14,106 research outputs found

    Dynamic voltage scaling algorithms for soft and hard real-time system

    Get PDF
    Dynamic Voltage Scaling (DVS) has not been investigated completely for further minimizing the energy consumption of microprocessor and prolonging the operational life of real-time systems. In this dissertation, the workload prediction based DVS and the offline convex optimization based DVS for soft and hard real-time systems are investigated, respectively. The proposed algorithms of soft and hard real-time systems are implemented on a small scaled wireless sensor network (WSN) and a simulation model, respectively

    Memory-Aware Scheduling for Fixed Priority Hard Real-Time Computing Systems

    Get PDF
    As a major component of a computing system, memory has been a key performance and power consumption bottleneck in computer system design. While processor speeds have been kept rising dramatically, the overall computing performance improvement of the entire system is limited by how fast the memory can feed instructions/data to processing units (i.e. so-called memory wall problem). The increasing transistor density and surging access demands from a rapidly growing number of processing cores also significantly elevated the power consumption of the memory system. In addition, the interference of memory access from different applications and processing cores significantly degrade the computation predictability, which is essential to ensure timing specifications in real-time system design. The recent IC technologies (such as 3D-IC technology) and emerging data-intensive real-time applications (such as Virtual Reality/Augmented Reality, Artificial Intelligence, Internet of Things) further amplify these challenges. We believe that it is not simply desirable but necessary to adopt a joint CPU/Memory resource management framework to deal with these grave challenges. In this dissertation, we focus on studying how to schedule fixed-priority hard real-time tasks with memory impacts taken into considerations. We target on the fixed-priority real-time scheduling scheme since this is one of the most commonly used strategies for practical real-time applications. Specifically, we first develop an approach that takes into consideration not only the execution time variations with cache allocations but also the task period relationship, showing a significant improvement in the feasibility of the system. We further study the problem of how to guarantee timing constraints for hard real-time systems under CPU and memory thermal constraints. We first study the problem under an architecture model with a single core and its main memory individually packaged. We develop a thermal model that can capture the thermal interaction between the processor and memory, and incorporate the periodic resource sever model into our scheduling framework to guarantee both the timing and thermal constraints. We further extend our research to the multi-core architectures with processing cores and memory devices integrated into a single 3D platform. To our best knowledge, this is the first research that can guarantee hard deadline constraints for real-time tasks under temperature constraints for both processing cores and memory devices. Extensive simulation results demonstrate that our proposed scheduling can improve significantly the feasibility of hard real-time systems under thermal constraints

    A Three Phase Scheduling for System Energy Minimization of Weakly Hard Real Time Systems

    Get PDF
    This paper aims to present a three phase scheduling algorithm that offers lesser energy consumption for weakly hard real time systems modeled with (1D55E;1D55E;1D55E;1D55E;, 1D55C;1D55C;1D55C;1D55C;) constraint. The weakly hard real time system consists of a DVS processor (frequency dependent) and peripheral devices (frequency independent) components. The energy minimization is done in three phase taking into account the preemption overhead. The first phase partitions the jobs into mandatory and optional while assigning processor speed ensuring the feasibility of the task set. The second phase proposes a greedy based preemption control technique which reduces the energy consumption due to preemption. While the third phase refines the feasible schedule received from the second phase by two methods, namely speed adjustment and delayed start. The proposed speed adjustment assigns optimal speed to each job whereas fragmented idle slots are accumulated to provide better opportunity to switch the component into sleep state by delayed start strategy as a result leads to energy saving. The simulation results and examples illustrate that our approach can effectively reduce the overall system energy consumption (especially for systems with higher utilizations) while guaranteeing the (1D55E;1D55E;1D55E;1D55E;, 1D55C;1D55C;1D55C;1D55C;) at the same time

    Software Fault Tolerance in Real-Time Systems: Identifying the Future Research Questions

    Get PDF
    Tolerating hardware faults in modern architectures is becoming a prominent problem due to the miniaturization of the hardware components, their increasing complexity, and the necessity to reduce the costs. Software-Implemented Hardware Fault Tolerance approaches have been developed to improve the system dependability to hardware faults without resorting to custom hardware solutions. However, these come at the expense of making the satisfaction of the timing constraints of the applications/activities harder from a scheduling standpoint. This paper surveys the current state of the art of fault tolerance approaches when used in the context real-time systems, identifying the main challenges and the cross-links between these two topics. We propose a joint scheduling-failure analysis model that highlights the formal interactions among software fault tolerance mechanisms and timing properties. This model allows us to present and discuss many open research questions with the final aim to spur the future research activities
    • …
    corecore