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Abstract

We consider the parallel-machine scheduling problem in which the processing time of a job is a simple

linear increasing function of its starting time. The objective is to minimize the total completion

time. We give a fully polynomial-time approximation scheme (FPTAS) for the case with m identical

machines, where m is fixed. This study solves an open problem that has been posed in the literature

for ten years.
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1 Introduction

For most scheduling problems it is assumed that the job processing times are fixed parameters [14].

However, such restrictive assumptions represent an oversimplified view of reality. Job processing

times are not necessarily fixed because jobs may deteriorate while waiting to be processed. Examples

can be found in financial management, steel production, resource allocation and national defence,

etc., where any delay in processing a job may result in deterioration in accomplishing the job. For

a list of applications, the reader is referred to [2, 10, 11, 13]. Such problems are generally known as

the deteriorating job scheduling problem.

Work on the deteriorating job scheduling problem was initiated by Brown and Yechiali [2],

and Gupta and Gupta [6]. They focused on the single-machine makespan problem under the linear

deteriorating condition. Since then, scheduling problems with time-dependent processing times have

received increasing attention. An extensive survey of different models and problems was provided

by Alidaee and Womer [1]. Cheng, Ding and Lin [5] recently presented an updated survey of the

results on scheduling problems with time-dependent processing times.

The problem under consideration can be formally described as follows: There are n independent

jobs J = {J1, J2, · · · , Jn}, which are simultaneously available at time t0 > 0, to be processed non-

preemptively on m identical parallel machines. We assume, as in Mosheiov [12, 13], and Chen [3, 4],

that the actual processing time of job Jj is pj = αjsj , where sj and αj are the starting time and the

growth (or deterioration) rate of Jj , respectively. The assumption ”t0 > 0” is made here to avoid

the trivial case of t0 = 0 (when t0 = 0, the completion time of each job will be 0). Let C[i] denote

the completion time of the ith job in a schedule. It is easy to see that C[i+1] = s[i+1] + p[i+1] =

s[i+1](1 + α[i+1]) = C[i](1 + α[i+1]). Thus, by induction, C[i] = t0
∏i

j=1(1 + α[j]) for every i ≥ 1 in

a schedule. Since t0 is a common factor in all the completion times, it will not affect the optimal

schedule under any performance criterion. Without loss of generality, we assume that t0 and all αj

for every j are integral. Our goal is to minimize the total completion time, i.e.,
∑n

j=1 Cj . Using the

notation of Chen [3], we denote the problem as the PTCT (i.e., parallel-machine total completion

time) problem.
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The above defined problem may date back to Mosheiov [12], who first considered single-machine

scheduling under the simple linear deteriorating assumption. The most commonly used performance

measures were considered, such as makespan, total completion time, total weighted completion time,

total weighted waiting time, total tardiness, number of tardy jobs, maximum lateness and maximum

tardiness. He showed that all these models are polynomially solvable. For the multiple machine

case of the simple linear deteriorating problem, Mosheiov [13] showed its NP-hardness even for

the two-machine case, and presented an asymptotically optimal heuristic for the parallel-machine

makespan problem. Chen [3, 4] proved that the PTCT problem is NP-hard even with a fixed number

of machines. He also proposed an approximation algorithm with a parameter dependent worst-case

ratio for the two-machine case. For a fixed number of machines, he pointed out that whether there

exists a polynomial time heuristic with a constant worst-case ratio remains open. More recently, Wu

and Lee [15], and Ji et al. [7] extended the single-machine problem to the situation where the machine

has an availability constraint. Wu and Lee [15] studied the resumable case of the makespan problem.

They showed that the linear deteriorating model can be solved as a 0-1 integer programming problem.

Ji et al. [7] considered the non-resumable case to minimize the makespan and the total completion

time. They established their computational complexity, proposed approximation algorithms with

tight bounds and presented computational results.

In this paper we present a fully polynomial-time approximation scheme (FPTAS) for the PTCT

problem with a fixed number of machines, which greatly improves on the bound in Chen [3], noting

that the parameter dependent worst-case ratio given in Chen [3] may be infinity. Our FPTAS closely

follows the FPTAS developed in [8, 9]. We have thus solved the open problem that has been posed

in Chen [3] for ten years. The presentation of this paper is organized as follows. In Section 2 we

propose an FPTAS for the m-machine case of the PTCT problem, where m is fixed, and prove its

correctness and establish its time complexity. Finally, we conclude the paper in Section 3.

2 An FPTAS

An algorithm A is called a (1+ε)-approximation algorithm for a minimization problem if it produces

a solution that is at most 1+ε times as big as the optimal value, running in time that is polynomial in
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the input size. A family of approximation algorithms {Aε} is a fully polynomial-time approximation

scheme (FPTAS) if, for each ε > 0, the algorithm Aε is a (1 + ε)-approximation algorithm that is

polynomial in the input size and in 1/ε. From now on we assume, without loss of generality, that

0 < ε ≤ 1. If ε > 1, then a 2-approximation algorithm can be taken as a (1 + ε)-approximation

algorithm.

Mosheiov [12] showed that the smallest growth rate (SGR) order is optimal for the single-machine

case of the problem, which leads to the following property.

Property 1 On each machine of an optimal solution for the PTCT problem, all the jobs are se-

quenced in the SGR order, i.e., in nondecreasing order of αj.

Let the jobs be indexed according to the SGR order so that α1 ≤ α2 ≤ · · · ≤ αn. We introduce

variables xj , j = 1, 2, · · · , n, where xj = k if job Jj is processed on machine k, k ∈ {1, 2, · · · ,m}. Let

X be the set of all the vectors x = (x1, x2, · · · , xn) with xj = k, j = 1, 2, · · · , n, k = 1, 2, · · · ,m. We

define the following initial and recursive functions on X:

f i
0(x) = t0, i = 1, 2, · · · ,m,

h0(x) = 0,

fk
j (x) = fk

j−1(x) + αjf
k
j−1(x), for xj = k,

f i
j(x) = f i

j−1(x), for xj = k, i 6= k,

hj(x) = hj−1(x) +
m∑

i=1

f i
j(x).

Thus, the PTCT problem with m machines reduces to the following problem:

Minimize hn(x) for x ∈ X.

We first introduce procedure Partition(A, e, δ) proposed by Kovalyov and Kubiak [8, 9], where

A ⊆ X, e is a nonnegative integer function on X, and 0 < δ ≤ 1. This procedure partitions A into

disjoint subsets Ae
1, A

e
2, · · · , Ae

ke
such that |e(x) − e(x′)| ≤ δ min{e(x), e(x′)} for any x, x′ from the

same subset Ae
j , j = 1, 2, · · · , ke. The following description provides the details of Partition(A, e, δ).

Procedure Partition(A, e, δ)
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Step 1. Arrange vectors x ∈ A in the order x(1), x(2), · · · , x(|A|) such that 0 ≤ e(x(1)) ≤ e(x(2)) ≤
· · · ≤ e(x(|A|)).

Step 2. Assign vectors x(1), x(2), · · · , x(i1) to set Ae
1 until i1 is found such that e(x(i1)) ≤ (1 +

δ)e(x(1)) and e(x(i1+1)) > (1 + δ)e(x(1)). If such i1 does not exist, then take Ae
ke

= Ae
1 = A, and

stop.

Assign vectors x(i1+1), x(i1+2), · · · , x(i2) to set Ae
2 until i2 is found such that e(x(i2)) ≤ (1 +

δ)e(x(i1+1)) and e(x(i2+1)) > (1+δ)e(x(i1+1)). If such i2 does not exist, then take Ae
ke

= Ae
2 = A−Ae

1,

and stop.

Continue the above construction until x(|A|) is included in Ae
ke

for some ke.

Procedure Partition requires O(|A| log |A|) operations to arrange the vectors of A in nondecreas-

ing order of e(x), and O(|A|) operations to provide a partition. The main properties of Partition

that will be used in the development of our FPTAS Aε were presented in Kovalyov and Kubiak [8, 9]

as follows.

Property 2 |e(x)− e(x′)| ≤ δ min{e(x), e(x′)} for any x, x′ ∈ Ae
j, j = 1, 2, · · · , ke.

Property 3 ke ≤ log e(x(|A|))/δ + 2 for 0 < δ ≤ 1 and 1 ≤ e(x(|A|)).

A formal description of the FPTAS Am
ε for the PTCT problem with m machines is given below.

Algorithm Aε

Step 1. (Initialization) Number the jobs in the SGR order so that α1 ≤ α2 ≤ · · · ≤ αn (Property

1). Set Y0 = {(0, 0, · · · , 0)} and j = 1.

Step 2. (Generation of Y1, Y2, · · · , Yn) For set Yj−1, generate Y ′
j by adding k, k = 1, 2, · · · ,m,

in position j of each vector from Yj−1. Calculate the following for any x ∈ Y ′
j , assuming xj = k.

fk
j (x) = fk

j−1(x) + αjf
k
j−1(x), (1)

f i
j(x) = f i

j−1(x), for i 6= k,

hj(x) = hj−1(x) +
m∑

k=1

fk
j (x).
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If j = n, then set Yn = Y ′
n, and go to Step 3.

If j < n, then set δ = ε/(2(n + 1)), and perform the following computations.

Call Partition(Y ′
j , f i

j , δ) (i = 1, 2, · · · ,m) to partition set Y ′
j into disjoint subsets

Y f i

1 , Y f i

2 , · · · , Y f i

kfi
.

Call Partition(Y ′
j , hj , δ) to partition set Y ′

j into disjoint subsets Y h
1 , Y h

2 , · · · , Y h
kh

.

Divide set Y ′
j into disjoint subsets Ya1···amb = Y f1

a1
∩ · · · ∩ Y fm

am
∩ Y h

b , a1 = 1, 2, · · · , kf1 ; · · ·;
am = 1, 2, · · · , kfm ; b = 1, 2, · · · , kh. For each nonempty subset Ya1···amb, choose a vector x(a1···amb)

such that

hj(x(a1···amb)) = min{hj(x) | x ∈ Ya1···amb}.

Set Yj := {x(a1···amb) | a1 = 1, 2, · · · , kf1 ; · · · ; am = 1, 2, · · · , kfm ; b = 1, 2, · · · , kh, and Y f1

a1
∩ · · · ∩

Y fm

am
∩ Y h

b 6= ∅}, and j = j + 1.

Repeat Step 2.

Step 3. (Solution) Select vector x0 ∈ Yn such that hn(x0) = min{hn(x) | x ∈ Yn}.

Let x∗ = (x∗1, x∗2, · · · , x∗n) be an optimal solution for the PTCT problem with a fixed number of

machines. Let L = log(max{n, 1/ε, 1 + αmax, t0}), where αmax = maxn
j=1{αj}. We show the main

result of this section in the following.

Theorem 1 Algorithm Aε finds x0 ∈ X for the PTCT problem with m machines such that hn(x0) ≤
(1 + ε)hn(x∗) in O(n2m+3Lm+2/εm+1).

Proof. Suppose that (x∗1, · · · , x∗j , 0, · · · , 0) ∈ Ya1···amb ⊆ Y ′
j for some j and a1, · · · am, b. By the defini-

tion ofAε, such j always exists, for instance j = 1. AlgorithmAε may not choose (x∗1, · · · , x∗j , 0, · · · , 0)

for further construction; however, for a vector x(a1···amb) chosen instead of it, we have

|f i
j(x

∗)− f i
j(x

(a1···amb))| ≤ δf i
j(x

∗), i = 1, · · · ,m,

and

|hj(x∗)− hj(x(a1···amb))| ≤ δhj(x∗),
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due to Property 2. Set δ1 = δ. We consider vector (x∗1, · · · , x∗j , x∗j+1, 0, · · · , 0) and x̃(a1···amb) =

(x(a1···amb)
1 , · · · , x(a1···amb)

j , x∗j+1, 0, · · · , 0). WLOG., we assume x∗j+1 = k. It follows that

|fk
j+1(x

∗)− fk
j+1(x̃

(a1···amb))|

= |(fk
j (x∗) + αj+1f

k
j (x∗))− (fk

j (x(a1···amb)) + αj+1f
k
j (x(a1···amb)))|

= |(1 + αj+1)(fk
j (x∗)− fk

j (x(a1···amb)))|

≤ (1 + αj+1)δfk
j (x∗)

= δ1f
k
j+1(x

∗),

Consequently,

fk
j+1(x̃

(a1···amb)) ≤ (1 + δ1)fk
j+1(x

∗),

Similarly, for i 6= k, we have

f i
j+1(x̃

(a1···amb)) ≤ (1 + δ1)f i
j+1(x

∗).

Therefore, we obtain

|hj+1(x∗)− hj+1(x̃(a1···amb))|

= |(hj(x∗) +
m∑

i=1

f i
j+1(x

∗))− (hj(x(a1···amb)) +
m∑

i=1

f i
j+1(x̃

(a1···amb)))|

≤ |hj(x∗)− hj(x(a1···amb))|+
m∑

i=1

|f i
j+1(x

∗)− f i
j+1(x̃

(a1···amb))|

≤ δ1(hj(x∗) +
m∑

i=1

f i
j+1(x

∗))

= δ1hj+1(x∗). (2)

Consequently,

hj+1(x̃(a1···amb)) ≤ (1 + δ1)hj+1(x∗).

Assume that x̃(a1···amb) ∈ Yc1···cmd ⊆ Y ′
j+1 and Algorithm Aε chooses x(c1···cmd) ∈ Yc1···cmd instead

of x̃(a1···amb) in the (j + 1)st iteration. We have

|f i
j+1(x̃

(a1···amb))− f i
j+1(x

(c1···cmd))| ≤ δf i
j+1(x̃

(a1···amb)) ≤ δ(1 + δ1)f i
j+1(x

∗), i = 1, · · · ,m,
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and

|hj+1(x̃(a1···amb))− hj+1(x(c1···cmd))| ≤ δhj+1(x̃(a1···amb)) ≤ δ(1 + δ1)hj+1(x∗). (3)

From (2) and (3), we obtain

|hj+1(x∗)− hj+1(x(c1···cmd))|

≤ |hj+1(x∗)− hj+1(x̃(a1···amb))|+ |hj+1(x̃(a1···amb))− hj+1(x(c1···cmd))|

≤ (δ1 + δ(1 + δ1))hj+1(x∗)

= (δ + δ1(1 + δ))hj+1(x∗). (4)

Set δl = δ + δl−1(1 + δ), l = 2, 3, · · · , n− j + 1. From (4), we obtain

|hj+1(x∗)− hj+1(x(c1···cmd))| ≤ δ2hj+1(x∗).

Repeating the above argument for j + 2, · · · , n, we show that there exists x′ ∈ Yn such that

|hn(x∗)− hn(x′)| ≤ δn−j+1hn(x∗).

Since

δn−j+1 ≤ δ
n∑

j=0

(1 + δ)j

= (1 + δ)n+1 − 1

=
n+1∑

j=1

(n + 1)n · · · (n− j + 2)
j!

δj

=
n+1∑

j=1

(n + 1)n · · · (n− j + 2)
j!(n + 1)j

(
ε

2
)j

≤
n+1∑

j=1

1
j!

(
ε

2
)j

≤
n+1∑

j=1

(
ε

2
)j

≤ ε
n+1∑

j=1

(
1
2
)j

≤ ε.

Therefore, we have

|hn(x∗)− hn(x′)| ≤ εhn(x∗).
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Then in Step 3, vector x0 will be chosen such that

hn(x0) ≤ hn(x′) ≤ (1 + ε)hn(x∗).

The time complexity of Algorithm Aε can be established by noting that the most time-consuming

operation of iteration j of Step 2 is a call of procedure Partition, which requires O(|Y ′
j | log |Y ′

j |)
time to complete. To estimate |Y ′

j |, recall that |Y ′
j+1| ≤ 2|Yj | ≤ 2k1

fk2
f · · · km

f kh. By Property 3, we

have ki
f ≤ 2(n + 1) log(t0(1 + αmax)n)/ε + 2 ≤ 2(n + 1)2L/ε + 2, i = 1, 2, · · · ,m, and the same for

kh. Thus, |Y ′
j | = O(n2(m+1)Lm+1/εm+1), and |Y ′

j | log |Y ′
j | = O(n2(m+1)Lm+2/εm+1). Therefore, the

time complexity of Algorithm Aε is O(n2(m+1)+1Lm+2/εm+1).

3 Conclusions

This paper studied the parallel-machine scheduling problem in which the processing time of a job is

a simple linear function of its starting time to minimize the total completion time. We gave a fully

polynomial-time approximation scheme for the case with m machines, where m is fixed. Future

research may focus on scheduling problems with jobs of more general deterioration types. It will

also be interesting to investigate problems with other scheduling objectives.
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