POLITECNICO DI TORINO
Repository ISTITUZIONALE

Delay tolerant video upload from public vehicles

Original

Delay tolerant video upload from public vehicles / SAFARI KHATOUNI, Ali; AJMONE MARSAN, Marco Giuseppe; Mellia,
Marco. - ELETTRONICO. - (2016), pp. 213-218. ((Intervento presentato al convegno Smart Cities and Urban Computing
(SmartCity 2016) tenutosi a San Francisco nel April 2016 [10.1109/INFCOMW.2016.7562074].

Availability:
This version is available at: 11583/2649841 since: 2018-03-19T14:31:44Z

Publisher:
ieeE - INST ELECTRICAL ELECTRONICS ENGINEERS INCe

Published
DOI:10.1109/INFCOMW.2016.7562074

Terms of use:
openAccess

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Publisher copyright
IEEE postprint/Author's Accepted Manuscript

©2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

08 November 2022



Delay Tolerant Video Upload from Public Vehicles

Ali Safari Khatouni!, Marco Ajmone Marsan’2, Marco Mellia!

IPolitecnico di Torino, Italy - name.lastname@polito.it
2Institute Imdea Networks, Spain

Abstract— In this paper we study a surveillance system for
public transport vehicles, which is based on the collection of
on-board videos, and the upload via wireless transmission to a
central security system of video segments corresponding to those
cameras and time intervals involved in an accident. We assume
that vehicles are connected to several wireless interfaces, provided
by different Mobile Network Operators (MNOs), each charging a
different cost. Both the cost and the upload rate for each network
interface change over time, according to the network load and
the position of the vehiclee. When a video must be uploaded
to the central security, the system has to complete the upload
within a deadline, deciding i) which interface(s) to use, ii) when
to upload from that interface(s) and iii) at which rate to upload.
The goal is to minimize the total cost of the upload, which we
assume to be proportional to the data volume being transmitted
and to the cost of using a given interface. We formalize the
optimization problem and propose greedy heuristics. Results are
generated, using real wireless bandwidth traces, showing that one
of the proposed greedy heuristics comes very close to the optimal
solution.

Keywords—Smart city, public transport, security, video upload,
wireless network, scheduling.

I. INTRODUCTION

Smart cities are emerging as an extremely promising and
challenging scenario for the application of ICT technologies,
and they aim to improve a wide range of aspects of our
lives. Among those, particularly relevant are urban transports,
security and safety. In this paper we investigate a problem
which is at the intersection of these three domains, and relates
to the use of wireless communications to monitor public
transport vehicles, such as buses, trams or metro trains.

In particular, we study a video surveillance system for
public transport vehicles, which is based on the collection of
on-board videos and their wireless transmission to a central
security system. Our interest is motivated and inspired by the
real needs of public transport operators. On public transport
vehicles, already now, several video cameras are installed,
each producing a video stream with rate from 1 Mb/s to
10 Mb/s. Continuous real-time video streaming from vehicles
to the central security system is considered too expensive in
data volume and in cost, and largely useless, because nothing
relevant happens on the vehicles most of the time. Videos are
thus stored on board, and when an alarm is triggered (e.g.,
when a customer or a driver reports a problem, or after a
complaint is filed), the Security Operator (SO) on duty in the
central security control station needs to access the portion of
the on-board videos which refers to the period of time of the
accident.

In traditional systems, videos are uploaded to the central
security system when the vehicle enters the depot, where cheap

and high-speed wireless connectivity is available. This forces
the SO to wait a long time before being able to investigate the
accident.

In this paper, we study a novel solution, which provides the
SO with near-real-time access to videos corresponding to those
cameras and time intervals involved in the accident. We assume
that the vehicle is connected to the network by means of
different wireless interfaces, through different Mobile Network
Operators (MNOs), each charging a different cost, from cheap
WiFi, to 3G/4G interfaces, or satellite links. Both the cost and
the upload rate for each network interface change over time,
according to the network load and the position of the vehicle.
We assume that, thanks to the repetitiveness of the public
vehicles routes, the system has created a performance map to
collect information about the expected network connectivity
performance along the route. (The creation of such map is
outside the scope of this paper.)

Once the SO requests a video, the system has to complete
the upload from the vehicle storage system within a given
deadline. The system has to decide i) which interface(s) to
use, ii) when to upload from that interface(s), and iii) at which
rate to upload. The goal is to minimize the total cost of the
upload, which we assume to be proportional to the data volume
being transmitted and to the cost of using a given interface. For
instance, assume that a video must be uploaded with a deadline
of 5 minutes, and that the cost of using a given operator (slow
and expensive) 3G interface is higher than the cost of using a
(fast and cheap) WiFi interface of a second operator. However,
the bus will enter the coverage area of the latter only in 3
minutes. In this context, is it better to wait entering under
WiFi coverage, or to start uploading the video now?

The video upload problem can be seen as an optimization
problem for which it is possible to obtain different formula-
tions, depending on the assumptions. We consider two different
approaches, which lead to two distinct and fundamentally
different models. In both cases we assume time is slotted.
If a network interface, at each time slot, can be only fully
devoted to the upload of a single video, the problem belongs
to the bin packing problem (BPP) family, which is a well-
known combinatorial and NP-hard problem [1]. If, instead,
the bandwidth offered by a network interface can be shared
between multiple videos, and the upload rate can be controlled
freely, the problem can be mapped to a Minimum Cost Flow
Problem (MCFP) which can be solved very efficiently [2].

The rest of this paper is organized as follows. In Section II
we describe the approach we use in the analysis, and we
describe a MCFP model, a BPP model, as well as three greedy
heuristics; in addition, we show that optimal solutions, even
for toy examples, can be tricky, and escape simple greedy
approaches. In Section III we briefly discuss related works.



Interfaces

(COST,RATE) 10,6)f(slot1
,6)
slot2
Videos 8, 4)
Vi slot3,
12, )
slot4
(14,
(. (0
10,6 slot5,
0,6
OURC
2,0))slot1
(0,4) 4,002 &0
2,2
\'%3 slot3, 2)
2,
slot4, 2
slot5, 0.2)

Fig. 1: An example to represent the model.

In Section IV we present some details on the setup considered
in the derivation of numerical results. In Section V we present
numerical results for realistic cases. Finally, in Section VI we
conclude the paper and we discuss future research issues.

II. MODEL FORMULATION

We model the scheduling problem using a directed graph
G = (N,E), where N = {i} is the set of nodes and E = {(i, )}
is the set of edges. Referring to Fig. 1, the leftmost node
represents the video source, i.e., the vehicle. The second group
of nodes represents the video files to be uploaded. Each video &
(2 videos in the example) is of volume Vj, and can be uploaded
through different interfaces, at different time slots, represented
by the third group of nodes. Each node in this group represents
a given interface and time slot. For ease of visualization, nodes
referring to the same interface (2 interfaces in the example) are
grouped by a box. The number of available time slots (5 in
the example) represents the deadline to meet (recall that we
consider slotted time). The rightmost node represents the sink,
i.e., the server receiving the videos.

All edges in E have a label containing two values: a cost
and a capacity. The label of edge (i,j) is denoted (c; j,r; ;).
The source node is connected to each video node. Edges
exiting from the source node have zero cost, and capacity equal
to the video file total size. Each video node is connected by a
directed edge to nodes representing a time slot and interface.
These edges are characterized by the cost per bit of using such
time slot and interface (c;,;), and the maximum flow f; ; that
can be supported by such time slot and interface (7; ;) in bits/s.
This model allows videos to have different deadlines. Indeed,
each video is connected only to the slots it can use. Each node
representing a time slot and interface is connected to the sink
with an edge with zero cost, and capacity equal to the time
slot capacity.

A. MCFP Model

In this first model, we assume that any interface can be
shared between any video at any time slot. We model the
problem as a Minimum Cost Flow Problem (MCFP), in which
we look for the maximum flow that the network can carry,
with the minimum total cost. The objective function in eq. (1)
represents the total upload cost, which must be minimized (¢ is
the slot duration). Eq. (2) forces flow conservation constraints.
It states that the sum of incoming flows at all nodes (except
source and sink) equals the sum of outgoing flows, i.e., flow
cannot disappear at intermediate nodes. The flow on every edge
is non-negative, and it cannot exceed the rate r; ;, see eq. (3).
Eq. (4) forces the total flow exiting from the source node to
be greater or equal to the sum of all requested videos, i.e., all
videos must leave the vehicle.

min Z Ci,jfi,jt (1)
(i,))eE
D fii= D fui Vi€Nij#SourceSink (2)
(i,))€E (,0)eE
OSf,-,J-Sr,-,J- V(i,j)EE 3)
fSource,j > Z Vz (4)
(Source,j)eE i
B. BPP Model

With the second model, each interface and time slot can
be assigned for transmission to a single video. Variables f; ;
become binary variables, equal to 1 if the edge (i,j) is used
to transfer data, O otherwise. We thus replace eq. (3, 4)
with eq. (5, 6) respectively. Since f;; € {0,1}, only one
variable in the sum can take the value 1, i.e., each time
slot can be used for the transmission of one video only.
Other equations and the objective function are the same as
before. This second formulation transforms the problem into
a Bin Packing Problem (BPP), which is well-known to be
NP-complete, and therefore no polynomial time algorithm can
solve it. We leave the analysis and solution of this second
problem for future work.

DU fip <1 VjeN,j# Sink (5)
(i,J)eE

fSource,jrSuurce,j 2 Z Vi (6)
i

(Source,j)eE

C. Heuristic Approaches
We consider three simple and intuitive greedy heuristics:

1) Greedy-in-time (GT) - This algorithm uploads all videos
through all interfaces as soon as possible. In other words,
the video with closest deadline is transmitted as soon as any
interface has an available slot to upload (part of) the video.

ii) Greedy-in-rate (GR) - This algorithm sorts time slots
according to decreasing transmission rate, and schedules trans-
mission through the highest-rate time slots. If rates are equal,
earlier time slots are preferred.



TABLE I: Comparing heuristics based on their complexity.

Time | Capacity | Cost Complexity
GT 1 - - Oo(1)
GC 2 - 1 O(T «I=N)
GR 2 1 O(T =1)

iii) Greedy-in-cost (GC) - This algorithm sorts time slots
according to increasing cost, and schedules transmission
through the cheapest time slots. If costs are equal, earlier time
slots are preferred.

All heuristics stop when eq. (4) is met, i.e., all videos
are uploaded. The first greedy algorithm guarantees that the
transfer is completed as soon as possible, while the second
one minimizes the number of time slots to use. Both disregard
the upload cost. Only the third algorithm explicitly considers
the cost of using different interfaces at different times.

Table I shows the priority of the time slot ordering and the
complexity of the three greedy heuristics.! T is the number
of time slots, / is the number of interfaces, and N is the
number of videos. The GT algorithm only needs the temporal
ordering of slots, which is given, so that complexity is O(1).
The GC algorithm needs the ordering of time slots according
to cost (which depends on the video and the interface), and
then according to time. The GR algorithm needs the ordering
according to slot capacity and then time.

...... aEmmmE= 1R
[ ]
n
XN ——
S GJ
n 4
5 i
X}
Cost V1
— ooz
t 2t 3t 4t St 6t

Time Slots

Fig. 2: Example to show how greedy approaches can perform
worse than the optimal solution.

In order to show that greedy approaches can produce a
solution which has suboptimal cost, we use a very simple
example with only one available interface, and 2 videos to be
uploaded, of sizes Vi = Vo = Rt, with the slot costs presented
in Fig. 2 with blue dotted and red solid lines, respectively, and
slot rates given by the green dashed line. Slots have duration
t seconds. The two videos have the same deadline equal to
6t, and each video can be uploaded in one time slot with
rate equal to R bits/s, or 2 time slots with rate R/2. We can
easily compute the total cost for uploading the two videos,
considering the greedy heuristics and the optimal solution. By
assuming that @ < B8, (¢ + 8) — 0, and N > 2, we have:

IComplexity may be reduced by presorting slots.

1)  Greedy-in-time - The two videos are uploaded in
the first two time slots (either one slot per video,
or sharing the slot capacity), without considering the
cost of slots. The total cost is 2N X Rt.

2)  Greedy-in-rate - The two videos are uploaded in the
first two time slots, which have highest rate, without
considering the cost of slots. The total cost is 2N X Rt.

3)  Greedy-in-cost - Since the upload of V, has the low-
est cost in the third and fourth time slots, which have
rate R/2, the upload of V; is scheduled in those slots.
The cost for the upload of V; is equal to XN in all
slots except the ones that are allocated to the upload
of V5. The first slot is chosen because of the high rate.
The total cost is NXRt + 2XRt/2 = (N + 1)XRt.

4)  Optimal solution - The solution based on MCFP
schedules the upload of V; in the third and fourth
time slots, and the upload of V; in the fifth and sixth
time slots. The total cost is (X + @)Rt + (X + B)Rt =

2XRt + (e +B)R!

We conclude that the total cost for Greedy-in-time and Greedy-
in-rate is N times higher with respect to the optimal solution.
Instead, the cost for Greedy-in-cost is (N + 1)/2 times higher
with respect to the optimal solution. By means of this example
we wish to show that greedy algorithms can generate solutions
with possibly much higher cost than the optimal solution for
the scheduling problem, even in very simple cases.

III. RELATED WORKS

Mobile devices allow users to connect to multiple wireless
access networks with possibly different technologies, obtaining
throughput values which depend on many factors, such as
the user position, the network coverage, the traffic load, the
weather conditions, etc. This makes the problem of scheduling
transmissions over multiple wireless interfaces both challeng-
ing and relevant, so that several works in this field have been
previously published [3].

Stochastic scheduling has been broadly studied in the
multi-processor, multi-server domains [4], [5]. This family
of works looks at the problem of allocating resources to re-
quests, such as processors to programs, when uncertainties are
associated with requests. The network availability in mobile
networks brings uncertainty in scheduling the operation of
mobile devices with multiple interfaces. This aspect has been
investigated recently by several authors. Rahmati et. al. [6]
presents a technique for estimating and learning the Wi-Fi
network conditions. Rathnayake et. al. [7] demonstrates how a
prediction engine is capable of forecasting future network and
bandwidth availability, and proposes a utility-based scheduling
algorithm which uses the predicted throughput to schedule the
data transfer over multiple interfaces.

Other works focused on scheduling under the assumption
that network throughput is known. Zaharia et. al. [8] presents
a model for the optimal scheduling over multiple network
interfaces, and proposes approaches to find the scheduling al-
gorithm which can be implemented with the limited resources
available in devices like cellular phones, PDA, etc.

Trace-driven scheduling is a reasonable approach to ex-
periment with algorithms in realistic conditions, since traces
provide credible data about the wireless network performance.



g

== 3G Upload Throughput

g

kbit/Sec

kbit/Sec

100 100

== 4G Upload Throughput == WiFi Upload Throughput

3 » @
8 g S

kbit/Sec

100

100 200 300 200 500 600 700 50 100 150

Time in Second
(a) 3G

200

Time in Second
(b) 4G

250 300 350 400 0 50 100 150 200 250 300 350 400

Time in Second
(c) WiFi

Fig. 3: Upload throughput based on traces

Riiser et. al. [9] used 3G mobile network traces® collected
onboard different types of public transport vehicles around
the city of Oslo (Norway) to measure the achieved through-
put when adaptive HTTP streaming runs in mobile devices
equipped with 3G networks. Chen et. al. [10] measured the
throughput, as well as several other performance metrics
of both single-path and multi-path data transport in cellular
networks, examining 3G, 4G, and Wi-Fi networks?.

Our work differs from previous research in several ways.
First, we do not consider stochastic scheduling, because we
deal with a trace-driven approach. Second, we consider the
delay tolerant upload of videos using different wireless tech-
nologies, while previous works mostly focus on download of
data while optimizing completion time. Third, our work is
different from [8] because they use utility-based scheduling
and they assume the cost and capacity of each interface
to be constant; instead, in our model we assume that cost
and capacity are not constant over time or across interfaces.
In addition, their goal is to find a solution which can be
implemented directly on the mobile device, while the fact that
we work in a near-real-time scenario with deadlines of the
order of several minutes, makes our problems solvable by a
centralized scheduler.

IV. EXPERIMENTS

In this section we describe the setup we use to test the
performance of the greedy algorithms and compare them
against the optimal solution. To use a realistic setting, we adopt
a trace-driven approach, based on the traces collected by Chen
et al. [10] in 2012. These traces record the upload data rate
available to wireless interfaces of different technologies (WiFi,
3G, 4G) on mobile devices in the Boston area. These data
are reported in Fig. 3. Each network interface has a different
profile, as expected. For instance, as we can see in Fig. 3c, the
WiFi interface exhibits periods of good coverage interlaced
with periods in which the upload data rate is close to zero. On
the contrary, the upload data rate offered by the 3G interface is
more stable along the whole considered interval. The lengths of
traces are 700 s for 3G, and 400 s for both 4G and WiFi. Since
public transport vehicles repeatedly follow a fixed path, when
a longer time span is necessary, we repeat the traces as many
times as necessary to reach the deadline. However, to allow for

2Traces are publicly available on https://heim.ifi.uio.no/paalh/dataset/hsdpa-
tcp-logs/. We thank the authors of [9] for allowing us to use them for some
experiments.

3We thank the authors of [10] for allowing us to use their traces.

some randomness, possibly resulting from deviations from the
expected behavior, the capacity of each interface at any specific
time slot is computed by sampling a Normal distribution with
mean and standard deviation equal to the trace value. The case
in which prediction errors are accounted for, calls for stochastic
programming approaches, but this will be the subject of future
work. Since deadlines in real cases are in the order of a few
minutes, the solution of the problem through a centralized
scheduler seems appropriate. The time slot duration is taken
to be 1 second, which should be small enough to account for
performance fluctuations. However, in our future work we plan
to study the impact of the slot duration. The average video size
is chosen to match the deadlines for the upload.

We considered two scenarios: 1) a small problem, with 2
videos to upload, using 3 different network interfaces for 3G,
4G, and WiFi; 2) a large problem, with 5 videos to upload,
using 10 different network interfaces in total, with 5, 4, and 1
interfaces of type 3G, 4G, and WiFi, respectively.

Each video is specified by two parameters: its size and its
deadline. The size of each video is randomly drawn from a
Normal distribution with average equal to 3 MB and standard
deviation equal to 1 MB. For experiments, we consider the
maximum number of available time slots in [200,1000] or
[200,10000] for small and large scenarios. Deadlines are
chosen in the last 25% of the available time slots, using a
uniform distribution. For example, if we have 200 slots, the
deadline is selected uniformly in the range [150,200]. The cost
associated with each interface at a given time slot is drawn
from a Normal distribution with average 3, 6 and, 9 for WiFi,
3G, and 4G, respectively, and with standard deviation equal to
1 for all types of network interfaces.

We used the IBM ILOG CPLEX Optimization Studio
12.6.0.0 [11] Solver Engine to find the optimal solution
of the MCFP formulation, while the greedy heuristics are
implemented in Python. Experiments were run on the high
performance computing cluster hpc@polito. We repeat each
experiment ten times, and measure the average and the confi-
dence interval for the following metrics: i) time to complete
the upload; ii) cost of the upload; and iii) CPU time for the
computation of the solution.

Intuitively, we can expect that any algorithm may force the
upload completion times to be very close to the deadline e.g.,
because of a very cheap slot appearing very late. This might
not be advisable, since network interfaces could experience
throughput values smaller than forecasted, so that the upload is



not completed within the time limit. To avoid this, we introduce
a penalty function for the use of slots close to the deadline.
The expression of the penalty function for slot i and video j
is the following:

cpij =cij* (P—(Dj—1t)/Dj) vt > D;/2 @)

where ¢ is the slot index, D; is the deadline of video j, ¢; ;
is the cost of slot i for video j before the penalty, and cp; ;
is the penalized cost of slot i for video j. P is the penalty
factor, which we choose in the set {1,2,5,10}. For t < D;/2
the slot costs are not penalized. The penalty function forces the
scheduler to find a solution which is more robust to variations
from the predicted throughput values. Indeed, it provides a
solution that leaves several unused time slots close to the
deadline; those slots provide a safety margin, and allow for
rescheduling, if necessary.

V. RESULTS

In this section we discuss the numerical results obtained
for the two scenarios described in Sec. IV.

A. Simple scenario

2518

‘‘‘‘‘‘‘ .||.*

15 == Solver solution
7 = Greedy-in-time
8 +ve Greedy-in-rate
o e=o Greedy-in-cost
M M M
L L L
0.5
0.0 " . . n . -
200 300 400 500 600 700 800 900 1000
Number of Time Slots
(a) Cost
1000
e Solver solution
= Greedy-in-time
80T o110 Greedy-in-rate
e=o Greedy-in-cost
[}
£ 600
-': -
- | S aaeemntt
© ECPTEL
o | et
o 400 "
=)
200
,,,,,,, FYILILAEE JLLILIE

(Z]OO 300 400 500 600 700 800 900 1000
Number of Time Slots

(b) Upload Time

Fig. 4: Results for the simple scenario.

The results in Fig. 4 refer to the simpler case, in which 2
videos have to be uploaded via 3 network interfaces. Fig. 4a
shows the total cost. As can be expected, the GR algorithm
incurs the highest upload cost, followed by GT. This is due to
the fact that both those heuristics neglect the cost values. The

GC algorithm provides cost values which are almost equal to
those of the optimal solution. As previously anticipated, the
total upload time in Fig. 4b, shows that the optimal solution
produces upload times very close to the deadline, as well as GC
when the number of slots is small, and GR when the number
of slots is large. On the contrary, GT yields very short upload
completion times, as expected.

The two main conclusions that we can draw from these
results are: i) that GR is dominated by GT, since the latter
provides lower cost and lower completion times, ii) that GC
achieves practically the same cost (not lower, of course) as the
optimal solution, with completion times similar, or even lower,
than the optimal solution.

B. Larger scenario with penalty function

We now consider the case of 5 videos and 10 network
interfaces, looking only at the GC algorithm and the optimal
solution, but also considering the introduction of the penalty
function defined in Sec. IV. Results are presented in Figs. 5, 6,
and 7, for the cost, the upload time, and the computation time,
respectively. Notice how cost decreases as the number of slots
increases (Fig. 5). The cost obtained by the two algorithms is
almost the same (of course, values achieved by the optimal
solution are never higher than the values obtained by GC).
Upload times are often shorter for the GC heuristic. We also
see that the introduction of the penalty function is effective in
bringing the completion times safely earlier than the deadlines.
(Fig. 6a vs. Figs. 6b,c,d)

Finally, we note that the computation times for GC are
shorter than those necessary for the solver to compute the op-
timal solution. These characteristics make GC a very effective
algorithm for the generation of simple but effective solutions
for the near-real-time video upload problem.

VI. CONCLUSIONS AND OUTLOOK

In this paper we studied a surveillance system for pub-
lic transport vehicles, which is based on the near-real-time
wireless slotted transmission of videos to a central security
system. We assumed that vehicles are connected to several
wireless interfaces, with variable, but predictable, cost and rate.
When a video must be uploaded, the system has to optimize
cost by choosing which interfaces to use, in which slots to
upload and at which rate, at the same time meeting a given
deadline. Three greedy heuristic were compared to the optimal
solution, showing that the greedy algorithm that looks at slot
cost provides solutions very close to optimal in terms of cost,
and often more advantageous in terms of upload time.

The further steps of the analysis will consider the variable
nature of mobile networks, whose performance depends on
parameters which cannot be predicted precisely. For instance,
social events, congestion, network outages, vehicle changes
of path, etc., can affect the actual upload performance. In
this case, online algorithms that can dynamically compute the
scheduling for the residual upload workload must be devised.
Practical issues must also be faced, e.g., the impact of the
transport protocol, the choice of video coding approaches, the
granularity of time slots, the interference between simultaneous
requests, etc. All of these features make this problem quite
challenging, and worth further investigation.



5000

a000)

Upload Time

1000

Torino®.

[2]

[3]

2000

== Solver solution = Solver solution
=== Greedy-in-cost 35 === Greedy-in-cost

CPU Time in second

000 ) 000

3000 3000 000 000 000 w000
Number of Time Slots Number of Time Slots

(a) Without penalty (b) Penalty with factor 2

= Solver solution
=== Greedy-in-cost

= Solver solution
=== Greedy-in-cost a0

Fig. 5: Cost

. . s000 .
= Solver solution — Solver solution
e Greedy-in-cost ==o Greedy-in-cost

000

3000

Upload Time

2000

oo 2000

..................... .

1600 000 000 00 5000

2060 E) o0 3000 E
Number of Time Slots Number of Time Slots

(a) Without penalty (b) Penalty with factor 2

s000

4000

Upload Time

2000

1000

000 000 000

w0 3000 000 000 000 W00
Number of Time Slots Number of Time Slots

(c) Penalty with factor 5 (d) Penalty with factor 10

s000
— Solver solution
Greedy-in-cost

— Solver solution
«=o Greedy-in-cost

4000

Upload Time

2000

- 1000

060 Sa00 000

7060 3060 060
Number of Time Slots

3600 300 000
Number of Time Slots

(c) Penalty with factor 5 (d) Penalty with factor 10

Fig. 6: Upload Time

CPU Time in second

== Solver solution
w . 4|
==s Greedy-in-cost

== Solver solution
=== Greedy-in-cost

CPU Time in second

(c) Penalty with factor 5

000 000 5300 000

w0 000 B 000 E
Number of Time Slots Number of Time Slots

(d) Penalty with factor 10

Fig. 7: CPU Time

= Solver solution = Solver solution
) Greedy-in-cost “Il avs Greedy-in-cost
» =
2
0 S
@
» -
o
» )
_____ F
e s >
______ g
w0 W
b franner™
oo e ) 00 oo T o5 e £
Number of Time Slots Number of Time Slots
(a) Without penalty (b) Penalty with factor 2
ACKNOWLEDGEMENTS

This work was funded by the MONROE [12] project
(grant agreement no. 644399) in the H2020-ICT-11-2014.
Computational resources were provided by hpc@polito, which
is a project of Academic Computing within the Department
of Control and Computer Engineering at the Politecnico di

4

REFERENCES

Martello, Silvano and Toth, Paolo, Knapsack Problems: Algorithms and
Computer Implementations. New York, NY, USA: John Wiley & Sons,
Inc., 1990.

Ahuja, Ravindra K.; Magnanti, Thomas L. and Orlin, James B., Network
Flows: Theory, Algorithms, and Applications. Upper Saddle River, NJ,
USA: Prentice-Hall, Inc., 1993.

Yap, Kok-Kiong; Huang, Te-Yuan; Yiakoumis, Yiannis; Chinchali,
Sandeep; McKeown, Nick and Katti, Sachin, “Scheduling packets over
multiple interfaces while respecting user preferences,” in Proceedings
of the Ninth ACM Conference on Emerging Networking Experiments
and Technologies, ser. CONEXT ’13. New York, NY, USA: ACM,
2013, pp. 109-120.

Yuan, Wanghong and Nahrstedt, Klara, “Energy-efficient soft real-time
cpu scheduling for mobile multimedia systems,” SIGOPS Oper. Syst.
Rev., vol. 37, no. 5, pp. 149-163, Oct. 2003.

“http://www.hpc.polito.it

(51

(6]

(71

(8]

(9]

[10]

[11]

[12]

Al-Zubaidy, Hussein; Lambadaris, Ioannis and Viniotis, Yannis, “Op-
timal scheduling in multi-server queues with random connectivity and
retransmissions,” Comput. Commun., vol. 35, no. 13, pp. 1626-1638,
Jul. 2012.

Rahmati, Ahmad and Zhong, Lin, “Context-for-wireless: Context-
sensitive energy-efficient wireless data transfer,” in Proceedings of the
5Sth International Conference on Mobile Systems, Applications and
Services, ser. MobiSys '07. New York, NY, USA: ACM, 2007, pp.
165-178.

Rathnayake, Upendra; Petander, Henrik and Ott, Maximilian, “Emune:
Architecture for mobile data transfer scheduling with network availabil-
ity predictions,” Springer US, 2012-04.

Zaharia, Matei A. and Keshav, Srinivasan, “Fast and optimal scheduling
over multiple network interfaces,” University of Waterloo, Tech. Rep.,
2007.

Riiser, Haakon; Vigmostad, Paul; Griwodz, Carsten and Halvorsen,
Pal, “Commute path bandwidth traces from 3g networks: Analysis
and applications,” in Proceedings of the 4th ACM Multimedia Systems
Conference, ser. MMSys "13. New York, NY, USA: ACM, 2013, pp.
114-118.

Chen, Yung-Chih; Nahum, Erich M.; Gibbens, Richard J.; Towsley, Don
and Lim, Yeon-sup, “Characterizing 4g and 3g networks: Supporting
mobility with multi-path tcp,” UMass Amherst Technical Report, Tech.
Rep., 2012.

“IBM ILOG CPLEX Optimization Studio 12.6.0.0.” [Online]. Avail-
able: http://www-01.ibm.com/support/knowledgecenter/SSSASP_12.6.
0/ilog.odms.studio.help/Optimization_Studio/topics/COS_home.html

[Online]. Available: https://www.monroe-project.eu/



