216 research outputs found

    A VORONOI-BASED DEPTH-ADJUSTMENT SCHEME FOR UNDERWATER WIRELESS SENSOR NETWORKS

    Full text link

    AoI-based Multicast Routing over Voronoi Overlays with Minimal Overhead

    Get PDF
    The increasing pervasive and ubiquitous presence of devices at the edge of the Internet is creating new scenarios for the emergence of novel services and applications. This is particularly true for location- and context-aware services. These services call for new decentralized, self-organizing communication schemes that are able to face issues related to demanding resource consumption constraints, while ensuring efficient locality-based information dissemination and querying. Voronoi-based communication techniques are among the most widely used solutions in this field. However, when used for forwarding messages inside closed areas of the network (called Areas of Interest, AoIs), these solutions generally require a significant overhead in terms of redundant and/or unnecessary communications. This fact negatively impacts both the devices' resource consumption levels, as well as the network bandwidth usage. In order to eliminate all unnecessary communications, in this paper we present the MABRAVO (Multicast Algorithm for Broadcast and Routing over AoIs in Voronoi Overlays) protocol suite. MABRAVO allows to forward information within an AoI in a Voronoi network using only local information, reaching all the devices in the area, and using the lowest possible number of messages, i.e., just one message for each node included in the AoI. The paper presents the mathematical and algorithmic descriptions of MABRAVO, as well as experimental findings of its performance, showing its ability to reduce communication costs to the strictly minimum required.Comment: Submitted to: IEEE Access; CodeOcean: DOI:10.24433/CO.1722184.v1; code: https://github.com/michelealbano/mabrav

    AUV Data Gathering in Underwater Wireless Sensor Networks

    Get PDF
    [[notice]]補正完畢[[conferencetype]]兩岸[[conferencedate]]20150712~20150714[[ispeerreviewed]]Y[[booktype]]電子版[[iscallforpapers]]Y[[conferencelocation]]安徽省滁州市[[countrycodes]]CH

    QoS-Aware Energy Management and Node Scheduling Schemes for Sensor Network-Based Surveillance Applications

    Full text link
    Recent advances in wireless technologies have led to an increased deployment of Wireless Sensor Networks (WSNs) for a plethora of diverse surveillance applications such as health, military, and environmental. However, sensor nodes in WSNs usually suffer from short device lifetime due to severe energy constraints and therefore, cannot guarantee to meet the Quality of Service (QoS) needs of various applications. This is proving to be a major hindrance to the widespread adoption of WSNs for such applications. Therefore, to extend the lifetime of WSNs, it is critical to optimize the energy usage in sensor nodes that are often deployed in remote and hostile terrains. To this effect, several energy management schemes have been proposed recently. Node scheduling is one such strategy that can prolong the lifetime of WSNs and also helps to balance the workload among the sensor nodes. In this article, we discuss on the energy management techniques of WSN with a particular emphasis on node scheduling and propose an energy management life-cycle model and an energy conservation pyramid to extend the network lifetime of WSNs. We have provided a detailed classification and evaluation of various node scheduling schemes in terms of their ability to fulfill essential QoS requirements, namely coverage, connectivity, fault tolerance, and security. We considered essential design issues such as network type, deployment pattern, sensing model in the classification process. Furthermore, we have discussed the operational characteristics of schemes with their related merits and demerits. We have compared the efficacy of a few well known graph-based scheduling schemes with suitable performance analysis graph. Finally, we study challenges in designing and implementing node scheduling schemes from a QoS perspective and outline open research problems

    Anomaly Detection in UASN Localization Based on Time Series Analysis and Fuzzy Logic

    Full text link
    [EN] Underwater acoustic sensor network (UASN) offers a promising solution for exploring underwater resources remotely. For getting a better understanding of sensed data, accurate localization is essential. As the UASN acoustic channel is open and the environment is hostile, the risk of malicious activities is very high, particularly in time-critical military applications. Since the location estimation with false data ends up in wrong positioning, it is necessary to identify and ignore such data to ensure data integrity. Therefore, in this paper, we propose a novel anomaly detection system for UASN localization. To minimize computational power and storage, we designed separate anomaly detection schemes for sensor nodes and anchor nodes. We propose an auto-regressive prediction-based scheme for detecting anomalies at sensor nodes. For anchor nodes, a fuzzy inference system is designed to identify the presence of anomalous behavior. The detection schemes are implemented at every node for enabling identification of multiple and duplicate anomalies at its origin. We simulated the network, modeled anomalies and analyzed the performance of detection schemes at anchor nodes and sensor nodes. The results indicate that anomaly detection systems offer an acceptable accuracy with high true positive rate and F-Score.Das, AP.; Thampi, SM.; Lloret, J. (2020). Anomaly Detection in UASN Localization Based on Time Series Analysis and Fuzzy Logic. Mobile Networks and Applications (Online). 25(1):55-67. https://doi.org/10.1007/s11036-018-1192-y556725

    The use of computational geometry techniques to resolve the issues of coverage and connectivity in wireless sensor networks

    Get PDF
    Wireless Sensor Networks (WSNs) enhance the ability to sense and control the physical environment in various applications. The functionality of WSNs depends on various aspects like the localization of nodes, the strategies of node deployment, and a lifetime of nodes and routing techniques, etc. Coverage is an essential part of WSNs wherein the targeted area is covered by at least one node. Computational Geometry (CG) -based techniques significantly improve the coverage and connectivity of WSNs. This paper is a step towards employing some of the popular techniques in WSNs in a productive manner. Furthermore, this paper attempts to survey the existing research conducted using Computational Geometry-based methods in WSNs. In order to address coverage and connectivity issues in WSNs, the use of the Voronoi Diagram, Delaunay Triangulation, Voronoi Tessellation, and the Convex Hull have played a prominent role. Finally, the paper concludes by discussing various research challenges and proposed solutions using Computational Geometry-based techniques.Web of Science2218art. no. 700

    Opportunistic Networks: Present Scenario- A Mirror Review

    Get PDF
    Opportunistic Network is form of Delay Tolerant Network (DTN) and regarded as extension to Mobile Ad Hoc Network. OPPNETS are designed to operate especially in those environments which are surrounded by various issues like- High Error Rate, Intermittent Connectivity, High Delay and no defined route between source to destination node. OPPNETS works on the principle of “Store-and-Forward” mechanism as intermediate nodes perform the task of routing from node to node. The intermediate nodes store the messages in their memory until the suitable node is not located in communication range to transfer the message to the destination. OPPNETs suffer from various issues like High Delay, Energy Efficiency of Nodes, Security, High Error Rate and High Latency. The aim of this research paper is to overview various routing protocols available till date for OPPNETs and classify the protocols in terms of their performance. The paper also gives quick review of various Mobility Models and Simulation tools available for OPPNETs simulation

    Reliable geocasting for random-access underwater acoustic sensor networks

    Get PDF
    a b s t r a c t Reliable data delivery for underwater acoustic sensor networks is a major concern in applications such as surveillance, data collection, navigation, and ocean monitoring. Geocasting is a crucial communication primitive needed to support these applications, which consists in transmitting one or multiple consecutive data packets -all carrying an atomic message -to nodes located in a certain geographic region. In this article, two versions of a distributed, reliable, and efficient underwater geocasting solution (based on different degrees of neighbor information) are proposed for underwater networks whose acoustic modems use random-access Medium Access Control (MAC) protocols. By jointly considering the position uncertainty of nodes as well as the MAC and routing functionalities, packet transmissions are prioritized and scheduled so to maximize link reliability while limiting the end-to-end geocasting delay. Moreover, a simple yet effective timer-based mechanism is designed to limit the number of transmissions by selecting only a subset of neighbors for packet forwarding. Performance is evaluated and compared via thorough simulations against existing geocasting solutions tuned for the underwater environment that were originally designed for terrestrial wireless networks
    corecore