1,693 research outputs found

    Scheduling linear deteriorating jobs with an availability constraint on a single machine

    Get PDF
    2006-2007 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe

    Parallel-machine scheduling with simple linear deterioration to minimize total completion time

    Get PDF
    2007-2008 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe

    A common framework and taxonomy for multicriteria scheduling problems with Interfering and competing Jobs: Multi-agent scheduling problems

    Get PDF
    Most classical scheduling research assumes that the objectives sought are common to all jobs to be scheduled. However, many real-life applications can be modeled by considering different sets of jobs, each one with its own objective(s), and an increasing number of papers addressing these problems has appeared over the last few years. Since so far the area lacks a uni ed view, the studied problems have received different names (such as interfering jobs, multi-agent scheduling, mixed-criteria, etc), some authors do not seem to be aware of important contributions in related problems, and solution procedures are often developed without taking into account existing ones. Therefore, the topic is in need of a common framework that allows for a systematic recollection of existing contributions, as well as a clear de nition of the main research avenues. In this paper we review multicriteria scheduling problems involving two or more sets of jobs and propose an uni ed framework providing a common de nition, name and notation for these problems. Moreover, we systematically review and classify the existing contributions in terms of the complexity of the problems and the proposed solution procedures, discuss the main advances, and point out future research lines in the topic

    A single-machine scheduling problem with multiple unavailability constraints: A mathematical model and an enhanced variable neighborhood search approach

    Get PDF
    AbstractThis research focuses on a scheduling problem with multiple unavailability periods and distinct due dates. The objective is to minimize the sum of maximum earliness and tardiness of jobs. In order to optimize the problem exactly a mathematical model is proposed. However due to computational difficulties for large instances of the considered problem a modified variable neighborhood search (VNS) is developed. In basic VNS, the searching process to achieve to global optimum or near global optimum solution is totally random, and it is known as one of the weaknesses of this algorithm. To tackle this weakness, a VNS algorithm is combined with a knowledge module. In the proposed VNS, knowledge module extracts the knowledge of good solution and save them in memory and feed it back to the algorithm during the search process. Computational results show that the proposed algorithm is efficient and effective

    Simple assembly line balancing problem under task deterioration

    Get PDF
    This paper introduces the effect of task deterioration in simple assembly line balancing problem. In many realistic assembly lines, a deterioration task is considered when a task is started earlier than the assigned time since the station time is constant and the earliness of the task does not reduce the cycle time. This phenomenon is known as deteriorating tasks. Therefore, we seek an optimal assignment and schedule of tasks in workstations, in order to minimize the number of stations for a given cycle time, which is known as SALBP-1. For this purpose, a mathematical model is proposed. Since the pure SALBP-1 is proved to be NP-hard and considering task deterioration complicates problem further, we propose a genetic algorithm for solving such problem. Several well-known test problems are solved to study the performance of the proposed approach

    Single machine parallel-batch scheduling with deteriorating jobs

    Get PDF
    AbstractWe consider several single machine parallel-batch scheduling problems in which the processing time of a job is a linear function of its starting time. We give a polynomial-time algorithm for minimizing the maximum cost, an O(n5) time algorithm for minimizing the number of tardy jobs, and an O(n2) time algorithm for minimizing the total weighted completion time. Furthermore, we prove that the problem for minimizing the weighted number of tardy jobs is binary NP-hard

    A multi-criteria model for maintenance job scheduling

    Get PDF
    This paper presents a multi-criteria maintenance job scheduling model, which is formulated using a weighted multi-criteria integer linear programming maintenance scheduling framework. Three criteria, which have direct relationship with the primary objectives of a typical production setting, were used. These criteria are namely minimization of equipment idle time, manpower idle time and lateness of job with unit parity. The mathematical model constrained by available equipment, manpower and job available time within planning horizon was tested with a 10-job, 8-hour time horizon problem with declared equipment and manpower available as against the required. The results, analysis and illustrations justify multi-criteria consideration. Thus, maintenance managers are equipped with a tool for adequate decision making that guides against error in the accumulated data which may lead to wrong decision making. The idea presented is new since it provides an approach that has not been documented previously in the literature
    corecore