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Abstract- Underwater wireless sensor network (UWSN) is a special kind of wireless sensor network 

which is composed of a large quantity number of wireless sensor nodes deployed in the water. While 

there are extensive studies on deploy-issue of terrestrial wireless sensor networks (WSN), UWSN has 

not been paid enough attention due to the challenges of UWSN, such as low available bandwidth, 

highly varying multipath, and large propagation delays. In this paper, we propose a depth-adjustment 

scheme to maximize the coverage in 3D space. After deploying nodes in the water surface, we use 

Voronoi diagram to compute redundant nodes whose disappearance will not decrease the coverage in 

2D space, and then we determine the depth that redundant nodes should be moved towards. After all 

the redundant nodes have moved to the lower layer, the algorithm continues to schedule redundant 

nodes of the lower layer until 3D space coverage is fulfilled. 

 

Index terms: UWSN, Voronoi, 3D space, Sensor Deploying. 
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I. INTRODUCTION 

 

Recently, UWSN has received considerable attention. These kind of sensing networks consist of 

a large number of underwater sensing nodes which can communicate with each other using 

acoustic signals or radio, and limited number of surface sinks which will collect data from 

underwater nodes. Different from terrestrial WSN sensor deploying problems, sensor deploying 

of UWSN has 3D requirement characteristics which introduce new challenges in terms with 

coverage, connectivity and mobility [1]. Coverage guarantees every spot of the region can be 

monitored in the UWSN, and connectivity guarantees the data can be transmitted so that nodes 

can relay their monitored data to on-shore station. Ref. [2] has investigated the problem of 

achieving maximal 3D coverage with the least number of sensors, and suggested the sensor 

deployment pattern that creates the Voronoi tessellation of truncated octahedral cells in 3D space. 

While a lot of research has been done for node deployment and self-organization in terrestrial 

WSN [3], there is still much to do for node deployment in UWSN [4].     

Depth-adjustment system effectively resolves the problem of human intervention in node 

deploying [5][6][7]. However, factually the underwater environment is unknown or dangerous 

such as disaster area, toxic region or deep sea. In addition, most of the node deployment scheme 

requires a large number of underwater sensor nodes be placed in the pre-determined location, so 

human intervention brings about unnecessary spending-time and additional cost. With the 

advantage of depth-adjustment, coverage of the network in underwater circumstance will be 

enhanced autonomous [8]. But deploying a mass of nodes in order to achieve high coverage of 

given region without human intervention would make nodes gather in a high level density which 

would arouse problems such as coverage overlaps, redundant nodes, communication interference 

and energy waste. Thus, a purely random deployment sensing network without human 

intervention is not practical. Currently, Voronoi diagram is frequently used in WSN coverage 

optimization [9][10][11]. Ref. [11] introduced an approach of scheduling nodes based on the 

threshold value of Voronoi polygon area which every node is responsible for. In our proposed 

scheme, we use a similar idea to Ref. [11]. However, we do not set up a given area value as 

threshold. 

Jiagao Wu, Yinan Wang, Linfeng Liu, A Voronoi-Based Depth-Adjustment Scheme 
For Underwater Wireless Sensor Networks

245



In this paper, we propose a mechanism to maximize the coverage of the total monitored region 

with limited number of sensor nodes. We use Voronoi diagram to determine which sensor nodes 

in the same depth of the water are redundant node. To achieve maximum coverage of the 3D 

monitored region, we let redundant nodes sink to a certain depth, and then continue to use 

Voronoi diagram to determine the new group of redundant nodes in the new layer of the nodes. 

Algorithm will be stop until there is no room for nodes to be decent. 

The organization of the paper is as follows. After a general introduction of the depth-adjustment 

scheme for UWSN, the description of our system model and assumption is presented to the 

section II. The scheme of depth-adjustment for underwater 3D space has been proposed in section 

III. In section IV, performance of our scheme is evaluated. The paper has been concluded in 

section V. 

 

II. SYSTEM ILLUSTRATION AND DEFINITIONS 

 

a.  Problem Definitions  

 

We propose the scheme attempt to maximize the total coverage of 3D underwater space while 

striving to minimize the total number of sensor nodes. Computational geometry is frequently 

used in WSN coverage optimization, the most commonly used approach are Voronoi diagram. In 

our proposed scheme, we also use Voronoi diagram. To determines if a node should adjust its 

depth, we employ the average area of all the Voronoi polygons that nodes in the same depth of 

the water are responsible for as the threshold. If the area of a Voronoi polygon is smaller than the 

average area of the total Voronoi polygons of the same depth, the node responsible for the 

Voronoi polygon should be list into the scheduling list. 

 

b.  System Model and Assumption 

 

Our proposed architecture is depicted as Figure 1. Initially, sensor nodes are random uniformly 

spread on the surface of the ocean.  In addition, a sink station should be deployed in the center of 

the surface as a management node of all sensor nodes. Then, The sink construct Voronoi 

polygons of sensor nodes based on received their location information. After computing the 
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average area of Voronoi polygons, our algorithm compares each Voronoi polygons and lists the 

nodes whose responsible Voronoi polygon has a smaller area than the average value into the 

scheduling list. Our algorithm runs iteratively until sensor nodes reach the bottom of the ocean. 

To achieve coverage in underwater circumstance, we assume that all these sensors have the 

ability to adjust their positions in vertical direction. In addition, each node knows its local 

position in the monitored region. In every round of the algorithm, nodes exchange their location 

information to their neighbours. Further, we use Sensing Range (RS) and Transmitting Range (RT) 

represents the range of sensing ability and communication ability, respectively. 

 

SEA Fl oor

Sur f ace

si nk 

st at i on

Under wat er  

sensor

 

 

Figure 1. Underwater Sensor Deployment Architecture 

 

c.  Formal Definition of our work 

 

1) Voronoi Diagram 

Voronoi Diagram is an important structure in computational geometry. It represents the 

proximity information about a set of geometric nodes. The Voronoi diagram of a number of 

nodes divides the space into polygons. Every point in a given polygon is closer to the node in this 

polygon than to any other node. In a 2D region 
2R , we define Voronoi polygon as 

}|,||||{)( 2 jixsxsRxsV jii where is  is the set of sensor nodes, which is illustrated in 

Figure 2. 
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Figure 2.  Voronoi Diagram 

 

2) Scheduling Nodes 
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Figure 3. Presentation of ∆h 

 

Scheduling nodes are those nodes should adjust depth to a deeper layer. The determination of 

scheduling nodes can be illustrated as follows: Sum up all the areas of Voronoi polygons in the 

current layer of the water and calculate the Average area ( Area ) of the total Voronoi polygons 

with Equation (1). 

N

A
N

i

i

Area
1        (1) 
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Where iA  represents the area of Voronoi polygon )( isV , and N  is the total number of nodes in 

the current layer. We call is  as scheduling node if its responsible Voronoi polygon has a smaller 

area than the average value, e.t. AreaiA .  

 

3) Depth Adjusting  

Depth that scheduling nodes should be adjust to is given by 

sRhDepth                          (2) 

Where h  represents the depth difference between the intersection of nodes coverage overlaps 

and the surface of the current layer of water. According to Figure 3,  

2

2

2

Dis
SRh                               (3) 

After the determination of all the scheduling nodes of the same layer, the algorithm compute the 

average distance ( Dis ) between every two nodes with Equation (4). 

k

jid
N

ji

Dis

),(

    (4) 

),( jid  in Equation (4) is the distance between any two nodes is and js , and k  is the number of 

nodes pairs. In a monitored field with N nodes, nodes pairs k  could be decided by Equation (5). 

2

)1(* NN
k                           (5) 

From Figure 3 we could see that the coverage overlaps among nodes are associated with the 

distance between nodes. When  SDis R , the gap between nodes would be much more bigger 

than what it is when  SDis R .As the distance Dis  continues getting larger,Δh will reach to 0 

when SDis R2 . In the determination ofΔh,  we  defer to the MINIMIZE principle:  Chose a 

smallerΔh would make the blind area that brought about by the nodes of upper layer be covered 

by nodes of lower layer. WhenΔh = 0 , the blind area may be well-fixed by nodes in lower layer.  

In the other hand, when Dis  reach a smaller value than Rs, dense nodes would bring about 
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extensive coverage overlaps, as the distance infinitely close to 0, Δh  infinitely close to  RS :  

SRh
Dis 0
lim . Since 0 is the ultimate value that Dis  infinitely close to, the coverage blind area 

would still exist between layers ifΔh = RS, thus it cannot guarantee  the  coverage blind area be 

covered by lower layer. Since S
R

Rh
SDis 2

3
lim , from the consideration of the MINIMIZE 

principle, SRh
2

3
 would effectively minimize the blind area in the situation of SDis R0 .  

We summarize the range of h  spans correspondingly as follow: 

h
SDisS

SD

RR

R

0,
2

3

,0 is

                        (6) 

Therefore, according to Equation (2) and (6), the depth for adjusting will be 

SDisSS

SDisS

RRR

RR

Depth
0,

2

3

,
          (7) 

 

 

III. DEPTH-ADJUSTMENT FOR UNDERWATER 3D SPACE  

 

Suppose nodes are spread randomly and uniformly in the surface of the monitored region with 

the sink station, the algorithm starts with 5 steps: 1) Discovering; 2) Area Calculating; 3) 

Scheduling nodes determination; 4) Depth adjusting; 5) Re-examination; 

1) Discovering 

This is the initial phase to construct Voronoi diagram of the network at the same depth. Firstly, 

nodes communicate with the sink to broadcast their position information with a hello packet, 

which contains node ID and planar coordinates. Then, the sink constructs the Voronoi diagram of 

the network based on nodes position information delivered by these hello packets. 

2) Area Calculating  

The sink calculates the area of each node's responsible Voronoi polygon and the average area in 

this phase. The area information is stored in the area information table. 

3) Scheduling nodes determination  
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The sink searches in the table to determine which nodes are scheduling nodes. 

4) Depth Adjusting  

Scheduling nodes move to the certain depth based on the average area as we talked about last 

Section. It is worth notice that the sink will empty its area information table and saving memory 

space for continuous storing before the termination of this phase. 

5) Re-examination  

After nodes descending, the repetition of above phases will extend to a deeper level, the newly 

generated layer by nodes descending called "deeper layer". In this phase algorithm checks if there 

is still room for deeper expanding, if yes, the algorithm repeats on the deeper layer. 

 

START

Discover 

phase

Generate 

Voronoi 

diagram

Calculate Voronoi polygon 

Area Ai

and Average area Area

Staying

Descending

Reach the sea bottom?

Y

Done

N

AreaiA

Y

N

 

 

Figure 4. The flow of the algorithm 
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Input Nodes; 

Initialize Nodes ID and Nodes Position; 

while MaxDepth 0 

    Initialize Voronoi Diagram; 

    for all nodes do 

calculate Voronoi_Area(ID); 

    end  for 

    Dis compute Average_Distance ( ); 

    if Dis RS then 

Depth RS; 

else  

Depth )
2

31( RS; 

end if 

Area calculate Average_Area(); 

    for all nodes do 

if Voroni_Area(ID)<Average_Area() then 

       descending_List Node(ID); 

end if 

     end  for 

     for all nodes in descending_List do 

          Descendto(Depth); 

      end for 

     MaxDepth MaxDepth   Depth; 

end while 

 

Figure 5. Pseudo-code of the algorithm 

 

According to the steps above, the flow of the algorithm is depicted in Figure 4. In addition, we 

show the pseudo-code of the algorithm in Figure 5. At the beginning of the algorithm, nodes 

transfer their ID and locations to the sink. Base on this information, the sink generates the 
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Voronoi Diagram, and calculate each node’s relevant Voronoi polygon area in Line 4-7. Line 8-

13 determines the depth that scheduling nodes should descend to. After comparing the average 

area and node’s Voronoi polygon area in Line14-19, scheduling nodes are determined. Then, the 

scheduling nodes are descended to deeper layer in Line 20-22. Algorithm circulates until nodes 

reach the bottom of the sea. 

 

 

Figure 6. The final topology after the algorithm 

 

Figure 6 shows the final topology of the algorithm with 500 nodes are deployed randomly in a 

500m 500m 200m 3D region. We can see that after the execution of the algorithm, nodes are 

distributed not only in the surface of the water but the entire region of the water as we expected. 

 

 

IV. PERFORMANCE EVALUATION  

 

a.  Settings  

 

In this section we present the results obtained from the simulation and discuss their implications. 

The simulations were realized by Matlab. Here, we consider the coverage of the whole region and 

the connectivity between nodes as the main criterions of our network.  
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We start our simulation with varying numbers of nodes uniformly deployed in a given space of 

500m 500m 200m. We use the average value as our final results. Besides, we assume that there 

were no errors occur in transmitting message phases and in nodes-descending process. 

 

b.  Coverage 

 

 

 

Figure 7(a).  Sensor Number vs Coverage 

 

 

 

Figure 7(b).  RS vs Coverage 
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Obtaining an optimistic coverage in a given 3D region is the fundamental purpose of our scheme. 

Figure 7(a) shows that coverage of the target space varying with different number of nodes. The 

coverage achieves 98.622% with 1400 sensor nodes while the sensing range of each node is 50m. 

With the increase of sensors, it is obviously that there exist a sharp increase of coverage when 

number of nodes varying between 100-400, meanwhile the whole coverage stays nearly still with 

nodes over 800. This suggests that 800 sensors are sufficient to cover the desire region under the 

sensing range of 50m.  

In Figure 7(b), the coverage of the network with varying sensing range is depicted. We access the 

coverage using different sensing range, and we set the number of nodes as 500. As expect, the 

coverage has a distinguished improvement when the sensing range RS increases. Under the 

sensing range of 70m, the network coverage reaches 99.15%. 

 

c.  Connectivity 

 

Connectivity of nodes is crucial for transmitting messages as well. To guarantee the message can 

be transfer effectively to the sink, we define the connectivity of the network with the percentage 

of nodes that can reach the surface sink. We used the following metrics to observe the 

connectivity performance: 

Total number of nodes: total number of sensors that deployed in the 3D space; 

Rsink: Transmitting Range of the surface sink; 

RT/RS(r): ratio of Transmitting Range to Sensing Range of the sensor; 
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Figure 8.(a)  Rsink vs Connectivity 

 

 

 

Figure 8.(b)  Sensor Number vs Connectivity 

 

Figure 8(a) represents the relation between Rsink and r. In this experiment we set total number of 

nodes=500. It is obviously that connectivity of the network has a wide difference between r=1.0 

and r=1.1. At the meantime, as Rsink getting larger, connectivity has a gentle increase. Since nodes 

can communicate with each other through multi-hops, it is easier for sensor to transmit data to the 

surface sink as their Transmitting Range getting larger. The results shown in Figure 8(a) indicate 

that the capability of the sink has little influence on network connectivity though the connectivity 

of our approach is defined by the percentage of nodes that can reach the sink. After nodes 

descend to a certain depth beyond sink transmission ability, data transmission mainly depends on 

multi-hops between nodes. 

Figure 8(b) shows connectivity with various node number, r and Rsink . As what we have learned 

from Figure 8(a) that Rsink has little influence on connectivity, we can see from Figure 8(b) that 

there are little changes in connectivity when Rsink change under the same number of nodes and the 

same r. Besides, when the sensor number grows, relevant connectivity grows slowly. On the 

other side, however, connectivity has a sharp increase when r>1.0. Note that nodes are randomly 

deployed in the water, the distance between nodes can not be assure. As r grows, the transmitting 

capability strengthens accordingly. Therefore, nodes can transmit data to longer neighbors under 

a certain sensing range. That leads to connectivity improvement.   
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V. CONCLUSIONS 

 

In this paper, we introduce a distributed approach for under water 3D circumstance. The 

proposed approach aimed at covering an underwater space with less human intervention. 

Although sensor nodes are randomly deploy in the surface of the water and can not move in 

horizontal direction, with the help of depth adjustment technique, sensors can be lower to any 

depth so that the coverage of underwater circumstance could be insure. The depth adjustment is 

done based on the density of sensors, we use Voronoi approach to calculate the density to decide 

which nodes should be descend down to a deeper layer. Experiment turn out that our approach 

has a good performance in network coverage and connectivity. However, the experiments also 

point out that connectivity of the network is very sensitive to RT/RS. From Fig. 13 and Fig. 14, we 

learn that RT/RS play a key role in network connectivity. Besides, there still exist some limitations 

to be considered such as network lifetime and data transmission efficiency, which should be done 

in our future work. 
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