
Wayne State University Wayne State University

Wayne State University Dissertations

January 2019

Bundle: Taming The Cache And Improving Schedulability Of Multi-Bundle: Taming The Cache And Improving Schedulability Of Multi-

Threaded Hard Real-Time Systems Threaded Hard Real-Time Systems

Corey Tessler
Wayne State University

Follow this and additional works at: https://digitalcommons.wayne.edu/oa_dissertations

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Tessler, Corey, "Bundle: Taming The Cache And Improving Schedulability Of Multi-Threaded Hard Real-
Time Systems" (2019). Wayne State University Dissertations. 2339.
https://digitalcommons.wayne.edu/oa_dissertations/2339

This Open Access Dissertation is brought to you for free and open access by DigitalCommons@WayneState. It has
been accepted for inclusion in Wayne State University Dissertations by an authorized administrator of
DigitalCommons@WayneState.

http://digitalcommons.wayne.edu/
http://digitalcommons.wayne.edu/
https://digitalcommons.wayne.edu/oa_dissertations
https://digitalcommons.wayne.edu/oa_dissertations?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F2339&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F2339&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wayne.edu/oa_dissertations/2339?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F2339&utm_medium=PDF&utm_campaign=PDFCoverPages

BUNDLE: TAMING THE CACHE AND IMPROVING SCHEDULABILITY
OF MULTI-THREADED HARD REAL-TIME SYSTEMS

by

COREY TESSLER

DISSERTATION

Submitted to the Graduate School,

of Wayne State University,

Detroit, Michigan

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

2019

MAJOR: COMPUTER SCIENCE

Approved By:

———————————————————–
Nathan Fisher, Ph.D. Advisor Date

———————————————————–
Frank Mueller, Ph.D.

———————————————————–
Daniel Grosu, Ph.D.

———————————————————–
Abusayeed Saifullah, Ph.D.

ACKNOWLEDGMENTS

This research presented was supported, in part, by the National Science Foundation

under Grant Numbers CNS-1618185, CNS-0953585, CNS-1205338, and IIS-1724227.

This research would not have been possible without the clear, dedicated, and gentle

guidance provided by Professor Nathan Fisher of Wayne State University. He is a treasure

to the University and to all who know him. Thank you.

To the committee members: Professor Daniel Grosu, Professor Frank Mueller, and Pro-

fessor Abusayeed Saifullah. Please accept my gratitude for your willingness to sit on the

committee along with your thoughtful feedback and suggestions. This work is made better

by your contributions, thank you.

I am fortunate to have a wonderful role-model for a mother, Anastasia Tessler. Her

lifelong dedication to her children extends beyond her biological children to those she

adopted in the classroom. As a teacher in Detroit, her thoughtful creativity excited students

to excel academically and her compassion forged life-long relationships with them and

their families. She stands as an example of service to others through education to all of us.

Thank you for your unwavering support and all of the lessons.

And lastly, thank you to two very important friends: Michael Noonan and Kathryn

Horner. They are wonderful, unique people with generous spirits. May you rely upon me

as I have relied upon you for companionship, distraction, and wholly inappropriate humor.

ii

TABLE OF CONTENTS

List of Tables . viii

List of Figures . ix

Chapter 1 Introduction 1

1.1 Thesis . 6

1.2 Contributions . 6

Chapter 2 Model and Notation 10

2.1 Models and Perspectives . 10

2.2 Sporadic Task Model . 11

2.3 Architecture Model . 12

2.4 Objects, Tasks, Threads, Ribbons, Entry Points 13

2.5 Control Flow Graphs . 14

2.6 Notation Summary . 16

Chapter 3 Inter-Thread Cache Benefit 17

3.1 Defining the Inter-Thread Cache Benefit . 18

3.2 Comparison of Perspectives . 19

3.2.1 WCET . 21

3.2.2 CRPD . 22

Chapter 4 Related Work 24

iii

4.1 Worst-Case Execution Time and Cache Memory 24

4.2 Cache Related Preemption Delay . 25

4.3 Cache Analysis in Multi-Threaded Programs 27

4.4 Predictable Cache Behavior . 28

4.5 Positive Perspectives on Caches . 29

Chapter 5 Single-Task BUNDLE 31

5.1 BUNDLE Scheduling . 31

5.2 Conflict Free Regions and Conflict Free Region Graphs 33

5.2.1 Extracting Conflict Free Regions . 35

5.2.2 Worst Case Execution Time with Cache Overhead (WCETO) 42

5.2.3 Structures . 47

5.2.4 Structure WCETO Calculation . 48

5.3 Evaluation of BUNDLE . 54

5.3.1 WCET vs WCETO Analysis . 54

5.3.2 BUNDLE Run-Time Performance . 58

5.4 Summary . 61

Chapter 6 Single-Task BUNDLEP 63

6.1 BUNDLE Sub-Optimal Cache Sharing . 64

6.2 BUNDLEP Overview . 65

6.3 Conflict Free Region Extraction and Conflict Free Region Graph Creation . . 67

6.3.1 Expanded Control Flow Graphs . 67

6.3.2 Conflict Free Region Graph Creation 69

6.3.3 Assignment . 71

iv

6.3.4 Linking . 77

6.4 BUNDLEP . 78

6.4.1 Hardware Support . 78

6.4.2 BUNDLEP’s Scheduling Algorithm . 80

6.4.3 Priority Assignment . 82

6.5 BUNDLEP WCETO Calculation . 87

6.6 BUNDLEP Evaluation . 91

6.6.1 Context Switch Costs . 92

6.7 Summary . 96

6.8 Ancillary Preamble . 97

6.9 Ancillary: ILP Transformation and Example 97

6.10 Ancillary: WCETO Example . 100

Chapter 7 Non-Preemptive Multitask BUNDLE 102

7.1 NPM-BUNDLE Model and Notation . 103

7.1.1 Dividing and Task Parts . 107

7.1.2 Worst-Case Execution Time Function Growth 107

7.2 Non-Preemptive EDF Schedulability . 110

7.2.1 Non-Preemptive Chunks . 111

7.2.2 Improving the Non-Preemptive Chunk Size 114

7.2.3 Threads per Job (TPJ) Scheduling Algorithm 116

7.2.4 Non-Preemptive Feasibility of TPJ and DIVIDE 121

7.3 Evaluation . 127

7.3.1 Generating Task Sets . 128

v

7.3.2 Case Study . 129

7.3.3 Evaluation Metrics . 130

7.3.4 Results . 132

7.4 Summary . 136

Chapter 8 Multi-Processor Multi-Task BUNDLE 138

8.1 Background and Related Work . 139

8.1.1 Federated Scheduling . 142

8.1.2 Proposed Model Changes . 143

8.1.3 Discrete Concave Functions and Growth Factors 145

8.1.4 Related Work . 146

8.2 Collapsing Nodes . 147

8.2.1 Infeasibility and the Impact of Collapse 149

8.2.2 Beneficial Collapse . 152

8.2.3 Optimal Collapse . 154

8.3 DAG-OT Schedulability . 155

8.4 Candidate Ordering . 156

8.4.1 Greatest Benefit . 156

8.4.2 Least Penalty . 157

8.5 Low Utilization Tasks . 158

8.6 Evaluation . 160

8.6.1 Evaluation Metrics . 165

8.6.2 Results . 167

8.7 Summary . 170

vi

Chapter 9 Future Work 171

9.0.1 Scheduling Support . 171

9.0.2 Preemptive Multi-Task BUNDLEP . 172

9.0.3 From Switched to Unswitched CFRs 172

Chapter 10 Conclusion 174

List of Publications 177

REFERENCES 179

Abstract 190

Autobiographical Statement 193

vii

LIST OF TABLES

Table 1.1 Cache Perspectives in Hard-Real Time Analysis 9

Table 2.1 List of Symbols . 16

Table 3.1 Example Model Parameters . 19

Table 3.2 Categories from [1, 2] and Cache Assignment 20

Table 3.3 Segment WCET . 21

Table 6.1 MIPS 74K Architecture Parameters . 92

Table 7.1 NPM-BUNDLE Notation . 103

Table 8.1 ITCB-DAG Notation . 139

Table 8.2 Collapse of u and v from Figure 8.8 . 151

Table 8.3 Collapse of x and y from Figure 8.9 . 152

Table 8.4 Federated Schedulability Test Comparisons 161

Table 8.5 Task Generation Graph Creation Parameters 162

Table 8.6 Task Generation Execution Assignment Parameters 163

Table 8.7 Task Generation Timing Assignment Parameters 164

Table 8.8 Task Set Assembly Parameters . 165

viii

LIST OF FIGURES

Figure 1.1 Synthesized Tasks . 4

Figure 1.2 CRPD and Synthesized Tasks . 5

Figure 1.3 Contributions of BUNDLE . 6

Figure 1.4 Contributions of BUNDLEP . 7

Figure 1.5 Contributions of NPM-BUNDLE . 7

Figure 1.6 Contributions of ITCB-DAG . 8

Figure 1.7 Scope of Contributions . 9

Figure 3.1 Address Space for Two Jobs . 18

Figure 3.2 Control Flow Graph for: ρ1 . 19

Figure 3.3 Worst Schedule of τ1, 4550 Cycles . 22

Figure 5.1 CFG, CFRs, and CFRG of a ribbon . 33

Figure 5.2 Requirements of Conflict Free Region 34

Figure 5.3 Next Intra-Thread Cache Conflicts from ni marked with a × 37

Figure 5.4 Next Inter-Thread Cache Conflicts from ni marked with a
⊗

. 40

Figure 5.5 Largest region of Figure 5.4 with no conflicts from ni 40

Figure 5.6 Extraction of the initial CFR from the CFG 42

Figure 5.7 CFG to CFRG with WCETO Values . 43

Figure 5.8 WCETO from CFRG . 45

ix

Figure 5.9 CFR Requirements for WCETO Calculation 46

Figure 5.10 Linear Structure from h to z Preceding a Loop 47

Figure 5.11 Branching Structure from h to Z = {z1, z2}with Boundary NodesX = {x1, x2} 48

Figure 5.12 Looping Structure with Loop Head h and Boundary Nodes X = {x} . 48

Figure 5.13 Embedded loop of h2 within h1 . 50

Figure 5.14 BUNDLE Evaluation Parameters . 54

Figure 5.15 c1: Classical WCET for One Thread to Execute ρ 56

Figure 5.16 γ1 Classical CRPD for One Preemption of ρ 56

Figure 5.17 Comparison of WCET and WCETO for m threads and i = 1,000 57

Figure 5.18 WCET + Preemption Cost When i = 10000 58

Figure 5.19 Run Time Overhead Results . 59

Figure 5.20 Minimum Context Switch Cost (in Cycles) for seq to Dominate BUNDLE 60

Figure 5.21 Constraints of Single Task BUNDLE . 62

Figure 6.1 Summary of BUNDLEP improvements 63

Figure 6.2 Sub-Optimal BUNDLE Execution . 64

Figure 6.3 Optimal BUNDLEP Execution . 65

Figure 6.4 Summary of BUNDLEP improvements 68

Figure 6.5 Requirements of Conflict Free Regions and Conflict Free Region Graphs
for BUNDLEP . 69

Figure 6.6 Loop heads and Inner-Most Loop Heads 70

Figure 6.7 Call to LABELNODES(n3) . 73

Figure 6.8 Case 3 Protection . 76

Figure 6.9 XFLICT Interrupts and BUNDLEP . 79

x

Figure 6.10 Collapsing One Loop of a CFRG . 83

Figure 6.11 Summary Node Priority Requirements 85

Figure 6.12 Collapsing Embedded Loops . 85

Figure 6.13 CFRG Individual Nodes and ILP Objective 88

Figure 6.14 Benefits of BUNDLEP . 94

Figure 6.15 Results for the ud Benchmark . 95

Figure 6.16 Results for the matmult Benchmark 96

Figure 6.17 CFRG Individual Nodes and ILP Objective 100

Figure 7.1 Summary of NPM-BUNDLE contributions 102

Figure 7.2 Scheduling Behavior . 104

Figure 7.3 Schedulability and Transformable Task Sets 106

Figure 7.4 Example Task Set τ = {τ0, τ1, τ2} . 114

Figure 7.5 Task Set Generation Parameters . 129

Figure 7.6 Schedulability Test Combinations . 131

Figure 7.7 Case Study and EDF-TPJ Summary Results 132

Figure 7.8 EDF-NP:1 and EDF-NP:M Summary . 133

Figure 7.9 U > 1 Feasibility . 134

Figure 7.10 M ≤ 10 Performance . 134

Figure 7.11 M > 10 EDF-TPJ Performance Above EDF-P:1 135

Figure 7.12 M = 100 EDF-TPJ Performance . 136

Figure 8.1 Summary of ITCB-DAG contributions 138

Figure 8.2 A DAG Task . 141

Figure 8.3 From DAG to DAG-OT . 144

xi

Figure 8.4 Example Growth Factor . 146

Figure 8.5 Node Collapse . 147

Figure 8.6 Critical Path Reduction . 149

Figure 8.7 Critical Path Extension . 150

Figure 8.8 Collapse of (u, v) before (x, y) . 151

Figure 8.9 Collapse of (x, y) before (u, v) . 151

Figure 8.10 Serializing a Task τi . 158

Figure 8.11 Task Set Generation Pipeline . 161

Figure 8.12 Mean Schedulability Ratio . 167

Figure 8.13 Mean Core Savings . 168

Figure 8.14 Mean Critical Path Lengths and Extensions 168

Figure 8.15 Mean Workloads and Savings . 169

xii

CHAPTER 1 INTRODUCTION

Computational systems and their applications have become ubiquitous. From racks of

super-computers, to smart phones, to pin sized personal sensors, there are a scant few

environments where a microprocessor is absent. As the use of computational systems

increases, so too does our reliance and trust in them to operate in safety critical environ-

ments such as nuclear power plants, pace-makers, automotive and flight controls. When

accuracy and safety depend on a computational system, we find hard real-time systems.

As a discipline, computer science provides the theoretical and practical tools necessary

to guarantee the safety of hard real-time systems. However, the features of the underlying

computational platforms (the architecture) and the programming models applied to them

are constantly evolving – so too must the analysis of safety critical systems. Herein, the

impact of cache memory and threaded execution is examined in the context of hard real-

time systems. The classical perspective of threads and cache is advanced to an integrated

one, resulting in safe and reliable systems that execute upon smaller and less powerful

platforms. Additionally, the integrated perspective could be applied outside of the hard

real-time setting they were developed for to improve the performance of threaded compu-

tational systems.

Currently, the evolution of computational platforms is focused upon increasing the

number of concurrent threads of execution by providing processors with an increased

number of cores and cache dedicated to those cores. As an example, the AMD Thread-

ripper 2990WX [3] processor can execute sixty four threads simultaneously. It contains

1

2

over eighty megabytes of cache memory, with three megabytes of private cache dedicated

to individual cores.

Simultaneously, the scope of safety critical applications is increasing to encompass ap-

plications that cannot be addressed by single-threaded processors. NVIDIA’s Jetson TX2

plaftform [4] is designed for autonomous vehicles. It carries 256 cores to handle the

demanding multi-threaded tasks associated with image processing, route planning, and

motor control. Like autonomous vehicles, it is reasonable to expect the number of hard

real-time systems which demand multi-threaded platforms to increase. Improving the per-

formance of these platforms through the proposed integrated perspective increases the

efficiency of these systems, thus reducing the number of processors needed, power con-

sumed, weight, and overall cost.

In a hard real-time system, as with other systems, all computations must produce the

correct answer; they must be logically correct. However, hard real-time systems have a

second requirement: all computations must complete on time. A correct answer delivered

too late, such as “apply emergency braking” is not only useless, it is a failure of the system

with catastrophic results. Similarly, a correct answer delivered too early is also consid-

ered a failure. For a hard real-time system there are two types of correctness: logical,

and temporal. Both must be met for any hard real-time system to be reliable, safe, and

deployed.

Logical correctness is determined by context, depending on the inputs and parameters

of the system deployed. Temporal correctness is the subject of study for schedulability anal-

ysis. It is uncommon for any computational system to have a single logical operation to

complete, this is also true for hard real-time systems. For hard real-time systems logical

3

operations are divided into tasks (individual programs), which execute on the shared pro-

cessor(s). Tasks compete for execution time on the processor(s) and if the competition is

too great the temporal correctness of the system is at risk.

Schedulability analysis determines if a set of tasks will always be temporally correct

for a given computational architecture. Each task has a frequency with which it will be

requested, a window of time which it must be completed within called its deadline, and a

worst-case execution time (WCET). The WCET of a task bounds the amount of time a task

takes to complete on the shared processors. The limitations of the architecture are included

in a schedulability test including the processor(s). When a schedulability test determines

every request to execute a task will be temporally correct using a specific scheduling algo-

rithm, the task set is said to be schedulable. A schedulable task set guarantees a system is

safe to deploy for its stated operation (given that it is logically correct).

An important component to schedulability analysis is the calculation of worst-case exe-

cution times for tasks. For classical models of real-time systems, shared resources are often

considered detractors to schedulability analysis and exclusively increase WCETs. Cache

memory is one such shared resource viewed from this exclusively negative perspective.

It is a natural perspective, derived from a preempting task invalidating cache lines, thus

extending a preempted task’s execution time.

Using the classical periodic task model [5] as an example, it is implied that a task has

a single thread of execution. The model lacks a representation for tasks with multiple

threads. To apply WCET and schedulablility techniques developed for the periodic and

other classical models, a task that executes multiple threads is treated as several duplicate

tasks with a single thread of execution. These single threaded tasks duplicated from multi-

4

threaded tasks are referred to as synthetic tasks. Any multi-threaded task that releases a

job with m threads will be converted to m synthetic tasks each releasing one job.

Figure 1.1: Synthesized Tasks

Figure 1.1 serves as an example of

converting a multi-threaded task set to a

single-threaded task set. The complete task

set is τ = {τ1, τ2, τ3}. Threads of tasks are

represented by small black squares. For

τ1, there is one thread of execution, for τ2

three threads, and τ3 two threads. The sys-

tem designer’s perspective is given on the

left side of the figure, where the three tasks

encapsulate their threads. On the right side of the figure is the analytical perspective,

where tasks must have exactly one thread of execution. Worst-case execution time and

schedulability analysis is performed on the six (rather than three) tasks.

From the analytical perspective, the synthetic tasks are independent of one another

competing for the shared resources of target architecture. One classical analytical model

where threads are treated independently is the fork-join model [6]. Where each thread

has a WCET calculated from its longest execution path. Each thread then contributes its

execution demand independently of others to the schedulability test.

For classical models, tasks are assumed to be in competition for cache space. The in-

clusion of threads, which are converted to tasks, only amplifies the negative affect. Cache-

related preemption delay analysis (CRPD), as the name implies, is the delay of a tasks

completion time due to preemptions by other tasks. These delays impact schedulability

5

negatively by increasing worst-case execution times on a per task basis.

Figure 1.2: CRPD and Synthesized Tasks

Figure 1.2 highlights the increase in ex-

ecution demand the classical perspective

necessitates. Since all tasks compete for

cache space, all tasks must be considered

in calculated CRPD values. This includes

competition between synthetic tasks which

were duplicated from the same multi-

threaded task; eg. two threads of τ3 com-

pete for cache space when converted to

synthesized tasks.

Threads are not always in competition with other threads for cache space. In fact

threads may mutually benefit from reusing the same cached values by virtue of sharing

the same memory space. A cache miss during the execution of one thread can place values

into the cache that produce a cache hit for a second thread. These unexpected cache hits

reduce the execution time of the second thread and the system overall. This speed up

is called the inter-thread cache benefit. The efforts of this work focus on quantifying the

inter-thread cache benefit to decrease individual task WCET bounds and increase system

schedulability.

Herein an argument is made for a new task model, scheduling algorithm, and schedu-

lability analysis techniques. Classical approaches to Worst Case Execution Time (WCET),

Cache-Related Preemption Delay (CRPD), and schedulability analysis typically produce

separate values. Accounting for the inter-thread cache benefit requires an approach that

6

integrates the disciplines.

1.1 Thesis

Scheduling individual threads of a multi-threaded task in a cache cognizant

manner improves system schedulability through predictable and quantifiable

inter-thread cache benefits. When compared to classical scheduling algorithms

and analysis, this positive perspective reduces WCET and CRPD values. Realiz-

ing the benefit is achievable with the addition of a familiar (yet novel) low cost

hardware mechanism.

1.2 Contributions

In support of the thesis, the following contributions are made. As an initial theoretical

work, BUNDLE [7] describes the negativity of the classical perspective. In BUNDLE a positive

perspective of caches is introduced along with central mechanisms for scheduling and

worst-case execution time calculation.

1. A positive perspective on caches in the form of the inter-thread cache benefit. (Sec-
tion 3.1)

2. A novel model of multi-threaded tasks that allows the inter-thread cache benefit of
instruction caches to be quantified. (Chapter 2)

3. The introduction of the concepts of worst case execution time and cache overhead
(WCETO), conflict free regions, and conflict free region graphs. (Section 5.2)

4. The BUNDLE cache cognizant scheduling algorithm for a single task with multiple
threads. (Section 5.1)

5. A WCETO method for a task scheduled by BUNDLE. (Section 5.2.2)

Figure 1.3: Contributions of BUNDLE

7

Improving upon BUNDLE is the purpose of BUNDLEP [8]. Prioritizing bundles based upon

their longest path maximizes the inter-thread cache benefit between threads. Priorities also

improve the worst-case execution time calculation method by reducing the complexity of

their calculation.

1. The BUNDLEP cache cognizant scheduling algorithm for a single task with multiple
threads. (Section 6.4.2)

2. A WCETO method for a task scheduled by BUNDLEP. (Section 6.5)

3. Proof of optimal cache sharing under BUNDLEP scheduling.

4. A novel hardware interrupt mechanism to anticipate execution named XFLICT which
uses an XFLICT_TABLE of addresses. (Section 6.4.1)

5. A toolset for BUNDLEP analysis and simulation for programs compiled for MIPS pro-
cessors [9].

Figure 1.4: Contributions of BUNDLEP

Both BUNDLE and BUNDLEP are limited to the analysis and execution of a single multi-

threaded task. Non-preemptive multi-task BUNDLE [10] (NPM-BUNDLE), expands the appli-

cability of the scheduling and analysis techniques to multiple tasks.

1. A hierarchical scheduling mechanism using non-preemptive EDF for jobs scheduled
by BUNDLEP with intra-task thread-level preemptions named Non-Preemptive Multi-
Task BUNDLE (NPM-BUNDLE). (Chapter 7)

2. The introduction of task division for multi-threaded task sets. (Section 7.1.1)

3. A scheduling algorithm and task dividing process named Threads per Job (TPJ) for
NPM-BUNDLE. (Section 7.2.3)

4. Proof of TPJ’s non-preemptive multi-threaded feasibility. (Theorem 7.2.3)

5. A toolset for NPM-BUNDLE analysis of synthetic tasks [11].

Figure 1.5: Contributions of NPM-BUNDLE

8

NPM-BUNDLE brings the BUNDLE techniques and analysis to multiple tasks. However, the

application is limited to a single processor. As a first step toward expanding to a multi-

processor setting, the following contributions are made as part of ITCB-DAG:

1. Augmenting the parallel directed acyclic graph (DAG) model to include executable
objects and threads per node. (Section 8.1.2)

2. The concepts of collapsing nodes and candidacy for collapse. (Section 8.2)

3. The Dedicated Core Reduction Algorithm which increases schedulability by (poten-
tially) allocating fewer cores per high-utilization task. (Section 8.3)

4. Two heuristics for ordering nodes to be collapsed. (Section 8.4)

5. A synthetic evaluation demonstrating the positive impact of collapse and BUNDLE
scheduling for DAG tasks. (Section 8.6)

Figure 1.6: Contributions of ITCB-DAG

In series, these contributions can be viewed as increasing the scope of the inter-thread

cache benefit. Starting with BUNDLE, which introduces the inter-thread cache benefit,

scoped to a single task running on a uniprocessor systems. BUNLDEP improves upon BUNDLE

in the uniprocessor setting, but does not increase the scope. The subsequent work NPM-BUNDLE

increases the scope, bringing the inter-thread cache benefit to multi-task systems. Finally,

ITCB-DAG further increases the scope by the inclusion of multiprocessor systems.

Figure 1.7 summarizes the scope of contributions. However, these contributions should

not be considered final in their respective scopes. While these contributions are substan-

tial, they do not address every theoretical or practical opportunity to incorporate inter-

thread cache benefits in all settings; they are necessary fundamental steps towards greater

adoption. There are numerous opportunities to improve upon the BUNDLE analysis and

scheduling techniques.

9

Figure 1.7: Scope of Contributions

These contributions are novel in the context of hard real-time systems, creating a posi-

tive perspective of caches for multi-threaded tasks. Previous works applicable to the worst-

case execution time of single-threaded tasks [2, 12, 1] take a positive perspective on

cache memory, reducing execution time bounds. In contrast, cache-related preemption

delay [13, 14, 15, 16, 17] takes a negative perspective of cache memory, accounting for

the execution time penalty preemptions induce in both single and multi-threaded tasks

(through synthesis). These contributions are the first to bring a positive perspective of

cache memory to multi-threaded tasks for hard real-time systems, with the goal of reduc-

ing the total system execution time. Table 1.1 places these contributions under the BUNDLE

umbrella in comparison to the disciplines of WCET and CRPD analysis.

Single
Threaded

Multi-Threaded

Positive WCET BUNDLE

Negative CRPD CRPD

Table 1.1: Cache Perspectives in Hard-Real Time Analysis

CHAPTER 2 MODEL AND NOTATION

In this chapter, an introduction is given for the models and concepts used or augmented

to obtain a positive perspective on caches. It defines the task model, schedulability con-

ditions, program model, architecture model, and notation shared between the different

BUNDLE scheduling algorithms and analysis. Additionally, the shared concepts of ribbons,

threads, inter-thread cache benefit, and control flow graphs are defined.

2.1 Models and Perspectives

Throughout this work, there are references to classical models and the negative per-

spective. To clarify, an existing task model, scheduling algorithm, schedulability test, or

WCET calculation method that cannot account for the inter-thread cache benefit is said to

take the negative perspective, or is a classical model. The language is derived from the

treatment of cache as a shared resource which can only extend execution times through

conflicts.

In contrast, the positive perspective allows for caches to benefit execution. A task model,

scheduling algorithm, schedulability test, or WCET method that includes the inter-thread

cache benefit is termed integrated. The integrated methods proposed in this work which

take the positive perspective are placed in the BUNDLE family (referring to common thread-

level scheduling technique).

Typically, classical models assume a single thread of execution per task. Therefor, anal-

ysis of multi-threaded tasks for a classical model depends on each thread being converted

to an independent task with one thread of execution. Such tasks are referred to as synthetic

10

11

tasks. For one multi-threaded task with m threads, m synthetic tasks (with one thread of

execution) will be included in the model.

2.2 Sporadic Task Model

The sporadic task model [18] is used as a representative of the classical perspective and

as the basis for modification to suit BUNDLE’s task model. The set of tasks n is represented by

the symbol τ = {τ0, τ1, ..., τn−1}. A task is a computation that performs a specific function by

executing on a processor. A job released by a task is a request to perform the computation

within a specific time frame. Each task i is an ordered triple of minimum inter-arrival time

p, relative deadline d, and worst case execution time c, τi = (pi, di, ci). The minimum inter-

arrival time of a task is the fewest number of processor cycles between job releases, which

will take no more than the cycles given by the worst case execution time to complete. Jobs

are indexed by their release k for a task i, Ji,k with an absolute release time of Ri,k. Each

job also has an absolute deadline calculated from its release time and the task’s relative

deadline Di,k = Ri,k + di. If the job does not complete its execution before the absolute

deadline it is called a deadline miss.

A scheduling algorithm selects which job will execute on a processor at any moment.

Scheduling algorithms make their decisions online, or offline. Online algorithms make

scheduling decisions while the system is executing jobs, offline algorithms predetermine

job and processor assignments. Jobs are given a static or dynamic priority depending on

the algorithm which influences which job will be scheduled.

A schedulability test determines if all jobs that potentially released by τ will always meet

their deadlines when scheduled by an algorithm A. If all potential job releases will meet

12

their deadlines the task set is deemed schedulable. A test is said to be sufficient if a task set

is schedulable by A satisfies the test. However, if the test is not satisfied the task set may

still be schedulable. A test is said to be necessary if all schedulable task sets satisfy the test.

2.3 Architecture Model

This work is focused on a single processor with a single level direct-mapped cache, in

Chapter 8 the scope is expanded to multiple processors. Instructions and data are loaded

from main memory into the cache before they are used by the processor. The smallest unit

of storage for main and cache memory is a block. A block holds one or more words with a

size expressed in bytes.

When a block is moved from main memory to cache the number of cycles required to

perform the operation is called the block reload time, abbreviated BRT and represented by

the symbol B. Regardless of the instruction type, all instructions take the same number of

cycles per instruction (CPI) to complete, represented by the symbol I. Execution of an in-

struction with values exclusively found in the cache is referred to as a cache hit consuming

I cycles. If a value is not found in the cache, it is called a cache miss incurring the cost of a

BRT before execution, taking B + I cycles.

Generally, caches may have multiple levels and replacement policies. This work is

limited to single level direct-mapped caches where each block of main memory maps to

exactly one block in the cache. The size of the cache is given by the number of blocks s.

Typically, cache memory is segregated by purpose: one cache for instructions and another

cache for data. This work applies only to the more predictable instruction cache.

Cache memory is typically smaller (and faster) than main memory. To be able to cache

13

any value from main memory a mapping between the two is needed. For a direct-mapped

cache [19], each block of main memory is mapped to exactly one block in the cache. For

a given program address a in main memory, the block of main memory a belongs to is

denoted M̂(a). The cache block that a belongs to and M̂(a) maps to is given by M(a).

2.4 Objects, Tasks, Threads, Ribbons, Entry Points

Programs take many forms, from scripting languages, compiled programs, assembly,

and machine instructions. An executable object or object, are the machine encoded instruc-

tions that execute upon the processor. Every instruction has an absolute address in main

memory denoted a. An object of a task is loaded into main memory as part of releasing a

job. Instructions of an object may access, by in memory address, any other instruction or

data value of the job. The combined set of reachable addresses for a job is referred to as

the memory space of the job or task. For simplicity, we assume all jobs of the same task are

loaded into the same absolute location in main memory with the same memory space for

each release.

Tasks in the sporadic model implicitly represent the object, and memory space of each

execution request; a job. Jobs also have an implicit entry point, a single instruction from

which execution may begin. In contrast, a multi-threaded program makes multiple re-

quests to execute the same object within the same memory space. These requests are

referred to as threads. Additionally, a multi-threaded program may have multiple entry

points. As such, a multi-threaded program does not align well with the sporadic model.

To address these shortcomings, the sporadic model is modified for multi-threaded pro-

grams. The set of task τ = {τ0, τ1, ..., τn−1} is preserved. However, each task is represented

14

by a triple of period, relative deadline, and initial ribbon, τi = (pi, di, ρi). A ribbon is the

set of instructions reachable from a single entry point and is identified by the address of

its entry point ai. A thread ti is a single request to execute the instructions of a ribbon ρi.

When referring to an arbitrary thread of ρi the notation ti will be used. However, when

referring to a specific thread the notation includes an index, i.e. the third thread of ρi is

ti,3. When a job is released, execution begins with threads of the initial ribbon called initial

threads.

A ribbon ρi that is within the object of a task τj is said to belong to a task, denoted

ρi ∈ τj. Similarly, a thread belongs to a ribbon ti ∈ ρi, the thread also belongs to the task

the ribbon belongs to ti ∈ τj, and a thread belongs to the job it was released from ti ∈ Ji,k.

All threads that belong to the same job may access the entire memory space of the job.

No thread belonging to one job may access the memory space of a different job. Although

the model supports the release of additional threads by the initial and subsequent threads,

such release patterns are not explored in this work.

2.5 Control Flow Graphs

A key concept in BUNDLE’s approach to program analysis and scheduling is the control

flow graph (CFG) [20]. A control flow graph, is a weakly connected directed graph G

given by the triple of nodes, edges, and entry instruction G = (N,E, h). Typically, the

nodes n ∈ N of a CFG are basic blocks. A basic block is a set of instructions that execute

serially; if the first instruction is executed the remaining instructions of the basic block will

always execute one after another (unless an error or interrupt occurs). Basic blocks are

identified by their starting instruction. Directed edges between nodes (u, v) ∈ E ∧ u, v ∈ N

15

represent the possible changes in the execution path through the CFG. Execution begins

with the entry instruction h, which can reach any other node in the graph. All paths

through the CFG begin with h and end in a single terminal node denoted z.

Treatment of control flow graphs within this work differs from their typical use in a

simple but important way. Nodes of a CFG are single instructions rather than basic blocks.

A compatible definition would be that all basic blocks are of length one. Several operations

will be described that divide and reassemble the control flow graph of a ribbon. The control

flow graph will be separated into conflict free regions (these are also control flow graphs).

Conflict free regions will then be assembled into a conflict free region graph (also a control

flow graph) where conflict free regions act as nodes not graphs. The relationship between

these graphs is detailed Chapter 5.

16

2.6 Notation Summary

The following table summarizes the notation given in this section, it also lists symbols

that will be used consistently throughout later sections.

Symbol Meaning
τ Set of n tasks {τ0, τ1, ..., τn−1}

τi = (pi, di, ρi) A task with minimum inter-arrival time, relative deadline, and initial ribbon
Ji,k = (Ri,k, Di,k) Job release k of task i with absolute release time and absolute deadline

B Block Reload Time (BRT)
I Cycles Per Instruction (CPI)
ρi A ribbon
ai An address in main memory

G = (N,E, h) Control Flow Graph (CFG) of nodes, edges, and entry instruction
R = (N,E, h) Conflict Free Region Graph (CFRG)

M(a) Block of cache memory utilized by absolute memory address a
M̂(a) Block of main memory a resides in
s Size of the cache in blocks
m Number of initial threads released with each job
H A set of CFR entry points
T Set of threads
ti A thread of ribbon ρi
ti,k The kth thread of ribbon ρi
π A path
C Simulated cache with methods: present, insert, clear, conflicts
p(n) Set of next intra-thread cache conflicts
× Intra-thread cache conflict

P (n) Set of next inter-thread cache conflicts⊗
Inter-thread cache conflicts

L Length of path
$i Priority of CFR (bundle) ni

cni
(m) WCETO of CFR ni for m threads

ci(m) WCETO of task τi for m threads

Table 2.1: List of Symbols

CHAPTER 3 INTER-THREAD CACHE BENEFIT

Central to BUNDLE’s positive perspective is the inter-thread cache benefit. This chapter

provides a definition of the benefit. Additionally, the impact of the benefit is directly com-

pared to the classical perspectives of WCET and CRPD analysis by means of an example. To

ease the presentation for the reader, the following table summarizes the symbols required

to follow the example.

Symbol Meaning
τ Set of tasks
τi Task i
Ji,k kth job of task i
ρj A ribbon j
ti,k kth thread of ribbon ρi
m Number of threads released per job of τ1

a Main Memory Address
M(a) Cache Block Containing a
B Block Reload Time
I Cycles Per Instruction

17

18

3.1 Defining the Inter-Thread Cache Benefit

Figure 3.1: Address Space for Two Jobs

As part of scheduling a job on the pro-

cessor, the object of the job’s task is copied

into main memory. Additional memory

may be reserved or requested by each job,

increasing its address space. In Figure 3.1,

the address spaces of the fourth job of task

one and the second job of task three are

shown in main memory. The shaded area is

the copy of the executable object, and the sinuous area is the additional reservation made

by the job.

Threads share the address space of their job. A thread tj that belongs to a job of

task τi (tj ∈ τi), resides in the memory space of a job Ji of task τi. Within an address

space, instructions have an address a which maps to a cache block M(a) (illustrated in

Figure 3.1).

When a thread tk executes without interruption by preemption, an instruction access

that results in a cache miss is called an opportunity instruction, or simply an opportunity.

Similarly, during uninterrupted execution, any instruction access that hits the cache is

called an expected instruction or an expectation.

When multiple threads are executed, the execution time of one or more threads may

be influenced by cache interactions. When a thread tj preempts a thread tk, tj may evict

cache blocks of tk placed there. If those evicted cache blocks correspond to expected

19

instructions, tj will increased tk’s execution time since tk must now pay B for each evicted

block. Conversely, a thread tj may unexpectedly place opportunity instructions of tk in the

cache during a preemption of tk, reducing tk’s execution time.

Inter-Thread Cache Benefit: Thus, the inter-thread cache benefit for a thread of tj

is the speed-up of tj ∈ τi due to the conversion of opportunities into expectations by the

placement of values in the cache from a thread of tk ∈ τi when tk is scheduled before tj.

3.2 Comparison of Perspectives

Tasks Task Ribbons Thread Releases
τ = {τ1} τ1 = (p1, d1, ρ1) ρ = {ρ1} m = 2

Cache Size (Number of Blocks) CPI BRT
s = 200 I = 1 B = 10

Table 3.1: Example Model Parameters

Using the model parameters in Table 3.1, an example ribbon ρ1 releasing two threads is

presented as a CFG in Figure 3.2. The purpose of this example is to clarify the inter-thread

cache benefit and expose the pessimism in the classical WCET, CRPD, and scheduling anal-

ysis techniques.

Figure 3.2: Control Flow Graph for: ρ1

20

Block Category
B1 must-miss
B2 first-miss
B3

B4

must-miss
B5

B6

B7

Cache Part
Blocks

n of 12
1

B1

B5 B6

2
B7

3
4 B2

... B3

11 B4

12 B5 B6

Table 3.2: Categories from [1, 2] and Cache Assignment

The CFG in Figure 3.2 utilizes basic blocks (serialized sets of instructions) with lengths

expressed in terms of the cache size. Below each block labeled with a B, is the block’s

length expressed as fraction of the cache size s. The parenthesized value at the bottom of

the figure indicates the maximum number of iterations the loop will execute. Figure 3.2

differs from the common use of CFG’s in this work, other figures will typically use basic

blocks of length one.

For the purpose of the example, the ribbon ρ1 is analyzed by the WCET calculation

methods of Arnold [1] and Mueller [2]. CRPD costs are determined using Lee et al.’s [21]

useful cache block (UCB) technique. Although simpler and less accurate than modern

techniques, these methods were chosen for illustrative purposes and their continued use

in subsequent works.

A necessary step in WCET calculation is the categorization of instructions, such as must-

miss and first-miss. A must-miss never hits the cache. A first-miss always hits the cache after

its initial miss. To find first-miss instructions the CFG is searched iteratively looking for

return paths. Only instructions with return paths are candidates for first-misses. Table 3.2

presents the cache mapping and categorizations.

21

Lee et al.’s [21] useful cache block (UCB) approach to CRPD calculation borrows the

iterative return path approach. From Figure 3.2, the only candidates for first-miss and

UCB instructions are contained in basic blocks B2 and B3. No other blocks have a return

path and would be categorized as must-miss, and not useful.

3.2.1 WCET

Using these categorizations and the loop bound, the worst case execution time of ρ1 is

the sum of the execution times of the prologue, the entry executions ofB2 andB3, the repe-

titions ofB2 and B3, and the epilogue. Table 3.3 gives the intermediate values; the total ex-

ecution time taking into consideration reloads is: s(B+I)
4

+ 2s(B+I)
4

+ 8s(I)
4

+ 3s(B+I)
6

= s(5B+13I)
4

= 3150

Section Basic Blocks WCET

Prologue B1

(
s
4
· (B + I)

)
Loop Entry B2 +B3

(
s
4
· 2 · (B + I)

)
Loop Repetition (B2 +B3) · 4 (repeats)

(
s
4
· 2 · 4 · (I)

)
Epilogue B4 + (B5 or B6) +B7

(
s
6
· 3 · (B + I)

)
Table 3.3: Segment WCET

Under the classical model two synthetic tasks are created for the two threads of ρ1.

Assigning the WCET of 3150 to both synthetic tasks, the total execution requirement for

one job is 6300 every p1 time units.

However, this is overly pessimistic. The worst possible execution scenario and schedule

for the two threads is the sequential execution of t1,1 followed by t1,2, where t1,1 takes the

“high” road executing B5 and t1,2 takes the low “road” through B6. This maximizes the

number blocks t1,2 will miss from the cache. Even so, blocks B2, B3, B4 are present in the

cache when t1,2 reaches them.

22

Using the worst case schedule, the WCET of t1,2 is: s(B+I)
4

+ 5s(I)
4

+ s(B+I)
4

+ s(I)
4

= 2s(B+4I)
4

= 1400. The total job execution requirement is 3150 + 1400 = 4550 cycles, less than the

6300 cycles calculated from the synthetic task analysis and application of the Arnold and

Mueller approaches. Figure 3.3 illustrates the worst possible schedule of t1,1 and t1,2 in-

cluding a summary of cache contents at time 3150, which is compared to the WCET bound

calculated from classical perspective.

Figure 3.3: Worst Schedule of τ1, 4550 Cycles

3.2.2 CRPD

Cache Related Preemption Delay (CRPD) is an analytical technique that accounts for

the execution time extension of one task due to the cache interference of another. A task

executing in isolation may store and reuse values from the cache. When preempted, those

stored cache values may be invalidated before they are reused. Upon resumption the

preempted task must pay the BRT for each invalidated cache block.

A method for CRPD calculation is the Lee et. al [21] useful cache block (UCB) ap-

proach. A UCB is “a cache block that contains a memory block that may be referenced

before being replaced by another memory block.” CRPD for a task is limited by the num-

23

ber of UCBs within it.

From Figure 3.2 there are two basic blocks that contribute UCBs to the ribbon ρ1: B2

and B3. Applying Lee’s method, the CRPD of a preemption of thread of ρ1 is 2s(B+I)
4

= 1100.

However, this bound is overly pessimistic.

By construction (and shown in Table 3.2) once the “Loop” instructions are cached they

cannot be invalidated. If t1,1 were preempted by t1,2 after the first iteration of the loop,

the instructions of the loop body (B2 and B3) would be cached in parts 4-10. No other

instructions of t1,2 map to those cache lines and cannot invalidate them. Furthermore,

there is no schedule of t1,1 and t1,2 which incurs any CRPD.

Lee’s approach to CRPD calculation is known to be an overestimate, there are refine-

ments such as the UCB-ECB [22], UCB-Union, and UCB-Union Multiset [13] approaches.

However, the UCB calculation is a component of each of them and the advanced tech-

niques suffer from the same inability to address cache memory as a benefit rather than a

detriment. Similarly, the Arnold [1] and Mueller [2] approaches play a role in subsequent

WCET methods and none incorporate the inter-thread cache benefit.

CHAPTER 4 RELATED WORK

While no existing work focuses on the inter-thread cache benefit to improve schedula-

bility, this chapter provides a survey of related publications from the classical and positive

perspectives. Chapter 1 gave a brief introduction to hard real-time systems and cache

memory, the reader may find Liu’s [23] and Hennessey’s [19] work helpful on the topics.

4.1 Worst-Case Execution Time and Cache Memory

Cache memory brings to additional complexity to worst-case execution time analysis

through non-uniform execution times due to cache misses or hits and has received con-

siderable attention [24, 25]. A central concept of accounting for non-uniform execution

times is the categorization of memory references (including instructions). A reference will

be categorized as first-miss, must-miss, or must-hit. A must-miss reference will never be

found in the cache during execution, where a must-hit will always be present. A first-miss

will absent for its initial execution reference and present for others.

The works of Arnold [1] and Mueller [2, 12] use static cache simulation for direct-

mapped caches to classify references. Their techniques involve repeatedly searching the

CFG of the task for return paths to references. These techniques have been refined and

expanded: White et al. [26] incorporated data caches, Li et al. [27] included set-associative

caches and pipelines, among others.

Arnold and Mueller’s work are of particular value to this work due to their role in

Heptane. An open-source WCET analysis tool, Heptane extends Mueller’s work in part to

demonstrate the incorporation of branch prediction into WCET analysis [28]. In this work,

24

25

the Heptane toolset is extended to support our proposed WCETO analysis for BUNDLEP in

Chapter 6.

4.2 Cache Related Preemption Delay

As an area of study cache related preemption delay (CRPD) is the examination of the

extension of execution time of one job due to the preemption of another. Taking the

perspective of a task being preempted, before preemption there are blocks in the cache

that will be reused later. When preempted, the preempting task will execute instructions

evicting the reusable blocks. Upon resuming the preempted task, the time required to

reload those blocks that would have been reused is the CRPD.

Typically denoted γ in the literature, the CRPD of a task is an upper bound on the

amount of time required to reload cache blocks evicted during a preemption. Schedulabil-

ity tests incorporate γ in one of two ways 1.) increasing a task’s WCET value 2.) adding (a

factor of) γ to the task’s response time [29, 30, 13, 14, 22, 31, 15].

Calculating the CRPD for a task or task set is made from one of three perspectives.

The preempting perspective where the bound on the number of cache blocks affected is

determined by the preempting task. The preempted perspective where the bound on the

number of cache blocks affected is determined by the preempted task. The combined

perspective bounds the number of cache blocks affected by considering both the preempted

and preempting tasks.

Tomiyama and Dutt [17] developed an approach based on the preempting perspective.

They are credited with creating the concept of the evicting cache block (ECB). Defined as

“a memory block of the preempting task is called an evicting cache block, if it may be

26

accessed during the execution of the preempting task.” [13].

Lee [21] take the perspective of the preempted task, noting that a preemption may not

be harmful. For a preempted task, only those cache blocks which are reused can extend

execution times if evicted. Cache blocks which are not reused may be evicted without

penalty. They call these cache blocks useful cache blocks or UCBs, and are defined as “a

cache block that contains a memory block that may be referenced before being replaced

by another memory block”.

The combined perspective considers the possible harm a preempting task could inflict

on a preempted task. The number of useful cache blocks limit the total number of affected

blocks in the preempted task. Negi et al. [22] developed the UCB-ECB approach using

the intersection of the preempted tasks UCBs and the preempting tasks ECBs to bound the

CRPD. Tan and Mooney [15] improved upon the UCB approach, observing the CRPD cost

included multiple evictions for the same UCB per preemption. Their approach, named the

UCB-Union also considers the UCBs of the preempted task with the ECBs of preempting

tasks.

Among the combined approaches, Altmeyer’s [14] ECB-Union Multiset, and UCB-Union

Multiset out-perform the others. Principally, the use of a multi-set prevents over counting

of evictions due to multiple levels preemptions during a single preemption of a lower pri-

ority task. Altmeyer employs an alternative response time function developed by Staschu-

lat [31] with a cumulative CRPD value, rather than a per preemption value. Lastly, Alt-

meyer proposes what he coins the “Combined” approach which takes the minimum of the

ECB-Union Multiset and UCB-Union Multiset which out-performs all methods.

Tighter analysis (reducing) of CRPD values increases schedulability by limiting the im-

27

pact of each preemption. A complimentary method to reducing the impact of CRPD on

schedulability is to limit or defer preemptions. In the limited or deferred preemption set-

ting, a higher priority task may preempt a lower priority task only when some condition is

satisfied [32, 33, 34, 35]. Heuristics for placing preemption points to reduce CRPD val-

ues were proposed in [36, 21]. Bril et al. [37] augment preemption threshold scheduling

by incorporating CRPD values into schedulability analysis. Bertogna et al. [38] provide a

more formal approach for optimally determining preemptions in programs that can be rep-

resented by linear control flowgraphs given the CRPD overhead of each preemption and a

bound on the maximum non-preemption region [34]. Later work, extended this to more

general control flowgraphs [39] or more precise CRPD characterizations of the preemption

costs [40].

Each of the CRPD methods described are limited to a single threaded task. The pro-

posed techniques of this work focus on multi-threaded tasks. While not directly applicable,

the concepts developed for CRPD calculation of ECBs and UCBs are leveraged in the pro-

posed work. These existing methods also serve as a basis for comparison of the classical

perspective to the proposed methods.

4.3 Cache Analysis in Multi-Threaded Programs

Multi-threaded WCET analysis typically takes the classical perspective on cache mem-

ory. An example is feasibility analysis for the fork-join [6] model, where the WCET of a

thread is the longest single threaded execution through the object of the thread. Each

thread’s WCET value contributes to the overall demand independently of other threads.

Concurrent program analysis [41] of has been extended to consider variable configura-

28

tions such as shared multi-level caches [42]. These methods take the negative perspective,

where cache interactions exclusively increase execution times. For shared caches, the anal-

ysis includes the maximum extension due to cache sharing, by constructing the worst-case

interleavings of threads.

4.4 Predictable Cache Behavior

Refinements of the classical perspective include techniques that attempt to mitigate or

manage the cache impact between tasks. Their goal is to reduce or eliminate conflicts be-

tween jobs by creating predictable cache behavior. On multi-core systems, Memory-Centric

Scheduling [43] limits execution of tasks by considering its access to main and cache mem-

ory. Memory-Centric Scheduling depends on tasks that fit the PRedictable Execution Model

(PREM) [44].

PREM-compliant tasks are divided (by the programmer) into intervals in one of two

categories. Compatible fall into the first category, accessing main memory at any point

during execution. Predictable intervals are the second category, and are further divided

into loading and execution phases. During the loading phase all main memory accesses

are placed in the lowest level cache. When the loading phase is complete, the execution

phase may begin where no memory accesses will result in a cache miss.

Under PREM, great care is taken to avoid concurrent memory access between tasks. No

two loading phases may take place simultaneously. Furthermore, compatible intervals are

treated as loading phases. Isolation of tasks is by design due to the negative perspective

of caches, as such PREM is unable to account for the potential inter-cache benefit between

threads.

29

PREM tasks require the programmer to define compatible and predictable intervals.

When active participation in memory management is infeasible or undesirable, passive

predictable cache behavior may involve several techniques. An example of combined man-

agement efforts is made in Ward’s allocation framework for mixed-criticality on multi-core

MC2 [45].

Ward applies three techniques simultaneously. Page coloring (also referred to as parti-

tioning) [46] is used, where pages of memory are assigned colors in such a manner that no

two pages can conflict in the cache. Tasks are assigned colored pages as their working set

of memory during execution. Cache locking is introduced [45], which requires a task to

hold a color lock for each of the colored pages it needs before execution. Cache scheduling

considers the colors of each task when scheduling them, (possibly preemptively schedul-

ing them) to avoid conflicts with other tasks. Similar to PREM, the focus is on isolation

to reduce the negative impact of cache interference between tasks without considering the

positive impact of caches.

4.5 Positive Perspectives on Caches

We are aware of two techniques that take a positive perspective on caches. Calan-

drino [47] limits the cache spread of threads (called subtasks) for multi-threaded tasks.

The empirical results show higher cache hit rates. However, no analytical method to bound

the cache spread is given.

Persistent Cache Blocks [48, 49] (PCBs) take a positive perspective on caches for sub-

sequent job releases. A PCB is a cache block that remains in the cache after a job has

completed which is then reused by a subsequent job. As such, PCBs are limited to tasks.

30

Additionally, the PCB approach requires modification to existing worst case response time

(WCRT), WCET and CRPD analytical methods. Over-simplistically, PCBs are removed from

WCET calculations and included once in response time analysis. The result is a benefit to

system schedulability.

CHAPTER 5 SINGLE-TASK BUNDLE

The BUNDLE scheduling algorithm and WCETO analysis serve as the basis of our positive

perspective on instruction caches. It is limited to a single processor, and single task releas-

ing m initial threads per job release. Scheduling and analysis operate upon derivatives of

the control flow graph of the initial ribbon called conflict free regions and the conflict free

region graph. The description of BUNDLE’s techniques begins with a definition of scheduling

algorithm, followed by formal definitions of conflict free regions and conflict free region

graphs before detailing the WCETO method.

5.1 BUNDLE Scheduling

BUNDLE takes its name from the manner in which it schedules threads of a job. Threads

are placed in a container called a bundle, only one bundle is active, and only threads of the

active bundle are scheduled on the processor at any time. A bundle is associated with a

conflict free region (CFR): a subset of instructions of the ribbon where no two instructions

conflict in the cache. When a bundle is active or inactive, it is also said that the associated

conflict free region is active or inactive. A thread leaves the active bundle by attempting to

execute an instruction of a different region. When leaving the active bundle and entering

a new bundle a thread is blocked until the bundle it enters becomes active. The active

bundle is depleted when all threads leave it. Scheduling threads by their bundle allows the

sharing of cache values (hits) to be quantified and the penalty of cache misses reduced.

To provide context, BUNDLE’s scheduling algorithm is presented as pseudocode in Fig-

ure 1. Since the algorithm is limited to one task, the task and job indices are omitted.

31

32

Introduced in the pseudocode are several new symbols. T is the set of m threads per job

release. H is the set of entry instructions of CFRs. Though previously unstated, every CFR

(which is a CFG) has an entry instruction that distinguishes it from the others. Line 8

utilizes a unique mechanism for halting threads, before a thread can execute the entry

instruction of an inactive CFR the thread is blocked and the scheduler is invoked; we call

this anticipating execution. We are unaware of any hardware platform that supports an-

ticipating execution, nor is an implementation suggested in this section. For BUNDLE we

assume the mechanism exists, a hardware mechanism is proposed in Section 6.4.1 suitable

for both BUNDLE and BUNDLEP.

Algorithm 1 BUNDLE Scheduling Algorithm

1: T . Set of m threads
2: H . Set of CFR entry instructions
3: procedure BUNDLE
4: A← T . Active bundle
5: B ← ∅ . Array of inactive bundles (blocked threads)
6: while true do
7: Select t ∈ A
8: RUN(t) until t’s next instruction is h ∈ H
9: B[h]← B[h] ∪ a . Place t in a new bundle

10: A← Ar t . Remove t from the active bundle
11: if |A| = 0 then . The active bundle has been depleted
12: Select z ∈ H, |B[z]| 6= 0 . Choose a non-empty bundle as active
13: A← B[z]
14: B[z]← ∅
15: end if
16: end while
17: end procedure

At the beginning of the BUNDLE procedure, the active bundle A contains all threads of

the job waiting to execute the initial instruction of the ribbon. For each iteration of the

loop a thread is selected from the active bundle on Line 7. The thread t executes until it

encounters an entry instruction of a different bundle on line 8, it is then removed from the

33

active bundle placed in its new inactive bundle and blocked. If removing t depleted the

active bundle A, an arbitrary non-empty bundle is selected as active in the body of the if

block on Line 11. The loop repeats until all threads complete.

5.2 Conflict Free Regions and Conflict Free Region Graphs

The scheduling algorithm relies upon bundles and their associated conflict free regions

(CFRs) to make scheduling decisions. Calculations for WCETO values also depend on

conflict free regions over the structure of the conflict free region graph (CFRG). CFRs and

the CFRG are derived from the CFG of the ribbon. This section provides formal definitions

and methods of creation for CFRs and CFRGs suitable for BUNDLE.

Figure 5.1: CFG, CFRs, and CFRG of a ribbon

The following definitions refer to the CFG of a ribbon as G = (N,E, h) and the CFRG

R = (N,E, h). When necessary to remove ambiguity the sets are given a superscript of

their origin, e.g. NG identifies the nodes of the CFG and NR the nodes of the CFRG. Recall

the nodes of a CFG are individual instructions, edges represent potential paths of execution

between them. Nodes of the CFRG are CFRs, when referring to a specific CFR ni is used,

nonspecific CFRs are given by F . CFRs are extracted from the CFG and placed in the CFRG

with their connectivity preserved. For an edge (n1, n2) in the CFG, if n1 and n2 reside in

distinct CFRs, then the CFRG must contain an edge between those CFRs. The relationship

34

between the CFG, CFRs, and CFRG of a ribbon is illustrated in Figure 5.1.

Regions of a Control Flow Graph: a region is a selection of the vertexes and edges of

a CFG G. When extracting a region from G, the graph’s connectivity is preserved. I.e, two

vertexes connected in G must also be connected in any region containing both.

Formally, for a region r = (N,E, h) of a control flow graph G = (NG, EG, hG), where

N ⊂ NG and E ⊂ EG. For all pairs of vertexes (u, v) ∈ N , (u, v) ∈ E ⇐⇒ (u, v) ∈ EG.

Regions contain an entry instruction h ∈ N that is weakly connected to all other vertexes

in N .

Conflict Free Region: a region F = (N,E, h) of G is conflict free if no two instructions

of F in distinct memory blocks utilize the same cache block.

∀ni, nj ∈ N, M̂(ni) 6= M̂(nj) ⇐⇒ M(ni) 6= M(nj)

To restate, the requirements of a CFR F are:

1. No two instructions (outside of the same main memory block) map to the same cache

block

2. All instructions of F are weakly connected to the entry instruction h

3. For any two instructions (ni, nj) ∈ F , if there was an edge between them in G then

(ni, nj) ∈ E (of F)

Figure 5.2: Requirements of Conflict Free Region

Conflict Free Region Graph: a conflict free region graph R = (NR, ER, hR) is a CFG of

35

CFRs of G = (NG, EG, hG) where connectivity between CFRs is preserved and all instruc-

tions of G are included in some CFR n ∈ NR. In the definitions below, a CFR i is denoted

ni ∈ NR. For a CFR ni the triple is given by ni = (Ni, Ei, hi).

∀n ∈ NG, n ∈
⋃

nj∈Ni∧ni∈NR

nj (5.2.1)

∀(u, v) ∈ EG, u ∈ Ni ∧ ni ∈ NR ∧ v 6∈ Ni =⇒ ∃(ni, nj) ∈ ER, v ∈ Nj (5.2.2)

Equation 5.2.1 ensures that each node of the CFG is included in some CFR, the set of

instructions nj ∈ Ni ∧ ni ∈ NR are those nj found in the set of instructions Ni from the

CFR i which is contained in the CFRG as ni ∈ NR. Equation 5.2.2 preserves connectivity

from the CFG in the CFRG, when an edge from the CFG is not contained within a CFR

there must exist an edge in the CFRG.

5.2.1 Extracting Conflict Free Regions

The process of analyzing the control flow graph and assigning instructions to con-

flict free regions is called extraction. Support for the process is given by the defini-

tion of intra and inter-thread cache conflicts. These definitions ensure extraction meets

the first requirement for CFRs, that no conflicts exist. The conventional use of sym-

bols will continue for the following definitions, in context of the ribbon being analyzed:

CFG G = (NG, EG, hG), an arbitrary CFR F = (N,E, h), CFRG R = (NR, ER, hR), CFRs

ni = (Ni, Ei, hi) where ni ∈ NR.

36

When referring to any type of control flow graph of a ribbon, CFR, CFRG, or CFG the

notation remains the same, since all of the structures are CFGs. For a CFG G = (N,E, h) a

node n ∈ N is an instruction. For a CFR F = (N,E, h) a node n ∈ N is also an instruction.

For a CFRG R = (N,E, h) a node n ∈ N is a CFR. The context determines which type of

node or edge is being referred to.

Valid Path: a path π = 〈n0, n1, ...〉 of ordered nodes is valid if and only if, for every

adjacent pair of nodes ni, ni+1 in the path there exist a directed edge in the CFG.

∀(ni, ni+1) ∈ π, (ni, ni+1) ∈ EG

Intra-Thread Cache Conflict: an intra-thread cache conflict is an eviction that may

occur during the non-preempted execution of a thread. For instructions ni, nj ∈ NG,

M̂(ni) 6= M̂(nj) and a valid path π = 〈ni, ..., nj〉, nj is an intra-thread cache conflict if

M(ni) = M(nj).

Along a valid path starting with ni there may be multiple intra-thread cache conflicts.

The next conflict is defined as the conflict with the shortest distance on the path from ni.

Next Intra-Thread Cache Conflict: for ni ∈ NG, a next intra-thread cache conflict is an

intra-thread cache conflict nx on a valid path π = 〈ni, ..., nj, nx〉 containing no intra-thread

cache conflicts between any two nodes (na, nb) ∈ π′ for π′ = 〈ni, ..., nj〉.

Next Intra-Thread Cache Conflicts: is the set of all possible nx values that are next

intra-thread cache conflicts from ni. The set is given by p(ni).

Figure 5.3 provides an illustration of the next intra-thread cache conflicts from ni in

the CFG of the task’s ribbon. All nodes are equal in the graph, though some are unnamed.

37

Below each node is the cache block it maps to, in the case of ni its value would be cached in

block 3. Execution beginning with ni could lead to an eviction of ni by nj. Another eviction

could occur if nb were executed after na. Although na could evict ny, na is not a next conflict

starting from ni. Only two next intra-thread conflicts exist from p(ni) = {nb, nj}.

Figure 5.3: Next Intra-Thread Cache Conflicts from ni marked with a ×

A pair of algorithms is presented as pseudocode for p(n). The first is a recursive algo-

rithm named paths of conflict, given in Algorithm 2. This procedure returns a set of valid

paths starting with n and terminated with the first conflict on the path. It uses a simulated

cache object C and its methods: C.insert(n) caches n’s memory block, C.clear() removes

all blocks, C.present(n) returns true if n’s block is already cached, and C.conflicts(n) re-

turns true if C.insert(n) would evict a cache block. Algorithm 3 returns p(n), the set of

next intra-thread conflicts from n: the union of the last elements of each path returned by

POC(n).

A recursive depth first search (DFS) is the basis for POC(n). There are two exit condi-

tions found on Line 8 when there are no more subsequent nodes on the path, or a conflict

has been found. A conflict is determined by checking the global simulated cache state used

for all recursive calls. If the exit condition is not satisfied, the current node is inserted into

the cache before working on the subsequent nodes. The work of the recursive call takes

38

Algorithm 2 Paths of Conflict from n

1: G = (N,E, h) . CFG of the ribbon
2: C . Simulated Cache
3: procedure POC(n)
4: P ← 〈n〉 . One path
5: P← ∅ . All paths, the return value
6: mark(n) . Marks n as visited
7: K ← {v | (u, v) ∈ E}
8: if |K| = 0 or C.conflicts(n) then . Path exploration terminated or hit a conflict
9: P← {P}

10: return P
11: end if
12: C.insert(n)
13: for all v ∈ K and not visited(v) do
14: C ′ ← C . Copy the cache
15: for all P ′ ∈ POC(v) do
16: P← P ∪ 〈P, P ′〉
17: end for
18: C ← C ′ . Restore the cache
19: end for
20: . Remove paths with cross-path conflicts
21: for all P ∈ P do
22: for all T ∈ {P \ P} do
23: if T.last ∈ P and T.last 6= P.last then
24: P← {P− P}
25: end if
26: end for
27: end for
28: return P
29: end procedure

place on lines 13-19, for each subsequent node v the cache state is copied and POC(v)

invoked. The recursive call returns a set of sub-paths, starting with v that terminate in

conflicts. To these paths the current path is pre-pended to make a complete path, each

complete path is added to the set P. Since the cache state is copied and restored for each

recursive call, it is possible that some paths in P contain conflicts with others before they

terminate. The double loop starting on Line 21 removes those paths that contain conflicts

before their terminal node.

39

Algorithm 3 Next Intra-Thread Cache Conflicts p(n)

1: procedure P(n)
2: R← ∅
3: P←POC(n)
4: for all P ∈ P do
5: R← R ∪ P.last
6: end for
7: return R
8: end procedure

Algorithm 3 completes the pair for P(n) and is straightforward. Taking the last element

of the paths of conflict and adding each to the set R, only the next intra-thread cache

conflicts are returned.

Inter-Thread Cache Conflict: an inter-thread cache conflict is a possible eviction due

to the execution of multiple threads of the same ribbon. For instructions ni, nj ∈ NG,

M̂(ni) 6= M̂(nj), ni and nj are inter-thread cache conflicts if M(ni) = M(nj).

Next Inter-Thread Cache Conflict: for ni ∈ NG, a next inter-thread cache conflict from

ni is an instruction nj, where M(nj) = M(nk) for some nk with valid paths πj = 〈ni, ..., nj〉,

πk = 〈ni, ..., nk〉 and no other conflicts between πj and πk.

∀(na, nb ∈ (πj ∪ πk) \ {nj, nk}), M̂(na) 6= M̂(nb) =⇒ M(na) 6= M(nb)

Next Inter-Thread Cache Conflicts: is the set of all possible nx values a that are next

inter-thread cache conflicts from ni. The set is given by P (ni).

Figure 5.4 illustrates the relationship between intra and inter-thread cache conflicts

from a node ni for a particular CFG. An intra-thread cache conflict by definition is an inter-

thread cache conflict. Consider an intra-thread cache conflict nx ∈ p(ni), nx conflicts with

some instruction nj on the path π = 〈ni, ..., nj, ..., nx〉. For two threads, one may execute

40

Figure 5.4: Next Inter-Thread Cache Conflicts from ni marked with a
⊗

and cache nj, and the other may execute nx evicting nj.

Leveraging the definition of intra-thread cache conflicts (marked with a × in Fig-

ure 5.4), the next inter-thread cache conflicts are marked with a
⊗

. Note the inter-

thread cache conflicts occur across paths. In particular, nk and n` share cache block 3

but are not reachable from one another. The complete set of inter-thread cache conflicts

are {nj, nk, n`, nm}, Figure 5.5 depicts the largest region without conflicts.

Figure 5.5: Largest region of Figure 5.4 with no conflicts from ni

The set of next inter-thread cache conflicts is denoted P (n) and described by pseu-

docode in Algorithm 4. It relies on the paths of conflict algorithm POC(n) to bound its

search. Since POC returns the set of paths that terminate in the intra-thread cache conflicts

41

from n. Those paths are examined as pairs P and Q for cross-path conflicts, and if one is

found the paths are cut (shortened) to the conflicting instructions.

Algorithm 4 Next Inter-Thread Cache Conflicts p(n)

1: procedure P(n)
2: P← POC(n)
3: for all (P,Q) ∈ P do
4: for all ni ∈ P, nj ∈ Q do
5: if M(ni) = M(nj) then
6: P ← subpath(P, n, ni)
7: Q← subpath(Q, n, nj)
8: end if
9: end for

10: end for
11: return {P.last | P ∈ P}
12: end procedure

When examining the CFG, the set of next inter-thread cache conflicts P (ni) from the

instruction ni identify the first reachable conflicts on any valid path from ni. Thus, any

node on any valid path from ni up to (but not including) those of P (ni) cannot conflict.

Furthermore, all nodes in this set are weakly connected to ni and no edge is excluded from

G. The set of nodes and edges satisfies the requirements of a CFR with initial instruction

ni. These observation allows the set of inter-thread cache conflicts to serve as boundaries

of CFRs.

Utilizing the boundary property of next inter-thread cache conflicts, extraction of the

complete set of conflict free regions from the CFG is an iterative process. Starting with

the entry instruction from the CFG, the set of next inter-thread conflicts bounds the initial

CFR. To extract the CFR F , nodes and edges are added to F by a depth first search from

the entry instruction hG halting at instruction nx ∈ P (hG). Subsequent CFRs are created

by using the set of next inter-thread conflicts as entry instructions. The process is repeated

42

until the terminal instruction of the CFG is reached.

In Figure 5.6 the extraction of the initial CFR is illustrated. The next inter-thread cache

conflicts P (hG) are {ni, nj, nk}which are not included in the initial CFR F = (N,E, h← hG)

of the CFRG R. After extraction, F is added to R. Edges are added to R from F to each of

its successors identified by their entry instruction ni, nj, nk. The process is repeated using

the next inter-thread cache conflicts as entry instructions of successor CFRs until each path

through the CFG reaches the terminal instruction.

Figure 5.6: Extraction of the initial CFR from the CFG

5.2.2 Worst Case Execution Time with Cache Overhead (WCETO)

WCETO analysis for a one ribbon task releasing m threads per job depends on the struc-

ture of the program, conflict free regions, BUNDLE’s scheduling decisions and the conflict

free region graph. The result is a bound c(m) for all m threads to complete their execution.

Graphical Notation

In Figure 5.7, the CFG of a ribbon is given with entry instruction h and terminal instruc-

tion z. CFRs have been extracted from the CFG and placed in the CFRG below. The figure

uses a graphical notation that is consistent within this work, instructions in the CFG are

43

circular nodes, and CFRs in the CFRG are square nodes1. Additionally, the shorthand of

aligning instructions of the CFG with their CFRs in the CFRG is used throughout this work.

This mapping is acceptable when treating each node ni as the value of its main memory

address ai, therefore ni in the CFG refers to the instruction at address ai and the node ni

in the CFRG refers to the CFR beginning with the instruction at address ai.

Figure 5.7: CFG to CFRG with WCETO Values

Next to each CFR of the CFRG are two WCETO values, the first for a single thread, the

second for two threads. The parameter m to the per node function cn(m) is the number

of threads assigned to execute over the node as scheduled by BUNDLE. The value of these

functions depend on the structure of the CFR (definitions of structures are provided later

in this section). Each c(m) function is used as a portion of the per path WCETO calculation.

A path π through the CFRG always begins with h and terminates with the CFR containing

z, in Figure 5.7 there are two possible paths π = 〈h, nj, nk〉 or π = 〈h, ni, nk〉.
1Hexagons will be used for summary nodes CFRs in later sections

44

Given any path π and a number of threads assigned to that path m, the WCETO for a

path π is cπ =
∑

n∈π cn(m). The set of all distinct paths through the CFRG is denoted Π,

which serves as support for the worst-case selection of paths multiset ΠS. Elements of ΠS

are the distinct paths and the number of threads assigned to them 〈π,m〉. The cardinality

of ΠS is m, |ΠS| = m. A path πi with n threads assigned to it is denoted π ∈n ΠS. For ΠS,

the completion of all m threads is bounded by the following equation.

c(m) =
∑
πi∈ΠS

∑
n∈πi

cn(k | πi ∈k ΠS)

The worst-case selection of paths ΠS is the set that produces the greatest c(m) value.

This entails searching the space of all paths for all possible assignments of m threads. No

heuristic for finding the worst-case selection is known at this time and remains an open

topic of research.

ΠS = argmax
ΠS⊆Π

{ ∑
πi∈ΠS

∑
n∈πi

cn(k | πi ∈k ΠS)

}

To illustrate, the example in Figure 5.7 is extended in Figure 5.8. It includes four

WCETO of increasing m values (the number of threads per job) where m is in the range

[1, 4]. There are two paths through the CFRG R, labelled π1 and π2. As the number

of threads are increased the selection of worst-case paths changes. For π1 the WCETO

of one thread is cπ1(1) = 156, compared to cπ2(1) = 148 thus ΠS = {π1}. For m = 2, the

candidates for ΠS are {π1, π1}, {π1, π2}, and {π2, π2} with c(2) values of 182, 304, and 164

respectively; thus ΠS = {π1, π2}. For three and four threads, the incremental cost of π2 is

greater for each thread assigned to the paths.

45

Figure 5.8: WCETO from CFRG

Through this example BUNDLE’s sub-optimal behavior is exposed. The selection order

of bundles is arbitrary, therefor multiple threads may be scheduled over the same CFR

without benefiting from cache reuse. This behavior results in a greater WCETO bound,

which can be seen in Figure 5.8 by considering the effect of coordinating bundle execution

such that nk is activated only once.

Central to WCETO calculation are the CFR WCETO bound functions (the cn(m) func-

tions). To create these functions, some assumptions are made about each CFR, several

of which are guaranteed by extraction. Other requirements come from the model and

BUNDLE’s scheduling algorithm. The complete set of assumptions are listed below.

46

1. Any CFR F = (N,E, h) has a single entry instruction h.

2. When activated, All m threads of are ready and waiting to execute h.

3. Any thread attempting to execute an instruction nx ∈ P (h) is blocked.

4. Preemptions between threads take no time.

5. Loops have pre-determined iteration bounds.

Figure 5.9: CFR Requirements for WCETO Calculation

Individual CFR WCETO functions also depend on the CFR containing a single logical

structure. There are three types of structures: linear, branching, and looping. Descriptions

of the types are given in the following subsection. Each CFR is partitioned by structure

into smaller CFRs.

An iterative process similar to the extraction of CFRs from the CFG is taken. The first

structure in the CFR F = (N,E, h) is detected and extracted as Fh with a set of boundary

instructions K. Each boundary instruction nk ∈ K serves as the entry instruction of a

successor structure Fnk
. Edges are added to the CFRG R between Fh and each of the

successors. When the process completes by reaching the end of the CFR, the single node

F in R is replaced by a graph of CFRs containing one structure each.

Within this work we see no need to detail the extraction of structures, given the well

established techniques of pathfinding [50] and loop detection [51]. Instead, we describe

the requirements placed upon those structures necessary for calculating a safe WCETO

value.

47

5.2.3 Structures

Linear Structure: a linear structure begins with an instruction h followed by a set

of serial instructions and no branches. The out-degree of any node in the structure is at

most one. It terminates at a node z, an instruction which precedes a branching or loop-

ing instruction x. The terminal instruction z is within the structure, while the boundary

instruction x is without.

Figure 5.10: Linear Structure from h to z Preceding a Loop

Branching Structure: a branching structure contains at least on node with out-degree

greater than one and no loops.

A branching structure terminates at a set of nodes Z. A node z ∈ Z is defined as a

node that precedes a node within a loop, or having out-degree zero. When a node z is

determined to be in Z, all outgoing edges are pruned at z. Immediate successors of z are

added to the set of boundary instructions X = {x | (z, x) ∈ EG}. Terminal instructions are

included in the structure while boundary instructions are not.

48

Figure 5.11: Branching Structure from h to Z = {z1, z2}with Boundary NodesX = {x1, x2}

Looping Structure: a looping structure contains the nodes of a cycle starting with

node h. It contains no nodes outside of the cycle. The structure of the loop is further

restricted, no path from a node within the cycle may leave it without passing through

h. This restriction is met by precluding GOTO and LONGJMP instructions. Within the loop,

linear, branching and looping structures are permitted.

Figure 5.12: Looping Structure with Loop Head h and Boundary Nodes X = {x}

5.2.4 Structure WCETO Calculation

The remainder of this section is dedicated to the theorems and proofs of WCETO

bounds for CFRs of linear, branching, and looping structures. The setting is a single CFR

F = (N,E, h), of one structure type, and set of next inter-thread cache conflicts X = P (h).

49

All m threads are scheduled by BUNDLE, blocked waiting to execute h, and will block at-

tempting to execute any instruction x ∈ X.

Theorem 1 (Eviction-less Execution). For m threads blocked waiting to execute h of F , an

instruction n ∈ N cannot be evicted during the execution of any thread over the CFR if any

thread is blocked before executing an instruction x ∈ X.

Proof. By definition of a conflict free region, ∀ni, nj ∈ N ∧ M̂(ni) 6= M̂(nj),M(ni) 6= M(nj).

Consider a cached instruction ni, if the execution of nj ∈ N evicts ni then M̂(ni) 6= M̂(nj)

Further, M(ni) = M(nj) contradicting the definition of a conflict free region. Therefore, ni

cannot be evicted by execution of any nj ∈ N .

Corollary 5.2.0.1 (Single Load). During the execution of F by BUNDLE, any instruction

n ∈ N can be loaded into the cache no more than once for any number of threads.

Time Bound for Linear Structures: When F contains a single linear structure with entry

instruction h and terminal instruction z, there is a single path π = 〈h, ..., z〉. The length of

this path is referred to as L = |π|.

Theorem 2 (WCETO for Linear Structures). When F contains a single linear structure with

terminal instruction z and m threads waiting to execute h, an upper bound on the execution

time from h to z for all threads is: ch(m) = L(I ·m+ B).

Proof. Each of the m thread executes L instructions since there are no alternative paths

from h to z. By Corollary 5.2.0.1, at most one of the m threads will cache each of

the L instructions taking L · B time. Execution of L instructions by m threads takes

L · I ·m time. Combining the time required to cache and execute, yields the bound of

ch(m) = L(I ·m+ B).

50

Time Bound for Branching Structures: When F contains a single branching structure

it has an entry instruction h and set of terminal instructions Z. With multiple paths

π = 〈h, ..., z〉, where z ∈ Z. The length of the longest path to any z ∈ Z from h is referred

to as L.

Theorem 3 (WCETO for Branching Structures). For a conflict free region F with a branching

structure and m threads waiting to execute h, an upper bound on the execution time from h

to z ∈ Z for all threads is

ch(m) = L · I ·m+ |N | · B

Proof. From Corollary 5.2.0.1 at most one of them threads will cache any n ∈ N , the worst

possible case is that all |N | instructions are cached taking |N | · B time. For execution, the

worst case is for all m threads to execute the longest path of length L taking L · I ·m time.

Combining the bounds produces: ch(m) = L · I ·m+ |N | · B.

Figure 5.13: Embedded loop of h2 within h1

Timing Bound for Looping Structures:

When F contains a single looping structure

it has an entry instruction h and a predeter-

mined bound on the number of iterations

Ih. There may be multiple distinct cycles

from h to h, among these the one with the

longest path is referred to as L.

When an embedded loop is present the

contribution to any path is the product of the longest path through the embedded loop and

the number of iterations. In Figure 5.13, h2 is embedded in h1. The longest (only) cycle in

51

h2 is 3, with at most 5 iterations and contributes 15 cycles to the longest path of h1.

Theorem 4 (WCETO for Looping Structures). For a conflict free region F with a looping

structure and m threads waiting to execute h, an upper bound on the execution time for all

threads to complete Ih iterations is given by

ch(m) = Ih ·m · L · I + |N | ·B

Proof. Consider the execution and caching of instructions separately. Since L is the longest

path through the cycle and, one cycle executed by one thread can take no more than L · I

time. For m threads and Ih iterations the upper bound on execution is Ih ·m · L · I.

Cache misses are limited by Theorem 1, since F is conflict free, no instruction can be

evicted during the execution of F . Only the initial load of any instruction into the cache

demands consideration. The number of initial loads is bounded by the total number of

instructions in the region which takes |N | · B time. Combining the bounds on execution

and caching of instructions result in ch(m) = Ih ·m · L · I + |N | ·B

Special Cases for Looping Structures: Theorem 4 assumes looping structures are con-

tained within a single conflict free region. Linear and branching structures may be divided

at boundaries defined by next inter-thread conflicts. However, for looping structures, this

is not always the case. To derive a bound for loops containing inter-thread cache conflicts,

the concept of bounded inter-thread cache conflicts is introduced.

A bounded inter-thread cache conflict from a given instruction n ∈ NG up to and

including z ∈ NG is an inter-thread cache conflict on a valid path from π = 〈ni, ..., z〉.

Bounded Inter-Thread Cache Conflicts: Are the set of all possible x values that are a

52

bounded inter-thread cache conflict from n to z. The set is given by P (n, z). No algorithm

is given for P (n, z), since it requires two small modifications to P (n), 1.) accept and pass a

bound to POC(n) 2.) return all conflicts of all paths found by POC(n) rather than the final

element. Only one modification is required of POC(n), to cease searching at the bound

rather than at a conflict. These simple modifications do not seem to warrant an additional

algorithm.

When a cycle in the CFG G contains an inter-thread cache conflict it cannot be con-

tained within a single CFR, a separate time bound for the cycle must be calculated. Cycles

have the restricted form of an entry instruction h with two outgoing edges, one that enters

the cycle and another exiting through the boundary instruction x.

The set of bounded inter-thread cache conflicts, calculated by P (n, z), differ from the

set of next inter-thread cache conflicts by including all conflicts on all paths π = 〈n, ..., z〉.

Utilizing the initial instruction h as the start and bound for inter-thread cache conflicts

P (h, h)produces the set of all conflicts within the loop starting with h. These are used

in calculation of bound for m threads over the looping structure F . As a note during

extraction, the set of entry instructions H is increased only by h and x (the boundary

instruction of the loop). This differs from the typical extraction which would increase H

by the inter-thread cache conflicts P (h).

An additional concept is required to complete the bound calculation, that of maximum

per iteration invocation. For an instruction n ∈ N of a region F = (N,E, h) that is a loop-

ing structure, the maximum per iteration invocation of n given by nmax is the greatest

number of times n may be executed during a single cycle starting with h. The value is the

product of the maximum iterations of the embedded loops n belongs to. For example, if n

53

belongs to the region F with initial instruction h, and also belongs to the embedded loops

h1 and h2 then nmax = Ih1 · Ih2.

To ease the bound calculation, for a set of nodes P , the operator dP e is defined as

follows. Note, this definition will not be reused outside of Theorem 5.

dP e =
∑
n∈P

nmax

Theorem 5 (WCETO For Special Case Looping Structures). For a CFR F with a looping

structure that contains inter-thread cache conflicts with m threads waiting to execute h, and

longest path L an upper bound on the execution time for all threads to complete Ih iterations

of the cycle is given by

ch(m) = B(|N \ P (h, h)|) + Ih ·m (L · I + B · dP (h, h)e)

Proof. Consider the time to cache all instructions of the loop separately from the time to

execute a single iteration. The product of the block reload time and number of instructions

|N · B| bounds the time to populate the cache.

For a single iteration of a loop by a single thread, the execution time is bounded by L · I,

for all m threads m · L · I. In any iteration, an inter-thread conflict instruction x may be

evicted at most xmax times because x may be evicted by another instruction in the closest

embedded loop to which x belongs. Therefore, in one iteration, a single thread will incur

at most dP (h, h)e evictions.

Combining the execution time, block reloads, and iterations produces the time bound

of Ih ·m (L · I + B · dP (h, h)e) of executing Ih iterations of the loop after all instructions

54

are cached. Before incorporating the time to populate the cache, the double counting of

|P (h, h)| reloads are subtracted from |N |. Summing the time to populate the cache and

iterate over the loop for m threads yields the bound

ch(m) = B(|N \ P (h, h)|) + Ih ·m (L · I + B · dP (h, h)e)

5.3 Evaluation of BUNDLE

The positive perspective taken by BUNDLE has been compared to the classical approach

using two methods. The first method performs a static WCET and WCETO analysis of a

single multi-threaded program. The second examines BUNDLE’s run-time performance and

overhead costs. Both analysis are performed in the same setting, CPI of one, BRT of ten, for

a direct mapped instruction cache with block size of one instruction. Additionally, context

switch costs for threads or tasks are not considered. To state explicitly, any context switch

takes zero cycles. Figure 5.14 summarizes the shared evaluation parameters.

Block Size 1 (word or instruction)

Context Switch Cost 0 cycles

I 1 cycles

B 10 cycles

Figure 5.14: BUNDLE Evaluation Parameters

5.3.1 WCET vs WCETO Analysis

To compare the classical methods of Arnold [1] and Mueller [2] to BUNDLE, a paral-

lel program written using the POSIX Thread library (pthread) is analyzed. The program

55

ppi.c, is a multi-threaded estimator of the ratio of a circle’s circumference to its diameter

(π). Full source is provided as Listing 5.1.

Listing 5.1: ppi.c a Multi-Threaded π Estimator Using PTHREAD

1 #define M 150
2 #define L 10000
3
4 void *part(void *count) {
5 double x, y, d;
6 int i;
7 long *c = (long *) count;
8 *c = 0;
9

10 for (i = 0; i < L; i++) {
11 x = rand() / (double) RAND_MAX;
12 y = rand() / (double) RAND_MAX;
13 d = sqrt(x * x + y * y);
14 if (d <= 1) {
15 (*c)++;
16 }
17 }
18 pthread_exit ((void *) c);
19 }
20
21 int main (int argc , char *argv []) {
22 for (t = 0; t < M; t++) {
23 pthread_create (& threads[t], NULL , part ,
24 (void *)&count[t]);
25 }
26 total = 0;
27 for (t = 0; t < M; t++) {
28 pthread_join(threads[t],
29 (void *) &found);
30 total += *found;
31 }
32 pi = (double) 4 * total / (M * L);
33
34 printf("M:%i L:%i pi =~ %0.05f\n",
35 M, L, pi);
36 return 0;
37 }

Initialization and accumulation are handled by the main function in the initial thread.

The initial thread’s contribution to execution time and cache contents is constant and is

ignored by the analysis. Only the object code of the part function is analyzed, representing

a ribbon ρ for which m threads execute per job release.

The flow of ρ is divided into three sections, a prologue, loop body, and epilogue. After

compilation, the prologue and epilogue are serialized sets of instructions corresponding to

linear structures. However, the loop body contains a conditional resulting in a branching

structure within a looping structure.

Analysis of the sections by the methods of Arnold [1] and Mueller [2] produce a WCET

56

value in terms of m, I, and B. Using these methods, all instructions of the prologue

and epilogue are categorized as “never cached”. Instructions within the loop body are

categorized as “first miss” where some “may” be cached and others “must” be. To favor

the classical approach, the number of cache misses are reduced by re-classifying all “may

be cached” instructions as “must be cached”. Performing the analysis yields a bound of

c1 found in Equation 5.3.1 for one thread to execute the object of ρ with a maximum of i

iterations of the loop.

c1 = 86 · I · B + 35 · I + (i− 1)(100 · I + 8 · B) (5.3.1)

Figure 5.15: c1: Classical WCET for One Thread to Execute ρ

Similarly, a representative CRPD value for the classical perspecive is determined using

the UCB [21] method over ρ. For the prologue and epilogue there can be no useful blocks.

However, all instructions within the loop body are useful, they are also evicting. The bound

γ1 is the product of the number of UCBs and the block reload time, found in Equation 5.3.2.

This preemption cost will be incorporated using Lunniss’ [29] approach, increasing the

WCET of each job by the CRPD value per preemption.

γ1 = 65 ·B (5.3.2)

Figure 5.16: γ1 Classical CRPD for One Preemption of ρ

To avoid favoring the positive perspective, the number of cache blocks s is selected to

ensure the loop body of ρ could not be contained within a single CFR. Doing so requires the

loop body to be bounded by Theorem 5 instead of the smaller bound given by Theorem 4.

Using a maximum iteration bound of 1,000 for the loop body, the results of increasing the

number of threads m in the classical analysis and BUNDLE are compared in Figure 5.17.

57

 0

 5x10
6

 1x10
7

 1.5x10
7

 2x10
7

 2.5x10
7

 3x10
7

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

W
C

E
T

 &
 C

ac
h
e

O
v
er

h
ea

d

m

Classical (negative)
BUNDLE (positive)

Figure 5.17: Comparison of WCET and WCETO for m threads and i = 1,000

In Figure 5.17, the solid line is product of the classical WCET bound and the number

of threads, i.e. c1 ·m. The dashed line is the WCETO value for BUNDLE scheduling, i.e.

c(m) calculated from Theorems 2, 3, and 5. For this ribbon as the number of threads

increases, the difference between the WCET and WCETO value increases. This illustrates

the analytical benefit of BUNDLE’s positive perspective and cache reuse across threads.

Figure 5.18 compares the impact of preemptions to the classical approaches WCET to

BUNDLE’s WCETO value. The number of threads m is fixed to two, and the number of

preemptions increased. Using the Luniss [29] approach each preemption increases the

WCET for a task. For BUNDLE preemptions are restricted and accounted for in the WCETO,

which is why the total execution time remains constant and below the classical analysis.

58

Preemptions 1 5 10 15

Method
Classical 181365 183965 187215 190465

BUNDLE 101143

Figure 5.18: WCET + Preemption Cost When i = 10000

5.3.2 BUNDLE Run-Time Performance

To complement the analytical comparison, BUNDLE’s scheduling algorithm is compared

to two different thread scheduling algorithms. The first mirrors the classical approach,

running threads to completion one after another, sequentially. This first scheduling algo-

rithm is named seq. The second scheduling algorithm is named random, which executes a

random number of instructions from one thread before preempting it with another.

Each scheduler is implemented as part of a path tracing simulator for synthetic pro-

grams. The path trace simulator is available on github at http://github.com/ctessler/

pathsim.git. It takes generated programs as input, tracing the execution of multiple

threads using one of the three scheduling algorithms and produces a count of instructions

executed without a pipeline. When executing a branching instruction, the branch to take

is randomly selected. When encountering a looping instruction, the maximum number of

iterations is randomly selected from zero to the analytical loop bound.

Programs generated for the simulator were based on characteristics of the Mälardalen

Real-Time Research Center’s WCET benchmark suite [52]. Averages of number of branch-

ing statements, looping directives, program length, and basic block sizes were taken from

the compiled objects of the set of benchmarks. The program generator uses these pa-

rameters in a Guassian distribution to generate 100 programs. Each program is exe-

cuted for a given cache size s in the range of s = (64, 128, 256, 512), number of threads

http://github.com/ctessler/pathsim.git
http://github.com/ctessler/pathsim.git

59

Figure 5.19: Run Time Overhead Results

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0 2 4 6 8 10 12 14 16

C
ac

h
e

M
is

se
s

Threads

Cache Blocks: 512

seq
random
bundle

(a) Misses vs. Threads

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0 100 200 300 400 500 600 700 800 900 1000 1100

C
ac

h
e

M
is

se
s

Cache Blocks

Threads: 16

seq
random
bundle

(b) Misses vs. Size

 0

 20

 40

 60

 80

 100

 120

 140

 0 2 4 6 8 10 12 14 16

C
o

n
te

x
t

S
w

it
ch

es

Threads

Cache Blocks: 512

seq
random
bundle

(c) Threads vs. Switches

m = (1, 2, 4, 8, 16), and scheduler: (BUNDLE, seq, random). For the total combination of

7,500 program runs, the results are averaged and presented in Figures 5.19 and 5.20.

The run-time performance of BUNDLE in terms of cache misses dominates both seq and

random in all circumstances. It strictly dominates (is always less than) both when the

number of threads is greater than one, and the cache size is smaller than the program

length. There are two circumstances for which the cache miss results are ignored, for

one thread, and when the cache size is greater than the program length. Scheduling a

single thread requires no scheduling decisions, each of the algorithms will exhibit the same

number of misses. When the cache size is greater than the program length (e.g. s = 1024)

the number of misses is limited to the number of instructions in the program and does not

change between scheduling algorithms.

Cache miss rates favor BUNDLE most when the cache size is roughly two thirds the aver-

age program length (s = 512) shown in Figure 5.19a. For BUNDLE as the number of threads

is increased, the number of misses remains constant. However, the other scheduling algo-

rithms increase their misses with each thread. As the number of threads increase, so too

does BUNDLE’s benefit.

Conversely as the cache size is increased in Figure 5.19b the benefit of BUNDLE de-

60

creases. For a fixed number of threads, increasing the number of cache lines benefits all

algorithms. While BUNDLE maintains lower total cache misses, the relative benefit naturally

decreases with the cache size.

BUNDLE’s lower miss rate comes at a cost: an increased number of thread-level context

switches, shown in Figure 5.19c. Although thread-level context switches are (by design)

far less costly than process-level (job-level) context switches the cost of BUNDLE scheduling

warrants consideration.

Cache Lines 64 128 256 512 1024

Threads

1 0 0 0 0 0

2 248 413 697 1372 0

4 372 618 1046 2057 0

8 434 719 1210 2284 0

16 464 770 1296 2447 0

Figure 5.20: Minimum Context Switch Cost (in Cycles) for seq to Dominate BUNDLE

Figure 5.20 presents a bound on the thread-level context switch cost derived from the

simulation results. The individual cell values represent the minimum number of cycles a

single thread-level context switch must cost which for seq to execute and complete in the

same number of cycles as BUNDLE. The values are computed by taking the difference in

cache misses between the two schedulers and dividing the difference by the block reload

time B = 10.

Considering the thread-level context switch costs in terms of the synthetic programs,

each of the 100 programs averaged 7,900 instructions of execution. The worst-case con-

figuration of 64 cache blocks and two threads results in thread-level context switch costs

61

above 248 instructions for seq to outperform BUNDLE; roughly 3% of a thread’s execution

time. For the best-case, thread-level context switches would have to exceed 30% of the

average execution time! These thread-level context switch values appear unreasonably

high; therefore, the cache miss reduction of BUNDLE outweighs the increase in thread-level

preemptions.

5.4 Summary

These initial experiments demonstrate the benefit of BUNDLE’s positive perspective of

instruction caches for a single multi-threaded program. The classical perspective’s pes-

simistic WCET bounds are due to its inability to account for the inter-thread cache benefit.

Instead, caches are seen only as detractors in WCET bounds.

The run-time performance of the positive perspective also favors BUNDLE over the clas-

sical scheduling algorithms for the examined task set. Permitting thread-level context

switches to consume up to 3% of a threads execution time before a naive sequential sched-

uler will outperform BUNDLE.

62

1. A single multi-threaded task

2. Loops are restricted to a single entry and exit point

3. Sub-optimal scheduling with respect to cache sharing and WCETO

4. Intractable WCETO calculation

5. An undefined hardware mechanism for anticipating execution

6. An evaluation limited to synthetic programs

Figure 5.21: Constraints of Single Task BUNDLE

However, BUNDLE operates in a constrained setting. These constraints limit the appli-

cability of its positive perspective and adoption in deployed systems. Those constraints

are summarized in Figure 5.21. As a proof of concept, BUNDLE reflects the benefits of the

positive perspective and encourages further investigation into its approach.

CHAPTER 6 SINGLE-TASK BUNDLEP

Exploration of the positive perspective continues with BUNDLEP, a modification of BUNDLE’s

scheduling algorithm with a novel approach to CFRG creation and WCETO calculation.

Additionally, BUNDLEP’s complete approach has been implemented for evaluating programs

compiled for MIPS [53] architectures. Summarily, BUNDLEP extends BUNDLE by the follow-

ing:

1. An evaluation and simulation platform for MIPS programs

2. A WCETO method of suitable complexity

3. Formal proof of optimal scheduling with respect to cache sharing

4. A novel and concrete hardware mechanism proposal

5. A novel CFG representation

6. Algorithms for unambiguous CFR extraction

7. Algorithms for novel CFRG formation

8. Removal of structures from CFR and WCETO analysis

9. Incorporation of context switch costs in WCETO bounds

Figure 6.1: Summary of BUNDLEP improvements

63

64

6.1 BUNDLE Sub-Optimal Cache Sharing

One of the problems addressed by BUNDLEP is BUNDLE’s sub-optimal scheduling with

respect to cache sharing, caused by arbitrary activation selection of CFRs. Figure 6.2

illustrates the sub-optimal behavior over the CFRG of a ribbon. The active CFR (node) is

shaded light gray and the small black squares next to each node are the threads within the

bundle of the associated CFR.

(a) n1 active (b) n3 active (c) n2 active (d) n3 active

Figure 6.2: Sub-Optimal BUNDLE Execution

Moving from left to right follows the sequence of bundle activations in Figure 6.2. In

6.2a n1 is active and when depleted its three threads are blocked waiting on n3. At this

point, the next potentially active bundle is n2 or n3. Since the BUNDLE scheduling algorithm

selects the next bundle arbitrarily, n3 is a valid choice in 6.2b. There is only one choice for

the active bundle in 6.2c and 6.2d, n2 then n3.

The result of arbitrary selecting n3 in 6.2b instead of n2 is that n3 is activated a second

time in 6.2d. Two activations of n3, one for three threads and a second for two threads has

a higher WCETO bound than one activation for five threads. The bound for two activations

is greater because the time required to cache all instructions of n3 must be included twice.

In other words for the WCETO bound of n3, c3(m) for m threads: c3(3) + c3(2) > c3(5).

65

6.2 BUNDLEP Overview

Arbitrary selection of the active bundle has the additional deleterious effect of increas-

ing the complexity of WCETO analysis, due to the number of paths being increased by

potential multiple activations of individual CFRs. BUNDLEP addresses both the sub-optimal

cache sharing and WCETO complexity with a simple solution: assign priorities to CFRs

in the CFRG. At run-time, a bundle inherits the priority of its associated CFR. The bundle

with the best (lowest) priority is always activated. A detailed description of BUNDLEP’s

scheduling algorithm is given in Section 6.4.

Assigning priorities to CFRs in a manner that guarantees the minimum number of acti-

vations maximizes the inter-thread cache benefit of each activation. Details of constructing

such a priority assignment are provided in Section 6.4.3. Intuitively, the priority assign-

ments are based on their distance to the terminal CFR. The terminal CFR has the highest

priority, nodes immediately preceding the terminal CFR have the second highest, etc.

(a) n1 active (b) n2 active (c) n3 active

Figure 6.3: Optimal BUNDLEP Execution

Figure 6.3 illustrates one such assignment of priorities based on Figure 6.2. The priority

of each node is given as a superscript. Node h0, as the initial CFR has the best priority 0,

n2
3 the worst priority 2. In 6.3a, n1 and n2 are the only bundles with threads waiting to

66

execute. Both CFRs have equal priority, selecting either one is valid. In the example, n1

is selected. There are no decisions available in 6.3b or 6.3c, the activations are set by the

priorities of n2 and n3. The result is n3 is activated once, halving the cache loads in the

analysis and (potentially) at run-time.

A priority assignment that minimizes the number of activations of a node ni is one

where the priority $i of ni is equal to its longest path in the CFRG from h; where the

longest path is determined by the number of edges traversed in the CFRG from h to ni.

Theorem 6 provides a proof of minimal CFR activations for CFRG which is a directed

acyclic graph (DAG). Being applicable only to CFRGs that are DAGs requires BUNDLEP’s

extraction of CFRs and CFRGs to differ from BUNDLE’s. Using novel methods of CFR ex-

traction and CFRG formation to guarantee a DAG, the assignment of priorities to CFRs is

performed in polynomial time, with the added benefit of reducing the WCETO complexity.

Theorem 6 (Maximum Bundle Activations). For a CFRG R = (N,E, h), which is a DAG,

where each node ni ∈ N has priority $i equal to the length of the longest path from h to ni

the bundle ni will be activated at most once per job using BUNDLEP.

Proof. To illustrate a contradiction assume a CFR ni is activated more than once. Then

there must exist a node nj with a higher priority$j > $i on a valid path 〈h, ..., nj, ..., ni, ...〉.

Given that R is a DAG, there can be no path from ni to nj. Since priorities are assigned

equal to the longest path from h to a node, then$j < $i contradicting$j > $i. Therefore,

ni can be activated at most once.

67

6.3 Conflict Free Region Extraction and Conflict Free Re-

gion Graph Creation

An optimal priority assignment based on the longest path requires the CFRG be a DAG1.

Additionally, the process of converting a ribbon’s executable object into a CFG, then CFRs,

and finally a CFRG must not introduce loops or ambiguity. To meet these two requirements,

BUNDLEP divides the analysis of ribbons into two stages: 1.) create an expanded CFG

2.) create CFRs from the expanded CFG and link them in the CFRG. The following two

subsections are dedicated to the separate processes.

6.3.1 Expanded Control Flow Graphs

In BUNDLE for a CFG G = (N,E, h), a node n ∈ N is a single instruction identified by

its address. Similarly, for BUNDLEP nodes of G are a single instruction. However, nodes are

not identified by their address but their address and callstack. This prevents loops from

being introduced into the CFG.

Common to programs of other hard real-time systems, ribbons are prohibited from

including infinite loops, function pointers, long jmps, or unbounded recursions. Even

with these restrictions in place, it is still possible to introduce loops into the CFG during

analysis of a ribbon. Figure 6.4 provides an example where a loop is introduced into the

CFG of a linearly structured program.

1User defined loops also prevent the CFRG from being a DAG, to force the DAG structure loops are
collapsed – described in Section 6.4.3

68

1 procedure a(x, y)
2 c = x
3 x = b(y)
4 y = b(2 * c)
5 return x + y
6 end procedure

(a) Procedure a() (b) Introduced Loop (c) Avoiding the Loop

Figure 6.4: Summary of BUNDLEP improvements

For illustration, the number next to each line of the procedure in 6.4a corresponds to

the in memory address of the statement. For clarity, each statement is presented as a single

instruction in the CFGs found in 6.4b and 6.4c. Figure 6.4b is the CFG that results from

each node being identified solely by its address. There are no cycles in the procedure,

however the CFG in 6.4b contains one between 4 and b(). This cycle is added because

there is a call to b() by instruction with address 3, and another call by instruction 4.

By identifying each node by its address a cycle is introduced. Instead, if the callstack is

included in the identification of a node as is the case in 6.4c, no cycle is introduced.

When a nodes of a CFG are identified by their callstack and address it is called an ex-

panded CFG. For BUNDLEP all CFG operations take place over the expanded CFG of ribbons.

Formally, for a CFG G = (N,E, h), a node n ∈ N is identified by its address a and callstack

s of depth k, where s = 〈n1, n2, ..., nk〉. Each entry of the callstack is a node in N , where

the first node in the stack is the top of the stack – the node calling n’s function. For the

initial instruction h (or nodes reachable without a function call), the callstack has a single

element ∅ indicating no parenting call.

In comparison to common CFG creation [54] and program analysis [55], creation of

an expanded CFG is a straightforward modification of existing approaches. As such, we do

not provide a detailed description of expanded CFG creation.

69

6.3.2 Conflict Free Region Graph Creation

An expanded CFG is the source of extraction for conflict free regions, and the construc-

tion of the conflict free region graph. In BUNDLE nodes (instructions) of the CFG could

belong to multiple CFRs. Permitting membership in multiple CFRs can introduce cycles

and ambiguity into the CFRG. In BUNDLEP nodes are prohibited from participating in mul-

tiple CFRs to avoid the introduction of loops and support for a novel tractable WCETO

calculation.

Augmenting the requirements of a CFRs and CFRGs from BUNDLE found in Section 5.2,

the complete set of BUNDLEP requirements for a CFGG = (NG, EG, hG), CFRGR = (NR, ER, hR),

and set of CFRs NR become:

Requirements of individual CFRs ni ∈ NR, ni = (Ni, Ei, hi)

1. No two instructions (outside of the same main memory block) map to the same cache

block
2. All nodes n ∈ Ni are weakly connected to the entry instruction hi
3. For any two nodes nj, nk ∈ Ni, if there was an edge between them in G then

(nj, nk) ∈ Ei.

Requirements of CFRGs

1. A node in the CFG n ∈ NG is present in exactly one CFR:

∀n ∈ NG, ∃ni ∈ NR, (n ∈ Ni ∧ ∀k 6=in 6∈ Nk)

2. Connectivity of the CFG is preserved:

∀(u, v) ∈ EG, u ∈ Ni ∧ ni ∈ NR ∧ v 6∈ Ni =⇒ ∃(ni, nj) ∈ ER, v ∈ Nj

Figure 6.5: Requirements of Conflict Free Regions and Conflict Free Region Graphs for
BUNDLEP

70

In addition to the requirement that each instruction of the CFG is annotated with its ad-

dress and callstack, nodes of the expanded CFG must also include a reference to their loop

heads. All loops must have a head, a starting instruction that includes a condition which

determines if the loop will repeat. For CFR assignment as well as WCETO calculation, each

node must have its inner-most loop head identified.

Figure 6.6 illustrates the expectations of loop head annotations. Beginning with Fig-

ure 6.6a where nodes {h, n1, n4} do not belong a loop and nodes {n2, n3} belong to a loop

with head n1. For n2 and n3 their inner-most loop head is n1, the others have no loop head

indicated by a ∅. In Figure 6.6b there are three loops with heads n1, n2, and n5. Loops

n2 and n5 are embedded within loop n1. When loops are embedded within one another, a

node’s inner-most loop head is the one closest to the node in the hierarchy. For example,

n7 is a member of both loops n1 and n5. The inner-most loop head of n7 is n5, and n5’s

inner-most loop head is n1. Any suitable algorithm may be used to identify the inner-most

loop head of nodes in the expanded CFG such as [56].

(a) Single Loop

(b) Embedded Loops

Figure 6.6: Loop heads and Inner-Most Loop Heads

71

Given a properly constructed and annotated expanded CFG, conflict free regions can be

extracted and assembled into a CFRG. The process of converting the CFG to a CFRG takes

two phases 1.) assignment 2.) linking. In the assignment phase, nodes of the CFG are

assigned to exactly one CFR. In the linking phase, CFRs are joined by edges in the CFRG.

The following subsections 6.3.3 and 6.3.4 describe those phases.

6.3.3 Assignment

Assignment is responsible for placing each node of the CFG into one CFR. The process

is completed by the cooperative efforts of two depth first searches (DFS): TAGCFRS() and

LABELNODES(). As the top-level (or outer) search, TAGCFRS() marks all the nodes of the

CFG G that are entry nodes of CFRs. The bottom-level (inner) search, LABELNODES(n)

identifies those instructions that belong the CFR with entry instruction n, it also returns a

set of conflicts which TAGCFRS() will use to continue its search.

Algorithm 5 TAGCFRS()

1: G = (N,E, h) . Expanded CFG G
2: C . Simulated Cache
3: procedure TAGCFRS

4: s.clear() . Local stack
5: v.clear() . Visited node array
6: s.push(h) . Starting node
7: while not s.empty() do
8: n← s.pop() . Take a node
9: v[n]← true . Mark the node as visited

10: C.clear() . Reset the cache
11: X ← LABELNODES(n) . Label CFR nodes
12: for x ∈ X do
13: s.push(x) if not v[x] . Conflict begins a CFR
14: end for
15: end while . v[n] = true indicates n is a CFR entry.
16: end procedure

Pseudocode for TAGCFRS() is provided by Algorithm 5. It uses a simulated cache object

72

C (identical to the one used in Algorithm 2) with methods insert(), clear(), present(), and

conflicts(). The procedure is similar to DFS, starting with the initial node of the CFG

being pushed to the local search stack s. During each iteration of the while loop, a node

n is popped from the search stack and marked as visited in the array v. Being marked

by TAGCFRS() indicates that n is an entry instruction of a CFR. After being marked, n is

processed by LABELNODES(n). A typical DFS would push the successors of n to the search

list before the next iteration. This is where TAGCFRS() differs.

On Line 11, the call to LABELNODES(n) identifies the nodes that belong to the CFR

F with initial instruction n and returns a set of nodes X that begin subsequent CFRs.

Only those x ∈ X which have not been visited are added to the search list instead of the

immediate successors of n.

By definition, CFRs cannot contain conflicts. For a node ni with an immediate successor

nx that conflicts in the cache, nx cannot belong to the same CFR as ni. Since nx belongs to

a different CFR than ni and it is the first reachable instruction from the CFR ni belongs to,

nx must be the entry instruction of a subsequent CFR. It is this observation that guides the

behavior of LABELNODES(n).

An example of LABELNODES(n3) is given in Figure 6.7. In the CFG of the figure, the

subscript identifies the node, and the value below the node is the cache block it maps

to, e.g. n6
2

maps to block 2. For node n3, the entry instructions of subsequent CFRs is

X = {n7, n8, n9}. This determination is made because n7 and n9 conflict with n5 through

cache block 3, while n8 conflicts with n3 through cache block 4.

73

Figure 6.7: Call to LABELNODES(n3)

In addition to return the set of entry nodes of subsequent CFRs, LABELNODES() labels

nodes of the CFG with the CFR they belong to. A CFR Fi = (Ni, Ei, ni) can be identified

by its entry node ni. In Figure 6.7 the nodes {n3, n4, n5} are labeled with their CFR n3.

Pseudocode for LABELNODES() is provided by Algorithm 6.

74

Algorithm 6 LABELNODES()

1: G = (N,E, h) . CFG G, shared with TAGCFRS()
2: C . Simulated cache, shared with TAGCFRS()
3: procedure LABELNODES(n)
4: s, x . Local stacks (not shared with TAGCFRS())
5: v . Local visited array (not shared with TAGCFRS())
6: if n.label 6= ∅ then
7: `← n.label . Breaking an existing CFR
8: end if
9: s.push(n)

10: while not s.empty() do
11: u← s.pop()
12: if (n.isHead() ∧ not n.inLoop(u)) ∨
13: . Case 1, Loop Exit
14: (u.isHead() ∧ u 6= n) ∨
15: . Case 2, Loop Head
16: (u.label 6= ∅ ∧ u 6= `) ∨
17: . Case 3, Already Assigned
18: (C.conflicts(u.a)) . Case 4, Cache Conflict
19: then
20: x.push(u) . Push the Conflict
21: v[u]← true . Skip u’s successors.
22: end if
23: next while if v[u] . Already visited
24: v[u]← true
25: . Case 5, Add to CFR n
26: u.label← n . Label u with CFR n
27: C.insert(u.a) . Insert u into the Cache
28: for y ∈ G.succ(u) do
29: if not v[y] then
30: s.push(y)
31: end if
32: end for
33: end while
34: return x
35: end procedure

The procedure is a DFS, with a search stack s initially populated with the provided node

n that begins a new CFR. During each iteration of the while loop on Line 10 a candidate

node u is popped from the stack. Within the body of the loop u will be classified as a

75

member of the CFR starting with n or not a member. If u is not a member, it is called a

conflict and begins a subsequent CFR

Four conditions lead to u being deemed a conflict. The most straight-forward case is on

Line 18, if inserting u into the cache would evict another value in the cache then clearly u

is a conflict. The three remaining cases are more subtle, but each is necessary to maintain

the DAG structure of the CFRG and avoiding the introduction of spurious loops.

Case 1 and 2 address user defined loops; those programmed by the user into the ribbon.

When n is a loop head u must belong to the loop to be within the same CFR. Case 1 will

be true if n is a loop head and u is not a member of n’s loop. It may be that u is loop

head (and is not n), Case 2 ensures u begins a separate CFR. To maintain the CFRG DAG

structure loops are collapsed into summary nodes (described in Section 6.4.3). To be able

to collapse loops into summary nodes, loop heads must be the entry node of CFRs and

CFRs must only contain nodes of the same loop.

Case 3 is more complex than the others because it ensures that CFRs are weakly con-

nected while preventing spurious loops from being added to the CFRG. WCETO calculation

requires that CFRs be weakly connected. Due to the structure of programs and the nature

of conflicts, it is possible for the same node to be reached on multiple paths and potentially

assigned to a new CFR. Case 3 only applies to nodes that have already been labeled. If the

candidate node u has already been labeled and the label differs from n’s label then u must

belong to a different CFR and is a conflict.

76

a: Before LABELNODES(n2) b: LABELNODES(n2), no Case 3.

c: LABELNODES(n2), Case 3. d: LABELNODES(n3), Case 3.

Figure 6.8: Case 3 Protection

To elaborate, Figure 6.8 presents the effects of assigning instructions with and without

Case 3 protection. Figure 6.8a is the initial state, after the call to LABELNODES(n1) has

completed and n2 is in the search stack of TAGCFRS() waiting to be labeled by a call to

LABELNODES(n2). If Case 3 protection is removed, the result of calling LABELNODES(n2)

is Figure 6.8b. There are two issues: the first is a loop has been introduced into the CFRG

between n1 and n2, the second is that n1 is no longer weakly connected.

77

Alternatively, Figure 6.8c illustrates the result of having Case 3 protection in place

during the call of LABELNODES(n2). When n3 is encountered it has a label of n1 which

differs from n2. This indicates that n3 is a conflict, n3 added to the set of conflicts x and

returned to TAGCFRS() when the search completes. Figure 6.8d demonstrates how nodes

previously labeled as n1 have their label replaced by n3 as the result of TAGCFRS() calling

LABELNODES(n3), shrinking n1 while ensuring nodes belong to exactly one CFR and the

CFRG is a DAG.

If u is determined to be a conflict by one of the cases, it is added to the set of conflicts

x and marked visited to avoid further processing. If u is not a conflict, it is labeled as a

member of the CFR starting with n and marked as visited. After being labeled a member,

the immediate successors (which have not been visited) are added to the search stack. The

search repeats until the stack is empty. When the search completes the set of conflicts x

are returned to TAGCFRS().

6.3.4 Linking

Assignment is completed when TAGCFRS(h) returns. At this point, each node n has

a label given by n.label. Each unique label identifies a CFR. To construct a CFRG from

the labeled nodes the final step is to create CFRs add edges between them, linking them

together. Linking pseudocode is omitted due to the simple nature of the operation: a DFS

of the CFG that creates a CFR when encountering a new label and adds edges between

CFRs when the endpoints of edges in the CFG have distinct labels.

After linking the CFRG R = (N,E, h) is complete. The set of CFRs is N , edges between

CFRs E, and entry CFR h. A CFR F = (N,E, h) has nodes N edges E and entry node h.

78

To ease discussion over the three types of CFGs, a CFR Fi = (Ni, Ei, hi) is also identified by

it’s entry instruction from the CFG. For example, in Figure 6.8c n3 is a node in the CFG and

the entry node of a CFR. Since n3 is the entry node, the CFR is labeled n3 in the graph.

6.4 BUNDLEP

Input to the BUNDLEP scheduling algorithm is a CFRG where each CFR is assigned a

priority. At run-time, BUNDLEP selects (in priority order) the active bundle. Threads of

the active bundle execute until they leave the active CFR. A thread leaves the CFR by

attempting to execute the entry instruction of a subsequent CFR. When the active bundle

is depleted, another is selected as active. The process repeats until all threads terminate.

To support this behavior, BUNDLEP relies on a hardware mechanism to anticipate execution

(as did BUNDLE).

6.4.1 Hardware Support

This section proposes an anticipatory mechanism for BUNDLE scheduling. It is a new

hardware interrupt named XFLICT. When raised, the interrupt represents the attempted

execution of an instruction that may result in a cache conflict. A potential conflict cannot

be determined solely by the instruction being executed, additional information is required.

That additional information is supplied in the XFLICT TABLE.

Each entry of the XFLICT TABLE is the address of an instruction which may result in

a cache conflict. While the processor executes instructions, if the program counter is set

to a value present in the XFLICT TABLE, the proposed hardware mechanism halts the CPU

before executing the instruction and raises an XFLICT interrupt. The interrupt and ancillary

data including the inciting instruction is received by the BUNDLEP scheduling algorithm,

79

which then moves threads to their appropriate bundle. Hardware breakpoints [53] and

the proposed XFLICT interrupt behave similarly, halting the CPU when reaching a specific

program address and raising an exception.

(a) (b) (c)

Figure 6.9: XFLICT Interrupts and BUNDLEP

An example illustrates how the interrupt, table, and scheduling algorithm cooperate

in Figure 6.9. In the example, priorities are assigned in accordance with Theorem 6 to

minimize the number of activations of bundles. Figure 6.9a represents the moment n1

has been depleted and the BUNDLEP scheduling algorithm prepares to activate n2 (since it

has the lowest priority of any bundle with threads waiting to execute). In the process of

selecting n2 as active, the XFLICT TABLE denoted X is populated with the address of the

entry nodes of the subsequent CFRs of n2: {a3, a4}. Only after the XFLICT TABLE has been

populated are threads of the active bundle permitted to execute. Between Figure 6.9b and

6.9c two threads have executed and raised XFLICT interrupts, one by attempting to execute

a3 and being placed in n3, the other being placed in n4. When each interrupt is raised, the

80

BUNDLEP scheduling algorithm places the thread in the appropriate inactive bundle, where

it waits to be selected as active.

6.4.2 BUNDLEP’s Scheduling Algorithm

Algorithm 7 BUNDLEP Scheduling Algorithm

1: T . Set of Threads
2: R = (N,E, h) . Conflict Free Region Graph
3: P . Priority Queue of Ready Bundles
4: B . Array of bundles indexed by their node n ∈ N
5: procedure BUNDLEP
6: b← B[h]
7: b.t.add(T)
8: P .insert(b, b.$)
9: while b← P .removeMax() do . Best Bundle

10: S ← ∅ . Clear the successor array
11: XFLICT_CLEAR() . Clear the XFLICT table
12: . Create the mapping of address to node
13: for s ∈ R.succs(b.n) do
14: bs ← B[s]
15: S[bs.a]← bs
16: XFLICT_ADD(bs.a)
17: end for
18: for t ∈ b.t do
19: try {
20: TCB_RESTORE(t)
21: RUN(t)
22: } catch (XFLICT x) {
23: TCB_SAVE(t)
24: bnext ← S[x.a] . Get the next bundle
25: bnext.t.add(t)
26: P.insert(bnext, bnext.$)
27: next for . t has not terminated
28: }
29: end for
30: end while
31: end procedure

Algorithm 7 presents the pseudocode of the BUNDLEP scheduling algorithm utilizing the

XFLICT interrupt. It uses four global variables: the set of threads T , CFRG R, priority

81

queue P , and set of bundles B. Every bundle b ∈ B has four members: address of the

initial node b.a, node of the CFRG b.n, priority b.$ inherited from b.n, and a set of threads

b.t. Only when a bundle is ready (has threads waiting to execute over it) is it added to the

priority queue P .

Initialization of the scheduling loop is handled by Lines 6-8, adding all threads to the

bundle of the entry node of the CFRG, and placing the bundle into the priority queue.

Every iteration of the while loop from Lines 9 to 30 corresponds to the activation of the

best priority bundle and execution of threads until the bundle is depleted. When the

priority queue is empty all threads have terminated and the job has completed.

BUNDLEP is responsible for managing the XFLICT TABLE. Lines 10-17 perform the op-

eration of clearing the table and adding the addresses of entry instruction of subsequent

CFRs to the table. There is one caveat, the same address may map to multiple CFRs. For

this reason BUNDLE keeps the successor S array to map from address to bundle, which is

used when an XFLICT interrupt is raised.

With the successor array populated, the for loop on Lines 18-28 handles the execution

of threads until the depletion of b. It begins by selecting an arbitrary thread of the active

bundle t. The thread control block (TCB) of t is then restored. TCBs for each thread are

stored in the memory space of the scheluder (ie. kernel space). Within every TCB is a copy

of the general purpose registers and the active program stack. Restoring the TCB correctly

sets the general purpose registers and moves the stack pointer to correct location.

With the TCB restored, the processor is properly prepared to RUN(t) the thread. The

thread executes until it terminates, or raises an XFLICT interrupt by attempting to execute

the entry instruction of a subsequent CFR. In response to the interrupt, BUNDLE saves the

82

TCB of the thread, then (using the successor array S) places the thread in the appropriate

bundle bnext. If necessary, bnext is added to the priority queue P to be selected as active

later.

Section 6.5 will consider the context switch costs of BUNDLEP in terms of the complexity

of each operation with respect to the maximum number of threads per job. The data struc-

tures used to store bundles and threads determine the complexity of the context switches.

On Line 18 a thread t is removed from the bundle b, order is irrelevant so an array may

be used to store all threads which results in O(1) for removal of a single thread. For se-

lecting the active bundle on Line 9 priority order is relevant and a priority queue is used

to maintain the ordering. An efficient implementation of priority queue will utilize a Fi-

bonacci heap with complexity O(1) of insertion, and amortized complexity of O(log n) for

removeMax.

6.4.3 Priority Assignment

Assigning priorities to CFRs occurs during the offline analysis of the ribbon. For each

node n of the CFRG R = (N,E, h), the priority of n is determined by the longest path

from h to n. To make this assignment, the CFRG must be a DAG. CFG and CFRG creation

carefully avoid creating spurious loops from a ribbon. However, programs contain looping

logical structures. These user defined loops may lie within a single CFR which would not

negatively affect the CFRG. If user defined loops span multiple CFRs, by necessity a loop

will be created in the CFRG.

To clarify, a loop in the CFRG R = (NR, ER, hR) has a head which is a node ni ∈ NR (a

CFR). The CFR ni = Fi = (Ni, Ei, hi) has an entry node hi which is the loop head instruc-

83

tion, for such a CFR we will say that Fi (or ni) is the loop head. A node nm ∈ NG (of the

CFG) that has hi as one of its loop heads is said to be a member of hi’s loop. All nodes

within a CFR share the same loop heads. A CFR is a member of the loops of the nodes

contained within it.

When a user defined loop creates a loop in the CFRG the loop head and its members

are collapsed into a loop summary node. Unless otherwise stated, loop summary nodes are

treated identically to other nodes in the CFRG. If a difference in treatment is required they

will be referred to as “loop summary nodes” or “summary nodes” to distinguish them.

A summary node replaces the head and member nodes of a loop in the CFRG with

a single node. Within a summary node only one loop is permitted. To enforce the loop

limitation a summary node may include other summary nodes. If a member of a summary

node is a loop head hi, the loop of hi is collapsed with its members and replaced by a

summary node. Doing so ensures a summary node with loop head hi exclusively contains

members with inner-most loop head hi. Priorities assignment leverages the structure of

summary nodes.

(a) CFRG Before Collapse

(b) Collapsing n1

Figure 6.10: Collapsing One Loop of a CFRG

84

Figure 6.10 illustrates the collapse of a single loop. Figure 6.10a is the CFRG with loop

n1 and members {n2, n3, n4}. Before collapse the set of nodes in the CFRG is:

NR = {h, n1, n2, n3, n4, n5}

Figure 6.10b is the result of collapsing n1’s loop into a summary node also labeled n1.

After collapsing the loop, the set of nodes in the CFRG are NR = {h, n1, n5}, where n1 is

a summary node. Members of the summary node are {n1, n2, n3, n4} where n1 is a regular

node.

For a CFRG that contains no summary nodes, the priority value of each node is the

longest path to each node from the initial node in terms of edge weights, where all edges

are weighted one. For a CFRG containing summary nodes, each summary node has its

longest path inflated by the length of the longest cycle collapsed within it.

In Figure 6.10b, the length of the longest cycle from n1 to n1 is four. Therefore, the

loop head is given priority four, as is the summary node. Giving the loop head the highest

priority of all members ensures that during each iteration all threads block before starting

their next iteration.

In addition to having an inflated priority value, each summary node must have a unique

priority within its scope. For summary node n1 in Figure 6.10b, the other nodes in its scope

are {h0, n5
5}. Having a unique priority guarantees all threads complete their loop iterations

before progressing. A property that will be leveraged during WCETO calculation.

85

To summarize, for a summary node ni

1. The longest path (and priority) of ni is increased by the length of the longest cycle

within the summary node.

2. In its scope, ni must have a unique priority.

Figure 6.11: Summary Node Priority Requirements

(a) CFRG Before Collapse

(b) Collapsing n3

(c) Collapsing n1

Figure 6.12: Collapsing Embedded Loops

For embedded loops, when a summary node contains another summary node the em-

bedded loops are collapsed first. Figure 6.12 provides an example of embedded collapse

and the resulting priority assignments. Figure 6.12a shows the CFRG before collapsing

any loops. The first loop collapsed is that of n3 in 6.12b. Nodes {n4, n5, n6} are given

priorities equal to the longest path from the loop head n3. The loop head (and summary

node) are given priority four, equal to the longest path denoted as +4 to accentuate the

temporary nature of the value. Lastly, in Figure 6.12c n1 is collapsed, in the process the

summary node n3 is given its final priority value of 6 which is passed to the loop head n3.

86

This affects the priorities of {n7, n1}.

Repeatedly collapsing loops into summary nodes from the inner-most to outer-most,

all loops are removed from the CFRG and it is converted to a DAG. Additionally, since the

contents of each summary node are restricted to a single loop, within a summary node the

graph is also a DAG (if the edges returning to the loop head are excluded). Setting the

priority of nodes within a summary node equal to their longest path from the loop head

hi, where the loop head has the highest priority of all members, guarantees each CFR is

activated at most once per iteration of the loop hi, as shown by Theorem 7.

Theorem 7 (Maximum Bundle Activations per Iteration). For a graph of the summary node

G = (N,E, n0) with loop head n0, set of member nodes N and edges E, where each node

ni ∈ N has priority $i equal to the longest path from n0 to ni, and n0 has priority greater

than all others {$0 | ∀nj∈{N\n0} $0 > $j} the bundle of ni will be activated at most once per

iteration of n0.

Proof. Observation I: For a member node ni of N that is a loop head, ni will be collapsed

with all other nodes that have ni as their inner-most loop head. Only the summary node

ni will be in N . Therefore, for any summary node, there is exactly one loop with head n0.

Observation II: A single iteration of the loop contained within a summary node is de-

fined as the series of activations that begins with the activation of n0 and ends just before

n0 would be selected as active once again. Since n0 has the greatest priority among all

nodes in N , bundle’s of all other nodes must have been depleted before n0 could be acti-

vated again.

Observation III: Since n0’s priority is unique in its scope, for the n0 summary node to

87

be activated all other threads must be blocked waiting on bundles of greater priority to

activate. Since the regular node of n0 has greatest priority among all members of sum-

mary node n0, when activated the summary node n0 will complete all of its iterations and

iterations of embedded loop summary nodes before executing the bundle of any node that

is not a member of summary node n0.

Consider the graph G where the incoming edges to n0 have been removed, removing

the cycle, i.e., E = {(u, v)|(u, v 6= n0) ∈ E} as a graph G′ = (N,E, n0). By Observation I, G′

is now a DAG of CFRs. Treating a single iteration as a job release and applying Theorem 6

to G′, each n ∈ N is activated at most once per iteration for all threads executing the loop.

6.5 BUNDLEP WCETO Calculation

A primary goal of BUNDLEP is the practical effort of creating an effective, safe WCETO

bound. To that goal, the bound calculation is formulated as an integer linear program

(ILP). The number of variables grow at O(N + E) for N CFRs and E edges between them.

This section is devoted to describing the transformation of a CFRG into a set of constraints

and an objective function. To present the transformation in a concise manner the individ-

ual ILP constraints are presented in the ancillary Section 6.9.

Assigning priorities to nodes of the CFRG and collapsing loops (as described in Sec-

tion 6.4.3) guarantees each node is activated at most once. As such, the contributions

of individual nodes may be considered in isolation. What determines a node’s individual

contribution is the number of threads assigned to it.

For the ILP, the maximization problem becomes finding the greatest sum of contribu-

88

tions of individual nodes for a valid assignment of threads. The WCETO of an individual

node is given by the function ωn(tn) where tn is the number of threads assigned to node

n ∈ N . Figure 6.13 illustrates the relationship between the CFRG, WCETO of nodes ωn(tn),

and objective function Ω =
∑

n∈N ωn(tn); it is the maximized sum of WCETO contributions

of the CFRs of the CFRG given an assignment of threads per node. An additional example

using representative values from the evaluation is available in the ancillary Section 6.10.

Figure 6.13: CFRG Individual Nodes and ILP Objective

The WCETO of a node ωn(tn) depends on the number of threads assigned to it tn, the

function takes the form of Equation 6.5.1. We assume a timing-compositional architec-

ture [57]; the number of cycles required to complete a single node is divided into two

parts: the memory demand and the execution demand. The memory demand of a node n is

the product of two factors 1.) the set of unique cache blocks in the CFR, commonly referred

to as evicting cache blocks (ECBs [13]) and 2.) the block reload time B. The memory de-

mand is denoted γn = |ECBn| · B. The execution demand is the product of the worst-case

execution time of a single thread over the node cn and the number of threads assigned

tn. Two context switch costs are included to reflect the penalty of BUNDLEP scheduling,

Xb is the number of cycles required to switch to a new active bundle, and Xt is the cost

of selecting a thread from the active bundle. The costs Xb and Xt are directly related to

89

lines 9 and 18 of Algorithm 7.

ωn(tn) =

ω′n(tn), summ(n)

0, tn = 0

cn · tn · Xt + Xb + γn, tn ≥ 1

(6.5.1)

For a summary node n the function summ(n) returns true and false for non-summary

nodes. When a summary node is supplied to Equation 6.5.1 the value is calculated by

ω′n(tn). Described by Equation 6.5.2, ω′n(tn) depends on In the maximum number of itera-

tions of the loop summary node n and inscope(n). The set of nodes returned by inscope(n)

is the set of member nodes with inner-most loop head n, which includes nodes and loop

summary nodes. For example in Figure 6.12c inscope(n1) = {n1, n2, n3, n7} where n3 is a

summary node.

ω′n(tn) =

0, tn = 0

◦
γn + In ·

∑
i∈inscope(n)

◦
ωi(ti), tn ≥ 1

(6.5.2)

The memory and execution demand of a summary node are not entirely separable. In-

dividual nodes within scope of n have their per-iteration contribution bounded by
◦
ωi(ti),

described later. An initial memory demand for summary node n is calculated as
◦
γn, it rep-

resents the number of cycles required to cache all blocks of nodes within the summary node

regardless of scope. The set of nodes allscope(n) includes any node that is not a summary

node and has loop head n. Using Figure 6.12c, allscope(n1) = {n1, n2, n3, n4, n5, n6, n7}

which includes no summary nodes.

90

For
◦
γn to account for the time required to cache all blocks of all members of the sum-

mary node n it must account for multiple nodes utilizing the same cache block. A multi-set

containing the union of ECBs from all nodes addresses the issue. The multi-set union of

ECBs is formed and labeled
◦

ECBsn =
⋃
i∈allscope(n)ECBsi. The product of cardinality of

the ECB multiset and the block reload time produces
◦
γn = B · |

◦
ECBsn|. By virtue of the

multi-set’s cardinality the number of cycles required to load every cache block of all nodes

collapsed under n is properly accounted for.

The per-iteration contribution of a node
◦
ωi(ti) is defined by Equation 6.5.2. When i is

an embedded summary node, its contribution is calculated by Equation 6.5.2. For a non-

summary node i, its per-iteration contribution includes its WCETO of i, context switch

costs, execution demand, and the worst-case memory demand. A method similar to the

ECB-Union cache related preemption delay approach [16] is employed to calculate the

memory demand from the perspective of the affected node i. The worst-case occurs when

another member node evicts the ECBs of i, forcing the blocks ECBsi to be loaded when

i is activated. The number of evictions can be bounded by the ECBs of all loop members,

specifically those that occur more than once in the loop. The set of ECBs found more than

once within the summary node n are given by
2

ECBsn = {⋃u·k | u · k ∈
◦

ECBsn ∧ k ≥ 2}.

Thus, the memory demand bound for i is
2
γi = |

2

ECBsn ∩ ECBsi| · B. Incorporating per-

iteration context switches, execution and memory demand into the bound for i yields

Equation 6.5.3.

91

◦
ωi(ti) =

ω′i(ti), summ(i)

0, tn = 0

Xb + Xt · ti · ci +
2
γi, tn ≥ 1

(6.5.3)

A valid assignment of threads takes into account the structure of the CFRG. To reflect

the structure, threads are treated as flow traversing the edges of nodes. The entry node is

treated as the source of flow, providing a total m threads on its outgoing edges. All threads

must reach the terminal node. At each node the sum of threads along incoming edges and

outgoing edges must be equal (except the entry and terminal nodes).

The ILP finds the assignment of threads according to the flow of the CFRG which maxi-

mizes the number of cycles required to complete m threads according to BUNDLEP schedul-

ing, thus bounding the WCETO of a job.

6.6 BUNDLEP Evaluation

The evaluation takes the approach of comparing BUNDLEP’s thread-level scheduling al-

gorithm to a naive algorithm which executes threads one after another (serially). Individ-

ual benchmarks from the Mälardalen [52] MRTC suite are treated as ribbons releasing m

threads per job. The WCET of each job is analyzed twice, once for a single multi-threaded

task scheduled by BUNDLEP, and again for m serial threads by Heptane. Similarly, the run-

time behavior is collected for each benchmark under BUNDLEP and serial execution. A fully

functional virtual machine with the tools and source is available for download to recreate

these results or expand upon them [9].

Ideally, BUNDLEP would also be compared with BUNDLE. However, the BUNDLE evalua-

92

tion used synthetic programs rather than compiled source (for any architecture). WCETO

analysis for BUNDLE is also intractable with complexity O((|N |!)m). This is due to the na-

ture of the algorithm, it does not restrict the flow of threads through the CFRG, which

demands all-paths be repeatedly searched. A novel BUNDLE WCETO implementation of an

intractable solution, which is known to be dominated by BUNDLEP is not compelling, as

such it is omitted from the evaluation.

The target platform for WCETO analysis and execution is a MIPS 74K processor with

a direct mapped single level instruction cache. Cache blocks are restricted to 32 bytes.

The CPI I, block reload time B, and number of cache blocks ` vary based on Table 6.1.

Additionally, the number of threads per job m vary from 1 to 16 by powers of two. Jobs

are executed on a MIPS simulator provided by Heptane and modified to execute BUNDLEP

scheduling or a serial batch of threads.

CPI (I) BRT (B) ` m

1 100 {8, 16, 32} {2, 4, 8 ,16}

10 100 {8, 16, 32} {2, 4, 8 ,16}

Table 6.1: MIPS 74K Architecture Parameters

Of the 27 MRTC benchmarks, 18 were evaluated. The selection is limited by Heptane’s

ability to perform WCET analysis using the lp_solve ILP solver and the 12 gigabytes of

RAM available (the complete results are available in the technical report [58]).

6.6.1 Context Switch Costs

For BUNDLEP scheduling there are two types of context switches: 1.) switching between

threads of the active bundle Xt and 2.) switching to the next active bundle Xb. For the

93

classical approach, there is a single job-level context switch cost. Thread-level switches

are (by design) less costly than job-level: where virtual pages are exchanged, and task

(instead of thread) level control blocks are updated, etc. To favor the classical approach,

the bundle-level context switch cost Xb is also used as the job-level context switch cost.

Finding representative values for both Xb and Xt considers the scheduler behavior and

sample programs written for the target architecture. Incorporated into both costs is the

time required to TCB_SAVE and TCB_RESTORE, which on a MIPS 74K requires two in-

structions. For a TCB_SAVE they are 1.) a save instruction to copy general purpose reg-

isters and increment the stack pointer $sp and 2.) a mov instruction to copy $sp into the

TCB. For a TCB_RESTORE they are 1.) a mov of $sp from the TCB and 2.) a restore of

the stack.

For Xt the dominant operation is selecting an element from an array, setting the context,

and jmp’ing to the previous context. Analysis of a program that performs these operations

by Heptane produced a WCET of less than 10 cycles. Therefore, setting Xt = 10 serves

as an overestimate of cyles. For Xb, a precise value would require the implementation of

a priority queue, supported by an optimized heap and analysis by Heptane. The imple-

mentation of such a queue is beyond the scope of this work. However, a limited program

including queue operations over two elements was analyzed by Heptane with a WCET

of less than 55 cycles. Bundle-level context switches are dominated by P .removeMax()

on line 9 of Algorithm 7. Assuming an optimized queue, the operation grows at log2(m)

yielding an Xb in terms of threads m : Xb = 55 · log2(m).

For each benchmark, Heptane produces a single WCET value for the execution of one

thread through the ribbon denoted cH . To compare Heptane’s WCET cH to BUNDLEP’s

94

WCETO Ω, the number of threads and context switch costs are incorporated and quantified

as a difference ∆ω = m · (cH + Xb)− Ω. Similarly, the number of cycles required to execute

on the simulator serially is denoted EH , cycles required for BUNDLEP execution denoted EB,

and the comparison ∆B = EH − EB. A positive ∆ value indicates the BUNDLEP approach

provides a benefit.

2

4

6

8

10

12

14

16

(100:1, 8)

(100:10, 8)

(100:1, 16)

(100:10, 16)

(100:1, 32)

(100:10, 32)

C
ou

n
t

o
f

B
en

ch
m

ar
k
s

w
h
er

e
∆

ω
>

0

Architecture (B:I, `)

m = 1
2
4
8

16

(a) Analytical Benefit of BUNDLEP

0

2

4

6

8

10

12

14

16

18

(100:1, 8)

(100:10, 8)

(100:1, 16)

(100:10, 16)

(100:1, 32)

(100:10, 32)

C
ou

n
t

of
B

en
ch

m
ar

k
s

w
h
er

e
∆

B
>

0

Architecture (B:I, `)

m = 1
2
4
8

16

(b) Run-Time Benefit of BUNDLEP

Figure 6.14: Benefits of BUNDLEP

Figures 6.14a and 6.14b summarize the results of the evaluation. The y-axis represents

the number of benchmarks where BUNDLEP benefits the task. Along the x-axis, the groups

separate the architecture parameters which are enumerated by their “(B:I, `)”. For each

group the result is tallied by the number of threads per job, from 1 to 16.

There are several interesting observations to be made in Figure 6.14a. Though BUNDLEP

analysis provides a benefit in the majority of cases, it does not always. As the cache size

is reduced the number of benchmarks that benefit increases. Similarly, as the number of

threads per job increases so do the number of benchmarks that benefit. These trends are

due to the number of misses (typically) increasing as the cache size is reduced, or the

number of threads is increased. BUNDLEP avoids these conflicts or converts them to cache

95

hits. Surprisingly, for a single thread per job BUNDLEP may provide a lower bound – this

is likely due to the use of the expanded CFG instead of the conventional CFG used by

Heptane’s analysis.

The run-time benefit summary in Figure 6.14b more heavily favors BUNDLEP, with un-

surprising trends. For a single thread per job, BUNDLEP provides no benefit since there is no

reason to block and incur context switch costs. As the number of threads increases so does

the run-time performance. As the cache size decreases, the number of benchmarks that see

a run-time performance increases. When compared to the WCETO benefit, more bench-

marks benefit from the run-time behavior than the analysis would suggest. This implies

further refinements of the analysis are possible.

Across the four dimensions of the evaluation (cache size, BRT, CPI, and number of

threads per job), the expectation of BUNDLEP’s benefit will increase as the cache size de-

creases, increase as the BRT increases, decrease as the CPI increases, and increase as the

number of threads per job increase. Many of the benchmarks match these expectations,

such as the results for ud found in Figure 6.15.

−1× 106
−500000

0
500000
1× 106

1.5× 106
2× 106

2.5× 106
3× 106

3.5× 106
4× 106

(100:1, 8)

(100:10, 8)

(100:1, 16)

(100:10, 16)

(100:1, 32)

(100:10, 32)

C
y
cl

es

Architecture (B:I, `)

∆ω for Benchmark ud

m = 1
2
4
8

16

(a) Analytical Benefit

−100000
0

100000
200000
300000
400000
500000
600000
700000
800000

(100:1, 8)

(100:10, 8)

(100:1, 16)

(100:10, 16)

(100:1, 32)

(100:10, 32)

C
y
cl

es

Architecture (B:I, `)

∆B for Benchmark ud

m = 1
2
4
8

16

(b) Run-Time Benefit

Figure 6.15: Results for the ud Benchmark

The anomalies provide insights into the circumstances where BUNDLEP may be im-

96

−8× 106
−7× 106
−6× 106
−5× 106
−4× 106
−3× 106
−2× 106
−1× 106

0

(100:1, 8)

(100:10, 8)

(100:1, 16)

(100:10, 16)

(100:1, 32)

(100:10, 32)

C
y
cl

es

Architecture (B:I, `)

∆ω for Benchmark matmult

m = 1
2
4
8

16

(a) Analytical Benefit

−600000
−400000
−200000

0
200000
400000
600000
800000
1× 106

1.2× 106
1.4× 106

(100:1, 8)

(100:10, 8)

(100:1, 16)

(100:10, 16)

(100:1, 32)

(100:10, 32)

C
y
cl

es

Architecture (B:I, `)

∆B for Benchmark matmult

m = 1
2
4
8

16

(b) Run-Time Benefit

Figure 6.16: Results for the matmult Benchmark

proved. Using the matmult benchmark as an example, BUNDLEP never produces an analyti-

cal benefit, and rarely a run-time benefit (Figure 6.16). Counter-intuitively as the number

of threads increase the analytical result worsens compared to the serial bound. This is

due to the structure of the CFRG, which has several small CFRs contained within multiple

embedded loops. The number of bundle-level context switches with cost Xb outweighs the

benefit of sharing cache values.

6.7 Summary

BUNDLEP expands upon the foundation set by BUNDLE. The central principles of treat-

ing the cache as a benefit to execution times by scheduling threads in a cache cognizant

manner are refined and improved. BUNDLE allowed instructions to reside in multiple CFRs

creating ambiguity in scheduling decisions. The CFR and CFRG creation methods used by

BUNDLE created unnecessary loops increasing analytical complexity.

Refining the creation of CFRs removes ambiguity from scheduling decisions and pre-

vents loops from being added to the CFRG. The preclusion of additional loops and the

assignment of priorities to CFRs reduces the complexity of the WCETO calculation. Addi-

97

tionally, restricting the flow of threads through the CFRG tightens the WCETO bound.

With refined creation methods for CFRGs and tractable WCETO calculation a practical

implementation of BUNDLEP has been implemented. The toolkit is available for download

and reuse for future use and expansion. Use of the toolkit shows a benefit to BUNDLEP

scheduling in terms of analysis and run-time behavior for specific programs and architec-

ture parameters.

The anomalous results provide further motivation to improve BUNDLEP’s approach. Of

particular interest is the balance between context switch costs and WCETO values per CFR.

When the inter-thread cache benefit is smaller than the context-switch cost Xb, allowing

threads to execute over the CFR could decrease the task’s WCETO. However, the full im-

plications of such behavior require further investigation.

6.8 Ancillary Preamble

The remainder of this chapter are two ancillary sections. The first provides the formal

details of ILP formulation. It is followed by a second ancillary section that includes an

example illustrating the constraints and functions of ILP formulation to calculate a WCETO

bound. These two sections are provided as an aid to a discrete implementation. Theoretical

and general contributions resume with the following Chapter 7.

6.9 Ancillary: ILP Transformation and Example

The following describes the transformation of equations 6.5.1, 6.5.2, 6.5.3 and the

supply of threads into the constraints of the ILP for WCETO calculation. For a CFRG

98

R = (N,E, h), the objective of the ILP is to maximize:

Ω =
∑
n∈N

ωn(tn)

Several variables are added to the ILP which are not present in the formulae. A binary

selector variable bn ∈ {0, 1} is added for each node, when the value is 1 the node has at

least one thread assigned to it. For every edge (u, v) ∈ E, the variable t(u,v) represents the

number of threads passed from node u to v. The terminal node of the CFRG is identified

as z ∈ N , having out-degree zero.

Two functions are defined for each node. The successor and predecessor functions

return the sets given by their names. Both of these functions properly obey the scope of

the provided node n. Only nodes with the same inner-most loop head are included in the

returned set. If a predecessor or successor is a loop head (which is not the inner-most loop

head of n) a loop summary node is replaces the loop head in the set.

Functions

preds(n) , {u|(u, n) ∈ E}

Set of immediate predecessors of n ∈ N .

succs(n) , {v|(n, v) ∈ E}

Set of immediate successors of n ∈ N .

What follows are the individual constraints generated for each node. To clarify, a top-

most summary node contributes its WCETO directly to the objective, being a member of

99

n ∈ N . Member nodes of the summary node contribute to the objective indirectly. Mem-

bers of summary nodes have their WCETO reflected by their summary node’s ω′ value.

Node Constraints

tn ∈ {0,m}

Number of threads assigned to node n.

bn ∈ {0, 1} ≤ tn

Binary selector for n, indicating that n has at least one thread assigned.

tn ,
∑

u∈preds(n)

t(u,n)

Number of threads assigned to n must be equal to the sum of all entering n.

tn ,
∑

v∈succs(n)

t(n,v)

Number of threads assigned to n must be equal to the sum of all leaving n.

ωn , cn · tn · Xt + Xb · bn + γn · bn

WCETO of a non-summary node n, see Equation 6.5.1.

ω′n , (
◦
γn · bn) + In

 ∑
i∈inscope(n)

◦
ωi

WCETO for a summary node n, see Equation 6.5.2.

◦
ωn , cn · tn · Xt + (Xb +

2
γn) · bn

WCETO per-iteration contribution, see Equation 6.5.3.

Special Case Constraints

th , m

The initial node h must have all m threads assigned.

100

tz , m

The terminal node z must have all m threads assigned.

6.10 Ancillary: WCETO Example

The ILP objective function Ω, is the sum of the contributions of the CFRs of the CFRG

given an assignment of threads per node. Figure 6.17 illustrates the source of each node’s

contribution for four threads (m = 4). It reuses the structure of Figure 6.13 with detailed

memory and execution demand values that are closer to those found in the evaluation.

Figure 6.17: CFRG Individual Nodes and ILP Objective

When completed, the ILP determines the WCETO bound is 2,680 cycles. Understanding

how the bound is calculated is made easier by considering the memory demand indepe-

dently of the execution demand. For n0, there is no decision four threads are assigned.

The memory demand for n0 is 400 cycles, and 40 cycles per thread for 560 cycles total.

101

There are no decisions to be made for n1 or n3, the number of threads assigned to them

are determined by the structure of the graph. For threads to be assigned to n4 and n5, their

combined execution and memory demand must be compared to n2. For one thread, n2 has

a total demand of 610 cycles. For one thread, the combined demand for n4 and n5 is 710

cycles (the demand for interior nodes of n5 is 10 cycles per thread. Though not explicitly

listed in the figure, this is the reason
∑ ◦
ω = 20 = 2 · 10).

The execution demand for a second thread (or third) of n2 is 110 cycles, and the com-

bined execution demand for a second thread of n4 and n5 is also 110 cycles. Any assign-

ment where t2, t4, and t5 are greater than or equal to one will result in the same WCETO

value. The assignment in Figure 6.17 has balanced the threads across paths.

CHAPTER 7 NON-PREEMPTIVE MULTITASK BUNDLE

BUNDLE and BUNDLEP’s scheduling algorithm are limited to a single multi-threaded task

on a single processor. To bring the positive perspective to multi-threaded multi-task unipro-

cessor scheduling the non-preemptive multi-task BUNDLE (NPM-BUNDLE) scheduling algo-

rithm and analysis is introduced. Implied by the name, scheduling is non-preemptive with

respect to jobs. However, threads of jobs are scheduled according to BUNDLE or BUNDLEP

which preempt one another at CFR boundaries.

To support multiple tasks, the following contributions are made as part of NPM-BUNDLE:

1. A model of hard real-time multi-threaded tasks which is compatible with existing
single-threaded models, where tasks sets may be transformed by dividing tasks while
preserving the total number of threads.

2. A schedulability test named Threads Per Job (TPJ) which divides task sets (when
possible) to create a job-level non-preemptive schedulable task set.

3. Proof of TPJ’s optimality with respect to non-preemptive multi-threaded feasibility.

4. An improvement to Baruah’s [34] non-preemptive chunks algorithm.

5. An evaluation of over 500,000 task sets, comparing the schedulability ratio of TPJ to
those of non-preemptive and preemptive EDF, with an accompanying implementa-
tion available for download [11].

Figure 7.1: Summary of NPM-BUNDLE contributions

These contributions are presented in the following sections. Section 7.1 augments

the BUNDLE model to suit multiple tasks, describes the application of non-preemptive EDF

scheduling for thread-level schedulers, and the requirements of task transformation. Sec-

tion 7.2 introduces then improves upon the non-preemptive chunk algorithm [34], fol-

102

103

lowed by the TPJ schedulability algorithm and proof of feasibility. Section 7.3 compares

the schedulability ratio of TPJ to other non-preemptive and preemptive scheduling algo-

rithms, before summarizing the contributions of NPM-BUNDLE in Section 7.4.

7.1 NPM-BUNDLE Model and Notation

In previous Chapters 5 and 6 describing BUNDLE and BUNDLEP, WCETO analysis is lim-

ited to a single task. The model and (notation) in the previous chapters efficiently utilize

this limitation, foregoing task identifiers where possible. In this chapter the single task

limitation is removed, requiring careful delineation of tasks in the notation. Table 7.1

summarizes the notation used within this chapter.

τ Set of n tasks {τ0, τ1, ..., τn−1}

τi = (pi, di,mi, ci(m) : N 7→ R+) Task i

pi Minimum inter-arrival time of τi
di Relative deadline of τi
mi Threads per job of τi
ci(m) WCET function of τi in terms of m threads

oi Executable object of τi
qi Non-preemptive chunk size of τi
t Time or interval

Table 7.1: NPM-BUNDLE Notation

The set of n multi-threaded tasks is given by τ = {τ0, τ1, ..., τn−1}. Each job of a task

τi = (pi, di,mi, ci(m) : N 7→ R+) has a minimum inter-arrival time of pi and relative dead-

line di. For every job release of τi, a positive integer mi identical threads are released. Each

thread of τi executes over the same object oi on the shared processor. All threads share the

same deadline as their job. The WCET of τi is a function of the number of threads per job,

ci(mi).

104

Scheduling and schedulability analysis of NPM-BUNDLE relies upon a relationship be-

tween the number of threads scheduled per multi-threaded job and the WCET of the job

executed non-preemptively. To clarify, the NPM-BUNDLE scheduling mechanism precludes

preemptions between jobs of different tasks. For threads within a job of a task, a thread-

level scheduler may execute threads preemptively. Figure 7.2 illustrates the scheduling

behavior.

Figure 7.2: Scheduling Behavior

In Figure 7.2, at time 1 a job of τ2 is released.

The job of τ2 cannot be preempted by the job of

τ1 released at time 5. During the execution of

τ2, the two threads (given distinct colors) may

preempt one another according to the thread-

level scheduler, at time 8 for instance. Thread-level scheduling and preemption decisions

are not restricted by NPM-BUNDLE analysis. The thread-level scheduling policies of τ1 and τ2

are independent of the non-preemptive task-level scheduling of non-preemptive EDF used

herein.

Thread-level scheduling algorithms must be characterized by a WCET (or WCETO)

function ci(mi) for mi threads per job and ci(mi) must be strictly increasing discrete and

concave (detailed in Subsection 7.1.2). Thread-level schedulers that produce concave

ci(mi) functions establish a relationship between the execution requirements of a task

and the number of threads, where the requirement for one job of mi threads is less than

mi jobs of one thread. For BUNDLE-based schedulers, concavity is the result of the inter-

thread cache benefit, where ci(m)− ci(m− 1) ≥ ci(m+ 1)− ci(m); it is this relationship

the scheduling behavior and analysis seek to exploit.

105

Not all tasks and thread-level schedulers will produce concave WCET functions. For

a task τi with a convex WCET function (where there is no benefit in grouping threads

together), the mi threads of τi may be replaced with mi single-threaded tasks. These

single-threaded have vacuously concave WCET functions by virtue of executing no more

than one thread.

The task set τ provided by the system designer to schedulability analysis is referred

to as the task set specification. Commonly [18, 5, 34, 38, 32, 59], task set specifications

are immutable in hard-real time models. The number of tasks, their WCET time, period,

and deadline are provided by the system designer, not to be changed. Schedulability

analysis determines if the task set specification is feasible. For NPM-BUNDLE, task sets are

transformable (obeying some restrictions).

Transformation of a task set exploits the concavity of execution requirements, redis-

tributing the threads of individual tasks to multiple tasks. A greater number of threads per

job reduces the WCET of a task but increases the non-preemptive execution requirement.

Conversely, a fewer number of threads per task increases the total WCET for all tasks while

decreasing the non-preemptive execution requirement. Schedulability analysis in this non-

preemptive setting encompasses the search for a distribution of the fixed number threads

from the task set specification to a variable number of tasks, resolving the tension between

a greater number of tasks and a greater number of threads per task to find a feasible task

set.

Schedulability analysis is a process that begins by considering the current task set

named the anterior task set τ̂ . If the set is schedulable, the set is unmodified and pro-

cessing ceases with a positive result. If the task set τ̂ cannot be scheduled as described, the

106

task set is transformed into a posterior task set τ , and processed again as an anterior set.

Processing ceases with a negative result when there are no available transformations of τ̂ .

Figure 7.3: Schedulability and Transformable Task Sets

Figure 7.3 illustrates the schedulability analysis process. Division is the transformative

operation of the process and is described in Subsection 7.1.1. The figure highlights the

ability of a single task set to be both anterior and posterior to different sets during process-

ing. To aid in explanation, properties of a task may be referred to in terms of the set the

task was transformed from and to. By example, if the number of threads assigned to τi in

the anterior set τ̂ is reduced by one in the posterior task set τ , the posterior threads of τi

may be written as mi = m̂i − 1.

As a process, schedulability analysis of the specified task set serves two purposes under

this model. The first, is to determine if there exists a posterior task set which is feasible.

Second, to produce the feasible posterior task set if one exists. It is the feasible posterior

task set τ found by schedulability analysis that is then deployed on the target architecture.

From the system designer’s perspective, each task τi ∈ τ of the specified task set is a request

to execute mi threads of the object oi with shared periods pi and deadlines di for any

posterior task set τ . A task set specification is flexible, for one object there may be multiple

tasks with variable numbers of threads per job. However, the specified mi of a task is a

ceiling on any mi of a posterior task.

107

7.1.1 Dividing and Task Parts

A task set may be transformed by dividing tasks of the set. Dividing a task reduces the

number of threads executed by each job, splitting the anterior task into two or more tasks

in the posterior set.

Definition 7.1.1 (Task Division). In the anterior task set τ̂ , a task τi = (pi, di, ci(mi)) may

be divided into two (or more) posterior tasks τj and τk with three restrictions: 1.) the

periods of τj and τk are equal to the period of τi 2.) the relative deadlines of τj and τk are

equal to the deadline of τi 3.) the sum of threads of τj and τk are equal to τi 4.) the objects

of τi, τj, and τk are equal. Enumerated, the restrictions are:

1. pi = pj = pk

2. di = dj = pk

3. mi = mj + mk

4. oi = oj = ok

Definition 7.1.2 (Partial Tasks). When an anterior task τi is divided into τj and τk posterior

tasks, τj and τk are referred to as partial tasks or parts of τi.

Definition 7.1.3 (Partial Task Set). For convenience, the set of posterior tasks of τi is

denoted Φi and called the partial task set of τi, where mi =
∑

τk∈Φi
mk.

7.1.2 Worst-Case Execution Time Function Growth

Schedulability analysis for BUNDLE-based scheduling algorithms produce, for each task

τi, a worst-case execution time combined with cache overhead (WCETO) function ci(m)

in terms of m the number of threads per job scheduled in a cache-cognizant manner.

NPM-BUNDLE extends the BUNDLE-based methods from a single multi-threaded to multiple

(non-preemptively scheduled) tasks. For tasks that benefit from BUNDLE-based scheduling

108

and analysis, ci(m) is a strictly increasing discrete concave function. Tasks that do not are

made vacuously concave by restricting jobs to release one thread.

In the WCETO analysis of BUNDLE and BUNDLEP, threads are assigned to paths through

the conflict-free region graph of the executable object which maximize their contribution

to ci(mi). When considering the addition of a thread mi + 1, only the greatest increase

in ci(mi) is permitted. Subsequently, the addition of thread mi + 2 must increase ci(mi)

by less than or equal to the increase from mi + 1 or the increase of mi + 1 would not

have been maximal. Therefore, for any ma < mb < mc the point (mb, ci(mb)) lies above the

straight line described by (ma, ci(ma)) and (mc, ci(mc)) – subsequently, ci(mi) is concave.

A consequence of ci(m)’s strictly increasing discrete concavity is a limit on the increase

of the WCET as the number of threads increases. This property is referred to as the concave

restricted growth (concave growth for brevity) of ci(m) and is leveraged in Sections 7.2 and

7.3.

Property 7.1.1 (Concavity Restriction on WCET Growth). For a strictly increasing discrete

concave WCET function ci(m):

∀m ∈ N+ | ci(m)− ci(m− 1) ≥ ci(m+ 1)− ci(m) (7.1.1)

109

It then follows for mx ≥ my > 0

ci(mx + 1)− ci(mx) ≤ ci(mx)− ci(mx − 1)

≤ ci(mx − 1)− ci(mx − 2)

...

≤ ci(my)− ci(my + 1)

≤ ci(my)− ci(my − 1)

A WCET function ci(m) that obeys Property 7.1.1, will produce a value for ci(m+ 1)

threads which is greater than ci(m). The difference between ci(m+ 1) and ci(m) must

be less than or equal to the difference of ci(m) and ci(m− 1). As the number of threads

increase, ci(m) increases at a decreasing (or stable) rate.

For the purposes of comparison and evaluation in Section 7.3, an upper bound on the

growth of ci(m) is called the growth factor Fi of τi. Growth factors relate the WCET of one

thread ci(1) to the WCET of an arbitrary number of threads ci(m) for m > 0. A growth

factor Fi ∈ (0, 1], for a task τi, is a real number that satisfies Equation 7.1.2.

Definition 7.1.4 (Growth Factor for τi).

∀m | ci(m) ≤ ci(1) + (m− 1) · F · ci(1) (7.1.2)

For an F satisfying Equation 7.1.2, the pessimistic upper bound provides a linear func-

tion that can be rearranged to find an upper bound on the WCET of one thread in terms of

m threads. The result is Equation 7.1.3, which will be used in the evaluation Section 7.3

110

when constructing task sets. Note, since m ∈ N each increase of m increases ci(m) by

F · ci(1).

ci(m) = ci(1) + (m− 1) · F · ci(1) (7.1.3)

7.2 Non-Preemptive EDF Schedulability

Preemptive earliest deadline first (EDF) schedulability analysis for sporadic task sets

has been well studied [5, 18, 60]. In the fully preemptive setting for which the algo-

rithm is optimal, the overhead of a large number of preemptions may be a detriment to

schedulability. Baruah [34] addresses this concern with an algorithm for calculating the

non-preemptive chunk size qi of each task τi ∈ τ . The non-preemptive chunk size qi guar-

antees that task τi may execute up to qi time units non-preemptively without introducing

a deadline miss for any task in τ scheduled by preemptive EDF.

Section 7.2.3 introduces the non-preemptive feasibility algorithm Thread Per Job (TPJ)

based upon the non-preemptive chunks algorithm from [34]. TPJ differs from the non-

preemptive chunks algorithm by requiring the non-preemptive chunk size qi of each task

τi to be greater than or equal to its WCET: ci(mi) ≤ qi. As such, all jobs can be scheduled

non-preemptively without fear of a deadline miss. To clearly convey TPJ, a description of

the non-preemptive chunks algorithm and its dependencies is provided in the immediate

subsection. Subsection 7.2.2 describes, by example, the available improvements to the

non-preemptive chunks algorithm [34]. Subsection 7.2.4 defines and proves TPJ’s opti-

mality.

111

7.2.1 Non-Preemptive Chunks

The non-preemptive chunks algorithm depends on the demand bound function, EDF

feasibility, ordering of absolute deadlines, and slack for the task set τ . Ordered absolute

deadlines are given by {D1, D2, ...} with Dn < Dn+1 for all n, where each task τi ∈ τ con-

tributes deadlines D = k · pi + di for k ∈ Z+.

For a sporadic task τi the demand bound function for a task DBF(τi,t) is an upper bound

on the amount of execution requirement generated from jobs released by τi over t units

of time. The demand bound function is presented as Equation 7.2.1 as DBF(τi,t) modified

from [18] to suit the NPM-BUNDLE task set model.

Definition 7.2.1 (Demand Bound Function for a Task τi and Interval t).

DBF(τi,t) = max

(
0,

(⌊
t− di
pi

⌋
+ 1

)
· ci(mi)

)
(7.2.1)

When necessary for brevity, Equation 7.2.2 will be used to represent the sum of demand

of all tasks over an interval of length t.

Definition 7.2.2 (Demand Bound Function for the Task Set τ and Interval t).

DBF(τ ,t) =
∑
τi∈τ

DBF(τi,t) (7.2.2)

Slack of the task set τ at deadline Dk is given by Equation 7.2.3. Intuitively, slack is the

minimum time the processor will be idle over an interval. It is the difference between the

demand over the interval and the length of the interval.

112

Definition 7.2.3 (Slack at Deadline Dk).

SLACK(Dk) = min
j≤k

(
Dj −

∑
τi∈τ

DBF(τi,Dk)

)
(7.2.3)

For EDF, feasibility is determined by examining increasing time intervals and calculat-

ing the demand and supply. If demand exceeds supply, the system is infeasible. Equa-

tion 7.2.4 provides a formal definition of feasibility for the task set τ .

Definition 7.2.4 (EDF Feasibility Demand Bound Test).

∀t ≥ 0,

(∑
τi∈τ

DBF(τi,t)

)
≤ t (7.2.4)

In [34], the number of time instants tested by Equation 7.2.4 is limited to the values of

the ordered set of absolute deadlines {D1, D2, ...}. The ordered set of absolute deadlines

is an infinite set, impractical for feasibility test. There is an upper bound on the value

of all time instants (absolute deadlines) that must be tested and is denoted T ∗(τ). Taken

from [60], T ∗(τ) is given by Equation 7.2.5 below. Among all tasks the largest deadline is

dmax = maxτj∈τ (dj). Utilization of τj is defined as Uj =
cj(mj)

pj
. Among all tasks, the greatest

difference of period and deadline is given by ∆max = maxτi∈τ (pi − di). The hyper-period

of all tasks (the least common multiple of all relative deadlines) is given by P .

Definition 7.2.5 (Feasibility Test Bound t for τ).

T ∗(τ) = min

(
P,max

(
dmax,

1

1− U ·∆max ·
n−1∑
i=0

Ui

))
(7.2.5)

The non-preemptive chunks algorithm from [34] is presented (with additional details)

113

as pseudocode in Algorithm 8 and named NP-CHUNKS. In addition to determining if the

task set is schedulable under EDF, the algorithm produces a non-preemptive chunk size

qj for each task τj ∈ τ . Jobs of τj may execute up to qj time units non-preemptively

without negatively impacting schedulability. This setting, where a task τj may execute

non-preemptively for some period of time qj is referred to as limited-preemption.

Algorithm 8 Non-Preemptive Chunks (NP-CHUNKS)

1: SLACK(D1) ← D1 −
∑

τi∈τ DBF(τi,D1)
2: for τj ∈ {τi ∈ τ | (di = D1)} do
3: qj ← cj(mj)
4: end for
5: for k ∈ {D2, D3, ..., } do
6: if Dk > T ∗(τ) then
7: return feasible
8: end if
9: SLACK(Dk) ← min

(
SLACK(Dk−1), Dk −

∑
τi∈τ DBF(τi,Dk)

)
10: if SLACK(Dk) < 0 then
11: return infeasible
12: end if
13: for τj ∈ {τi ∈ τ | (di = Dk)} do
14: qj ← SLACK(Dk)
15: end for
16: end for

For a detailed description of NP-CHUNKS refer to [34]. To summarize, NP-CHUNKS begins

by seeding the slack of the smallest interval D1 and the non-preemptive chunk size of

tasks with the smallest relative deadline equal to their WCET. During each iteration of

Dk ∈ {D2, D3, ..., }, the slack for the intervalDk is calculated as the minimum of the current

slack and the previous slack value. If there is less than zero slack, the system is infeasible.

If the slack is zero or greater, each task with relative deadline equal to the current interval

size is assigned the available slack as the task’s non-preemptive chunk size. A task τj is

assigned a non-preemptive chunk once, before assignment qj = ∅ afterwards qj 6= ∅. If

114

the interval being examined Dk exceeds T ∗(τ), the task set must be schedulable.

7.2.2 Improving the Non-Preemptive Chunk Size

From the description of NP-CHUNKS in [34], there is an opportunity to improve the

available slack for each of the k deadlines considered. Alogrithm 8 is pessimistic in the

amount of available slack at any deadline Dk. To illustrate, consider the task set and

intermediate values described by Figure 7.4.

i pi di mi ci(mi)

τ0 4 2 1 1

τ1 3 3 1 1

τ2 3 3 1 1

P Dk τj : dj = Dk DBF(τ ,Di) SLACK(Di) qj

12
D1 = 2 τ0 1 1 1

D2 = 3
τ1 3 0 0

τ2 3 0 0

Figure 7.4: Example Task Set τ = {τ0, τ1, τ2}

There are three tasks in the task set of Figure 7.4, with utilization of approximately

0.92. For τ0, initialization assigns a non-preemptive chunk of q0 = 1 time units. By obser-

vation, after release τ0 may be delayed from execution by at most one time unit or it will

miss its deadline. Consequently, the non-preemptive chunk size available to τ1 and τ2 is 1.

As such NP-CHUNKS would be expected to find q0 = 1, q1 = 1, q2 = 1.

Note, it is not possible for τ0 to be blocked for 1 or more time units if both τ1 and τ2

execute non-preemptively for 1 time unit each. If τ0 is blocked for less than 1 time unit

by τ1, then τ0 will be the highest priority task when τ1 completes (similarly for τ2). It is

impossible for τ0 to be blocked 1 time unit or more by τ1 or τ2, τ0 would have to be released

at the same time instant as τ1 or τ2 and τ1 or τ2 would have to execute before τ0, since the

relative deadline of τ0 is less than the other two, limited-preemption EDF executes τ0: the

task with earliest absolute deadline.

115

For τ0, q0 is calculated as expected q0 = c0(m0) = 1, by Lines 2-4 of Algorithm 8. How-

ever, τ1 has a non-preemptive chunk size of q1 = 0. The reason is Line 9, where SLACK(D2)

is calculated which includes the execution demand of τ1 and τ2. Slack is an upper bound on

the non-preemptive chunk size assigned to a task (in this case τ1). Giving a task the avail-

able slack permits the task to execute longer, delaying higher priority jobs from executing

in the interval by delaying them for as much time as there is slack.

By example in Figure 7.4, the available slack for τ1 is determined from the interval of

length D2 = 3. The execution requirement of τ1 and τ2 is included in DBF(τ ,3) because

d1 = d2 = 3. Thus SLACK(D2) is zero. Since τ1’s execution requirement is already included,

it cannot further interfere over the interval D2. Furthermore, τ1 must have executed some

portion without being preempted or the system would not be schedulable. Inclusion of τ1’s

execution requirement within the interval over which slack is calculated for is pessimistic

with respect to the non-preemptive chunk q1 in this specific example, and qj in general.

In the pseudocode implementation of NP-CHUNKS adopted from [34], Line 9 calcu-

lates the non-preemptive chunk size according Equation 7.2.6 (Equation 7 of Theorem 1

in [34]). Comparing Line 9 of Algorithm 8 to Equation 7.2.6 a mismatch between the

algorithm and the infeasibility test is illuminated.

Definition 7.2.6 (Infeasibility Test, Equation 7, from [34]).

∃τj ∈ τ , t ∈ [0, dj) | t < qj +
n−1∑
i=0
i 6=j

DBF(τi,t) (7.2.6)

If the condition of Equation 7.2.6 is satisfied for a task set τ , the task set is unschedu-

lable given a limited-preemption task set with assigned non-preemptive chunks q. The

116

interval considered in the demand of Equation 7.2.6 is over [0, dj). The demand used in

Algorithm 8 to calculate qj is over the interval [0, dj]. Extending the interval to include dj

introduces the pessimism identified by the example and is not required by Equation 7.2.6.

Figure 7.4 illustrates the pessimism of NP-CHUNKS found in [34]. The example uses

the notation of assigning non-preemptive chunks to individual tasks from [34]. A later

work [61] uses a different notation, assigning non-preemptive chunks to interval lengths

for the remaining execution of a job. The conceptual pessimism of including demand for

tasks with deadline equal to the current interval (described by Figure 7.4) is also found

in [61].

7.2.3 Threads per Job (TPJ) Scheduling Algorithm

The NP-CHUNKS algorithm is modified for several purposes. First, the unnecessary pes-

simism is removed from chunk calculations. Second, the schedulability test is adapted

to the NPM-BUNDLE task model. Lastly, when a given assignment of tasks and threads are

infeasible, tasks are divided (when possible) to fit into their chunks. The division process

is repeated until the task set is feasible, or no possible divisions remain and the task set

is reported as infeasible. The algorithm is named the Threads Per Job (TPJ) scheduling

algorithm.

A full description of TPJ is presented at the end of this subsection. To reach the com-

plete description, an intermediate algorithm named Bigger Non-Preemptive Chunks (BNC)

is presented as pseudocode in Algorithm 9. BNC removes the pessimism described in Sec-

tion 7.2.2. The algorithm takes advantage of a property of the demand function DBF(τ ,t)

noted in [34].

117

Property 7.2.1 (Demand Change). Demand for a task does not change for values of t

that do not equal an absolute deadline. In terms of the set of ordered absolute deadlines,

DBF(τ ,Di−1) = DBF(τ ,Di−ε), for 0 < ε ≤ (Di −Di−1).

Algorithm 9 Bigger Non-Preemptive Chunks (BNC)

1: SLACK(D0) ←∞
2: for k ∈ {D1, D2, D3, ..., } do
3: if Dk > T ∗(τ) then
4: return feasible
5: end if
6: SLACK(Dk) ← min

(
SLACK(Dk−1), Dk −

∑
τi∈τ DBF(τi,Dk)

)
7: if SLACK(Dk) < 0 then
8: return infeasible
9: end if

10: for τj ∈ {τi ∈ τ | (di = Dk)} do
11: qj ← min(cj(mj), SLACK(Dk−1))
12: end for
13: end for

Line 11 of Algorithm 9 implements the improvement of BNC over NP-CHUNKS. The non-

preemptive chunk qj of task τj is taken from the slack of the previous interval Dk−1 or

the task’s WCET cj(mj), whichever is smaller. The algorithm verifies the condition set by

Equation 7.2.6, selecting the correct interval length by Property 7.2.1, which precludes the

inclusion of τj ’s execution requirement in the interval (and other tasks with deadline Dk).

The Threads per Job scheduling Algorithm 10, is a modification of BNC from limited-

preemption EDF (EDF-LP) scheduling to non-preemptive EDF (EDF-NP). Input to the schedu-

lability test is a task set specification τ , if TPJ returns a feasibile result there exists a pos-

terior task set which can be scheduled by non-preemptive EDF and the posterior task set

is returned as τ . An infeasible result indicates that TPJ could not guarantee τ would be

schedulable by EDF-NP for any posterior task set. Since non-preemptive EDF is not opti-

mal with respect to feasibility [59], TPJ is a sufficient test but cannot be necessary.

118

Algorithm 10 Threads-Per-Job (TPJ)

1: SLACK(D0) ←∞
2: for k ∈ {D1, D2, D3, ..., } do
3: if Dk > T ∗(τ) then
4: return feasible
5: end if
6: for τ̂j ∈ {τi ∈ τ | (di = Dk)} do
7: if SLACK(Dk−1) < ĉj(1) then
8: return infeasible
9: end if

10: Φj ← {τ̂j}
11: if SLACK(Dk−1) < ĉj(m̂j) then . Jobs must be divided
12: Φj ← DIVIDE(τ̂j ,SLACK(Dk−1))
13: τ ← τ \ τ̂j . Anterior task τ̂j is represented by Φj

14: τ ← τ ∪ Φj . Partial tasks include all threads of τ̂j
15: end if
16: for τj ∈ Φj do
17: qj ← cj(mj)
18: end for
19: end for
20: SLACK(Dk) ← min

(
SLACK(Dk−1), Dk −

∑
τi∈τ DBF(τi,Dk)

)
21: if SLACK(Dk) < 0 then
22: return infeasible
23: end if
24: end for

Algorithm 10 (TPJ) modifies BNC, the modifications are limited to Lines 6-19. An addi-

tional benefit of BNC removing the pessimism of each qj, is that each qj can be calculated

without consideration of the current task τj and the demand at Dk. Chunk values depend

on the demand of Dk−1 instead. This permits an efficient implementation of TPJ by moving

the slack calculation of the current interval to the end of each iteration. Otherwise, if slack

were calculated earlier in each iteration, the changes to demand resulting from Lines 6-19

would force the demand and slack of Dk to be recalculated.

The first notable change to BNC is introduced on Line 7, comparing the available slack

to the WCET of a single thread of τ̂j. If there is insufficient slack to execute just one

119

thread of τ̂j to completion, the task cannot be executed non-preemptively for any number

of threads and the task set is infeasible non-preemptively.

Lines 11-15 introduce several subtle changes. For clarity, it is simpler to discuss the

negative case (SLACK(Dk−1) ≥ ĉj(m̂j)) before the positive. When there is sufficient slack

for m̂j threads to execute without preemption, τ̂j is given its full WCET (ĉj(m̂j)) as its

non-preemptive chunk. In other words, no division of τ̂j is required and the posterior task

set τ is unchanged (with respect to τ̂j). Lines 11-15 are avoided, the algorithm progresses

to the next task such that di = Dk.

However, in the positive case on Line 11 (when SLACK(Dk−1) < ĉj(m̂j)), m̂j threads of

τ̂j cannot feasibly execute without being preempted. Therefore, τ̂j must be divided. The

DIVIDE procedure creates a partial task Φj set of τ̂j, such that all tasks τp ∈ Φj will complete

within the available slack cp(mp) ≤ Dk−1. The posterior task set τ has τ̂j removed, and is

replaced by the partial set Φj maintaining the specified number of threads for τ̂j.

For any task τ̂j, the task is transformed into a partial task set Φj and assigned a non-

preemptive chunk only once in the iteration where the absolute deadline Dk is equal to the

relative deadline of the task: Dk = d̂j. Since tasks of τ are evaluated in strictly increasing

absolute deadline order, the impact on demand and non-preemptive chunk sizes of pro-

cessing τ̂j exclusively impacts demand for larger intervals D` > Dk and non-preemptive

chunk sizes for tasks τ` ∈ τ with greater relative deadlines d` > d̂k.

Property 7.2.2 (Divisions of τ̂j Exclusively Impacts Interval of Length t ≥ d̂j). Division of

τ̂j into the partial set Φj, and replacing τ̂j in τ with Φj will impact demand exclusively for

intervals of length Dk ≥ d̂j, slack of absolute deadlines Dk > d̂j and therefore non-preemptive

chunk values q` for tasks τ` ∈ τ with relative deadlines d` ≥ Dk

120

By definition of DBF(τ̂j ,t), no task of Φj or τ̂j can impact the task set τ demand DBF(τ ,t)

when t < dj. Thus replacing τ̂j in τ , only affects the demand of intervals with length d̂j or

greater. Slack over the interval Dk is calculated from exclusively shorter intervals. Since the

demand of the current interval Dk does not influence the slack at Dk, replacing τ̂j in τ only

affects the slack of intervals with length greater than Dk. Non-preemptive chunk sizes are

assigned based on the available slack, and only those assigned for an interval of length greater

than Dk can be affected by replacing τ̂j in τ .

Algorithm 11 DIVIDE

1: procedure DIVIDE(τ̂j, q)
2: Φj ← {}
3: m← argmax

m∈Z+

(ĉi(m) ≤ q)

4: r ← m̂j

5: while r > 0 do
6: mp ← min(r,m)

7: τp ← (p̂j, d̂j,mp, ĉj) . Posterior task, same period, deadline, WCET function.
8: Φj ← Φj ∪ τp
9: r ← r −mp

10: end while
11: return Φj

12: end procedure

On Line 12 of the TPJ Algorithm 10, the task τ̂j is divided into Φj by the DIVIDE pro-

cedure. Pseudocode of DIVIDE is given by Algorithm 11. The number of tasks in Φj are

determined by the maximum number of threads m of τ̂j that can execute non-preemptively

within q time units. Each task τk ∈ Φj is assigned m threads of τ̂j or however many remain,

whichever is less. The result is that each task set has the following properties.

Property 7.2.3 (Partial Task Sets Returned from DIVIDE). The partial task set Φj of an

anterior task τ̂ for a specific q value (and related maximum threads assigned per job m such

that cj(m) ≤ q) contains posterior tasks where:

121

1. The exact number of posterior tasks is |Φj| = d m̂j

m
e

2. Exactly b m̂j

m
c tasks of Φj are assigned m threads per job.

3. There is at most one task τg ∈ Φj with exactly mg = m̂j mod m threads.

7.2.4 Non-Preemptive Feasibility of TPJ and DIVIDE

The DIVIDE Algorithm 11 creates a partial task set Φj for an anterior task τ̂j, assigning

as many threads to each task in Φj as possible. Upon returning Φj to TPJ, τ̂j is replaced in

the task set τ . Algorithm 11 is one method of dividing of τ̂j which TPJ could employ when

creating the posterior task set τ . This section justifies DIVIDE’s method by demonstrating

the effect on schedulability and optimality of TPJ.

This section’s ultimate objective is to clearly convey Theorem 7.2.3; concluding that TPJ

is optimal with respect to task-level non-preemptive multi-threaded feasibility. The theo-

rems that precede Theorem 7.2.3 establish minimal demand and WCET sums for partial

sets created by DIVIDE necessary to illustrate TPJ’s optimality.

Non-preemptive EDF scheduling of jobs of multiple threads ordered by a thread-level

scheduler (such as BUNDLE or BUNDLEP) allows preemptions between threads of the same

job but precludes preemptions between jobs. Each task benefits from the advantages of

thread-level scheduling by the exclusive use of the processor and shared resources. Since

task set specifications may be divided, a specification is feasible when threads of the speci-

fication τ̂ may be assigned to tasks such that the posterior task set τ is feasible by EDF-NP.

Definition 7.2.7 (npm-feasible). A task set specification τ̂ is task-level non-preemptive

multi-threaded feasible (npm-feasible) if there exists a posterior task set τ of τ̂ such that all

multi-threaded jobs scheduled by EDF-NP will always meet their deadlines.

122

For the theorems that follow, unless necessary to discriminate between anterior and

posterior tasks, the anterior task τ̂i will be written τi. The sum of the demand of the partial

tasks of τi for an interval of length t is
∑

τk∈Φi
DBF(τk ,t).

Theorem 7.2.1 (Minimal Demand of Partial Task Sets Over All Intervals). For a partial

task set Φi of an anterior task τi with mi threads, minimizing
∑

τk∈Φi
DBF(τk ,di) minimizes∑

τk∈Φi
DBF(τk ,t) for all t ≥ 0.

Proof. Provided into two parts, when t < di and t ≥ di. The first portion is a simple direct

argument. The second portion is by contradiction.

Part 1: When t < di, 0 =
∑

τk∈Φi
DBF(τk ,t). By definition of the demand bound func-

tion (Equation 7.2.1) the execution requirement of a task is zero before the first possi-

ble deadline. All tasks τk ∈ Φi share the same relative deadlines dk = di and absolute

deadlines because pk = pi. These follow from the definition of division (Definition 7.1.1)

and partial tasks (Definition 7.1.2). Since t < di, DBF(τk ,t) = 0 for all τk ∈ Φi. Therefore,∑
τk∈Φi

DBF(τk ,t) will be minimal (exactly zero) when t < di, regardless of
∑

τk∈Φi
DBF(τk ,di).

Part 2: When t ≥ di, assume
∑

τk∈Φi
DBF(τk ,di) is minimal and

∑
τk∈Φi

DBF(τk ,t) is not

minimal. Since all partial tasks τk ∈ Φi share absolute deadlines (as described in Part 1),

demand for each task DBF(τk ,t) increases only for values of t that equal absolute deadlines.

Furthermore, the execution requirement of every τk increases exactly by ck(mk) for each

123

absolute deadline of τi = {D1, D2, ...}:

DBF(τk ,D1) = 1 · ck(mk)

DBF(τk ,D2) = 2 · ck(mk)

...

DBF(τk ,Dz) = z · ck(mk)

Utilizing Property 7.2.1, for t ≥ di and Dz, where Dz is the greatest absolute deadline

of τi less than or equal to t (Dz ≤ t):

∑
τk∈Φi

DBF(τk ,t) =
∑
τk∈Φi

z · DBF(τk ,di) = z ·
∑
τk∈Φi

DBF(τk ,di)

Because z depends on t (and is completely independent of the division of the partial

task set), if
∑

τk∈Φi
DBF(τk ,t) were not minimal then

∑
τk∈Φi

DBF(τk ,di) could not be mini-

mal, contradicting the assumption.

Combining Parts 1 and 2, when the demand for the partial tasks of τi is minimized for

the interval di, the demand of partial tasks of τi is minimized for all intervals of length

t ≥ 0.

Corollary 7.2.1.1 (Minimal WCET Sum of Φi Minimizes Demand Over the Interval di). The

demand of Φi over the interval di is minimized when the sum of WCET of Φi is minimized.

Proof. Following directly from Theorem 7.2.1, where the demand over the interval di of

each task τk ∈ Φi is given by DBF(τk ,di) = 1 · ck(mk) = ck(mk). Then,

124

∑
τk∈Φi

DBF(τk ,di) =
∑
τk∈Φi

ck(mk)

Thus, minimizing
∑

τk∈Φi
ck(mk) minimizes

∑
τk∈Φi

DBF(τk ,di)

Corollary 7.2.1.2 (Minimal WCET Sum of Φi Minimizes Demand Over all Intervals t ≥ 0).

The demand of Φi over alls interval t ≥ 0 is minimized when the sum of WCET of Φi is mini-

mized.

Proof. Following directly from Theorem 7.2.1 and Corollary 7.2.1.1.

Definition 7.2.8 (Assumptions of Theorem 7.2.2). For the following theorem, there are

several assumptions that must be upheld for the result to be valid. These assumptions are

consequences of the non-preemptive setting and requirements of the task set specification.

1. All tasks τi must be characterized by strictly increasing discrete concave WCET func-

tion ci(mi).

2. Any task τi ∈ τ where ci(mi) > qi is not schedulable non-preemptively. Consequently,

no assignment of mi may cause ci(mi) > qi or the task set is infeasible.

3. The greatest number of threads assigned to a task τi such that ci(mi) ≤ qi is named

m = argmax
m∈Z+

(ci(m) ≤ qi).

Theorem 7.2.2 (Minimal Sum of WCET of Φi for any q by DIVIDE). For an anterior task

τ̂i and non-preemptive chunk size q, DIVIDE will produce a partial task set Φi with minimum

WCET sum among all possible partial task sets of τ̂i.

125

Proof. To illustrate a contradiction, assume Φi returned from DIVIDE does not have the

minimal WCET sum for a specific q and task τ̂i. There must exist a partial task set Φk of τ̂i

that differs, ie. Φi 6= Φk and

∑
τk∈Φk

ck(mk) <
∑
τj∈Φi

cj(mj)

By Property 7.2.3 of partial tasks created by DIVIDE, Φi will have at most one task with

less than m threads assigned to it. For Φk to differ, it must have at least two tasks with less

than m threads assigned to them. Call these two tasks with less than m threads τx, τy ∈ Φk.

Select τx as the task with the greater number of threads mx ≥ my.

Consider the impact on
∑

τk∈Φk
ck(mk) of moving one thread of τy to τx, as the operation

of adding the difference of WCET values for cx(mx + 1) and cy(my − 1) to the sum.

(∑
τk∈Φk

ck(mk)

)
− cx(mx) + cx(mx + 1)− cy(my) + cy(my − 1)

=

(∑
τk∈Φk

ck(mk)

)
+ (cx(mx + 1)− cx(mx))− (cy(my)− cy(my − 1))

By the concave growth Property 7.1.1 and virtue of my ≤ mx, the quantity

(cx(mx + 1)− cx(mx)) is less than or equal to (cy(my)− cy(my − 1)) so the difference must

be less than or equal to zero. Therefore:

(∑
τk∈Φk

ck(mk)

)
+ (cx(mx + 1)− cx(mx))− (cy(my)− cy(my − 1)) ≤

∑
τk∈Φk

ck(mk)

The WCET sum of Φk can be reduced by moving one thread of τy to τx. When mx = m

126

no more threads may be assigned to τx or the system will be infeasible by Definition 7.2.8.

While there are two (or more) tasks of τx, τy ∈ Φk with fewer than m threads assigned,

moving one thread from τy to τx will reduce the WCET sum. By repeatedly moving tasks

to reduce the WCET sum, Φk will satisfy all aspects of Property 7.2.3 of partial task sets

created by DIVIDE, ie. Φi = Φk after all moves have been completed. This contradicts the

assumption that Φi 6= Φk and the relationship of their WCET sums, therefor Φi is minimal.

Theorem 7.2.3 (TPJ is Optimal with Respect to npm-feasibility). For a task set specification

τ̂ , TPJ returns feasible if and only if there exists an npm-feasible posterior task set τ of τ̂ .

Proof. Forward Direction (TPJ returns feasible for τ̂ =⇒ ∃ a posterior task set τ | τ is

npm-feasible): The TPJ algorithm returned a posterior task set τ where the infeasibility

condition (Equation 7.2.6) is never satisfied across intervals of length 0 ≤ t ≤ T ∗(τ) and

every job of τi ∈ τ executes non-preemptively for ci(mi) ≤ qi time units. Therefore, τ is

npm-feasible.

Reverse Direction (∃ a posterior task set τ | τ is npm-feasible =⇒ TPJ returns feasible

for τ̂): For the purpose of demonstrating a contradiction, assume TPJ returns infeasible for

an npm-feasible task set τ̂ . Name the absolute deadline which TPJ returned infeasibility

for Dx from the set ordered deadlines {D1, D2, ...} and the task which generated Dx, τ̂x.

Name the set of tasks with relative deadlines smaller than d̂x, τ̄ .

For any task τk ∈ τ̄ and partial task set Φk of τk included in the posterior set τ , the

number of tasks and threads assigned to each Φk cannot be affected by τ̂x due to d̂x > dk

and Property 7.2.2. The combined set of posterior tasks of τ̄ in τ is denoted τ̇ = ∪τk∈τ̄Φk.

127

There are two cases where TPJ will return infeasible for τ̂ , on Line 8 and Line 22. Both

illustrate a contradiction with the respect to demand.

Line 8: If TPJ returns infeasible for τ̂ on Line 8 there is insufficient slack qx to execute

any one-thread job of τ̂x non-preemptively. Since slack is inversely related to demand, the

demand of τ̇ is too great to allow any thread of τx as part of a feasible task set.

Line 22: If TPJ returns infeasible for τ̂ on Line 22, there is insufficient supply for Φx

(the set of partial tasks of τ̂x). By Corollary 7.2.1.1 and Theorem 7.2.2 the demand of Φx

is minimal over all intervals for the available slack qx. Due to Property 7.2.2 only tasks

with shorter relative deadlines i.e. τ̇ , can impact the demand of Φx by affecting qx. In this

case, the demand of τ̇ is too great for the demand of Φx to be included as part of a feasible

task set.

By assumption τ̂ is npm-feasible, the infeasibility conditions on Lines 8 and 22 of TPJ

indicate the demand of τ̇ is too great. However, TPJ adds each partial set Φk to τ̇ in

increasing deadline order. By Property 7.2.2, every Φk added to τ̇ exclusively impacts the

demand of larger deadlines. Every Φk increases the demand of τ̇ minimally starting with

D1, maximizing the slack available for partial task sets with greater deadlines; thus the

demand of τ̇ is minimal and cannot be reduced. For τ̂ to be npm-feasible, there must be

another partial task set that reduces τ̇ ’s demand, which is a direct contradiction. Therefore,

TPJ must return feasible.

7.3 Evaluation

Evaluation [11] of TPJ and the non-preemptive multi-threaded task model focuses on

the schedulability ratio of synthetic task sets and a case study based upon the evaluation

128

of BUNDLEP [8]. The ratio of task set specifications deemed schedulable by TPJ for EDF-

NP will be compared to NP-CHUNKS in both limited and fully preemptive settings for EDF.

What follows is a description of the parameters to task set specification generation, the

prescribed evaluation metrics, and analysis of the results.

7.3.1 Generating Task Sets

A specified task set τ is generated with four parameters, M the total number of threads

of execution, U the target utilization, a maximum growth factor F, and m the maximum

number of threads per task. The number of threadsM may be one of {3, 5, 7, 10, 25, 50, 100}

with dependent m values of {2, 2, 3, 4, 8, 16, 32}. Utilization varies from [0.1, 0.9] and the

growth factor varies from [0.1, 0.9] independently by increments of 0.1.

Each task τi ∈ τ is assigned mi threads from a random uniform integer distribution over

[1,m], such that the sum of all threads is equal to M =
∑

τi∈τ mi. A task’s period pi is from

a uniform integer distribution over [10, 1000]. Utilization ui of each task τi is calculated

using the UUniFast(n, U) [62] algorithm, where n = |τ |.

A task’s WCET is assigned for mi threads, ci(mi) = dpi · Uie. Tasks are given a growth

factor Fi in a uniform real distribution over [0.1,F]. The remaining mi − 1 WCET values

are determined by substituting Fi into Equation 7.1.3. The relative deadline of τi, di is

taken from a uniform integer distribution over [max(ci(mi), pi/2), 1000].

For each combination of (M,m,U,F), 1000 task sets specifications are generated. Fig-

ure 7.5 summarizes the parameters of task set generation. The smaller values of M are

taken from [61] and the dependent m values were selected to avoid one task consuming

more than half of the threads in the task set specification (where possible).

129

U [0.1, 0.9]

F [0.1, 0.9]

M {3, 5, 7, 10, 25, 50, 100}

m {2, 2, 3, 4, 8, 16, 32}

Figure 7.5: Task Set Generation Parameters

Applicability of Parameters

To avoid favoring TPJ, the task set generation parameters m and F were carefully se-

lected. For the threads per task m, a large m favors TPJ. Therefore, no single task my be

assigned more than half the total threads: m ≤ bM
2
c (except for M = 3).

The growth factor F is informed by previous results for BUNDLEP [8]. In [8], multi-

threaded tasks are constructed from the Mälardalen WCET benchmarks [52]. Task analysis

in [8] yields growth factors below 0.1 for several benchmarks. A lower bound (0.1) on F

greater than observed values is pessimistic, resulting in less favorable results for TPJ.

7.3.2 Case Study

BUNDLEP’s evaluation covers 18 benchmarks for distinct architecture configurations. An

architecture configuration includes the block reload time (BRT), cycles per instruction

(CPI), and number of cache lines. One of the least favorable in terms of the analytical

benefit of BUNDLEP is a BRT of 100, CPI of one, and 32 cache lines. From this configura-

tion, the WCET values and growth factors were extracted, growth factors ranging in the

range [0.08, 3.02].1

From these results of BUNDLEP 1000 task sets with 18 tasks (one per benchmark) and a

total 100 threads were generated per utilization target. The utilization target ranged from

0.1 to 1.0 increments of 0.1. Threads were assigned to each task τi from a distribution

1Due to length restrictions the full listing of WECT and growth factors are omitted.

130

over mi ∈ [2, 8]. Each tasks utilization, period, and deadline, ci(mi) were assigned using

the same method as synthetic tasks. The WCET values for fewer threads 1 ≤ k < mi, were

scaled such that the value of ci(k)/ci(mi) remained constant after the ci(mi) = dpi · Uie

assignment.

7.3.3 Evaluation Metrics

TPJ is compared with the NP-CHUNKS schedulability test in non-preemptive (EDF-NP)

and preemptive (EDF-P) settings. The focus of the evaluation is on the non-preemptive

setting. The preemptive setting serves as a comparison to alternative scheduling strategies

and the theoretical best case. For EDF-P, preemptions incur no penalty, CRPD or otherwise.

In this highly advantageous setting for EDF-P, TPJ can still produce feasible non-preemptive

task sets NP-CHUNKS deems infeasible in a preemptive setting!

To compare schedulability tests, each task set specification τ̂ is provided to TPJ without

modification under EDF-NP scheduling. TPJ will transform the task set producing a poste-

rior task set τ if a feasible one exists. A task set specification τ̂ cannot be provided directly

to NP-CHUNKS, since NP-CHUNKS has no concept of threads per job.

To be suitable for analysis by NP-CHUNKS, a task set specification τ̂ is transformed into

two posterior task sets. The first task set, τ 1 represents single-threaded tasks by including

all threads of τ̂ as individual tasks. The second task set, τm represents the tasks of τ̂ as

indivisible, executing all specified threads without preemption per job. Each task in τm

benefits from the thread-level scheduler but does not expose the threaded nature of the

task to the scheduling algorithm. This is achieved by modifying an anterior task τ̂j with

m̂j > 1 and ĉj(m̂j) to a posterior task τj with mj = 1 and cj(1) = ĉj(m̂j).

131

Test Task Set EDF-NP EDF-P

TPJ τ̂ EDF-TPJ -

NP-CHUNKS
τ 1 EDF-NP:1 EDF-P:1

τm EDF-NP:M EDF-P:M

Figure 7.6: Schedulability Test Combinations

The NP-CHUNKS schedulability test will produce results for τ 1 and τm in both preemptive

and non-preemptive settings. For non-preemptive schedulability analysis, each task τi ∈ τ 1

or τm must have a non-preemptive chunk size qi ≥ ci(mi). When evaluating preemptive

EDF schedulability for τ 1 and τm, the results are labeled EDF-P:1 and EDF-P:M respectively.

When evaluating non-preemptive EDF schedulability, the results are labeled EDF-NP:1 and

EDF-NP:M. Schedulability results for TPJ under EDF-NP scheduling are labeled EDF-TPJ.

Table 7.6 gives a synopsis of the schedulability tests. Schedulability ratios for each of the

combinations are calculated for every (M,m,U,F) configuration.

It must be noted that EDF-P:M is an unrealistic schedulability test. It serves only as a

theoretical limit to the benefits of concave growth. Concave growth is a result of scheduling

threads of the same job without preemption by another job with a BUNDLE-based thread-

level scheduler. However, current BUNDLE implementations require that an executing task

cannot be preempted by a different task. Such a preemption would destroy the cache bene-

fits and analysis of BUNDLE scheduling. Analysis of EDF-P:M assumes preemptions between

jobs are allowed and have zero cost. It is included as a reference for TPJ’s performance, as

a ceiling for what is theoretically possible given ideal (but likely impossible) conditions.

As a consequence of transforming multi-threaded task set specifications τ̂ to single-

threaded task sets τ 1, some single threaded task sets may not be feasible. One reason for

132

a task set τ 1 to become infeasible is the utilization exceeding one, while τm and τ̂ have

utilization less than one. In this setting, EDF-TPJ is capable of scheduling task sets that

preemptive EDF cannot.

For a task set specification configuration (M,m,U,F), call S the set of all task set spec-

ifications τ̂ generated for the configuration. Call s the set of τ 1 task sets transformed from

τ̂ ∈ S such that τ 1 has utilization greater than one. The set sTPJ is the subset of s deemed

feasible by the TPJ schedulability test. That is, sTPJ is the set of all tasks TPJ could schedule,

yet EDF-P:1 could not (even) when CRPD values are zero.

7.3.4 Results

0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1

Sc
he

du
la

bi
lit

y
R

at
io

Utilization

EDF-P:1
EDF-P:M
EDF-TPJ
EDF-NP:1

EDF-NP:M

(a) BUNDLEP Case Study

Schedulability Ratio for EDF-TPJ
EDF-P:1

EDF-P:M
EDF-TPJ

0
0.2

0.4
0.6

0.8
1

Utilization 0
0.2

0.4
0.6

0.8
1

Grow
th Facto

r

0
0.2
0.4
0.6
0.8
1

Sc
he

du
la

bi
lit

y
R

at
io

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

(b) EDF-TPJ Summary

Figure 7.7: Case Study and EDF-TPJ Summary Results

Schedulability ratios from the BUNDLEP case study are given in Figure 7.7a. For the

target architecture and 18 benchmarks, EDF-TPJ consistently outperforms the other non-

preemptive algorithms. For preemptive EDF-P:1 (with zero cost preemptions), EDF-TPJ has

higher schedulability ratios for the majority of target utilization values. EDF-TPJ’s compar-

ative performance increases with the target utilization. This case study demonstrates the

benefit of TPJ to non-preemptive and (potentially) preemptive approaches.

133

Schedulability Ratio for EDF-NP:1
EDF-P:1

EDF-P:M
EDF-NP:1

0
0.2

0.4
0.6

0.8
1

Utilization 0
0.2

0.4
0.6

0.8
1

Grow
th Facto

r

0
0.2
0.4
0.6
0.8
1

Sc
he

du
la

bi
lit

y
R

at
io

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

(a) EDF-NP:1 Summary

Schedulability Ratio for EDF-NP:M
EDF-P:1

EDF-P:M
EDF-NP:M

0
0.2

0.4
0.6

0.8
1

Utilization 0
0.2

0.4
0.6

0.8
1

Grow
th Facto

r

0
0.2
0.4
0.6
0.8
1

Sc
he

du
la

bi
lit

y
R

at
io

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

(b) EDF-NP:M Summary

Figure 7.8: EDF-NP:1 and EDF-NP:M Summary

Figures 7.7b, 7.8a, and 7.8b, summarize the results for the synthetic task sets varied

by the utilization and growth factor. Within each graph, the schedulability ratios provided

by EDF-P:1 and EDF-P:M serve as references. The difference between EDF-P:1 and the

subject of the graph illustrate the benefit of preemptive scheduling. Inclusion of EDF-PM

highlights the theoretical limit of concave growth to schedulability.

Including EDF-P:1 and EDF-P:M in each of the summary graphs eases the comparison

between EDF-NP:1, EDF-NP:M, and EDF-TPJ. Comparing EDF-NP:1 (7.8a) to EDF-NP:M

(7.8b), illustrates the benefits of the model and scheduling mechanism. EDF-NP:M has

a consistently higher schedulability ratio for all utilizations and growth factors. EDF-TPJ

(7.7b) outperforms EDF-NP:M, with higher schedulability ratios for all utilizations and

growth factors due to the ability to transform task sets. EDF-TPJ performs best among the

non-preemptive tests across all configurations. Additionally, EDF-TPJ is able to schedule

task sets deemed infeasible for EDF-P:1.

Table 7.9 summarizes the infeasible utilization findings for the synthetic tasks. For

moderate and larger values of M(≥ 25), the number of infeasible by utilization task sets

134

dominate the specifications. For 25, 50, and 100 total threads, the infeasible by utilization

comprise 44, 59, and 74 percent of the task sets respectively, with EDF-TPJ finding 25,

34, and 45 percent feasible. This illustrates the large potential of the proposed model, in

conjunction with concave growth WCET functions of thread-level schedulers (e.g. BUNDLE

and BUNDLEP).

(M,m) (3, 2) (5, 2) (7, 3) (10, 4) (25, 8) (50, 16) (100, 32) Total

|S| 81000 81000 81000 81000 81000 81000 81000 567000

|s| 3131 4973 11744 18689 36565 49147 59412 183661

|sTPJ| 465 291 1437 3065 9426 16912 25832 57428

Figure 7.9: U > 1 Feasibility

There are two noteworthy trends within the schedulability results. The simpler of

the two is the relationship between utilization and schedulability ratio for a fixed growth

factor. Figure 7.10a illustrates the trend common among M ≤ 10 total threads. The trend

for preemptive and non-preemptive schedulability tests when utilization increases is for

the schedulability ratio to decrease. However, EDF-TPJ always outperforms the other non-

preemptive tests.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sc
he

du
la

bi
lit

y
R

at
io

Utilization

Schedulability Ratio for (M = 10,m ≤ 4, F = 0.5)

EDF-P:1
EDF-P:M
EDF-TPJ
EDF-NP:1

EDF-NP:M

(a) (M,m,U,F) = (10, 4, ∗, 0.5)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sc
he

du
la

bi
lit

y
R

at
io

Growth Factor

Schedulability Ratio for (M = 7,m ≤ 3, U = 0.5)

EDF-P:1
EDF-P:M
EDF-TPJ
EDF-NP:1

EDF-NP:M

(b) (M,m,U,F) = (7, 3, 0.5, ∗)

Figure 7.10: M ≤ 10 Performance

135

The second trend is slightly more complex. Figure 7.10b was selected for the smallest

M and U values with visually distinct plots per schedulability test. The growth factor

and the schedulability ratio are correlated. As the growth factor increases, so does the

schedulability ratio. This is due to the utilization being held constant. When the growth

factor is small, the WCET of the first thread of each task is larger. Larger WCET values are

harder to schedule non-preemptively.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sc
he

du
la

bi
lit

y
R

at
io

Growth Factor

Schedulability Ratio for (M = 25,m ≤ 8, U = 0.7)

EDF-P:1
EDF-P:M
EDF-TPJ
EDF-NP:1

EDF-NP:M

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sc
he

du
la

bi
lit

y
R

at
io

Utilization

Schedulability Ratio for (M = 25,m ≤ 8, F = 0.9)

EDF-P:1
EDF-P:M
EDF-TPJ
EDF-NP:1

EDF-NP:M

Figure 7.11: M > 10 EDF-TPJ Performance Above EDF-P:1

As M increases beyond 10 total threads, the number of infeasible by utilization task

sets s grows. This contributes to the schedulability ratio of EDF-TPJ surpassing EDF-P:1 for

threshold utilization and growth factor values. For M = 25, the threshold of utilization is

between [0.6, 0.7] shown in Figure 7.11.

136

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sc
he

du
la

bi
lit

y
R

at
io

Utilization

Schedulability Ratio for (M = 100,m ≤ 32, F = 0.4)

EDF-P:1
EDF-P:M
EDF-TPJ
EDF-NP:1

EDF-NP:M

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Sc
he

du
la

bi
lit

y
R

at
io

Growth Factor

Schedulability Ratio for (M = 100,m ≤ 32, U = 0.5)

EDF-P:1
EDF-P:M
EDF-TPJ
EDF-NP:1

EDF-NP:M

Figure 7.12: M = 100 EDF-TPJ Performance

For M = 100 and F ≤ 0.4, EDF-TPJ outperforms EDF-P:1. Figure 7.12 highlights the

advantage of EDF-TPJ compared to EDF-P:1 by virtue of concave growth. It also highlights

the benefit of dividing tasks, as the performance of EDF-NP:M is always below EDF-TPJ.

The comparative performance of EDF-TPJ is at its lowest for M < 10 threads and U > .4

utilization. In these ranges EDF-TPJ maintains the highest schedulability ratio among

the non-preemptive methods, but the ratio is closer to EDF-NP:M or EDF-NP:1 than EDF-

P:1. This suggests, the decrease in EDF-TPJ’s performance is more likely due to the non-

preemptive setting combined with larger WCET values for individual threads.

7.4 Summary

The primary goal of NPM-BUNDLE is to create a multi-task scheduling technique and

schedulability test for the BUNDLE-based single task thread-level schedulers. In addition to

achieving the primary goal, the scheduling technique and schedulability test developed for

the multi-task BUNDLE-based scheduler can be applied to any thread level scheduler with

strictly increasing discrete concave WCET functions. This allows any compatible thread-

level scheduling technique to benefit from the TPJ approach developed in this work. As

137

a non-preemptive multi-threaded schedulability test TPJ is optimal with respect to npm-

feasibility, always producing a feasible task set if one is schedulable by EDF-NP.

CHAPTER 8 MULTI-PROCESSOR MULTI-TASK BUNDLE

BUNDLE, BUNDLEP, and NPM-BUNDLE are limited to the scheduling and analysis of unipro-

cessor systems. Expanding the inter-thread cache benefit to multi-processor systems may

take one of several approaches. Of the available approaches, this chapter describes the

first, bringing BUNDLE’s perspective to directed acyclic graph (DAG) parallel tasks and

named ITCB-DAG. ITCB-DAG is seen as an initial work in the multi-processor setting. As

such, the goal of ITCB-DAG is to demonstrate the potential benefit in this novel setting.

To begin incorporating the inter-thread cache benefit to multi-processor systems for DAG

tasks the following contributions are made as part of ITCB-DAG.

1. Incorporation of executable objects and thread counts to the DAG model named the
directed acyclic graph tasks with objects and threads model, abbreviated DAG-OT.

2. The concepts of collapse and candidacy for collapse of nodes within a DAG-OT task.

3. The Dedicate Core Reduction Algorithm which reduces the number of cores reserved
for a high utilization task.

4. Heuristics for ordering the collapse of nodes within a single DAG-OT task.

5. A synthetic evaluation demonstrating the impact of the inter-thread cache benefit for
DAG tasks.

Figure 8.1: Summary of ITCB-DAG contributions

These contributions are presented in the following sections. Section 8.1 supplies the

necessary background for DAG tasks including the existing model and proposed changes

to the existing model. Section 8.2 describes the collapse operation and impact upon DAG

tasks. Section 8.3 introduces the general algorithm for collapsing nodes within a task

as well as the schedulability test for a DAG task set. Section 8.4 describes the proposed

138

139

heuristics for ordering candidates for collapse. Section 8.5 discusses the impact of collapse

upon low utilization tasks. Section 8.6 describes the methods, metrics, and results of the

synthetic evaluation.

8.1 Background and Related Work

In previous chapters, graphs represent executable objects as control flow graphs, con-

flict free regions, or conflict free region graphs. In this chapter, graphs will represent

parallel tasks. Individual nodes within these graphs will encapsulate complete executable

objects to be executed upon a single processor. This shifts the focus from the analysis

and scheduling mechanisms of BUNDLE and BUNDLEP, to treating the BUNDLE techniques as

reusable components within DAG tasks.

Existing works on parallel DAG tasks commonly share notation. These common sym-

bols conflict with those used to describe BUNDLE. Within this chapter the notation and

symbols in Table 8.1 supersede those previously defined in favor of the common notation

found in [63] and others.

τ Set of n tasks {τ0, τ1, ..., τn−1}

τi = (pi, di, Gi) Task i

pi Minimum inter-arrival time of τi
di Relative deadline of τi

Gi = (Vi, Ei) Directed Acyclic Graph of τi
Vi Nodes of graph Gi

Ei Edges of graph Ei
oi Executable object of τi
ov Executable object of node v ∈ Vi
m Number of cores in the target system

Table 8.1: ITCB-DAG Notation

140

The DAG model of hard real-time tasks [63] defines the set of n sporadic tasks τ as

τ = {τ1, τ2, ..., τn}. A task τi = (pi, di, Gi) is a tuple of minimum inter-task arrival time

pi, relative deadline di, and directed acyclic graph Gi. The set of n DAGs is denoted

G = {G1, G2, ..., Gn}. A task’s DAG Gi represents the parallelism and dependencies of exe-

cution within the task. A DAG Gi = (Vi, Ei) is a tuple of vertexes Vi and edges Ei.

A node v ∈ Vi represents the execution of a single thread. A thread executes on exactly

one of the m cores of the target architecture (or distributed system). Each node is asso-

ciated with an executable object ov: a set of machine instructions reachable from a single

entry point. A worst-case execution cv time is associated with every node v; an upper

bound on the execution time required to complete the thread without interruption on a

single core. An edge (u, v) ∈ Ei indicates an execution dependency between u, v ∈ Vi. For

v to begin execution on any core, all immediate predecessors {u|(u, v) ∈ Ei} must run to

completion.

For simplicity of analysis, every DAG Gi must have exactly one source and sink node,

s, t ∈ Vi respectively. A source s has no incoming edges, 6 ∃u | (u, s) ∈ Ei. A sink t has

no outgoing edges, 6 ∃v | (t, v) ∈ Ei. It is possible for a DAG to have multiple sources and

sinks. When a DAG contains multiple sources, the DAG is augmented by adding an “empty

source”: a single node with zero execution cost that is connected by outgoing edges to

existing sources. Similarly, for a DAG with multiple sinks an “empty sink” is added with

zero execution cost connected by incoming edges from the existing sinks.

Jobs of a task begin with one thread of s on one core. Jobs terminate when the single

thread of t completes. During the execution of a job, up to m cores may execute any of

the v ∈ V threads in parallel. A task τi ∈ τ generates a potentially infinite number of jobs,

141

each arriving no less than pi time units after the previous job. All jobs of τi must complete

within di time units.

Figure 8.2: A DAG Task

An example DAG task is shown in Figure 8.2. Accompany-

ing each node is a single-threaded WCET. For u and v, their

WCET values are cu = 20 and cv = 10 respectively. Edges il-

lustrate the dependency order of execution, such as (s, v) pre-

cluding v from executing until s has completed.

For a DAG Gi = (Vi, Ei), the length of a path through the

graph is the sum of WCET values of all nodes along the path.

The critical path λi of Gi, is a path from s to t with the greatest length Li – named the

critical path length. If multiple paths exist with length equal to Li, only one is selected as

the critical path. The workload of Gi is the sum of all WCET values v ∈ Vi. Utilization of

the task τi is the ratio of its workload and minimum inter-arrival time.

Definition 8.1.1 (Critical Path Length of Gi).

Li =
∑
v∈λi

cv (8.1.1)

Definition 8.1.2 (Workload of Gi).

Ci =
∑
v∈Vi

cv (8.1.2)

142

Definition 8.1.3 (Utilization of Gi).

ui = Ci/Ti (8.1.3)

Definition 8.1.4 (Utilization of τ).

U =
∑
τi∈τ

ui (8.1.4)

In Figure 8.2, the critical path λ = 〈s, u, t〉 is highlighted. The calculated critical path

length is L = cs + cu + ct = 60 and workload C = cs + cu + cv + ct = 70.

8.1.1 Federated Scheduling

Federating scheduling [63] is a partitioned scheduling algorithm and analysis method

developed for parallel DAG task sets. It divides the task set τ into two disjoint sets. Tasks

with utilization greater than one are placed in the high utilization task set τhigh. The low

utilization task set τlow contains the remainder of τ . Every task τi of τhigh is assigned mi

dedicated cores. Only threads of τi may execute on themi cores dedicated to it. Calculating

the number of dedicated cores required by a task τi to guarantee all jobs of the high

utilization task complete before their deadlines is achieved by Equation 8.1.5.

mi =

⌈
Ci − Li
Di − Li

⌉
(8.1.5)

The number of cores allocated to all high utilization tasks is denotedmhigh =
∑

τi∈τhigh mi.

The remaining cores of low utilization tasks are denoted mlow = m−mhigh. A task set τ

is schedulable under federated scheduling if mlow is non-negative and all tasks of τlow can

be execute on the mlow cores without missing a deadline. Under federated scheduling, low

143

utilization tasks are scheduled sequentially where only one node of the task executes at

any time on any core, and the selection of which node to execute obeys the dependency

relationship of the task’s graph.

Any greedy, work-conserving, parallel scheduler can be used to schedule a high utiliza-

tion task τi ∈ τhigh on its mi dedicated cores. Low utilization tasks are treated as sequential

tasks, executing at most one thread of a job at a time. Any multiprocessor scheduling al-

gorithm (such as partitioned EDF) can be used to schedule all the low-utilization tasks on

the mlow allocated cores.

Under federated scheduling DAG tasks execute on a parallel system with m identi-

cal cores. Requiring uniform cores ensures the validity of the WCET bound for each

node regardless of where the thread executes. Furthermore, each core must possess

identical cache configurations (hierarchy, size, etc.), memory architecture, and be timing-

compositional [57]. Doing so guarantees the worst-case execution time and cache over-

head of every node will be consistent across all cores. WCETO analysis is limited to the

per-core dedicated instruction caches. Data caches and shared caches are not considered

as part of ITCB-DAG

8.1.2 Proposed Model Changes

To incorporate the inter-thread cache benefit to parallel DAG tasks, a change to the

model’s description of nodes is proposed. For clarity, the existing model is referred to as

the directed acyclic graph model of parallel tasks or simply “the DAG model”, the proposed

model is named the DAG with objects and threads or “the DAG-OT model”.

For a DAG Gi = (Vi, Ei) in the DAG model, two nodes u, v ∈ Vi represent the release of

144

threads regardless of the executable object the threads execute. Inter-thread cache benefits

can only be applied to identical executable objects. Thus, the first proposed change to a

node v ∈ Vi under DAG-OT is the inclusion of the executable object ov in its description.

For a node v ∈ Vi in the DAG model, the execution of a thread is bounded by a single

WCET value cv. WCETO analysis produces a function which bounds the execution of

a specific number of threads scheduled by BUNDLE that includes the inter-thread cache

benefit. The second proposed change is to append the number of threads assigned to a

node ηv and the WCETO value as a function cv(η) : N+ → R+.

Combining the proposed changes, a node v ∈ Vi in the DAG-OT model is represented

by a tuple v = 〈ov, cv(η), ηv〉. Figure 8.3 presents the differences between the DAG and

DAG-OT models visually. Herein, a consistent illustrative shorthand is used, with the order

of nodes tuple’s preserved and the critical path highlighted in gray.

(a) DAG model (b) DAG-OT Model

Figure 8.3: From DAG to DAG-OT

Nodes of the DAG-OT model are compatible with nodes of the DAG model [63], where

nodes from the DAG model can be expressed as v = 〈ov, cv(ηv), ηv = 1〉 under DAG-OT. This

is illustrated by Figures 8.3a and 8.3b, which are equivalent.

For the DAG-OT model, the definitions of critical path length and workload must be

145

updated by Equations 8.1.6 and 8.1.7.

Definition 8.1.5 (DAG-OT Critical Path Length of Gi).

Li =
∑
v∈λi

cv(ηv) (8.1.6)

Definition 8.1.6 (DAG-OT Workload of Gi).

Ci =
∑
v∈Vi

cv(ηv) (8.1.7)

8.1.3 Discrete Concave Functions and Growth Factors

As described in Section 7.1.2, BUNDLE analysis produces discrete concave WCETO func-

tions. This property is applied directly to nodes of DAG-OT tasks, which are characterized

by a growth factor Fv, v ∈ Vi. Equation 7.1.2 is modified from the NPM-BUNDLE setting to

nodes of DAG-OT tasks by Equation 8.1.8.

Definition 8.1.7 (Growth Factor F). For a node u ∈ Vi of a DAG Gi, the growth factor of u

is a number Fu ∈ (0, 1] that satisfies Equation 8.1.8 for all ηu ≥ 1.

cu(ηu) ≤ c(1) + Fu · (ηu − 1) · cu(1) (8.1.8)

An example for a node u, associated cu(ηu), and growth factor Fu = .5 is shown in

Figure 8.4. The values of cu(ηu) are 10, 15, 17, 18, 19 for ηu ∈ [1, 5]. While any growth factor

greater than .5 would satisfy the definition, the minimum was selected for illustrative

purposes.

146

5

10

15

20

25

30

35

0 1 2 3 4 5 6

W
C
E
T
O

Threads ηu

cu(1) + Fu · (ηu − 1) · cu(1)
cu(ηu)

Figure 8.4: Example Growth Factor

8.1.4 Related Work

Parallel hard real-time tasks modeled by DAGs may be scheduled by federated [64,

65, 66] or global [67, 68, 69, 70] policies. Federated scheduling purports to improve the

analytical bounds of global scheduling. Further improvements of federating scheduling

include conditional DAGs, where edges between nodes may not be traversed unless a

logical condition is met [71, 65, 72]. Resource consideration for federated scheduling has

been studied in an energy-aware setting [73], and spin-lock blocking analysis performed

in [74]. However, none of these works address the impact of cache memory for parallel

DAG tasks. There are no known works that consider the impact of caches upon parallel

DAG tasks

147

8.2 Collapsing Nodes

To bring the inter-thread cache benefit to the DAG-OT model, the concept of collapsing

nodes is proposed. Under the DAG-OT model, two nodes u, v ∈ Vi which execute the same

object ou = ov may potentially be combined into a single node. Nodes that share the same

executable object are referred to as candidates for collapse. Collapsing two nodes into

a single node turns two distinct execution requests executing on (possibly) distinct cores,

into a single request to execute the combined threads on one core using BUNDLE scheduling.

By virtue of BUNDLE’s analysis incorporating the inter-thread cache benefit, the WCETO of

the combined node may be less than the sums of the individual nodes.

Definition 8.2.1 (Candidate for Collapse). For a DAG Gi = (V,E) and nodes u, v ∈ V , u

and v are candidates for collapse if and only if they share an executable object ou = ov.

To illustrate, consider Figure 8.5. Nodes u and v share the same executable object o1. If

the WCETO of one thread scheduled by BUNDLE on one core is 10 and two is 12, collapsing

u and v reduces the workload (and potentially the critical path length) by 8.

(a) Pre-Collapse (b) Post-Collapse

Figure 8.5: Node Collapse

Collapse restricts the execution of threads and cores. In Figure 8.5 pre-collapse u and v

may have executed on distinct cores. Post-collapse the combined threads of u and v must

148

execute on the same core scheduled by BUNDLE. To differentiate between pre and post-

collapse values a “hat” will be used for the latter. In Figure 8.5, before collapse u and v have

one thread each. Collapsing the two nodes into û joins the two threads ηû = 2 = ηu + ηv.

The pre-collapse workload is Ci = 43 and post-collapse workload Ĉi = 35. The reduction

in workload is due to the concave WCETO function cu(η) = cv(η) = cû(η), where cu(1) = 10

and cu(2) = 12.

Formally, the collapse operation is defined as follows.

Definition 8.2.2 (Collapse û← u on v). For pre-collapse nodes u, v ∈ Vi of Gi, collapsing u

and v (denoted u on v) into û modifies Gi by the following, resulting in a new DAG named

Ĝi.

1. Vi ← Vi ∪ û: A new blank node û is added to Vi

2. ηû ← ηu + ηv: û is assigned the combined total number of threads

3. oû ← ou: û is assigned the shared executable object

4. cû ← cu: û is assigned the shared WCETO function

5. ∀(x, y) ∈ Ei|y = u ∨ y = v : Ei ← (x, û): incoming edges of u and v are copied to û

6. ∀(x, y) ∈ Ei|x = u ∨ x = v : Ei ← (x, û): outgoing edges of u and v are copied to û

7. Vi ← Vi \ {u, v}: u and v are removed from Vi

8. ∀(x, y) ∈ Ei|y = u ∨ y = v : Ei ← Ei \ (x, y): incoming edges of u and y are removed

9. ∀(x, y) ∈ Ei|x = u ∨ x = v : Ei ← Ei \ (x, y): outgoing edges of u and v are removed

149

8.2.1 Infeasibility and the Impact of Collapse

Collapsing nodes may reduce the critical path length Li. This is illustrated by Fig-

ure 8.6, where the pre-collapse critical path length is Li = 50. After collapsing u on v → û,

the critical path length of Ĝi is L̂i = 40.

(a) Pre-Collapse (b) Post-Collapse

Figure 8.6: Critical Path Reduction

Observation 1 (Critical Path Reduction). For a DAG Gi = (V,E) and candidates nodes

u, v ∈ V , the collapse of u on v into û may reduce the critical path length in Ĝi: L̂i ≤ Li.

Under the DAG model a task τi is infeasible (for any number of dedicated cores mi)

if the critical path length is greater than the deadline, i.e., Li > Di. A task τi deemed

infeasible due to critical path length and period under the DAG model (Li > Di) may

become feasible (and possibly schedulable) under the DAG-OT model by collapse and

Observation 1 (L̂i ≤ Di). Thus the Li > Di infeasibility test does not apply pre-collapse

to the DAG-OT model. However, for any post-collapse Ĝi of τi if L̂i > Di the task set is

unschedulable under DAG-OT.

Observation 2 (Critical Path Extension). For a DAG Gi = (V,E) and candidates nodes

u, v ∈ V , the collapse of u on v into û may extend the critical path length in Ĝi: L̂i ≥ Li.

In contrast to Observation 1, collapse may extend the critical path length. This can

150

occur when one of the candidate nodes u, v ∈ V lies on the pre-collapse critical path and

the other does not. In Figure 8.7, u lies on the pre-collapse critical path. Collapsing

u on v → û increases the critical path length L̂i compared to Li by cu(ηu + ηv)− cu(ηu).

(a) Pre-Collapse Li = 34 (b) Post-Collapse L̂i = 38

Figure 8.7: Critical Path Extension

Observation 3 (Workload Decrease). For a DAG Gi = (V,E) and candidates nodes u, v ∈ V ,

the collapse of u on v into û will reduce the workload Ĉi ≤ Ci.

For candidates u, v ∈ V , their contribution to the workload of Ci is cu(ηu) + cv(ηv). The

contribution of û← u on v to Ĉi is cû(ηû) = cu(ηu + ηv). Since, cu(η) is a concave function,

cu(ηu + ηv) ≤ cu(ηu) + cv(ηv) and Ĉi ≤ Ci.

Observation 4 (Collapse Occlusion). For a DAG Gi = (V,E), candidates (u, v) and (x, y),

the collapse of u on v may prevent the collapse of x on y.

Collapsing one candidate (u, v) may preclude the collapse of another. For example,

consider Figure 8.8. By collapsing (u, v) the pair (x, y) cannot be collapsed – doing so

would introduce a cycle into the DAG.

151

(a) Pre-Collapse (b) Post-Collapse

Figure 8.8: Collapse of (u, v) before (x, y)

Given a deadline Di = 40 the result of collapsing (u, v) with respect to the workload,

critical path length, and dedicated cores are summarized in Table 8.2.

Ci Li mi u on v Ĉi L̂i m̂i

52 32 d2.5e → 50 33 d2.42e

Table 8.2: Collapse of u and v from Figure 8.8

Observation 5 (Alternate Collapse may Decrease m̂). For a DAG Gi = (V,E), candidates

(u, v) and (x, y), the collapse of u on v which occludes x on y and resulting allocation of

cores denoted m̂(uonv) may be greater than the allocation of cores due to collapsing x on y,

ie. m̂(xony) < m̂(uonv).

(a) Pre-Collapse (b) Post-Collapse

Figure 8.9: Collapse of (x, y) before (u, v)

152

Continuing the example, collapsing (x, y) precludes the collapse of (u, v). Collapsing

(x, y) instead of (u, v) results in Figure 8.9. The impact upon the workload and critical

path length of x on y differs from that of u on v and ultimately a difference in m.

Ci Li mi x on y Ĉi L̂i m̂i

52 32 d2.5e → 49 29 d1.81e

Table 8.3: Collapse of x and y from Figure 8.9

Table 8.3 illustrates the impact of ordering of collapse with respect to mi. Where col-

lapsing x on y in place of u on v yields a smaller number of dedicated cores mi.

8.2.2 Beneficial Collapse

By Observations 1-5 collapse of any individual candidate may increase or decrease the

number of cores allocated to a task. A collapse may increase or decrease the critical path

length creating an infeasible task set or introduce a cycle into the graph. This subsection

defines which collapses are beneficial.

Beneficial collapse depends on the Definition 8.2.3 of improving the allocation of cores.

Improving the number of allocated cores balances the concepts of reducing the number of

cores allocated to a feasible task, avoiding the creation of an infeasible task, and (possibly)

creating feasible tasks from infeasible ones.

Definition 8.2.3 (Improved Core Allocation). For a given number of cores allocated to a

task mi, m̂i is an improvement upon mi denoted m̂i � mi if and only if:

1.) mi > 0→ 0 < m̂i ≤ mi:

Ĉi − L̂i
Di − L̂i

≤ Ci − Li
Di − Li

153

2.) mi ≤ 0→ m̂i ≥ mi:

Ĉi − L̂i
Di − L̂i

≥ Ci − Li
Di − Li

When mi is greater than zero, an m̂i less than mi and greater than zero is an improve-

ment, reducing the number of cores allocated to the task. When mi < 0, the critical path

length has exceeded the deadline Li > Di. Such a task is not feasible under the DAG

model, but may be schedulable under the DAG-OT model. For mi less than zero, a m̂i

greater than mi is an improvement; an increase over mi may result in a schedulable task

under DAG-OT.

Improvement of mi does not include the ceiling described by Equation 8.1.5. This is

due to the difference in context of mi under the DAG model compared to DAG-OT. For

the DAG model, mi is calculated once and an integer number of cores are assigned to the

task τi for schedulability analysis. For the DAG-OT model, mi is recalculated after every

collapse operation. Only when collapse operations have ceased is the final integer ceiling

of m̂i assigned to τi for schedulability analysis. The treatment of mi (and m̂i) as a real

rather than integer number is consistent throughout this work.

Beneficial collapse, defined by Definition 8.2.4 includes the improvement of core allo-

cation as one of the three conditions. The first condition maintains the integrity of the

analysis, a beneficial collapse may not introduce a cycle into the graph which the critical

path length calculation depends upon.

Definition 8.2.4 (Beneficial Collapse). For a task τi, DAGGi = (V,E), and candidate nodes

u, v ∈ V the collapse of u on v which results in Ĝi is beneficial if and only if:

154

1. Ĝi contains no cycles

2. Li ≤ Di → L̂i ≤ Di

3. m̂i � mi

Condition 2 of the beneficial collapse definition provides protection against collapse

increasing the critical path length Li beyond the deadline Di, which would create an un-

schedulable task. The protection of Condition 2 does not prevent unschedulable tasks be-

coming schedulable by collapse, due to the post-collapse critical path length being bounded

by the deadline only if the pre-collapse critical path length was also less than the deadline.

8.2.3 Optimal Collapse

The primary goal of this work is to improve the schedulability of a task set by reducing

the number of cores reserved for high utilization tasks. Defining optimality with respect to

the number of cores assigned to a task matches the goal of minimizing the allocation for

high utilization tasks. The definition of optimal follows:

Definition 8.2.5 (Optimal Collapse of a Task). For a task and DAG G an optimal collapsing

of G is a DAG Ĝ and least positive m̂ obtainable by collapsing candidates of G.

Currently, the complexity class of selecting the optimal set of candidates to collapse for

a single task is unknown and remains an open problem. Observations 1-5 along with Defi-

nitions 8.2.3 and 8.2.4 illustrate the difficulties of identifying candidates that are beneficial

to collapse. The only known method to compute the optimal collapse of a task requires the

exploration of all possible combinations of candidates. There may be V 2 candidates per

task, exploring all possible combinations is O(2V
2
). Generating the optimal formulation

155

and finding the optimal collapse of a task are both reserved for future work. As a practical

alternative, heuristics for ordering candidates for collapse are proposed in Section 8.4.

8.3 DAG-OT Schedulability

Due to the intractability of optimal collapse for a task the following heuristic Algo-

rithm 12 is proposed. It seeks to reduce the number of cores allocated to a high utilization

task τi by collapsing only those candidates that are beneficial according to Definition 8.2.4.

Algorithm 12 DAG-OT Dedicated Core Reduction Algorithm

1: procedure DAGOT-REDUCE(Gi)
2: A← CANDIDATES(Gi)
3: A← ORDER(A)
4: while |A| 6= 0 do
5: (u, v)← FIRST(A)
6: A← A \ (u, v)
7: if BENEFIT(Gi, u, v) then
8: COLLAPSE(Gi, u, v)
9: end if

10: end while
11: end procedure

Reduction begins by identifying the potential candidates for collapse on Line 2. Candi-

dacy follows Definition 8.2.1, calculating the complete set of candidates is of complexity

O(V 2). The set of candidates is prioritized for collapse consideration by ORDER, order-

ing heuristics are proposed in Section 8.4. Each proposed heuristic is of equal or lesser

computational complexity than the while loop (and its contents) beginning on Line 4.

Only candidates that benefit the task set are collapsed. A beneficial collapse improves

(Definition 8.2.3) the number of cores allocated to a task without introducing a cycle

into the DAG. Checking for a cycle in Ĝi by a depth first search is O(V + E) complex.

Calculating L̂i of a DAG by topological sort is also O(V + E) complex. Deciding if the

156

number of allocated cores satisfy the definition of improved is an O(1) operation, and

collapse is an O(E) operation. Iterating over O(V 2) possible candidates, Algorithm 12 is

O(V 3 + V 2E).

During each iteration of the while loop on Line 4 of the DAGOT-REDUCE Algorithm 12

the current state of the DAG Gi serves as input and Ĝi is the output. A subsequent iteration

of the loop consumes the previous Ĝi value as input when considering the next candidate

for collapse.

To determine if the task set τ is schedulable after DAG-OT reduction has been ap-

plied, the low utilization tasks are given mlow = m−mhigh cores. The task set τ is deemed

schedulable if mlow is non-negative, and all tasks of τlow are multi-processor schedulable

on the mlow available cores.

8.4 Candidate Ordering

Two heuristics for collapse ordering are proposed. The first “greatest benefit”, orders

the candidates by descending workload savings. The second “least penalty”, orders candi-

dates by increasing longest path extension. The proposed heuristics are compared against

an “arbitrary” (random) ordering to highlight each heuristics impact.

8.4.1 Greatest Benefit

For the greatest benefit heuristic, intuition suggests that collapsing nodes that most

reduce the total workload Ci will also reduce the number of cores mi maximally. The

difference in workload is represented by ∆ in Equation 8.4.1. There is a one time cost to

calculate ∆ for all candidates in A and then order the set. This operation is of O(V log V)

complexity. Employing the greatest benefit heuristic, Algorithm 12 is then

157

O(V log V + V 3 + V 2E) ⇐⇒ O(V 3 + V 2E)

∆ = cu(ηu) + cv(ηv)− cu(ηu + ηv) (8.4.1)

8.4.2 Least Penalty

For the least penalty heuristic, intuition suggests collapsing pairs with the least exten-

sion to the critical path length allows more nodes to be collapsed – this includes collapses

which extend the critical path negatively, shortening it. Penalties γ are calculated once by

Equation 8.4.2 for every candidate pair. The set of candidates A are ordered by increasing

penalty for use in Algorithm 12.

γ = L̂i − Li (8.4.2)

Penalty calculation requires a topological sort for every candidate to find L̂i with com-

plexity O(V + E), for O(V 2) candidates. Sorting the candidates by penalty is O(V log V)

complex. Therefore, the initial penalty ordering complexity is O(V 3 + V 2E + V log V).

The complexity of Algorithm 12 utilizing the least penalty heuristic is then

O(V 3 + V 2E + V logV +V 3 + V 2E) ⇐⇒ O(V 3 + V 2E).

Penalty calculations apply to a single DAG Gi = (Vi, Ei) instance. Collapsing two nodes

u, v ∈ V may impact the critical path length, i.e. L̂i 6= Li. Since the penalty of collapse

depends on the critical path length, the collapse of u on v may impact the penalty γ of

other candidates. This relationship, where one collapse may influence the penalty of a

later collapse is ignored when ordering candidates for least penalty in favor of maintaining

158

the O(V 3 + V 2E) complexity of Algorithm 12.

8.5 Low Utilization Tasks

Previous sections have focused on reducingmi for high ulitization tasks. Low utilization

tasks may also incorporate the inter-thread cache benefit through collapse. To incorporate

the benefit, a non-preemptive scheduler is required due to BUNDLE’s lack of preemptive

schedulability analysis.

A low utilization DAG task τi requires no more than one core mi = 1 to meet all dead-

lines. Therefore, τi may be serialized. To serialize τi a topological sort of Gi is performed

and nodes are executed on the single processor in sort order. Figure 8.10 illustrates the

serialization of a task τi.

(a) Pre-Serializing (b) Post-Serializing

Figure 8.10: Serializing a Task τi

Before a low utilization task is serialized all candidates u, v ∈ Vi that are beneficial to

collapse are collapsed. For a serialized task τi, the workload bounds the critical path length

Ci ≥ Li. A serialized task is infeasible if Ci > Di. Since the workload is only reduced by

collapse, collapse preceding serialization cannot convert a feasible task into an infeasible

one.

Similar to high utilization tasks, the complexity of serializing low utilization tasks de-

pends on the number of candidates O(V 2), a DFS to check for cycles O(V + E), and a

159

topological sort to order execution O(V + E). The total complexity of the operation is

O(V 2 · (V + E) + (V + E)) ⇐⇒ O(V 3 + V 2E) (8.5.1)

Another concern shared with high utilization tasks is the order of collapse. For simplic-

ity, collapse ordering is defined for the entire task set and shared between high and low

utilization tasks. Whichever heuristic is selected for high utilization tasks is also selected

for low utilization tasks uniformly for all tasks τi ∈ τ .

Every collapsed and serialized low utilization task τi ∈ τlow is scheduled non-preemptively,

lest the inter-thread cache benefit of scheduling individual threads of nodes via BUNDLE be

lost. Scheduling can be perceived as a hierarchy, where the job-level scheduler dictates

which job can be run on a processor and the thread-level scheduler selects which thread of

the running job will run. BUNDLE scheduling utilizes explicit thread-level preemptions but

the analysis cannot accommodate job-level preemptions. Thus, the job-level scheduler is

chosen to be non-preemptive EDF.

Each low utilization task τi ∈ τlow is assigned to exactly one of the mlow cores by the

Worst-Fit [75]1 partitioning algorithm. Once assigned, jobs of τi will execute only upon its

assigned processor. Worst-Fit assigns each task τi ∈ τlow to a per-core task set on a core mk

with the most available slack. When assigning τi to mk, the assignment will not be made if

it creates create an infeasible per-core task set determined by [76]. For the low utilization

tasks τlow to be deemed schedulable, all per-core task sets must be schedulable on their

respective cores. The task set τ is schedulable if mlow is non-negative and τlow is deemed

1Any non-preemptive EDF schedulability test based task assignment to cores could be chosen.

160

schedulable.

8.6 Evaluation

Evaluation of the proposed ITCB-DAG approach focuses on two metrics: schedulability

ratios and the reduction of dedicated cores to high utilization tasks. No existing approach

to federated scheduling of DAG tasks which incorporates inter-thread cache benefits or

CRPD is (currently) known. To illustrate the potential of inter-thread cache benefits to

DAG tasks under federated scheduling [63] high utilization tasks are scheduled by any

work-conserving algorithm on the individual tasks dedicated cores. Low utilization tasks

are assigned to cores by the Worst-Fit [75] partitioning algorithm and scheduled by non-

preemptive EDF. In addition to non-preemptive EDF scheduling of low utilization tasks, a

comparison to federated scheduling using preemptive EDF of low utilization tasks is made;

to the benefit of preemptive EDF, preemptions have no time penalty.

An additional concession is made to all schedulability tests. Due to the nature of de-

mand bound tests for low utilization tasks on partitioned cores, the operation may take

an impractical amount of time to complete given the scale of the evaluation. To allow a

greater volume of task sets to be included, if any schedulability test for a task set takes

more than 10 minutes to complete the task set is deemed unschedulable for all schedula-

bility tests and collapse heuristics.

The existing schedulability analysis approaches are compared to collapse by DAGOT-REDUCE

using the proposed heuristics. Table 8.4 summarizes the existing and proposed approaches

used in the evaluation along with their notation. The approaches are enumerated by their

inclusion of collapse and their use of non-preemptive EDF (EDF-NP) or preemptive EDF

161

(EDF-P) for low utilization tasks.

Approach EDF-NP EDF-P

Baseline (No Collapse) B-NP B-P

Collapse Arbitrary OT-A ∅
Collapse Greatest Benefit OT-G ∅

Collapse Least Penalty OT-L ∅

Table 8.4: Federated Schedulability Test Comparisons

Synthetic task sets are provided to each of the schedulability tests. Generation of the

synthetic DAG tasks takes the form of a pipeline, where individual tasks are synthesized

and then combined to make task sets. To allow a comparison to be made between the

baseline and collapsed tasks, tasks are generated for the baseline first and then collapsed.

DAGOT-REDUCE modifies the structure of DAG tasks, as well as the critical path length

and total demand. Due collapse related changes, tasks that were trivially infeasible (ie.

Li > Di) may become feasible. As such, existing approaches to task set generation which

do not permit or construct trivially infeasible tasks were not suitable for evaluation of this

work.

Figure 8.11: Task Set Generation Pipeline

Figure 8.11 describes the pipeline in

coarsest detail. Individual tasks are gener-

ated, then filtered. The filtered tasks are

then duplicated, once per collapse order-

ing, before being assembled into task sets.

Each stage of the pipeline is described using a tuple such as:

〈A = {a1, a2, ..., aj}, B = {b1, b2, ..., bk}〉

162

A tuple abbreviates the cross product of all possible combinations i.e. ((a1, b1), (a1, b2), ..., (aj, ak)).

Additionally, a tuple may be preceded by iteration constant K that repeats each pair of the

cross product K times. For example when K = 2:

K · 〈A,B〉 → ((a1, b1), (a1, b1), (a1, b2), ..., (aj, bk), (aj, bk))

The size of any tuple is the product of cardinality of the elements of the tuple and the

iteration constant.

Task generation is the first stage in the pipeline and is divided into smaller segments.

The first segment of task generation is the creation of graph structures. There are three

input parameters to graph creation: the number of nodes per graph n, the probability of

an edge between any two nodes P (u, v), and the number iterations S. To assign an edge

to a pair of nodes u, v a random value in the range r ∈ [0, 1] is generated, if r ≤ P (u, v)

the edge is added. The set of graphs generated is referred to as τg, which is the result of

τg = S · 〈n, P (u, v)〉. Table 8.5 enumerates these parameters with a range [min,max] and

increment, the total provided is the number of graphs generated after this segment.

Parameter Range

n (16, 32, 64)

P (u, v) (0.02, 0.06, 0.12)

S 10

Total |τg| |S · 〈n, P (u, v)〉| = 90

Table 8.5: Task Generation Graph Creation Parameters

The second segment of task generation is execution assignment. Each task in τg is re-

peatedly assigned objects to execute, creating a new task after each assignment. Execution

163

assignment begins by creating a set number of executable objects o per task. Each object

is given a single thread WCET c1 and a growth factor F. The single thread execution value

of each object is assigned a random value from the range c1 ∈ [1, 50]. The growth factor

of each object is assigned a random value from the range [0.2,F] Every node of the task

is assigned exactly one executable object and one thread of execution. The set of tasks

processed after this segment is referred to τe, which is the result of τe = τg × 〈o,F〉 Ta-

ble 8.6 enumerates the execution assignment parameters, the total provided is the number

of tasks generated after this segment.

Parameter Range

o (4, 8, 16)

F (0.2, 0.6, 1.0)

Total |τe| |τg × 〈o,F〉| = 90 · 9 = 810

Table 8.6: Task Generation Execution Assignment Parameters

The third and final segment of task generation is timing assignment for deadlines and

periods. Each task in τe is repeatedly assigned a period and deadline, creating a new task

after each assignment. Timing assignment is related to the critical path length of the task

and one of the task target utilization values Uτ . For each task target utilization value,

the task’s period is set to T = C/Uτ . For each period assignment, the task’s deadline is

repeatedly assigned for each of the critical path length factors cpf . A cpf lower bounds the

deadline of the task in terms of the critical path length, the task’s deadline is randomly

selected in the range [L · cpf, T]. The set of tasks after task set generation is referred to

as τ , which is the result of τ = τe × 〈Uτ , cpf〉. After which, the set of tasks τ is sent to

filtration. Table 8.7 enumerates the timing assignment parameters and provides the total

164

number of tasks generated.

Parameter Range

Uτ (0.25, 0.50, 2.0, 4.0, 8.0

cpf (0.5, 1.0, 2.5)

Total |τ | |τe × 〈Uτ , cpf〉| = 810 · 18 = 14, 580

Table 8.7: Task Generation Timing Assignment Parameters

Filtration is a single step process that removes tasks that are always trivially infeasible.

A trivially infeasible task has a critical path length greater than its deadline. Since collapse

may reduce the critical path length of a DAG task, an infeasible task may become a feasible

DAG-OT task. Filtration executes each of the collapse heuristics on every task of τ . If the

DAG task of τ is feasible, the task remains. If the DAG task is infeasible, and any collapse

ordering produces a feasible DAG-OT task, the task remains. Only if the DAG task is

infeasible, and all collapse orderings are also infeasible is the task removed from τ .

Collapse is the next stage of the pipeline, for each DAG task in τ a collapsed version

of the DAG-OT task is produced. Tasks are segregated into pools one for the DAG task,

and one for each of the collapse orders applied to the DAG-OT task. These collapsed task

sets are referred to as τa for arbitrary ordering, τb for greatest benefit, and τp for least

penalty. Each DAG task τi ∈ τ shares its index i across pools, for example: τi ∈ τp refers

to the DAG-OT task generated from the DAG task τi ∈ τ that was collapsed using the least

penalty heuristic.

Assembly is the final stage of the task set generation pipeline. Fore every selection of

cores in the system architecture c, and target task set utilization U , N task sets are created

from the DAG tasks τ . For every task set assembled from τ , the corresponding task set

165

from each of the collapse orderings is also created. To clarify, for a DAG task set:

A = {τi, τj, τk}, τi, τj, τk ∈ τ

The corresponding task DAG-OT task set using the greatest benefit collapse ordering is:

Ab = {τi, τj, τk}, τi, τj, τk ∈ τb

Table 8.8 enumerates the assembly parameters and the total number of task sets cre-

ated. The total reflects the total number of DAG task sets assembled, it does not reflect the

equivalent DAG-OT task sets.

Parameter Range

U (0.5, 1, 2, 4, 8, 12, 16, 20, 24, 28, 32, 36)

c (4, 8, 12, 16, 20, 24, 28, 32)

N 1000

Total N · 〈c, U〉 = 96, 000

Table 8.8: Task Set Assembly Parameters

8.6.1 Evaluation Metrics

A schedulability ratio is calculated for each of the schedulability tests. For the DAG-

OT schedulability tests, the number of cores saved msaved per task is calculated by Equa-

tion 8.6.1 where pre-collapse mhigh comes from Equation 8.1.5 and m̂high after Algo-

rithm 12 has terminated.

msaved = mhigh − m̂high (8.6.1)

166

The average change in number of cores allocated to high utilization tasks is given by

Equation 8.6.2.

∆̄m =

∑
τi∈τ msaved

n
(8.6.2)

Similarly, the change in workload and critical path length for each of the DAG-OT

schedulability tests is compared to Ci and Li from Equations 8.1.2 and 8.1.1 under the

DAG model. Equation 8.6.3 quantifies the average change in workload and 8.6.4 the

average change in critical path length.

∆̄C =

∑
τi∈τ Ci − Ĉi

n
(8.6.3)

∆̄L =

∑
τi∈τ L̂i − Li

n
(8.6.4)

167

8.6.2 Results

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 4 8 12 16 20 24 28 32

Sc
he

du
la

bi
lit

y
R

at
io

Utilization

Utilization vs. Schedulability Ratio [4]

B-NP
B-P

OT-A
OT-G
OT-L

Figure 8.12: Mean Schedulability Ratio

Figure 8.12 summarizes the schedulability results. In the title the ’[4]’ indicates the

utilization interval the column summarizes. For the histograms labeled ’0’, only task sets

with utilization in [0, 4) contribute to the ratio. The height of the bar is the average schedu-

lability ratio over the interval. From this summary data, it is clear collapse can improve

the schedulability of federated scheduled DAG tasks.

Furthermore, the deleterious DAG-OT requirement of non-preemptive scheduling for

low utilization tasks does not outweigh the gains in schedulability of collapsing tasks. This

can be observed by the higher schedulability ratios for collapsed task sets compared to the

uncollapsed fully preemptive low utilization task sets of B-P. Where the fully preemptive

scheduler incurs no penalty for preemptions between low utilization tasks. Of the 96,000

168

task sets generated, 36 were deemed unschedulable due to exceeding the 10 minute time

limit.

It is unclear from Figure 8.12 which of the collapse heuristics is the most desirable.

Greatest benefit (OT-G) performs best, across all intervals. However, the improvement over

arbitrary (OT-A) and least penalty (OT-L) is small (less than two percent) and inconsistent

across intervals.

6.3

6.4

6.5

6.6

6.7

6.8

6.9

7

7.1

OT-A OT-G OT-L

N
um

be
r

of
C

or
es

Average Number of Cores Saved Per Task

m high

Figure 8.13: Mean Core Savings

Figure 8.13 focuses on the central pur-

pose of collapse: to reduce the number

of cores assigned to high utilization tasks.

The greatest benefit heuristic (OT-G) per-

forms better than least penalty (OT-L). Both

heuristics perform better than arbitrary col-

lapse ordering (OT-A). For these task sets,

the heuristics provide a greater reduction

in dedicated cores than arbitrary ordering for collapse.

436

438

440

442

444

446

448

450

OT-A OT-G OT-L

C
ri

ti
ca

lP
at

h
Le

ng
th

E
xt

en
si

on

Average Critical Path Length Extension

(a) ∆̄L

750

800

850

900

950

1000

1050

1100

1150

1200

1250

B OT-A OT-G OT-L

C
ri

ti
ca

lP
at

h
Le

ng
th

Average Critical Path Length

(b) L̄

Figure 8.14: Mean Critical Path Lengths and Extensions

169

The least penalty (OT-L) heuristic seeks to collapse those nodes with the smallest in-

crease to the critical path length before others. Surprisingly, Figure 8.14 shows the least

penalty ordering of collapse may not have the intended effect. For OT-L, the average critical

path length is greater than greatest benefit (OT-G) or arbitrary ordering (OT-A); although

it remains within 0.5 percent of OT-G and OT-A.

950

955

960

965

970

975

980

985

990

OT-A OT-G OT-L

Sa
vi

ng
s

Average Workload Savings

(a) ∆̄C

2600

2700

2800

2900

3000

3100

3200

3300

3400

3500

3600

3700

B OT-A OT-G OT-L

W
or

kl
oa

d

Average Workloads

(b) C̄

Figure 8.15: Mean Workloads and Savings

Figure 8.15 illustrates the benefits of collapse upon the workload for all orderings. Un-

surprisingly OT-G providing the greatest average workload reduction of 28 percent. With

the worst performance among the three, ordering candidates by least penalty provides the

least improvement to workload reduction.

From the results of Figure 8.13, 8.14, and 8.15 greatest benefit performs better in

terms of saving cores, critical path length extension, and workload savings for the tasks

sets evaluated herein. This is due to the nature of critical path length extension in compar-

ison to workload savings. With each collapse, there is potential for the critical path to shift

from one set of nodes to another. If the critical path length shifts, the initial least penalty

ordering may no longer be in descending critical path length extension order. However,

170

workload savings are not affected when the critical path shifts; thus greatest benefit pro-

vides more consistent behavior and overall better performance.

8.7 Summary

The ITCB-DAG approach brings BUNDLE scheduling and analysis techniques to multi-

processor parallel DAG tasks. In addition, the approach introduces the concept of collaps-

ing nodes within a DAG task to decrease the number of cores dedicated to high utilization

tasks. In context of federated scheduling, with low utilization tasks scheduled by non-

preemptive partitioned EDF collapse of high utilization tasks can improve schedulability

when compared to federated DAG tasks with low utilization tasks scheduled by fully pre-

emptive partitioned EDF where preemptions incur no penalties. For a static ordering of

collapsing node pairs, the greatest benefit heuristic provides more consistent and favorable

performance improvements than the ordering generated by the least penalty heuristic.

CHAPTER 9 FUTURE WORK

The positive perspective taken by the BUNDLE approach provides a myriad of opportu-

nities for improvement and greater applicability. The greater goal is to bring this positive

perspective to deployed hard real-time systems. BUNDLE is the first step toward this goal.

BUNDLEP a second, improving upon BUNDLE with a concrete implementation and reasonable

complexity in WCETO calculation. NPM-BUNDLE a third, expanding the BUNDLE approach to

multi-threaded multi-task systems. ITCB-DAG a fourth, demonstrating the potential of col-

lapse for multi-core platforms.

There are many avenues available when taking the next steps: improving BUNDLE

scheduling performance and WCETO calculation in the single-task setting, or increas-

ing multi-core support with formal guarantees of performance when collapsing nodes,

or adding support for architecture features such as hierarchical and shared caches. Among

the available avenues, there are two which address the most significant deficiencies of the

BUNDLE approach.

9.0.1 Scheduling Support

BUNDLE’s scheduling techniques rely upon a mechanism that does not exist on any ex-

isting hardware platform or as part of any scheduler. A hardware mechanism has been

proposed as part of BUNDLEP, implementation of the mechanism on a simulator such as

riscv-angel would demonstrate the viability of the mechanism and provide deeper insights

into the penalties of BUNDLE scheduling.

To complement the hardware mechanism, a software based approach has been con-

171

172

ceived and initial testing has begun. The concept behind the software based approach to

support BUNDLE scheduling is to introduce trampolines at CFR boundaries. These trampo-

lines are inserted with a user-level thread scheduler which performs the BUNDLE scheduling

operations. For the software based approach, the addition of instructions complicates the

CFR analysis.

The software based approach provides an immediate opportunity for BUNDLE deploy-

ment in hard real-time systems and is the next step. Comparing the software based ap-

proach to a hardware based solution follows to illustrate the benefits of each.

9.0.2 Preemptive Multi-Task BUNDLEP

NPM-BUNDLE is limited to non-preemptive multi-task scheduling and analysis. Support

for preemptive scheduling and analysis is a clear next step. There are two preemptive

models to investigate. Fully preemptive, where a job can be preempted during any portion

of its execution by a higher priority job. Limited preemption, where preemptions are

limited to bundle activations. When limited, preemptions are delayed until the active

bundle of the lower priority job is depleted before the higher priority job is permitted to

execute. A more granular approach of allowing the current thread to execute until blocking

may be explored.

9.0.3 From Switched to Unswitched CFRs

As noted in Chapter 6, BUNDLEP may produce higher WCETO values for single tasks

when compared to the serial execution of threads. One significant cause of higher WCETO

values is the introduction of context switches with greater cost (more cycles) than the

inter-thread cache benefit of BUNDLE scheduling for a specific CFR.

173

To address this issue, the proposed work will develop a method to identify unswitched

CFRs. An unswitched CFR will allow threads to leave the active CFR by executing the entry

instruction of the unswitched CFR without blocking. Since no thread will block entering

an unswitched CFR the context switch of selecting the CFR is avoided. It is unclear if there

is a tractable optimal (with respect to minimum WCETO value) algorithm. The work will

focus on a heuristic when selecting which CFRs will be unswitched.

CHAPTER 10 CONCLUSION

Taking a positive perspective on instruction caches, two analytical techniques and

scheduling algorithms have been proposed for single multi-threaded tasks: BUNDLE and

BUNDLEP. The two share a common approach to scheduling a multi-threaded hard real-time

task, where threads (not tasks) are executed in a cache cognizant manner that increases

the inter-thread cache benefit at run-time and is quantified during WCETO analysis.

Both rely on a newly proposed model of multi-threaded tasks which includes ribbons

and threads as top level objects. They also share a proposed modification of CFGs, where

ribbons are divided into CFRs and assembled into a CFRG. It is the CFRG which provides

information to WCETO analysis as well as run-time scheduling decisions.

BUNDLE and BUNDLEP differ in their construction of the CFRG. BUNDLE’s approach is less

restrictive and more descriptive, individual instructions are permitted to reside in multiple

CFRs and WCETO calculations are limited to specific structures. BUNDLEP restricts indi-

vidual instructions to a single CFR and ignores their structure except for loops. Utilizing

priorities for CFRs, BUNDLEP improves upon BUNDLE. BUNDLEP’s scheduling algorithm maxi-

mizes cache sharing and reduces the complexity of BUNDLE’s WCETO calculation; avoiding

multiple all paths walks of the CFRG.

Both scheduling algorithms require a novel mechanism to anticipate execution. The

proposed XFLICT interrupt and XFLICT TABLE meet the needs of both algorithms. Addi-

tionally, the address table based behavior of the interrupt is similar to the accepted and

tested method of hardware interrupts.

174

175

Results from BUNDLE’s and BUNDLEP’s evaluation produce lower WCETO bounds than

the classical approach in many cases, encouraging a deeper investigation into the posi-

tive perspective. Further expansion of the positive perspective is possible in a multitude

of directions. Set associative caches, alternative cache replacement policies, hierarchical

caches, support for multi-core systems, alternative WCETO calculation methods and imple-

mentation on a Commercial Off-The-Shelf system are opportunities for further expansion

of BUNDLE’s approach.

These BUNDLE techniques and analysis have been incorporated into multi-threaded

multi-task analysis with the introduction of NPM-BUNDLE. The hierarchical scheduling tech-

nique of NPM-BUNDLE non-preemptively schedules jobs of tasks, while threads within jobs

are permitted to preempt one another according to BUNDLE scheduling decisions. As part

of NPM-BUNDLE, a novel scheduling algorithm TPJ is introduced that divides threads among

tasks and is guaranteed to produce an npm-feasible task set if one exists. Utilizing this

approach, some task sets deemed unschedulable for preemptive EDF with no preemption

penalties are schedulable under TPJ.

Incorporation of the inter-thread cache benefit to multi-core architectures is the pur-

pose of ITCB-DAG. The DAG-OT model expands the DAG model, enumerating the exe-

cutable objects and threads associated with each node. In contrast to the DAG model,

nodes may execute multiple threads per release. Inclusion of objects and threads permits

collapsing of nodes under the DAG-OT model. When combined with the collapse ordering

heuristics, schedulability ratios of parallel DAG tasks may be increased.

Currently, the most significant areas impeding general acceptance and deployment of

BUNDLE are 1.) lack of scheduling support at CFR boundaries 2.) strictly non-preemptive

176

scheduling of BUNDLE jobs 3.) for specific tasks, BUNDLE produces greater WCETO bounds

and worse run-time performance compared to the classical perspective. Therefor, future

efforts are focused on hardware and software support for BUNDLE scheduling, fully and

limited preemption analysis, and conditionally switching CFRs for lower analytical bounds

and better run-time performance.

LIST OF PUBLICATIONS

IN PROGRESS

1. Corey Tessler, Prashant Modekurthy, Nathan Fisher, Abusayeed Saifullah. Cache

Cognizant Collapse of Nodes Within Directed Acyclic Graph Tasks to Reduce

High Utilization Cores, submitting to 26th IEEE Real-Time and Embedded Tech-

nology and Applications Symposium (RTAS), Sydney, Australia, 2020.

CONFERENCES

2. Corey Tessler, Nathan Fisher. NPM-BUNDLE: Non-Preemptive Multitask Schedul-

ing for Jobs with BUNDLE-Based Thread-Level Scheduling, Proceedings of Euromi-

cro Conference on Real Time Systems (ECRTS), Stuttgart, Germany, 2019.

3. Corey Tessler, Nathan Fisher. BUNDLEP: Prioritizing Conflict Free Regions in

Multi-Threaded Programs to Improve Cache Reuse, Proceedings of IEEE Real-

Time Systems Symposium (RTSS), Nashville, Tennessee, 2018.

4. Corey Tessler, Gedare Bloom, Nathan Fisher. Work-in-Progress: Reducing Cache

Conflicts via Interrupts and BUNDLE Scheduling, Proceedings of IEEE Real-Time

and Embedded Technology and Applications Symposium (RTAS), Vienna, Austra,

2017.

5. Corey Tessler, Nathan Fisher. BUNDLE: Real-Time Multi-Threaded Scheduling

to Reduce Cache Contention, Proceedings of IEEE Real-Time Systems Symposium

(RTSS), Porto, Portugal, 2016.

177

178

6. John Cavicchio, Corey Tessler, Nathan Fisher. Minimizing Cache Overhead

via Loaded Cache Blocks and Preemption Placement, Proceedings of Euromicro

Conference on Real-Time Systems (ECRTS), Lund, Sweden, 2015.

BIBLIOGRAPHY

[1] R. Arnold, F. Mueller, D. Whalley, and M. Harmon. Bounding worst-case instruction

cache performance. Real-Time Systems Symposium, 1994., Proceedings., pages 172–

181, Dec 1994. viii, 9, 20, 23, 24, 54, 55

[2] Frank Mueller. Static Cache Simulation and Its Applications. Ph.d. dissertation, Florida

State University, 1995. viii, 9, 20, 23, 24, 54, 55

[3] Advanced Micro Systems. Welcome to amd. 2019. http://www.amd.com. 1

[4] NVIDIA. Artificial intelligence leadership from nvidia. 2019. http://www.nvidia.

com. 2

[5] C. L. Liu and James W. Layland. Scheduling algorithms for multiprogramming in a

hard-real-time environment. J. ACM, 20(1):46–61, January 1973. 3, 105, 110

[6] Jinghao Sun, Nan Guan, Yang Wang, Qingxu Deng, Peng Zeng, and Wang Yi. Feasi-

bility of fork-join real-time task graph models: Hardness and algorithms. ACM Trans.

Embed. Comput. Syst., 15(1):14:1–14:28, February 2016. 4, 27

[7] Corey Tessler and Nathan Fisher. BUNDLE: Real-Time Multi-Threaded Scheduling to

Reduce Cache Contention. In IEEE Real-Time Systems Symposium, 2016. 6

[8] C. Tessler and N. Fisher. BUNDLEP: Prioritizing conflict free regions in multi-threaded

programs to improve cache reuse. In 2018 IEEE Real-Time Systems Symposium

(RTSS), pages 325–337, Dec 2018. 7, 128, 129

[9] Corey Tessler. BUNDLEP virtual machine toolkit. 2018. http://www.cs.wayne.edu/

~fh3227/bundlep. 7, 91

179

http://www.amd.com
http://www.nvidia.com
http://www.nvidia.com
http://www.cs.wayne.edu/~fh3227/bundlep
http://www.cs.wayne.edu/~fh3227/bundlep

180

[10] C. Tessler and N. Fisher. NPM-BUNDLE: Non-preemptive multitask scheduling for jobs

with BUNDLE-based thread-level scheduling. In 2019 Euromicro Conference on Real-

Time Systems (ECRTS), volume 133, 2019. 7

[11] Corey Tessler. NPM-BUNDLE artifacts, 2019. http://www.cs.wayne.edu/~fh3227/

npm-bundle/. 7, 102, 127

[12] Frank Mueller. Timing analysis for instruction caches. In The Journal of Real-Time

Systems 18, pages 217–247, 2000. 9, 24

[13] Sebastian Altmeyer and Claire Maiza Burguière. Cache-related preemption delay

via useful cache blocks: Survey and redefinition. Journal of Systems Architecture,

57(7):707–719, August 2011. 9, 23, 25, 26, 88

[14] Sebastian Altmeyer, Robert I. Davis, and Claire Maiza. Cache related pre-emption

delay aware response time analysis for fixed priority pre-emptive systems. In Proceed-

ings of the 2011 IEEE 32nd Real-Time Systems Symposium, RTSS ’11, pages 261–271,

Washington, DC, USA, 2011. IEEE Computer Society. 9, 25, 26

[15] Yudong Tan and Vincent Mooney. Integrated intra- and inter-task cache analysis for

preemptive multi-tasking real-time systems. In Software and Compilers for Embedded

Systems: 8th International Workshop, SCOPES 2004, in: Lecture Notes on Computer

Science, SCOPES ’04, pages 182–199. Springer, 2004. 9, 25, 26

[16] Yudong Tan and Vincent Mooney. Timing analysis for preemptive multitasking real-

time systems with caches. ACM Transactions on Embededed Computing Systems, 6(1),

February 2007. 9, 90

[17] H. Tomiyama and N.D. Dutt. Program path analysis to bound cache-related preemp-

tion delay in preemptive real-time systems. In Proceedings of the Eighth International

http://www.cs.wayne.edu/~fh3227/npm-bundle/
http://www.cs.wayne.edu/~fh3227/npm-bundle/

181

Workshop on Hardware/Software Codesign (CODES), pages 67–71, May 2000. 9, 25

[18] S. K. Baruah, A. K. Mok, and L. E. Rosier. Preemptively scheduling hard-real-time

sporadic tasks on one processor. In IEEE Real-Time Systems Symposium, pages 182–

190, Dec 1990. 11, 105, 110, 111

[19] John L. Hennessy and David A. Patterson. Computer Architecture, Fifth Edition: A

Quantitative Approach. Morgan Kaufmann, 2011. 13, 24

[20] Frances E. Allen. Control flow analysis. SIGPLAN Not., 5(7):1–19, July 1970. 14

[21] Chang-Gun Lee, Joosun Hahn, Yang-Min Seo, Sang Lyul Min, Rhan Ha, Seongsoo

Hong, Chang Yun Park, Minsuk Lee, and Chong Sang Kim. Analysis of cache-related

preemption delay in fixed-priority preemptive scheduling. IEEE Transactions on Com-

puters, 47(6):700–713, June 1998. 20, 21, 22, 26, 27, 56

[22] Hemendra Singh Negi, Tulika Mitra, and Abhik Roychoudhury. Accurate estima-

tion of cache-related preemption delay. In Proceedings of the 1st IEEE/ACM/I-

FIP International Conference on Hardware/Software Codesign and System Synthesis,

CODES+ISSS ’03, pages 201–206, New York, NY, USA, 2003. ACM. 23, 25, 26

[23] Jane W. S. W. Liu. Real-Time Systems. Prentice Hall PTR, Upper Saddle River, NJ,

USA, 1st edition, 2000. 24

[24] Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti, Stephan

Thesing, David Whalley, Guillem Bernat, Christian Ferdinand, Reinhold Heckmann,

Tulika Mitra, Frank Mueller, Isabelle Puaut, Peter Puschner, Jan Staschulat, and Per

Stenström. The worst-case execution-time problem – overview of methods and sur-

vey of tools. ACM Trans. Embed. Comput. Syst., 7(3):36:1–36:53, May 2008. 24

182

[25] Henrik Theiling, Christian Ferdinand, and Reinhard Wilhelm. Fast and precise wcet

prediction by separated cache and path analyses. Real-Time Systems, 18(2):157–179,

May 2000. 24

[26] R. T. White, F. Mueller, C. A. Healy, D. B. Whalley, and M. G. Harmon. Timing

analysis for data caches and set-associative caches. In Proceedings Third IEEE Real-

Time Technology and Applications Symposium, pages 192–202, June 1997. 24

[27] Y.-T. S. Li, S. Malik, and A. Wolfe. Cache modeling for real-time software: beyond

direct mapped instruction caches. In 17th IEEE Real-Time Systems Symposium, pages

254–263, Dec 1996. 24

[28] Antoine Colin and Isabelle Puaut. Worst case execution time analysis for a processor

with branch prediction. Real-Time Systems, 18(2):249–274, May 2000. 24

[29] W. Lunniss, S. Altmeyer, C. Maiza, and R. I. Davis. Integrating cache related pre-

emption delay analysis into edf scheduling. In Real-Time and Embedded Technology

and Applications Symposium (RTAS), 2013 IEEE 19th, pages 75–84, April 2013. 25,

56, 57

[30] S. Altmeyer, R. Davis, and C. Maiza. Improved cache related pre-emption delay aware

response time analysis for fixed priority pre-emptive systems. Real Time Systems,

48(5), 2012. 25

[31] J. Staschulat, S. Schliecker, and R. Ernst. Scheduling analysis of real-time systems

with precise modeling of cache related preemption delay. In Proceedings of the 2005

17th Euromicro Conference on Real-Time Systems (ECRTS), ECRTS ’05, pages 41–48,

July 2005. 25, 26

183

[32] A. Burns. Advances in Real-Time Systems, chapter Preemptive priority-based schedul-

ing: an appropriate engineering approach, pages 225–248. Prentice Hall, Inc., 1995.

27, 105

[33] Y. Wang and M. Saksena. Scheduling fixed-priority tasks with preemption threshold.

In Proceedings of the International Conference on Real Time Computing Systems and

Applications, 1999. 27

[34] Sanjoy Baruah. The limited-preemption uniprocessor scheduling of sporadic task

systems. In 17th Euromicro Conference on Real-Time Systems (ECRTS’05), pages 137–

144, July 2005. 27, 102, 105, 110, 112, 113, 114, 115, 116

[35] J. M. Marinho, V. Nelis, S.M. Petters, and I. Puaut. An improved preemption delay

upper bound for floating non-preemptive region. In Proceedings of IEEE International

Symposium on Industrial Embedded Systems, 2012. 27

[36] J. Simonson and J.H. Patel. Use of preferred preemption points in cache based real-

time systems. In Proceedings of IEEE International Computer Performance and Depend-

ability Symposium, 1995. 27

[37] R. Bril, S. Altmeyer, M. van den Heuvel, R. Davis, and M. Behnam. Fixed priority

scheduling with pre-emption thresholds and cache-related pre-emption delays: inte-

grated analysis and evaluation. Real-Time Systems, 53(4):403–466, July 2017. 27

[38] M. Bertogna, O. Xhani, M. Marinoni, F. Esposito, and G. Buttazzo. Optimal selec-

tion of preemption points to minimize preemption overhead. In Proceedings of the

Euromicro Conference on Real-Time Systems, pages 217–227, July 2011. 27, 105

[39] B. Peng, N. Fisher, and M. Bertogna. Explicit preemption placement for real-time

conditional code. In Proceedings of Euromicro Conference on Real-Time Systems, 2014.

184

27

[40] J. Cavicchio, C. Tessler, and N. Fisher. Minimizing cache overhead via loaded cache

blocks and preemption placement. In Proceedings of the Euromicro Conference on

Real-Time Systems, 2015. 27

[41] Robert Mittermayr and Johann Blieberger. Timing Analysis of Concurrent Programs.

In 12th International Workshop on Worst-Case Execution Time Analysis, volume 23 of

OpenAccess Series in Informatics (OASIcs), pages 59–68, Dagstuhl, Germany, 2012.

Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. 27

[42] Y. Li, V. Suhendra, Y. Liang, T. Mitra, and A. Roychoudhury. Timing analysis of

concurrent programs running on shared cache multi-cores. In Real-Time Systems

Symposium, 2009, RTSS 2009. 30th IEEE, pages 57–67, Dec 2009. 28

[43] S. Bak, G. Yao, R. Pellizzoni, and M. Caccamo. Memory-aware scheduling of mul-

ticore task sets for real-time systems. In IEEE International Conference on Embedded

and Real-Time Computing Systems and Applications, pages 300–309, Aug 2012. 28

[44] R. Pellizzoni, E. Betti, S. Bak, G. Yao, J. Criswell, M. Caccamo, and R. Kegley. A

predictable execution model for cots-based embedded systems. In IEEE Real-Time

and Embedded Technology and Applications Symposium, pages 269–279, April 2011.

28

[45] B. C. Ward, J. L. Herman, C. J. Kenna, and J. H. Anderson. Making shared caches

more predictable on multicore platforms. In Euromicro Conference on Real-Time Sys-

tems, pages 157–167, July 2013. 29

[46] B. D. Bui, M. Caccamo, L. Sha, and J. Martinez. Impact of cache partitioning on multi-

tasking real time embedded systems. In 2008 14th IEEE International Conference on

185

Embedded and Real-Time Computing Systems and Applications, pages 101–110, Aug

2008. 29

[47] John Michael Calandrino. On the Design and Implementation of a Cache-aware Soft

Real-time Scheduler for Multicore Platforms. PhD thesis, Chapel Hill, NC, USA, 2009.

29

[48] S. A. Rashid, G. Nelissen, D. Hardy, B. Akesson, I. Puaut, and E. Tovar. Cache-

persistence-aware response-time analysis for fixed-priority preemptive systems. In

Euromicro Conference on Real-Time Systems, pages 262–272, July 2016. 29

[49] S. A. Rashid, G. Nelissen, S. Altmeyer, R. I. Davis, and E. Tovar. Integrated analysis

of cache related preemption delays and cache persistence reload overheads. In IEEE

Real-Time Systems Symposium, pages 188–198, Dec 2017. 29

[50] S Meena Kumari and N Geethanjali. A survey on shortest path routing algorithms for

public transport travel. Global Journal of Computer Science and Technology, 9(5):73–

75, 2010. 46

[51] Prabhaker Mateti and Narsingh Deo. On algorithms for enumerating all circuits of a

graph. SIAM Journal on Computing, 5(1):90–99, 1976. 46

[52] Jan Gustafsson, Adam Betts, Andreas Ermedahl, and Björn Lisper. The Mälardalen

WCET Benchmarks: Past, Present And Future. In International Workshop on Worst-

Case Execution Time Analysis, volume 15, pages 136–146, Dagstuhl, Germany, 2010.

Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. 58, 91, 129

[53] MIPS Technologies, Inc. MIPS R© 74KTM Processor Core Family Software User’s Manual,

2011. https://www.mips.com/products/classic/. 63, 79

https://www.mips.com/products/classic/

186

[54] Jan Midtgaard. Control-flow analysis of functional programs. ACM Computing Sur-

veys, 44(3):10:1–10:33, June 2012. 68

[55] Flemming Nielson, Hanne R. Nielson, and Chris Hankin. Principles of Program Anal-

ysis. Springer-Verlag, Berlin, Heidelberg, 1999. 68

[56] Tao Wei, Jian Mao, Wei Zou, and Yu Chen. A new algorithm for identifying loops in

decompilation. In Static Analysis, pages 170–183, Berlin, Heidelberg, 2007. Springer

Berlin Heidelberg. 70

[57] Sebastian Hahn, Jan Reineke, and Reinhard Wilhelm. Towards compositionality in

execution time analysis: Definition and challenges. ACM SIGBED Review, 12(1):28–

36, March 2015. 88, 143

[58] Corey Tessler. BUNDLEP: Prioritizing conflict free regions in multi-threaded programs

to improve cache reuse – extended results and technical report. 2018. https://

arxiv.org/abs/1805.12041. 92

[59] Giorgio C. Buttazzo. Hard Real-Time Computing Systems: Predictable Scheduling Al-

gorithms and Applications. Springer Publishing Company, Incorporated, 3rd edition,

2011. 105, 117

[60] Laurent George, Nicolas Rivierre, and Marco Spuri. Preemptive and Non-Preemptive

Real-Time UniProcessor Scheduling. Research Report RR-2966, INRIA, 1996. Projet

REFLECS. 110, 112

[61] M. Bertogna and S. Baruah. Limited preemption edf scheduling of sporadic task

systems. IEEE Transactions on Industrial Informatics, 6(4):579–591, Nov 2010. 116,

128

https://arxiv.org/abs/1805.12041
https://arxiv.org/abs/1805.12041

187

[62] E. Bini and G. C. Buttazzo. Biasing effects in schedulability measures. In Proceedings.

16th Euromicro Conference on Real-Time Systems, 2004. ECRTS 2004., pages 196–203,

July 2004. 128

[63] Jing Li, Jian Jia Chen, Kunal Agrawal, Chenyang Lu, Chris Gill, and Abusayeed Sai-

fullah. Analysis of federated and global scheduling for parallel real-time tasks. In

2014 26th Euromicro Conference on Real-Time Systems (ECRTS), pages 85–96. IEEE,

2014. 139, 140, 142, 144, 160

[64] Jing Li, Kunal Agrawal, Christopher Gill, and Chenyang Lu. Federated scheduling

for stochastic parallel real-time tasks. In 2014 IEEE 20th International Conference on

Embedded and Real-Time Computing Systems and Applications (RTCSA), pages 1–10.

IEEE, 2014. 146

[65] Sanjoy Baruah. Federated scheduling of sporadic dag task systems. In Parallel and

Distributed Processing Symposium (IPDPS), 2015 IEEE International, pages 179–186.

IEEE, 2015. 146

[66] Niklas Ueter, Georg von der Brüggen, Jian-Jia Chen, Jing Li, and Kunal Agrawal.

Reservation-based federated scheduling for parallel real-time tasks. In 2018 IEEE

Real-Time Systems Symposium (RTSS), pages 482–494. IEEE, 2018. 146

[67] Abusayeed Saifullah, Jing Li, Kunal Agrawal, Chenyang Lu, and Christopher Gill.

Multi-core real-time scheduling for generalized parallel task models. Real-Time Sys-

tems, 49(4):404–435, 2013. 146

[68] Abusayeed Saifullah, David Ferry, Jing Li, Kunal Agrawal, Chenyang Lu, and Christo-

pher D Gill. Parallel real-time scheduling of dags. IEEE Transactions on Parallel and

Distributed Systems, 25(12):3242–3252, 2014. 146

188

[69] Karthik Lakshmanan, Shinpei Kato, and Ragunathan Raj Rajkumar. Scheduling par-

allel real-time tasks on multi-core processors. In 2010 31st IEEE Real-Time Systems

Symposium, pages 259–268. IEEE, 2010. 146

[70] Sanjoy Baruah, Vincenzo Bonifaci, and Alberto Marchetti-Spaccamela. The global

edf scheduling of systems of conditional sporadic dag tasks. In Real-Time Systems

(ECRTS), 2015 27th Euromicro Conference on, pages 222–231. IEEE, 2015. 146

[71] Alessandra Melani, Marko Bertogna, Vincenzo Bonifaci, Alberto Marchetti-

Spaccamela, and Giorgio C Buttazzo. Response-time analysis of conditional dag tasks

in multiprocessor systems. In 2015 27th Euromicro Conference on Real-Time Systems

(ECRTS), pages 211–221. IEEE, 2015. 146

[72] Jinghao Sun, Nan Guan, Xu Jiang, Shuangshuang Chang, Zhishan Guo, Qingxu

Deng, and Wang Yi. A capacity augmentation bound for real-time constrained-

deadline parallel tasks under gedf. IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, 37(11):2200–2211, 2018. 146

[73] Zhishan Guo, Ashikahmed Bhuiyan, Abusayeed Saifullah, Nan Guan, and Haoyi

Xiong. Energy-efficient multi-core scheduling for real-time dag tasks. In LIPIcs-

Leibniz International Proceedings in Informatics, volume 76. Schloss Dagstuhl-Leibniz-

Zentrum fuer Informatik, 2017. 146

[74] Son Dinh, Jing Li, Kunal Agrawal, Chris Gill, and Chenyang Lu. Blocking analysis

for spin locks in real-time parallel tasks. IEEE Transactions on Parallel and Distributed

Systems, 29(4):789–802, 2018. 146

[75] Sanjoy Baruah. Partitioned edf scheduling: a closer look. Real-Time Systems,

49(6):715–729, 2013. 159, 160

189

[76] K. Jeffay, D. F. Stanat, and C. U. Martel. On non-preemptive scheduling of period

and sporadic tasks. In [1991] Proceedings Twelfth Real-Time Systems Symposium,

pages 129–139, Dec 1991. 159

ABSTRACT

BUNDLE: TAMING THE CACHE AND IMPROVING SCHEDULABILITY
OF MULTI-THREADED HARD REAL-TIME SYSTEMS

by

COREY TESSLER

December 2019

Advisor: Dr. Nathan Fisher

Major: Computer Science

Degree: Doctor of Philosophy

For hard real-time systems, schedulability of a task set is paramount. If a task set is not

deemed schedulable under all conditions, the system may fail during operation and cannot

be deployed in a high risk environment. Schedulability testing has typically been separated

from worst-case execution time (WCET) analysis. Each task’s WCET value is calculated

independently and provided as input to a schedulability test. However, a task’s WCET value

is influenced by scheduling decisions and the impact of cache memory. Thus, schedulability

tests have been augmented to include cache-related preemption delay (CRPD). From this

classical perspective, the effect of cache memory on WCET and schedulability is always

negative; increasing execution times and demand. In this work we propose a new positive

perspective, where cache memory benefits multi-threaded tasks by scheduling threads in

a manner that shares values predictably.

This positive perspective is reached by integrating, rather than separating the disci-

plines of schedulability analysis and worst-case execution time. These integrated tech-

190

191

niques are referred to as the BUNDLE family of worst-case execution time and cache over-

head (WCETO) analysis and scheduling algorithm. WCETO calculation divides the task’s

structure into conflict free regions and calculates a bound utilizing explicit understanding

of the thread-level scheduling algorithm. Conflict free regions are utilized by the schedul-

ing algorithm, which associates with each region a thread container called a bundle. At any

time only one bundle may be active, and only threads of the active bundle may execute on

the processor.

The BUNDLE family of scheduling algorithms developed in this work increase in scope

from BUNDLE through ITCB-DAG. As the fundamental contribution, BUNDLE and BUNDLEP

apply to a single multi-threaded task running on a uniprocessor architecture with a single

level direct mapped instruction cache. NPM-BUNDLE expands the positive perspective to

multiple tasks on a uniprocessor system. With ITCB-DAG bringing BUNDLE’s analysis and

scheduling techniques to multi-processor systems.

Each of the scheduling algorithms require a novel hardware mechanism to anticipate

execution and make scheduling decisions. To support anticipation of execution, a novel

XFLICT interrupt is proposed. It is a simple mechanism that emulates the behavior of hard-

ware breakpoints. An implementation of the BUNDLEP analytical techniques, scheduling

algorithm, and XFLICT interrupt is available as a simulated platform for further research

and extension.

Future work is planned to expand BUNDLE’s positive perspective and increase adoption.

The most significant barrier to adoption is the ability to deploy BUNDLE’s scheduling algo-

rithm, this mandates a viable and available hardware or software mechanism to anticipate

execution. NPM-BUNDLE is limited to non-preemptive multi-task scheduling and analysis,

192

support for preemptive scheduling will increase the positive impact of BUNDLE’s integrated

perspective.

AUTOBIOGRAPHICAL STATEMENT

Corey Tessler has a successful professional career behind him as he looks forward to

an academic future. He earned a Bachelor’s of Computer Science from Eastern Michigan

University in 2004. During his undergraduate education he began working in the field of

networking at UUNet as a trouble shooting software engineer and then Next Hop Tech-

nologies as an author and maintainer of internet routing protocol software.

His professional career continued at Arbor Networks developing distributed denial of

service mitigation software and at Green Hills Software where he acted as a routing soft-

ware developer, sales support engineer, and project manager. Concurrently, he earned a

Master’s of Computer Science from Eastern Michigan University in late 2011.

Joining Wayne State University in 2013 as a Ph.D. student, Tessler focused his inter-

est in hard real-time systems under the supervision of Professor Nathan Fisher. Together

they developed the BUNDLE analysis and scheduling algorithm, publishing several works

in well respected conferences for real-time systems. In his final semester, Tessler began as

a lecturer at Wayne State University marking his transition from a professional to an aca-

demic career. He is actively seeking a tenure-track professorship at a research university.

193

	Bundle: Taming The Cache And Improving Schedulability Of Multi-Threaded Hard Real-Time Systems
	Recommended Citation

	List of Tables
	List of Figures
	Introduction
	Thesis
	Contributions

	Model and Notation
	Models and Perspectives
	Sporadic Task Model
	Architecture Model
	Objects, Tasks, Threads, Ribbons, Entry Points
	Control Flow Graphs
	Notation Summary

	Inter-Thread Cache Benefit
	Defining the Inter-Thread Cache Benefit
	Comparison of Perspectives
	WCET
	CRPD

	Related Work
	Worst-Case Execution Time and Cache Memory
	Cache Related Preemption Delay
	Cache Analysis in Multi-Threaded Programs
	Predictable Cache Behavior
	Positive Perspectives on Caches

	Single-Task BUNDLE
	BUNDLE Scheduling
	Conflict Free Regions and Conflict Free Region Graphs
	Extracting Conflict Free Regions
	Worst Case Execution Time with Cache Overhead (WCETO)
	Structures
	Structure WCETO Calculation

	Evaluation of BUNDLE
	WCET vs WCETO Analysis
	BUNDLE Run-Time Performance

	Summary

	Single-Task BUNDLEP
	BUNDLE Sub-Optimal Cache Sharing
	BUNDLEP Overview
	Conflict Free Region Extraction and Conflict Free Region Graph Creation
	Expanded Control Flow Graphs
	Conflict Free Region Graph Creation
	Assignment
	Linking

	BUNDLEP
	Hardware Support
	BUNDLEP's Scheduling Algorithm
	Priority Assignment

	BUNDLEP WCETO Calculation
	BUNDLEP Evaluation
	Context Switch Costs

	Summary
	Ancillary Preamble
	Ancillary: ILP Transformation and Example
	Ancillary: WCETO Example

	Non-Preemptive Multitask BUNDLE
	NPM-BUNDLE Model and Notation
	Dividing and Task Parts
	Worst-Case Execution Time Function Growth

	Non-Preemptive EDF Schedulability
	Non-Preemptive Chunks
	Improving the Non-Preemptive Chunk Size
	Threads per Job (tpj) Scheduling Algorithm
	Non-Preemptive Feasibility of tpj and divide

	Evaluation
	Generating Task Sets
	Case Study
	Evaluation Metrics
	Results

	Summary

	Multi-Processor Multi-Task BUNDLE
	Background and Related Work
	Federated Scheduling
	Proposed Model Changes
	Discrete Concave Functions and Growth Factors
	Related Work

	Collapsing Nodes
	Infeasibility and the Impact of Collapse
	Beneficial Collapse
	Optimal Collapse

	DAG-OT Schedulability
	Candidate Ordering
	Greatest Benefit
	Least Penalty

	Low Utilization Tasks
	Evaluation
	Evaluation Metrics
	Results

	Summary

	Future Work
	Scheduling Support
	Preemptive Multi-Task BUNDLEP
	From Switched to Unswitched CFRs

	Conclusion
	List of Publications
	REFERENCES
	Abstract
	Autobiographical Statement

