124 research outputs found

    A Load Balancing Algorithm for Resource Allocation in IEEE 802.15.4e Networks

    Full text link
    The recently created IETF 6TiSCH working group combines the high reliability and low-energy consumption of IEEE 802.15.4e Time Slotted Channel Hopping with IPv6 for industrial Internet of Things. We propose a distributed link scheduling algorithm, called Local Voting, for 6TiSCH networks that adapts the schedule to the network conditions. The algorithm tries to equalize the link load (defined as the ratio of the queue length over the number of allocated cells) through cell reallocation. Local Voting calculates the number of cells to be added or released by the 6TiSCH Operation Sublayer (6top). Compared to a representative algorithm from the literature, Local Voting provides simultaneously high reliability and low end-to-end latency while consuming significantly less energy. Its performance has been examined and compared to On-the-fly algorithm in 6TiSCH simulator by modeling an industrial environment with 50 sensors

    A Performance-to-Cost Analysis of IEEE 802.15.4 MAC With 802.15.4e MAC Modes

    Full text link
    [EN] The IEEE 802.15.4 standard is one of the widely adopted networking specification for Internet of Things (IoT). It defines several physical layer (PHY) options and medium access control (MAC) sub-layer protocols for interconnection of constrained wireless devices. These devices are usually battery-powered and need to support requirements like low-power consumption and low-data rates. The standard has been revised twice to incorporate new PHY layers and improvements learned from implementations. Research in this direction has been primarily centered around improving the energy consumption of devices. Recently, to meet specific Quality-of-Service (QoS) requirements of different industrial applications, the IEEE 802.15.4e amendment was released that focuses on improving reliability, robustness and latency. In this paper, we carry out a performance-to-cost analysis of Deterministic and Synchronous Multi-channel Extension (DSME) and Time-slotted Channel Hopping (TSCH) MAC modes of IEEE 802.15.4e with 802.15.4 MAC protocol to analyze the trade-off of choosing a particular MAC mode over others. The parameters considered for performance are throughput and latency, and the cost is quantified in terms of energy. A Markov model has been developed for TSCH MAC mode to compare its energy costs with 802.15.4 MAC. Finally, we present the applicability of different MAC modes to different application scenarios.This work was supported in part by the SERB, DST, Government of India under Grant ECRA/2016/001651.Choudhury, N.; Matam, R.; Mukherjee, M.; Lloret, J. (2020). A Performance-to-Cost Analysis of IEEE 802.15.4 MAC With 802.15.4e MAC Modes. IEEE Access. 8:41936-41950. https://doi.org/10.1109/ACCESS.2020.2976654S4193641950

    Scheduling transmissions with latency constraints in an IEEE 802.15.4e TSCH network

    Get PDF
    International audienceTime Slotted Channel Hopping (TSCH), specified in the IEEE 802.15.4e amendment, has been designed for industrial automation, process control and equipment monitoring. It uses a slotted medium access on several channels in parallel and supports multihop communications. In this paper, we study how applications with data delivery constraints can be supported by a TSCH network. We first propose a framework based on a multislotframe that allows the coexistence of Data Slotframes and Control Slotframes. We then determine a lower bound on the minimum number of slots required to perform data gathering, taking into account the number of channels, the number of interfaces of the sink, the number of packets generated by each sensor node as well as the number of children of the sink. These feasibility conditions are established for two cases: with spatial reuse and without. We propose a debt-based scheduler that for simple topologies, provides a schedule minimizing the slotframe size. Finally, we consider a network configuration representative of an industrial application and evaluate the performance of the TSCH network in terms of data delivery delay and queue size for each sensor node, using the NS-3 simulator. Simulation results confirm the theory

    Efficiency enhancement using optimized static scheduling technique in TSCH networks

    Get PDF
    In recent times, the reliable and real-time data transmission becomes a mandatory requirement for various industries and organizations due to the large utilization of Internet of Things (IoT) devices. However, the IoT devices need high reliability, precise data exchange and low power utilization which cannot be achieved by the conventional Medium Access Control (MAC) protocols due to link failures and high interferences in the network. Therefore, the Time-Slotted Channel Hopping (TSCH) networks can be used for link scheduling under the IEEE 802.15.4e standard. In this paper, we propose an Optimized Static Scheduling Technique (OSST) for the link scheduling in IEEE 802.15.4e based TSCH networks. In OSST the link schedule is optimized by considering the packet latency information during transmission by checking the status of the transmitted packets as well as keeping track of the lost data packets from source to destination nodes. We evaluate the proposed OSST model using 6TiSCH Simulator and compare the different performance metrics with Simple distributed TSCH Scheduling

    TSCH Multiflow Scheduling with QoS Guarantees: A Comparison of SDN with Common Schedulers

    Full text link
    [EN] Industrial Wireless Sensor Networks (IWSN) are becoming increasingly popular in production environments due to their ease of deployment, low cost and energy efficiency. However, the complexity and accuracy demanded by these environments requires that IWSN implement quality of service mechanisms that allow them to operate with high determinism. For this reason, the IEEE 802.15.4e standard incorporates the Time Slotted Channel Hopping (TSCH) protocol which reduces interference and increases the reliability of transmissions. This standard does not specify how time resources are allocated in TSCH scheduling, leading to multiple scheduling solutions. Schedulers can be classified as autonomous, distributed and centralised. The first two have prevailed over the centralised ones because they do not require high signalling, along with the advantages of ease of deployment and high performance. However, the increased QoS requirements and the diversity of traffic flows that circulate through the network in today's Industry 4.0 environment require strict, dynamic control to guarantee parameters such as delay, packet loss and deadline, independently for each flow. That cannot always be achieved with distributed or autonomous schedulers. For this reason, it is necessary to use centralised protocols with a disruptive approach, such as Software Defined Networks (SDN). In these, not only is the control of the MAC layer centralised, but all the decisions of the nodes that make up the network are configured by the controller based on a global vision of the topology and resources, which allows optimal decisions to be made. In this work, a comparative analysis is made through simulation and a testbed of the different schedulers to demonstrate the benefits of a fully centralized approach such as SDN. The results obtained show that with SDN it is possible to simplify the management of multiple flows, without the problems of centralised schedulers. SDN maintains the Packet Delivery Ratio (PDR) levels of other distributed solutions, but in addition, it achieves greater determinism with bounded end-to-end delays and Deadline Satisfaction Ratio (DSR) at the cost of increased power consumption.This work has been supported by DAIS (https://dais-project.eu/) which has received funding from the ECSEL Joint Undertaking (JU) under grant agreement No 101007273. The JU receives support from the European Union's Horizon 2020 research and innovation programme and Sweden, Spain, Portugal, Belgium, Germany, Slovenia, Czech Republic, Netherlands, Denmark, Norway and Turkey. It has also been funded by Generalitat Valenciana through the "Instituto Valenciano de Competitividad Empresarial-IVACE". Furthermore, has been supported by the MCyU (Spanish Ministry of Science and Universities) under the project ATLAS (PGC2018-094151-B-I00), which is partially funded by AEI, FEDER and EU.Orozco-Santos, F.; Sempere Paya, VM.; Silvestre-Blanes, J.; Albero Albero, T. (2022). TSCH Multiflow Scheduling with QoS Guarantees: A Comparison of SDN with Common Schedulers. Applied Sciences. 12(1):1-19. https://doi.org/10.3390/app1201011911912
    corecore