases as α gets larger. Such anoverhead (which is

less than 1 second in a cluster withthousands of users)

is acceptable for modest values of α,especially in a

semi-static setting where the same allocationcan be

used for at least a few minutes. For the case α = ∞,the

customized PS-DSF allocation algorithm offers

muchless processing time (around 0.03 second),

which remainsin the same range even for the

expanded cluster.

In Fig. 2 we report the overall resource utilization

thatis achieved on average over different servers and

over100 runs, for different variants of αPF-VDS. As

expected,the αPF-VDS results in a greater utilization

of differentresources for smaller values of α. In this

experiment, theimprovement in utilization could be

significant as α rangesfrom ∞ to 1.

For the Google workload, we allocate resources in

asemi-dynamic manner. In particular, consider the

computing cluster described in Table 3, where 2% of

users from theGoogle traces are randomly chosen as

the input workload.

In such a setting, we decide to (re)allocate resources

from the servers to demanding jobs (at least) every 5

minutes.

Specifically, given the resource usage for different

tasks of each job by the Google traces, we may find

the demand vector for each job (at the beginning of

each 5 minutes interval) as the summation of the

resource usage for different tasks (different tasks of

the same job usually have proportional demands [32]).

Given the total demand for each job, dn = [dn,r], we

define an execution quantum for job n as a block of

resources in the amount of d˜n := dn/ maxrdm,r

that is allocated to job n for 1 second. Accordingly,

job n demands qn := 300 maxrdm,r execution quanta

for the next 5 minutes interval. We use the normalized

demand vectors, {d˜n}, as the input to the αPF-VDS

mechanism in order to find the number of tasks that

are allocated to each job under this mechanism. Given

the allocated tasks to each job, the completion time

for job n is given by qn/xn. If a job leaves the system

during the 5 minutes period, the released resources are

reallocated among the remaining jobs.

The number of execution quanta demanded by

different jobs, and also their activity duration, span a

quite wide range. Our observations over an interval of

24 hours show that around 38% of jobs are completed

within a 5 min period, while 16% of them are active

more than 24 hours.

Fig. 3: The average processing time to find the PS-

DSF allocation and the αPF-VDS allocation in the

computing cluster of Fig. 2, and in an expanded

cluster where the number of users and servers are

doubled. The average is calculated over 10 different

runs. The 95% confidence interval is shown at the top

of each bar.

Fig. 4: The overall resource utilization, averaged over

different servers of the computing cluster of Fig. 4

(serving the Bitbrain workload) and over 100 runs, for

different variants of αPF-VDS: α = 1 (proportional

fairness), α = 3, α = ∞ (PS-DSF). The 95% confidence

interval is shown at the top of each bar.

COMPARISON WITH EXISTING

MECHANISMS

In this subsection, we compare our proposed

mechanismin terms of resource utilization against the

known-proposedmulti-resource fair allocation

mechanisms, which briefly described in Section 2.2.

Nava Ravi Kiran* et al.

 (IJITR) INTERNATIONAL JOURNAL OF INNOVATIVE TECHNOLOGY AND RESEARCH

Volume No.9, Issue No.1, December – January 2021, 9847-9856.

2320 –5547 @ 2013-2021 http://www.ijitr.com All rights Reserved. Page | 9854

Specifically, we compare the PS-DSFmechanism

(which is the least efficient variant of αPF-

VDS),against the DRFH and TSF allocation

mechanisms (whichall are applicable to heterogeneous

servers in the presence ofplacement constraints). First,

consider the computing clusterof Fig. 3feeded by the

Bitbrain workload. We employ eachof the

aforementioned mechanisms to allocate resources

ofthe servers in Fig. 3 to different sets of active users

chosenat random instants of time. The overall

utilization thatis achieved by of each of these

mechanisms for differentresources, is shown in Fig. 4,

when averaged over differentservers and over 100

runs. It can be observed that thePS-DSF allocation

mechanism outperforms the two othermechanisms in

terms of the achieved utilization for

differentresources. In particular, the resource

utilization is enhancedby the PS-DSF mechanism for

up to 20% for some resources.

We make similar observations with the Google

traces.Specifically, consider again the computing

cluster describedin Table 3, where 2% of jobs in the

Google traces are randomly chosen as the input

workload. We employ each of thePS-DSF, DRFH and

TSF allocation mechanisms to allocate

resources of the specified servers in Table 3 to

demandingjobs over an interval of 24 hours. Fig. 4

compares theoverall resource utilization (averaged

over different servers)that is achieved by different

allocation mechanisms. It canbe observed that PS-

DSF is again more efficient in utilizingdifferent

resources, compared to the DRFH and TSF allocation

mechanisms, while the achieved resource

utilizationby DRFH and TSF mechanisms is almost

the same11. Theoverall resource utilization that is

achieved on average overthe 24 hour period is shown

in Fig. 4 for different allocation mechanisms. The

resource utilization over the last twoclasses of servers

is also shown in Fig. 5. It can be observedthat the PS-

DSF allocation improves the resource utilizationover

the last two classes of servers more significantly.

Fig.5 The overall resource utilization, averaged over

different servers of the computing cluster of Fig. 6

(serving the Bitbrain workload) and over 100 runs, for

different allocation mechanisms. The 95% confidence

interval is shown at the top of each bar.

Fig. 6: The overall resource utilization (averaged over

different servers of the Google cluster) that is

achieved by different allocation

mechanisms during an interval of 24 hours. To get a

better view, a moving average with a window size of

1 hour is applied to all plots.

Intuitively, the PS-DSF allocation mechanism

allocatesresources at each server based on the per-

server virtualdominant shares. So, at each server it

gives more priority tousers which may run more tasks

(c.f. (9)). Hence, one mayexpect that the PS-DSF

allocation mechanism results in agreater resource

utilization compared to the DRFH and

TSFmechanisms, especially when the resources are

heterogeneously distributed over different servers.

That is the reasonwhy a more significant increase in

utilization is achieved bythe PS-DSF allocation over

the last two classes of servers,where the resources are

more heterogeneously distributed(the available

resources over the first two classes of servers.

Fig. 7: The overall resource utilization that is achieved

on average inthe Google cluster over an interval of 24

hours.

in Table 3 are almost proportional to the overall

resourcecapacities). This is also consistent with our

observation inthe first experiment (with the Bitbrain

workload), wherethe variety of resources along with

the heterogeneity ofservers results in a significant

outperformance by the PSDSF mechanism.

CONCLUSION

We studied an Appropriate Parameterized Utility

Technique on Heterogeneous Server Dependencies in

thepresence of placement constraints. We identified

potential limitations in the existing multi-resource fair

allocation and parameterized mechanisms, DRF and

Nava Ravi Kiran* et al.

 (IJITR) INTERNATIONAL JOURNAL OF INNOVATIVE TECHNOLOGY AND RESEARCH

Volume No.9, Issue No.1, December – January 2021, 9847-9856.

2320 –5547 @ 2013-2021 http://www.ijitr.com All rights Reserved. Page | 9855

its follow up work, when used in suchenvironments.

In certain occasions, they may not succeed

insatisfying all of the essential fairness-related

parameterized properties, maynot be readily

implementable in a distributed fashion, andmay lead

to inefficient resource utilization. We proposeda new

server-based approach to efficiently allocate

resourceswhile capturing server heterogeneity. We

showed how ourproposed αPF-VDS mechanism could

be parameterized (byα) to adjust the trade-off between

efficiency and fairness.

Distributed parameterized implementation usually

comes at the price ofdegrading the performance. Our

proposed mechanism notonly is amenable to

distributed implementation, but alsoresults in an

enhanced resource utilization compared to theexisting

mechanisms. We carried out extensive

simulations,driven by real-world traces, to

demonstrate and implementable in a distributed

fashion.

REFERENCES

[1] A. Ghodsi, M. Zaharia, B. Hindman, A.

Konwinski, S. Shenker, andI. Stoica,

“Dominant resource fairness: Fair allocation of

multiple resource types,” in Proc. NSDI, June

2011.

[2] C. Joe-Wong, S. Sen, T. Lan, and M. Chiang,

“Multi-resourceallocation: Fairness-efficiency

tradeoffs in a unifying framework,”

IEEE/ACM Trans. Networking, vol. 21, no. 6,

Dec. 2013.

[3] R. Grandl, G. Ananthanarayanan, S. Kandula,

S. Rao, andA. Akella, “Multi-resource packing

for cluster schedulers,” SIGCOMM Rev., vol.

44, no. 4, pp. 455–466, Aug. 2014.

[4] T. Bonald and J. Roberts, “Enhanced cluster

computing performance through proportional

fairness,” Performance Evaluation, vol. 79, pp.

134–145, 2014.

[5] D. Bertsekas and R. Gallager, Data networks.

Prentice Hall, 1992.

[6] E. Friedman, A. Ghodsi, and C.-A. Psomas,

“Strategyproof allocation of discrete jobs on

multiple machines,” in Proc. ACM Conf. On

Economics and Computation, June 2014.

[7] W. Wang, B. Liang, and B. Li, “Multi-resource

fair allocation inheterogeneous cloud

computing systems,” IEEE TPDS, vol. 26, no.

10, pp. 2822–2835, Oct 2015.

[8] M. Chowdhury, Z. Liu, A. Ghodsi, and I.

Stoica, “Hug: Multiresource fairness for

correlated and elastic demands,” in Proc.

NSDI, Mar 2016.

[9] Q. Zhu and J. C. Oh, “An approach to

dominant resource fairnessin distributed

environment,” in Proc. IEA-AIE, May 2015.

[10] Y. Tahir, S. Yang, A. Koliousis, and J.

McCann, “Udrf: Multiresource fairness for

complex jobs with placement constraints,” in

GLOBECOM, Dec 2015, pp. 1–7.

[11] W. Wang, B. Li, B. Liang, and J. Li, “Multi-

resource fair sharing fordatacenter jobs with

placement constraints,” in Proc. IEEE/ACM

Supercomputing, Nov. 2016.

[12] J. Khamse-Ashari, I. Lambadaris, G. Kesidis,

B. Urgaonkar, andY. Zhao, “Per-server

dominant-share fairness (ps-dsf): A

multiresource fair allocation mechanism for

heterogeneous servers,” inProc. IEEE ICC,

May, 2017.

[13] J. Bredin, R. T. Maheswaran, C. Imer, T.

Bas¸ar, D. Kotz, andD. Rus, “A game-theoretic

formulation of multi-agent resource

allocation,” in Proc. Autonomous Agents,

2000, pp. 349–356.

[14] V. Jalaparti and G. D. Nguyen, “Cloud

resource allocation games,”Tech. Rep., 2010.

[15] G. Wei, A. V. Vasilakos, Y. Zheng, and N.

Xiong, “A game-theoreticmethod of fair

resource allocation for cloud computing

services,” The journal of supercomputing, vol.

54, no. 2, 2010.

[16] X. Xu and H. Yu, “A game theory approach to

fair and efficientresource allocation in cloud

computing,” Mathematical Problems in

Engineering, vol. 2014, 2014.

[17] Q. Zhu and J. C. Oh, “Learning fairness under

constraints: Adecentralized resource allocation

game,” in Proc. IEEE ICMLA. IEEE, 2016, pp.

214–221.

[18] “Equality or efficiency: A game of distributed

multi-type fairresource allocation on

computational agents,” in Proc. IEEE/ACM

WI-IAT, vol. 2, 2015, pp. 139–142.

[19] A. Ghodsi, M. Zaharia, S. Shenker, and I.

Stoica, “Choosy: Maxmin fair sharing for

datacenter jobs with constraints,” in Proc.

ACM EuroSys, 2013, pp. 365–378.

[20] K. Yap, T. Huang, Y. Yiakoumis, S. Chinchali,

N. McKeown,and S. Katti, “Scheduling

packets over multiple interfaces while

respecting user preferences,” in Proc. ACM

coNEXT, Dec. 2013.

[21] J. Khamse-Ashari, I. Lambadaris, and Y. Q.

Zhao,“Constrained multi-user multi-server

max-min fair queuing,”

Nava Ravi Kiran* et al.

 (IJITR) INTERNATIONAL JOURNAL OF INNOVATIVE TECHNOLOGY AND RESEARCH

Volume No.9, Issue No.1, December – January 2021, 9847-9856.

2320 –5547 @ 2013-2021 http://www.ijitr.com All rights Reserved. Page | 9856

 http://arxiv.org/abs/1601.04749, Jan. 2016.

[22] J. Khamse-Ashari, G. Kesidis, I. Lambadaris,

B. Urgaonkar, andY. Zhao, “Efficient and fair

scheduling of placement constrained threads on

heterogeneous multi-processors,” in Proc.

IEEE DCPerf,Atlanta, USA, May 2017.

[23] “Constrained max-min fair scheduling of

variable-lengthpacket-flows to multiple

servers,” Springer Annals of Telecom., Aug

2017.

[24] S. Dimopoulos, C. Krintz, and R. Wolski,

“Justice: A deadlineaware, fair-share resource

allocator for implementing multianalytics,” in

proc. IEEE Cluster Computing, Sep 2017, pp.

233–244.

[25] D. Parkes, A. Procaccia, and N. Shah, “Beyond

dominant resourcefairness: Extensions,

limitations, and indivisibilities,” in Proc.

ACMEC, Valencia, Spain, June 2012.

[26] J. Mo and J. Walrand, “Fair end-to-end

window-based congestioncontrol,” IEEE/ACM

Trans. Networking, vol. 8, no. 5, Oct 2000.

[27] J. B. Rosen, “Existence and uniqueness of

equilibrium points forconcave n-person

games,” Econometrica: Journal of the

EconometricSociety, pp. 520–534, 1965.

[28] J. Khamse-Ashari, I. Lambadaris, G. Kesidis,

B. Urgaonkar, andY. Zhao, “An efficient and

fair multi-resource allocation mechanism for

heterogeneous servers,” Tech. Rep., Dec.,

2017, Availableat

 http://arxiv.org/abs/1712.10114.

AUTHOR’s PROFILE

NAVA RAVI KIRAN is pursuing M.Tech(CSE) in

the department of CSE from Kakinada Institute of

Engineering & Technology,Korangi.

D.SRINUVAS is working as an Assistant Professor in

Department of CSE, Kakinada Institute of

Engineering & Technology ,Korangi,Kakinada

