1,827 research outputs found

    Self-stabilizing cluster routing in Manet using link-cluster architecture

    Full text link
    We design a self-stabilizing cluster routing algorithm based on the link-cluster architecture of wireless ad hoc networks. The network is divided into clusters. Each cluster has a single special node, called a clusterhead that contains the routing information about inter and intra-cluster communication. A cluster is comprised of all nodes that choose the corresponding clusterhead as their leader. The algorithm consists of two main tasks. First, the set of special nodes (clusterheads) is elected such that it models the link-cluster architecture: any node belongs to a single cluster, it is within two hops of the clusterhead, it knows the direct neighbor on the shortest path towards the clusterhead, and there exist no two adjacent clusterheads. Second, the routing tables are maintained by the clusterheads to store information about nodes both within and outside the cluster. There are two advantages of maintaining routing tables only in the clusterheads. First, as no two neighboring nodes are clusterheads (as per the link-cluster architecture), there is no need to check the consistency of the routing tables. Second, since all other nodes have significantly less work (they only forward messages), they use much less power than the clusterheads. Therefore, if a clusterhead runs out of power, a neighboring node (that is not a clusterhead) can accept the role of a clusterhead. (Abstract shortened by UMI.)

    Synchronization of multihop wireless sensor networks at the application layer

    Get PDF
    Time synchronization is a key issue in wireless sensor networks; timestamping collected data, tasks scheduling, and efficient communications are just some applications. From all the existing techniques to achieve synchronization, those based on precisely time-stamping sync messages are the most accurate. However, working with standard protocols such as Bluetooth or ZigBee usually prevents the user from accessing lower layers and consequently reduces accuracy. A receiver-to-receiver schema improves timestamping performance because it eliminates the largest non-deterministic error at the sender’s side: the medium access time. Nevertheless, utilization of existing methods in multihop networks is not feasible since the amount of extra traffic required is excessive. In this article, we present a method that allows accurate synchronization of large multihop networks, working at the application layer while keeping the message exchange to a minimum. Through an extensive experimental study, we evaluate the protocol’s performance and discuss the factors that influence synchronization accuracy the most.Ministerio de Ciencia y Tecnología TIN2006-15617-C0

    A fast and reliable broadcast service for LTE-advanced exploiting multihop device-to-device transmissions

    Get PDF
    Several applications, from the Internet of Things for smart cities to those for vehicular networks, need fast and reliable proximity-based broadcast communications, i.e., the ability to reach all peers in a geographical neighborhood around the originator of a message, as well as ubiquitous connectivity. In this paper, we point out the inherent limitations of the LTE (Long-Term Evolution) cellular network, which make it difficult, if possible at all, to engineer such a service using traditional infrastructure-based communications. We argue, instead, that network-controlled device-to-device (D2D) communications, relayed in a multihop fashion, can efficiently support this service. To substantiate the above claim, we design a proximity-based broadcast service which exploits multihop D2D. We discuss the relevant issues both at the UE (User Equipment), which has to run applications, and within the network (i.e., at the eNodeBs), where suitable resource allocation schemes have to be enforced. We evaluate the performance of a multihop D2D broadcasting using system-level simulations, and demonstrate that it is fast, reliable and economical from a resource consumption standpoint

    Is Topology-Transparent Scheduling Really Inefficient in Static Multihop Networks?

    Get PDF
    published_or_final_versio

    Multihop clustering algorithm for load balancing in wireless sensor networks

    Get PDF
    The paper presents a new cluster based routing algorithm that exploits the redundancy properties of the sensor networks in order to address the traditional problem of load balancing and energy efficiency in the WSNs.The algorithm makes use of the nodes in a sensor network of which area coverage is covered by the neighbours of the nodes and mark them as temporary cluster heads. The algorithm then forms two layers of multi hop communication. The bottom layer which involves intra cluster communication and the top layer which involves inter cluster communication involving the temporary cluster heads. Performance studies indicate that the proposed algorithm solves effectively the problem of load balancing and is also more efficient in terms of energy consumption from Leach and the enhanced version of Leach
    corecore