171 research outputs found

    Data distribution and task scheduling for distributed computing of all-to-all comparison problems

    Get PDF
    This research studied distributed computing of all-to-all comparison problems with big data sets. The thesis formalised the problem, and developed a high-performance and scalable computing framework with a programming model, data distribution strategies and task scheduling policies to solve the problem. The study considered storage usage, data locality and load balancing for performance improvement in solving the problem. The research outcomes can be applied in bioinformatics, biometrics and data mining and other domains in which all-to-all comparisons are a typical computing pattern

    Pemanfaatan Generate Penjadwalan Sidang pada PESSTA+ Berbasis Yii Framework di Perguruan Tinggi

    Get PDF
    Dalam penyusunan jadwal sidang TA/Skripsi sering menjadi masalah, karena untuk sebuah penyusunan jadwal membutuhkan kompleksitas yang tinggi dan waktu yang cukup lama. namun untuk menyusun jadwal sidang TA/Skripsi harus mempertimbangkan beberapa komponen yang sinkron seperti waktu, hari, ruangan, dosen penguji, dan mahasiswa agar tidak bentrok satu sama lain. sistem generate penjadwalan sidang TA/Skripsi pada perguruan tinggi merupakan sebuah sistem informasi yang berbasis Yii Framework di mana sistem dapat mempermudah penjadwalan secara efektif dan efisien. dalam pembuatan sistem ini perancangan dan konsep nya melalui pengumpulan data dari proses penjadwalan di perguruan tinggi. hasil akhir dari penelitian ini berupa sebuah website di dalam sistem PESSTA+ yang mempermudah proses penjadwalan dan aplikasi penjadwalan nya berfungsi untuk mempercepat dan mempermudah penyampaian informasi jadwal sidang TA/Skripsi. dengan adanya validasi data mahasiswa, jadwal dosen, ruangan, waktu dan hari sehingga mempercepat proses penjadwalan sidang TA/Skripsi dan juga mempercepat kinerja dalam menyusun jadwal sidang

    Parallel detrended fluctuation analysis for fast event detection on massive PMU data

    Get PDF
    ("(c) 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.")Phasor measurement units (PMUs) are being rapidly deployed in power grids due to their high sampling rates and synchronized measurements. The devices high data reporting rates present major computational challenges in the requirement to process potentially massive volumes of data, in addition to new issues surrounding data storage. Fast algorithms capable of processing massive volumes of data are now required in the field of power systems. This paper presents a novel parallel detrended fluctuation analysis (PDFA) approach for fast event detection on massive volumes of PMU data, taking advantage of a cluster computing platform. The PDFA algorithm is evaluated using data from installed PMUs on the transmission system of Great Britain from the aspects of speedup, scalability, and accuracy. The speedup of the PDFA in computation is initially analyzed through Amdahl's Law. A revision to the law is then proposed, suggesting enhancements to its capability to analyze the performance gain in computation when parallelizing data intensive applications in a cluster computing environment

    Parallel detrended fluctuation analysis for fast event detection on massive PMU data

    Get PDF
    ("(c) 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.")Phasor measurement units (PMUs) are being rapidly deployed in power grids due to their high sampling rates and synchronized measurements. The devices high data reporting rates present major computational challenges in the requirement to process potentially massive volumes of data, in addition to new issues surrounding data storage. Fast algorithms capable of processing massive volumes of data are now required in the field of power systems. This paper presents a novel parallel detrended fluctuation analysis (PDFA) approach for fast event detection on massive volumes of PMU data, taking advantage of a cluster computing platform. The PDFA algorithm is evaluated using data from installed PMUs on the transmission system of Great Britain from the aspects of speedup, scalability, and accuracy. The speedup of the PDFA in computation is initially analyzed through Amdahl's Law. A revision to the law is then proposed, suggesting enhancements to its capability to analyze the performance gain in computation when parallelizing data intensive applications in a cluster computing environment

    Dominant Resource Fairness in Cloud Computing Systems with Heterogeneous Servers

    Full text link
    We study the multi-resource allocation problem in cloud computing systems where the resource pool is constructed from a large number of heterogeneous servers, representing different points in the configuration space of resources such as processing, memory, and storage. We design a multi-resource allocation mechanism, called DRFH, that generalizes the notion of Dominant Resource Fairness (DRF) from a single server to multiple heterogeneous servers. DRFH provides a number of highly desirable properties. With DRFH, no user prefers the allocation of another user; no one can improve its allocation without decreasing that of the others; and more importantly, no user has an incentive to lie about its resource demand. As a direct application, we design a simple heuristic that implements DRFH in real-world systems. Large-scale simulations driven by Google cluster traces show that DRFH significantly outperforms the traditional slot-based scheduler, leading to much higher resource utilization with substantially shorter job completion times

    Scheduling of data-intensive workloads in a brokered virtualized environment

    Full text link
    Providing performance predictability guarantees is increasingly important in cloud platforms, especially for data-intensive applications, for which performance depends greatly on the available rates of data transfer between the various computing/storage hosts underlying the virtualized resources assigned to the application. With the increased prevalence of brokerage services in cloud platforms, there is a need for resource management solutions that consider the brokered nature of these workloads, as well as the special demands of their intra-dependent components. In this paper, we present an offline mechanism for scheduling batches of brokered data-intensive workloads, which can be extended to an online setting. The objective of the mechanism is to decide on a packing of the workloads in a batch that minimizes the broker's incurred costs, Moreover, considering the brokered nature of such workloads, we define a payment model that provides incentives to these workloads to be scheduled as part of a batch, which we analyze theoretically. Finally, we evaluate the proposed scheduling algorithm, and exemplify the fairness of the payment model in practical settings via trace-based experiments
    corecore