4,163 research outputs found

    Numerical study of circle fractal grid perforated plate as a turbulent generator in combustion chamber

    Get PDF
    Fractal grids can be used to design turbulent flows with low power losses and high turbulence intensities for intense yet economic mixing over a region of designed length and location. The introducing circle grid perforated plate is the main aim of this present paper. In this numerical work, we want to ascertain a new approach in turbulence generators on the structure of premixes flames using perforated plate fractal-grids pattern. In this paper, we compared circle grid perforated plate by varies using its diameters, spacing and number of holes on the plate. The result showed good perceptivity of the fractal generated turbulence and the fractal flow physics. The turbulent intensity can be increased by a grid with higher blockage ratio

    Impact of ROS 2 Node Composition in Robotic Systems

    Full text link
    The Robot Operating System 2 (ROS 2) is the second generation of ROS representing a step forward in the robotic framework. Several new types of nodes and executor models are integral to control where, how, and when information is processed in the computational graph. This paper explores and benchmarks one of these new node types -- the Component node -- which allows nodes to be composed manually or dynamically into processes while retaining separation of concerns in a codebase for distributed development. Composition is shown to achieve a high degree of performance optimization, particularly valuable for resource-constrained systems and sensor processing pipelines, enabling distributed tasks that would not be otherwise possible in ROS 2. In this work, we briefly introduce the significance and design of node composition, then our contribution of benchmarking is provided to analyze its impact on robotic systems. Its compelling influence on performance is shown through several experiments on the latest Long Term Support (LTS) ROS 2 distribution, Humble Hawksbill.Comment: IEEE Robotics and Automation Letters, 202

    Bundle: Taming The Cache And Improving Schedulability Of Multi-Threaded Hard Real-Time Systems

    Get PDF
    For hard real-time systems, schedulability of a task set is paramount. If a task set is not deemed schedulable under all conditions, the system may fail during operation and cannot be deployed in a high risk environment. Schedulability testing has typically been separated from worst-case execution time (WCET) analysis. Each task’s WCET value is calculated independently and provided as input to a schedulability test. However, a task’s WCET value is influenced by scheduling decisions and the impact of cache memory. Thus, schedulability tests have been augmented to include cache-related preemption delay (CRPD). From this classical perspective, the effect of cache memory on WCET and schedulability is always negative; increasing execution times and demand. In this work we propose a new positive perspective, where cache memory benefits multi-threaded tasks by scheduling threads in a manner that shares values predictably. This positive perspective is reached by integrating, rather than separating the disciplines of schedulability analysis and worst-case execution time. These integrated techniques are referred to as the BUNDLE family of worst-case execution time and cache overhead (WCETO) analysis and scheduling algorithm. WCETO calculation divides the task’s structure into conflict free regions and calculates a bound utilizing explicit understanding of the thread-level scheduling algorithm. Conflict free regions are utilized by the scheduling algorithm, which associates with each region a thread container called a bundle. At any time only one bundle may be active, and only threads of the active bundle may execute on the processor. The BUNDLE family of scheduling algorithms developed in this work increase in scope from BUNDLE through ITCB-DAG. As the fundamental contribution, BUNDLE and BUNDLEP apply to a single multi-threaded task running on a uniprocessor architecture with a single level direct mapped instruction cache. NPM-BUNDLE expands the positive perspective to multiple tasks on a uniprocessor system. With ITCB-DAG bringing BUNDLE’s analysis and scheduling techniques to multi-processor systems. Each of the scheduling algorithms require a novel hardware mechanism to anticipate execution and make scheduling decisions. To support anticipation of execution, a novel XFLICT interrupt is proposed. It is a simple mechanism that emulates the behavior of hardware breakpoints. An implementation of the BUNDLEP analytical techniques, scheduling algorithm, and XFLICT interrupt is available as a simulated platform for further research and extension. Future work is planned to expand BUNDLE’s positive perspective and increase adoption. The most significant barrier to adoption is the ability to deploy BUNDLE’s scheduling algorithm, this mandates a viable and available hardware or software mechanism to anticipate execution. NPM-BUNDLE is limited to non-preemptive multi-task scheduling and analysis, support for preemptive scheduling will increase the positive impact of BUNDLE’s integrated perspective

    Ms Pac-Man versus Ghost Team CEC 2011 competition

    Get PDF
    Games provide an ideal test bed for computational intelligence and significant progress has been made in recent years, most notably in games such as Go, where the level of play is now competitive with expert human play on smaller boards. Recently, a significantly more complex class of games has received increasing attention: real-time video games. These games pose many new challenges, including strict time constraints, simultaneous moves and open-endedness. Unlike in traditional board games, computational play is generally unable to compete with human players. One driving force in improving the overall performance of artificial intelligence players are game competitions where practitioners may evaluate and compare their methods against those submitted by others and possibly human players as well. In this paper we introduce a new competition based on the popular arcade video game Ms Pac-Man: Ms Pac-Man versus Ghost Team. The competition, to be held at the Congress on Evolutionary Computation 2011 for the first time, allows participants to develop controllers for either the Ms Pac-Man agent or for the Ghost Team and unlike previous Ms Pac-Man competitions that relied on screen capture, the players now interface directly with the game engine. In this paper we introduce the competition, including a review of previous work as well as a discussion of several aspects regarding the setting up of the game competition itself. © 2011 IEEE

    A fine-grain time-sharing Time Warp system

    Get PDF
    Although Parallel Discrete Event Simulation (PDES) platforms relying on the Time Warp (optimistic) synchronization protocol already allow for exploiting parallelism, several techniques have been proposed to further favor performance. Among them we can mention optimized approaches for state restore, as well as techniques for load balancing or (dynamically) controlling the speculation degree, the latter being specifically targeted at reducing the incidence of causality errors leading to waste of computation. However, in state of the art Time Warp systems, events’ processing is not preemptable, which may prevent the possibility to promptly react to the injection of higher priority (say lower timestamp) events. Delaying the processing of these events may, in turn, give rise to higher incidence of incorrect speculation. In this article we present the design and realization of a fine-grain time-sharing Time Warp system, to be run on multi-core Linux machines, which makes systematic use of event preemption in order to dynamically reassign the CPU to higher priority events/tasks. Our proposal is based on a truly dual mode execution, application vs platform, which includes a timer-interrupt based support for bringing control back to platform mode for possible CPU reassignment according to very fine grain periods. The latter facility is offered by an ad-hoc timer-interrupt management module for Linux, which we release, together with the overall time-sharing support, within the open source ROOT-Sim platform. An experimental assessment based on the classical PHOLD benchmark and two real world models is presented, which shows how our proposal effectively leads to the reduction of the incidence of causality errors, as compared to traditional Time Warp, especially when running with higher degrees of parallelism

    Prototyping Operational Autonomy for Space Traffic Management

    Get PDF
    Current state of the art in Space Traffic Management (STM) relies on a handful of providers for surveillance and collision prediction, and manual coordination between operators. Neither is scalable to support the expected 10x increase in spacecraft population in less than 10 years, nor does it support automated manuever planning. We present a software prototype of an STM architecture based on open Application Programming Interfaces (APIs), drawing on previous work by NASA to develop an architecture for low-altitude Unmanned Aerial System Traffic Management. The STM architecture is designed to provide structure to the interactions between spacecraft operators, various regulatory bodies, and service suppliers, while maintaining flexibility of these interactions and the ability for new market participants to enter easily. Autonomy is an indispensable part of the proposed architecture in enabling efficient data sharing, coordination between STM participants and safe flight operations. Examples of autonomy within STM include syncing multiple non-authoritative catalogs of resident space objects, or determining which spacecraft maneuvers when preventing impending conjunctions between multiple spacecraft. The STM prototype is based on modern micro-service architecture adhering to OpenAPI standards and deployed in industry standard Docker containers, facilitating easy communication between different participants or services. The system architecture is designed to facilitate adding and replacing services with minimal disruption. We have implemented some example participant services (e.g. a space situational awareness provider/SSA, a conjunction assessment supplier/CAS, an automated maneuver advisor/AMA) within the prototype. Different services, with creative algorithms folded into then, can fulfil similar functional roles within the STM architecture by flexibly connecting to it using pre-defined APIs and data models, thereby lowering the barrier to entry of new players in the STM marketplace. We demonstrate the STM prototype on a multiple conjunction scenario with multiple maneuverable spacecraft, where an example CAS and AMA can recommend optimal maneuvers to the spacecraft operators, based on a predefined reward function. Such tools can intelligently search the space of potential collision avoidance maneuvers with varying parameters like lead time and propellant usage, optimize a customized reward function, and be implemented as a scheduling service within the STM architecture. The case study shows an example of autonomous maneuver planning is possible using the API-based framework. As satellite populations and predicted conjunctions increase, an STM architecture can facilitate seamless information exchange related to collision prediction and mitigation among various service applications on different platforms and servers. The availability of such an STM network also opens up new research topics on satellite maneuver planning, scheduling and negotiation across disjoint entities
    corecore