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INTRODUCTION
Time synchronization entails an important func-
tion in wireless sensor networks (WSNs), and
this function can be performed at different lay-
ers depending on the objective of synchroniza-
tion. For instance, sharp timing is fundamental
at low layers as it helps increase data rates (short
bit times), and enhance noise immunity (fre-
quency hopping) and time-division multiple
access (TDMA)-based scheduling. Furthermore,
since radio is usually the most energy-consuming
part of a node, keeping the nodes awake the
minimum required time to exchange data is a
common practice that requires synchronization.

Synchronization is also of great interest at
higher layers. Akyildiz et al. identify in the appli-
cation layer the sensor management protocol,
which includes (among other administrative

tasks) time synchronization [1]. From a practical
point of view, WSNs are networks composed of
a large number of small devices that take mea-
surements, process them, and communicate with
other devices coordinating their operations. This
collaboration enables a complex sensing task,
named data fusion [2]. Data fusion requires syn-
chronization for two tasks: time scheduling and
timestamping. The first is needed when the
nodes coordinate to perform cooperative com-
munications. The second is commonly used
when data is fused taking into account the col-
lecting instant; for example, to perform event
detection, tracking, reconstruction of a system’s
state for control algorithms, and offline analysis.

In this article we describe in detail and evalu-
ate the use in WSNs of the Multihop Broadcast
Synchronization (MBS) protocol. An early ver-
sion of this scheme was first introduced by us in
[3]. The proposed protocol is very well suited for
WSNs and fills an existing gap when synchroniz-
ing WSNs with a global network time. As seen in
the following sections, MBS helps to achieve
high accuracy and energy efficiency when time-
stamping at lower layers is not possible in multi-
hop networks.

RELATED WORK

Creating a common temporal reference using
the nodes communication capabilities has been
widely studied [2]. According to the strategy, we
could distinguish between a posteriori and a pri-
ori synchronization [4]. A posteriori methods
keep devices’ clocks running free, gathering
information between relative clocks and rear-
ranging timestamps once the measurement pro-
cesses are finished. These methods are usually
the most energy-efficient because they optimize
the number of messages exchanged, but they do
not offer real-time capabilities. On the other
hand, a priori methods overcome this by syn-
chronizing all the nodes with a common time
reference (global network time [GNT]) using
regular clock corrections. A common drawback
of these techniques is overload of the network
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due to the messages required to estimate the
communication delays.

Another key issue is whether there is a sender
transmitting the current clock values as time-
stamps (sender-to-receiver) or not (receiver-to-
receiver). According to the time analysis
performed by Maróti et al., the most significant
delays when transmitting messages over a wire-
less link are those from the send, receive, and
access processes [5]. The problem with sender-
to-receiver methods is the uncertainty time
introduced by the send and access processes. As
a receiver-to-receiver method, the Reference
Broadcast Synchronization (RBS) protocol pro-
poses the use of reference broadcast messages to
establish a common time reference and get rid
of the transmitter-side non-deterministic error
sources (it is assumed that all devices listening to
the broadcast get the message at the same time).
This eliminates the time uncertainty introduced
by the send and access processes, and sets a tem-
poral reference shared by all the nodes [4].

The biggest drawback of receiver-to-receiver
synchronization methods is how to propagate the
local timestamps of the broadcast-receivers to
set a GNT. Elson and Estrin propose a post
facto synchronization method, that is, a method
that performs synchronization only when it is
needed [6]. The scattering method they propose
does not give a common time reference to the
broadcast sender; it only synchronizes receivers.
However, various authors point out the need of
setting a network time to propagate the synchro-
nism over a multihop network using broadcasts
[4, 7]. Thus, nodes in the broadcast domain need
to share timing information among them to
determine the GNT.

On the other hand, Timing-sync Protocol for
Sensor Networks (TPSN) is a sender-to-receiver
protocol that achieves real time with high accu-
racy optimizing message exchange. It avoids the
indeterminism working at the medium access
control (MAC) layer to precisely timestamp
messages at the exact moment they are sent [8].
The Flooding Time Synchronization Protocol
(FTSP) also uses MAC layer timestamping at
both the sender and receiver sides. The protocol
proposes a multihop propagation scheme that
does not need any initial configuration to propa-
gate synchronization info. This ad hoc structure
also enables dynamically overcoming node and
link failures in the network [5].

However, these sender-to-receiver synchro-
nization schemes require accessing the lower lay-
ers, which is not always possible when using
standard or complex protocols. Current WSN
applications are developed using a wide variety
of hardware, software, and communication pro-
tocols. Some of them are proprietary; others use
common development platforms that have
become de facto standards (Motes, i-beans); and
others implement the two current standards suit-
able to be used in WSNs: ZigBee and Bluetooth.
In all these cases accessing the lower layers is
not possible, and this prevent us from using
sender-to-receiver synchronization.

The Multihop Broadcast Synchronization
protocol is a receiver-to-receiver synchronization
scheme that nonetheless obtains a GNT working
at the application layer. MBS is suitable for

large multihop networks, keeping the number of
messages in the same order of magnitude when
compared to the sender-to-receiver methods.

MULTIHOP BROADCAST SYNCHRONIZATION
PROTOCOL

Many of the functions performed by sensor
nodes require a precise time measurement (e.g.,
bit time calculation in communications). The
devices commonly used to provide an accurate
time base are oscillators. Although these clocks
ideally provide a heartbeat at a constant rate, all
of them present a frequency tolerance (whose
limits are provided by its manufacturers) that is
also slightly affected by the operation tempera-
ture and aging. Thus, two clocks, even manufac-
tured in the same process, will not have a priori
the same frequency.

This way, nodes in a WSN measure time with
oscillators at slightly different rates. This diver-
gence, called clock skew, can go up to 150 parts
per million (PPM) (i.e., each second the nodes
will commit an error than can go to 150 μs).
Apart from the clock skew, there is an offset
among clocks because each node starts at a dif-
ferent instant. Given a node i, with clock skew si
and offset ki, its clock reading ti can be written as

ti = sit + ki, i = 1…n. (1)

Thus, synchronizing the clock of node i
implies estimating and compensating clock skew
and offset (si, ki). The most used procedure to
perform this adjustments is broadly described in
the literature [2, 4, 5, 9]. There is a reference
clock tr to which all the nodes are synchronized.
A sync-point k is defined as a pair of timestamps
collected at the same time tk in the reference
node and in the nodes that want to be synchro-
nized: {ti

k, tr
k}. Once each node stores several

sync-points at different instants, the offset and
skew (ki*, si*) differences with the reference can
be calculated using linear regression:

(2)

where the bar indicates average. This way, every
node can estimate the global time (tr*) from its
local clock:

(3)

Once a node is synchronized, it can propa-
gate the estimated tr* to others, creating new
sync-points that spread the GNT in multihop
networks [5].

Strictly speaking, it is not possible to obtain a
sync-point at the same instant in two nodes not
physically linked; there will be unknown delays
in the synchronization message exchange. While
deterministic uncertainties in wireless links
slightly affect the synchronization accuracy, non-
deterministic ones drastically reduce it [1, 4, 5,

t
t k

s
r

i i

i

*
*

*
.=

−

s
t t t t

t t

k t

i
r
k

r i
k

ik

r
k

rk

i i

*

*

=
−( ) −( )

−( )
=

∑

∑
2

        −− s ti r
* ,

Although these
clocks ideally provide

a heartbeat at a 
constant rate, all of

them present a 
frequency tolerance
that is also slightly

affected by the oper-
ation temperature

and aging. Thus, two
clocks, even manu-

factured in the same
process, will not
have a priori the
same frequency.

MARCO LAYOUT  2/7/11  10:48 AM  Page 83



8]. TPSN and FTSP eliminate the biggest uncer-
tainties (send, receive, and access time) by time-
stamping at the MAC layer the send and receive
instant of a message. This way, to obtain the
required sync-points accurately, only one mes-
sage is necessary.

When access to the low layers is not possible,
reference broadcast messages eliminate the
uncertainty at the sender side. Unfortunately,
although the reception instant of a broadcast
message is tight, this procedure does not provide
the required sync-points directly because the
sender is not synchronized [4, 10]. To the best of
our knowledge, existing methods require addi-
tional message exchange between every receiver
node to set the GNT. This makes multihop prop-
agation very inefficient [4, 7].

Our MBS protocol obtains sync-points using
reference broadcasts with considerably less mes-
sage overhead than other methods that also use
reference broadcasts, and manages to synchro-
nize all the nodes (even the broadcast sender) as
well, making multihop propagation easy.

PROTOCOL DESCRIPTION
To illustrate how MBS works, we consider the
example network in Fig. 1. Nodes in MBS per-
form two different tasks. Propagators are those
that spread the GNT broadcasting synchroniza-
tion messages. Timestampers are nodes that can
notify the propagators about the timestamp
when the previous broadcast message arrives. In
Fig. 1, N3, N6, N9, and N11 are propagators.
N1, N7, and N10 are timestampers; the provided
timestamps are referred to the GNT, so they
have to be synchronized when notifying the cor-
responding propagator node. To overcome this
requirement when initiating the process, N1 will
be the node whose local clock will be the GNT
(i.e., N1 is the global time provider [GTP]).

The synchronization will be made in two hops,
the same number of hops FTSP would need. In
the first hop, N6 will synchronize the nodes in the
dashed ring to N1’s clock (using a technique simi-
lar to that of RBS). Then, N3 using N7 as times-
tamper, and N9 and N11 using N10, will
synchronize the nodes in the dotted rings and
propagate the GNT one hop away. N6 must also
be synchronized, and, as it is the only propagator
connected to the GNT, it will be synchronized in
the second hop by any of the other propagators.

This process will be done using two different
messages: SyncBC and TimeUC. The first type is
broadcast by propagators and is equivalent to
the reference broadcast in RBS: messages that
trigger timestamping of the receiving instant at
the sender side. It contains three fields: the
propagatorID identifying the sender, the sequen-
ceNumber of the message, and the timeStamp
when the previous SyncBC arrived. These mes-
sages are used to propagate the GNT the same
way as synchronization messages in FTSP [5].
TimeUC messages are unicast messages used by
timestampers to notify the propagators about the
time when the last SyncBC arrived. They have
the following fields: the timeStamperID identify-
ing the sender, and the corresponding propaga-
torID, sequenceNumber, and timeStamp about
which they are informing. Now we explain the
sequence to synchronize the network in Fig. 1.
We indicate the message sent specifying the
fields: SyncBC (propagatorID; sequenceNumber;
timeStamp) and timeUC (timeStamperID; propa-
gatorID; sequenceNumber; timeStamp). The first
hop would be as follows:
1. N6 initiates the synchronization process by

sending a SyncBC (N6; 0; void) message. The
nodes that receive the message (N1, N2, …)
timestamp the arrival of the SyncBC from
node 6 with sequence number 0; that is,
TSN1{N6, 0}, TSN2{N6, 0}, ….

2. N1 informs N6 about the timestamp when it
received the last SyncBC message: TimeUC
(N1; N6; 0; TSN1{N6, 0}).

3. N6 sends the timestamp of the previous
SyncBC message and sets a new reference
point for timestamping: SyncBC (N6; 1;
TSN1{N6, 0}). At this instant, all Ni neighbors
of N6 have their respective sync-points from
the first SyncBC: [TSNi{N6, 0}, TSN1{N6, 0}].
N1 does not need it because it rules the GNT.
From now on, steps 2 and 3 will be repeated,

causing all nodes in range of N6 to have a col-
lection of sync-points. Then, using linear regres-
sion, they get synchronized, calculating their
offset and skew differences to the reference
clock. In that first hop, all nodes within the
dashed ring will be synchronized to N1’s clock.

Note that N6 does not have the global time.
To fix this and to propagate the clock one hop
away, any other propagator, such as N3, initiates
the above described sequence. The subsequent
hops will be performed following the same pro-
cedure. Each propagator broadcasts SyncBC
messages including the timestamp of the previ-
ous SyncBC message. Timestampers notify the
propagators about the last timestamp. All nodes
in a range get a collection of sync-points that
allow them to synchronize to GNT.

Accuracy of the sync-points will be degraded
as nodes are farther away from the clock genera-
tor (N1), similar to sender-to-receiver methods.
When synchronizing the nodes situated within
the dotted rings, the timestampers used by the
propagators (N7 and N10) are one hop away
from the GNT (N1), which will increase the
error committed.

In case of near failure (i.e., low batteries),
propagators and timestampers can transfer their
responsibilities to neighboring nodes. In any
case, similar to the scheme proposed by Maróti

Figure 1. A grid network where propagator nodes send broadcast messages, and
time stamper nodes reply to them with the arrival time of the broadcast. All
the nodes also have direct communication links with their neighbors.
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et al., a network could be autonomous and self-
healing in terms of synchronization using node
identifiers to automatically assign roles [5].

PRACTICAL ISSUES
Earlier we described the MBS protocol without
taking into account practical issues like how to
initialize the algorithm, how to determine the
role to be performed by every node, and so on.
To understand the general case, let us first con-
sider several examples.

Let us assume that we have a node, N1, that
is already synchronized, and a couple of nodes,
N2 and N3, that are not yet synchronized. In
order to synchronize N2 and N3 with respect to
N1, an intermediate node, N4, that can send
broadcast messages to N1, N2, and N3 is need-
ed. Thus, N4 will act as a propagator node to its
neighbors, and N1 will act as the timestamper
for N4. Thus, the general rule is that all the
neighbors of the neighbors of N1 can be synchro-
nized with respect to N1 provided that these
nodes have a one-hop estimation of the time of
N1. In the same manner, N1 will have a one-hop
estimation of the time in the node with respect
to which it is synchronized, which in turn will
have a one-hop estimation, and so on until the
GTP is reached. The number of hops needed to
reach the GTP can be used to define the quality
of a node synchronization, which we call HopId.

Now consider a node N1 that is not synchro-
nized. In order to become synchronized, a nearby —
synchronized — node must assume the role of
timestamper. Analogous to the previous case, all the
neighbors of the neighbors of N1, which are already
synchronized, can behave as timestampers. There-
fore, the one with the best GNT estimation (i.e., the
lowest HopId) must be chosen as timestamper. If
more than one node have the lowest HopId, the
one that has more synchronizable nodes will be cho-
sen, and the node that is neighbor of both the times-
tamper and N1 will act as the propagator.

In order to improve performance, if a node
listens to more than one propagator, it must only
use sync messages from the propagator whose
timestamper has lower HopId. Also, if a node is
acting as timestamper for a propagator, it cannot
use incoming SyncBC messages from this propa-
gator to synchronize itself.

Now, the mechanism should be clear. First,
all nodes but the GTP (with HopId equal to 0)
are not synchronized. Nodes close to the GTP
will be synchronized with respect to the GTP,
and they will be assigned a HopId equal to 1.
Synchronization will spread across the entire
network following the rules discussed above.

Still, several criteria are possible to set the
GTP, such as minimizing the total synchronization
error expressed as the sum of the HopId of every
node, maximizing the number of nodes with lower
HopId, or setting an upper bound for the HopId.

MBS PROTOCOL EVALUATION AND
COMPARISON

We have evaluated the MBS protocol in two dif-
ferent architectures. Both are used to build mul-
tihop WSNs following two standard protocols:
ZigBee and Bluetooth. In the case of ZigBee,

we use a common platform: an Atmel microcon-
troller (ATMega128) with the Chipcon’s CC2420
transceiver [9]. Developing the entire stack to
make the network ZigBee-compliant requires a
lot of work, thus we used the EmberZNet
embedded software. This way, we built a multi-
hop, auto-routing and self-healing ZigBee net-
work working at the application layer.

For the Bluetooth architecture, a Microchip
PIC16F876 microcontroller manages a Mitsumi
Bluetooth module (WML-C20) through HCI,
the standard Bluetooth Host Controller Inter-
face. This design enables us to access low-power
modes and implement tree topology networks
using scatternets.

To evaluate MBS’s performance, we connect
every node to a wired bus, where one of them
periodically generates a pulse. All the nodes,
which are synchronized with MBS, timestamp
the receiving instant with their GNT estimation
and send back the data to the PC, where the
timestamp differences with respect to the GTP
are considered to obtain the synchronization
error.

SINGLE-HOP SYNCHRONIZATION
When synchronizing wireless nodes, all methods
use one of the following strategies: to timestamp
at the sender and receiver side, or use reference
broadcasts, timestamping only at the arriving
side. In Table 1 we compare the alignment errors
of some synchronization schemes presented in
the references.

The timing accuracy among nodes depends
mainly on the hardware and firmware architec-
ture: how the sending and arriving moments are
detected, and which times (propagation, access,
etc.) are affected and their uncertainty. Errors
shown in Table 1 determine the accuracy of each
sync-point that will be used to perform the linear
regression in Eq. 2. Of course, the fewer the
errors, the more accurate the synchronization.
Other factors that also affect the estimation are
the following:
• The distribution of the errors (uniform, Gaus-

sian, etc.) will determine how the linear
regression eliminates them and the quality of
the clock estimation. The time difference
between reception instants of broadcast mes-
sages follows a Gaussian distribution with the
architectures described before [3, 4].

• The local oscillator drift is influenced by the
initial accuracy (difference between the oscil-
lator output frequency and the specified fre-
quency at 25°C at the time of shipment by the
manufacturer), temperature stability, and
aging. Its behavior can also condition the pre-
cision and the timing lifetime.

• Finally, the frequency and number of sync-
points used in the estimation will determine
the expected accuracy.
As stated by van Greunen and Rabaey, not

all sensor networks applications have the same
sync needs in terms of accuracy [11]. In order to
provide the reader with some guidelines that
could help in deciding on the best suited hard-
ware (transceivers, crystals, etc.) and firmware
(sync-message rate, number of data points to
perform regression) in each application, we have
characterized synchronization behavior in several
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scenarios. We compared the two architectures
described above, Bluetooth and ZigBee, each
with different alignment errors, as shown in
Table 1. Both alternatives have been tested with
two local oscillators with different frequency sta-
bilities of 40 PPM and 150 PPM. We have also
changed the synchronization rates (30 s and 300
s) and number of sync-points used in the regres-
sion (3, 6, 8, 12, 20, and 50). In Table 2 we show
the average and maximum synchronization error
with 95 percent probability for both scenarios.

The first interesting result is that synchroniza-

tion precision depends mainly on the number
and accuracy of the sync-points used to estimate
parameters by regression. Thus, if we have very
low computation resources or need low-accuracy
timing we can use a few sync-points (i.e., a
lightweight method) [11]. In contrast, if the high-
est accuracy is needed, we need powerful hard-
ware to use the maximum number of points in
the regression.

Contrary to what people might expect and
agreeing with what Maróti et al. have found out,
synchronization rate and oscillator accuracy bare-
ly affect precision [5]. This makes sense if we con-
sider the local clock stable in the short to medium
term, something that fortunately is so in most
cases. Aging has a negligible effect on stability:
one to three PPM each year. Temperature influ-
ences clock drift more severely: tens of PPMs in
the operating temperature range. In worst cases,
this translates into an error of 1 μs/°C.

The reduced influence of synchronization
rate can be used in many ways. By increasing it,
we can reduce the initial settling time in multi-
hop networks, quickly synchronize a new node,
or maintain accuracy in sudden temperature
variations. Lowering the rate will be useful to
minimize extra traffic and reduce power con-
sumption. Despite the results shown in Table 2,
the synchronization interval cannot be as long as
we want. Linear regression estimates the skew
and offset of the local clock referred to the
GNT, and there will always be errors.

According to Eq. 1, the more time from the
last resynchronization, the larger the error of

Table 1. Comparison of alignment error in synchronization methods.

Average error (μs) Worst case error (μs)

Sender — Receiver synchronization

ZigBee (Motes 2.4 GHz) [9] 14.9 61.0

TPSN (Motes 916 MHz) [8] 16.9 44.0

FTSP (Motes 433 MHz) [5] 1.4 4.2

Receiver — Receiver synchronization

RBS (Motes) [4] 21.9 93.0

MBS (Bluetooth) 4.5 18.0

MBS (ZigBee) 22.2 52.0

Table 2. Synchronization error in the MBS method with one hop (in μs).

ZigBee
40 PPM

ZigBee
150 PPM

Bluetooth
40 PPM

Bluetooth
150 PPM

Avg. Max.a Avg. Max.a Avg. Max.a Avg. Max.a

N = 3 tSync = 30 s 39.26 105.20 39.45 106.42 7.67 20.92 8.10 21.70

tSync = 300 s 39.99 108.09 39.59 109.05 8.00 21.61 7.73 20.88

N = 6 tSync = 30 s 21.12 52.65 22.06 55.23 4.17 10.30 4.34 10.77

tSync = 300 s 21.90 53.52 21.29 52.07 4.41 10.99 4.36 10.93

N = 9 tSync = 30 s 17.27 40.95 16.58 40.66 3.30 8.19 3.30 8.25

tSync = 300 s 16.10 39.38 15.72 38.90 3.28 8.22 3.36 8.39

N = 12 tSync = 30 s 13.33 32.83 14.39 35.13 2.82 6.84 2.79 6.89

tSync = 300 s 13.99 34.52 13.77 34.87 2.73 6.62 2.68 6.63

N = 20 tSync = 30 s 11.29 27.20 9.83 24.23 1.96 4.71 2.13 5.14

tSync = 300 s 10.61 26.13 10.46 25.51 2.19 5.29 2.13 5.30

N = 50 tSync = 30 s 7.03 17.46 6.77 15.58 1.23 2.93 1.27 3.10

tSync = 300 s 6.22 14.80 7.54 18.43 1.30 3.27 1.32 3.21

N is the number of sync-points used to perform regression, and tSync is the synchronization interval.
a Maximum synchronization error with 95% probability.
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this estimation. Figure 2 shows the synchroniza-
tion error between two Bluetooth nodes and the
reference node. Here we used sync messages
every 30 s, and after 500 messages (about 4 h)
the synchronization process was stopped. We
can see how after the stopping instant, the syn-
chronization error of each node grows depend-
ing on the last estimation of the skew and offset.
Additional results may be found in [3].

MULTIHOP GNT PROPAGATION
Cumulative errors when propagating the net-
work time only depend on the estimation’s accu-
racy of the corresponding timestamper’s clock.
When the timestamper is the one setting the ref-
erence, the precision will be as described earlier.
Differences arise when it owns an n-hop estima-
tion of the network clock.

We have evaluated the behavior of MBS in
two different scenarios. With the same philoso-
phy of the single-hop case, we have tested its
performance with different numbers of sync-
points. The first scenario is a four-hop Bluetooth
scatternet. Bluetooth networks are made up of
piconets, i.e., star networks with one master and
up to seven slaves, where only the master can
send broadcast messages. Piconets form scatter-
nets using nodes playing both master and slave
roles. Time-stampers are nodes that must be
slaves in two different piconets.

In the case of ZigBee, we implemented a
mesh network similar to that of Fig. 1 but having
four-hop depth. Synchronization errors for the
Bluetooth and ZigBee networks are shown in
Figs. 3 and 4, respectively.

As in the case of one hop, synchronization
error depends chiefly on the number of points
used to perform regression and the alignment
error in the establishment of sync-points. We
can see how as the number of hops increases,
synchronization error becomes sensitive to the
number of sync-points used. Again, if the appli-
cation needs higher synchronization accuracy
than the alignment error between nodes, it is
possible to reduce error by increasing the num-
ber of sync-points to perform regression.

We find no point in comparing precision
among methods because it mainly depends on
the accuracy estimating sync-points and the
number of pairs used. That is to say, architecture
(communication transceiver, protocol, memory
available, etc.) will be much more relevant than
the synchronization protocol used. On the other
hand, the amount of messages needed will have
a big influence on the applicability of the
method. This is just one of the strongest points
of MBS; it drastically reduces the number of
messages compared to other receiver-to-receiver
protocols [4, 7]. Indeed, it is on the same order
of magnitude as FTSP (the most efficient sender-
to-receiver method) [5].

CONCLUSIONS

Local clocks of nodes in wireless sensor net-
works have different offset and accuracy. Syn-
chronization is mainly achieved by collecting
sync-points (pairs of timestamps collected at the
same time in the reference node and in the node
that wants to be synchronized) and performing

linear regression to compensate for differences
among nodes’ clocks.

Medium access time is a non-deterministic
error that hinders accurate timestamping of
transmission instants when working at the high-
est layers of protocol stacks. In these cases, sev-
eral techniques based on a receiver-to-receiver
scheme have to be used. Nevertheless, these
methods set a network time shared by all the
nodes (including the broadcast senders) at the
expense of a high network load. This drawback
may be inadmissible for large networks. In this
article we have presented MBS, a multihop
broadcast synchronization protocol that is able
to efficiently set a common global time. The key
issue of the technique is that each reference
broadcast informs about the timestamp of the
previous one. This way, message exchanging is
minimized, similar to other sender-to-receiver
methods.

We have implemented the MBS protocol in
two different architectures (Bluetooth and Zig-

Figure 2. Illustration of synchronization error vs. time with sync messages every
30 s and 20 pairs used to perform regression. Synchronization process stops
after 500 sync messages.
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Figure 3. Average synchronization error for Bluetooth network with 4 hops and
sync messages every 30 s; here N is the number of points used to perform
regression, and the dashed bars represent maximum error with 95 percent
probability.
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Bee), evaluating its performance. Through
exhaustive experimentation we have identified
the factors that influence synchronization accu-
racy the most. We have analyzed hardware
(transceivers, crystals) and firmware (sync-mes-
sage rate, number of data points to perform
regression) issues to provide the application
designer with guidelines that could help in decid-
ing on the best suited technology for each appli-
cation, and we have characterized
synchronization behavior in several scenarios.

These results allow the application designer
to decide on the hardware architecture and pro-
tocol scheme best suited to achieve the required
synchronization accuracy.
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Figure 4. Average synchronization error for Zigbee network with 4 hops and
sync messages every 30 s; here N is the number of points used to perform
regression, and the dashed bars represent maximum error with 95 percent
probability.
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