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Abstract

Distributed computing using a distributed data storage architecture has been widely applied in

solving large-scale computing problems due to its cost effectiveness, high reliability and high

scalability. It decomposes a single large computing problem into multiple smaller ones and then

schedules each of these to distributed worker nodes. Its performance largely depends on the data

distribution, task decomposition, and task scheduling strategies. Significantly degraded per-

formance may result from inappropriate data distribution, poor data locality for the computing

tasks, and unbalanced computational loads among the distributed system. An inappropriate data

distribution consumes excessive storage space. Poor data locality means that the data required

by a particular worker is not available locally and creates overheads associated with rearranging

data between the nodes at run time. Load imbalances lengthen the overall computation time.

New approaches are needed to deal with all of these issues for distributed computing of large-

scale problems with distributed data.

All-to-all comparison is a type of computing problems with a unique pairwise computing

pattern. It involves comparing two different data items from a data set for all possible pairs of

data items. All-to-all comparison problems are widely found in various application domains

such as bioinformatics, biometrics and data mining. For example, in data mining, clustering

algorithms use all-to-all comparisons to derive a similarity matrix to characterize the similarities

between objects.

It is hard to develop all-to-all comparison applications running in the distributed environ-

ment. Some researches use Message Passing Interface (MPI), Open Multi-Processing (OpenMP)

or other techniques to implement parallel all-to-all comparison programs. For all these so-

lutions, users have to consider the detail mechanisms of the network communication, data

distribution and task scheduling, which bring heavy burdens on application development.
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Another approach is to use computing frameworks designed for distributed computing. Pro-

viding simple programming interfaces for users to develop their applications, these frameworks

hide implementation issues such as data distribution, load balancing, data locality and fault

tolerance. They enable programmers to focus on the application domain without the need

of considering complicated parallel computing details. Though many solutions have been

provided based on the existing computing framework like Hadoop, it is inefficient because of

the unmatched computing pattern, data distribution strategy and task scheduling strategy.

To tackle these challenges, this research develops a distributed computing framework for

solving general all-to-all comparison problems with big data sets. A programming model for

the all-to-all comparison problem is developed. By providing the powerful application program-

ming interfaces (APIs), developers can implement different all-to-all comparison applications

without the consideration of distributed system issues, which makes the application develop-

ment efficiency. Beside this, user interfaces are developed to make the back-end distributed

computing system transparent to users and simplify the computing framework operation.

Moreover, specific task-oriented data distribution strategies and locality-aware task schedul-

ing strategies are designed for both homogeneous and heterogeneous distributed systems. Good

data locality for all the comparison tasks, static load balancing for the system and reduced

storage usage for each worker node are all considered during the design of data distribution

strategies to enhance the overall computation performance and reduce data storage requirements

across the network. Following data distribution strategies, both the static and dynamic task

scheduling strategies are developed in a way to keep system load balancing and good data

locality for all the comparison tasks without any data movement at runtime.
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Chapter 1

Introduction

This thesis addresses distributed computing of all-to-all comparison (ATAC) problems with big

data sets. ATAC problems are computing problems in which each data item of a data set is

pair-wise compared with all other data items in the same set. They are suitable for parallel

and distributed implementation because of the independent pair-wise comparison operations.

However, one major difficulty of using distributed system is the poor performance caused

by massive data movement and network communications. Another major difficulty comes

from the heavy burdens between the complex distributed system issues and users without rich

experiences. This thesis develops a large-scale distributed computing framework for all-to-all

comparison problems to overcome mentioned difficulties.

1.1 Research Background

All-to-all comparison problems in this thesis represent a type of computing problems with a

unique computing pattern. In this ATAC pattern, all two different data items within the same

data set need to be pair-wise compared.

Addressing problems with ATAC pattern is straightforward when the size of data is relatively

small. For instance, one of the simple solutions to process ATAC problems is to load all the input

data into the memory and execute pair-wise comparison sequentially [Yu et al., 2010].

However, challenges come when we try to deal with ATAC problems with big data sets.

When the size of input data set and the numbers of input data files are becoming much larger,

the factors such as storage space, data transmission and network bandwidth can affect the

1
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computing performance greatly. Consider the problems with ATAC pattern in bioinformatics

as example. A typical bioinformatics computing would take around 80 CPU years to BLAST

[Altschul et al., 1990] the 268 Gb cow rumen metagenome data [Hess et al., 2011]. De novo

assembly of the full data set by a short read assembler, such as Velvet [Zerbino and Birney,

2008], would require computers with over 1 TB RAM and take several weeks to complete.

Currently, the following three system architectures could be used to solve all-to-all com-

parison problems: 1) Centralized computing. 2) Distributed computing with centralized data

storage and 3) Distributed computing with distributed storage.

For centralized solution, some researches use super computers to process ATAC problems.

For example in the experiment developed by Catalyurek et al. [2002], a 24-processor Sun Fire

6800 system at the Ohio Supercomputer Center was chosen. However, many researcher cannot

get super computing resources and the cost of using it is also very high.

Distributed computing with centralized data storage is also chosen by many researchers such

as Tang and Yew [1986] and Hummel [1996] . For these solutions, though the total computing

power can be scaled up by adding worker nodes in the distributed system, the data server can

become a big bottleneck because of the limited storage capability and the task latency caused

by waiting data transmission.

In the last decades, the distributed systems with distributed data storage architectures have

been widely used due to the cost effectiveness, high availability and high scalability. Some

researches such as Gunturu et al. [2009], Schatz [2009] and Chen et al. [2008] all use this

architecture to solve ATAC problems. The computing framework developed in this thesis is

also based on this architecture.

For the current solutions based on the distributed computing with distributed data storage,

mainly two different strategies are used to distribute all the data files: 1) Distributing every

input file to every worker node; and 2) Distributing each input file randomly to the system with

a fixed number of duplications (The Hadoop data strategy). Storing all the data everywhere is

a natural idea inherited by the centralized solutions. Thus it also has the similar problems as

it is in centralized computing. For the Hadoop data strategy, due to Hadoop is not designed to

support ATAC computing pattern, considerable data movement between different worker nodes

during the comparison phase is required, which could degrade the performance greatly.
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Hence, new data distribution strategies and related task scheduling strategies for ATAC

problems are developed to overcome the drawbacks of the above two different data distribution

solutions.

1.2 Research Significance

All-to-all comparison problems are found in many application domains such as bioinformatics,

biometrics and data mining. Though these ATAC problems are with different backgrounds, the

principle of solving ATAC problems is the same.

For biological analysis, ATAC is a key calculation stage in Multiple Sequence Alignment

(MSA) and studying of phylogenetic diversity in protein families [Trelles et al., 1998]. In

general, the computing of these bioinformatics problems includes the calculation of a cross-

similarity matrix between each pair of sequences [Krishnajith et al., 2013, 2014]. The com-

parison computations become more complex when processing larger number of bioinformatic

data and advanced computation techniques are required for large-scale all-to-all comparison

problems [NM et al., 2001].

In biometrics, a typical problem is to identify people’s physical characteristics via pairwise

comparisons of a large amount of data stored in biometrics databases [Phillips et al., 2005],

such as face recognition, finger geometry and palm scanning. In the face recognition area,

different technologies analyse the unique shape, pattern and positioning of facial features. In

the RFGC experiment [Phillips et al., 2005], the inputs to an analysis algorithm are two sets

of images, which include 24,042 images totally. The output from the algorithm is a similarity

matrix, which includes the similarity scores between any target-query image pairs. For these

kinds of biometric problems, it is easy to turn them into problems with ATAC pattern.

ATAC pattern is also found in data mining researches. For example, in cluster analysis

many clustering algorithms use a similarity matrix, which is a high dimensional square matrix

containing all the pairwise dissimilarities or similarities between the objects being considered.

In the music information retrieval evaluation presented by Arora et al. [2013], the samples are

3090 pieces of music and the similarity is the average of three human’s fine-grained judgement

of the audio similarity of a pair of samples.

Another area that uses ATAC pattern is video or audio analysis. The video comparison is a
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basic analysis operation in complement of classification, extraction and structuring of videos.

In the video retrieval system designed by Sav et al. [2006], 8718 shots were detected form the

50 hours of BBC rushes video footage, and two 8717 by 8717 matrices of keyframe similarities

were computed by using colour, texture and shape.

It is seen from the above discussion that though ATAC problems in different areas have

different purposes, use different algorithms or combine with different processing steps, in the

ATAC phase they all share the same computing pattern and generate the same type of results

(similarity matrix). Beside this, the size of data processed in these areas is growing dramatically,

which requires efficient solutions support large-scale ATAC problems.

Therefore, it is significant to provide a general and systematic solution for ATAC problems.

The solution is expected to have high performance of processing all-to-all comparison problems

and also have good scalability to support big data sets. This is the focus of this thesis.

1.3 Definition of All-to-all Comparison Problem

Definition 1 (All-to-all comparison problem) Let A, C and M denote the data set to be pair-

wise compared, the comparison function on pairs in A and the output similarity matrix of

A, respectively. Characterized by the Cartesian product or cross join of the data set A, the

all-to-all comparison problem discussed in this thesis is mathematically stated as follows:

M
ij

= C(A
i

, A
j

), i, j = 1, 2, · · · , |A| (1.1)

where A
i

represents the ith item of A, M
ij

is the element of output matrix M resulting from the

comparison between A
i

and A
j

, and |A| means the numbers of times in set A.

The typical all-to-all comparison problems can also be expressed graphically in Figure 1.1,

where each data item in a data set need to be compared with all the others. In the matrix shown in

Figure 1.1, considering there is no comparison order of the data files (C(A
i

, A
j

) = C(A
j

, A
i

)),

for this symmetric matrix, only the triangle shape of this matrix should be calculated.

In this part, our planning approach is defined by the following considerations:

1) A solution with high flexibility to extend processing power. Considering the scale of
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Figure 1.1: Details of all-to-all comparison problems.

ATAC problems will keep growing and the requirements for data storage and computing

power would also be increasing significantly, we choose to use distributed computing

systems due to the system processing power can be easily extended by adding extra

worker nodes.

2) A solution can support large-scale data sets. ATAC problems are typical data-intensive

computing problems and the computation scale will grow exponentially with the number

of input data items growing (n by n matrix in Figure 1.1). To deal with large-scale ATAC

problems, we prefer to store the data sets among the worker nodes in a distributed way,

which can avoid the poor performance caused by the single centralised data server.

3) A solution can avoid batching latency. Hence, in our solution, we prefer to pre-distribute

data files to different worker nodes and schedule comparison tasks based on the location

of related data files. In this case, the task scheduling depends on the way we distribute

and store data files. Because the data files have already been pre-distributed, the latency

for scheduling comparison tasks can be greatly reduced.

Based on the consideration above, the solution we develop for solving ATAC problems is

expected to have the following features: 1) All the data files are pre-distributed to the distributed

computing system; and 2) The task scheduling is based on the situation of data distribution.

To develop a general solution, the key challenge is how to distribute all the data files into

the distributed computing system. This will be discussed with more details in the next section.
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1.4 Problem Challenges

To solve all-to-all comparison problems efficiently, the following aspects need to be improved:

the performance of each comparison task, the performance of the distributed system and the

cost spent on distributing data sets.

1) The performance of each comparison task. For each comparison task, if all the required

data for this task are stored locally in the node that performs the task, the task will not

need to access data remotely through network communications. In this case, no extra data

movement is generated at runtime and the comparison task can be executed immediately.

Let C(x, y), T , T
i

and D
i

represent the comparison task for data x and data y, the set

of all comparison tasks, the set of tasks performed by worker node i, and the data set

stored in worker node i, respectively. Good data locality for all comparison tasks can be

expressed as follows:

8C(x, y) 2 T, 9j 2 {1, · · · , N}, x 2 D
j

^ y 2 D
j

^ C(x, y) 2 T
j

. (1.2)

2) The performance of the distributed system. If all the worker nodes in the distributed sys-

tem can be allocated numbers of comparison tasks that is proportional to their computing

power, the system can achieve load balancing and all the worker node can finish at the

same time. Hence, all the computing power can be fully utilized.

Let T
i

denote the number of pairwise comparison tasks performed by worker node i.

For a distributed system with N worker nodes and M data files, a total number of

M(M � 1)/2 comparison tasks need to be allocated to the work nodes. Load balancing

in a homogeneous distributed system can be expressed as follows:

8T
i

2 {T1, T2, ..., TN

}, T
i


⇠
M(M � 1)

2N

⇡
, (1.3)

where d·e is the ceiling function.

3) The cost spent on distributing data sets. Considering Strategy that storing all the data ev-

erywhere can also meet the above two constraints (1.2) and (1.3), in our data distribution

strategy we want to also reduce the cost spent on distributing data sets. To distribute all
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the data in distributed systems, the storage usage fo each worker node must be within its

boundary. Beside this, the time spend on distributing data files should also be reduced.

Generally, the time for data distribution is proportional to the number of data files to be

distributed.

Let |D
i

| denote the number of files allocated to worker node i. By considering both the

data distribution time and storage limitation, a data distribution strategy is expected to

minimize the maximum of |D1|, · · · , |DN

|, i.e.,

Minimizemax{|D1| , |D2| , ..., |DN

|}. (1.4)

Therefore, based on the above constraints (1.2, 1.3) and target (1.4), the focus of this thesis

is on development of data distribution strategies for the following data distribution problem:

Definition 2 (Data distribution problem) For a given all-to-all comparison problems with M

numbers of data items and a distributed computing system with N numbers of worker nodes,

distributing data items to each worker node in a way that all the data pairs, which represent all

the comparison tasks can be find in at least one worker node (1.2). Moreover, all the worker

node can be allocated numbers of comparison tasks based on their computing power (1.3).

By reaching the above requirements, we want to minimize the maximum number of data items

among all the worker nodes (1.4).

1.5 Problem Statement

In order to address distributed computing of all-to-all comparison problems with big data sets,

the following three problems need to be solved: front-end interfaces, data distribution and task

scheduling. They are graphically shown in Figure 1.2.

Problem 1 Front-end Interfaces For big data problems with all-to-all comparison pattern,

users need a simple way to operate the distributed computing systems. Also, developers need

efficient programming interfaces that can help the development of domain-specific all-to-all

comparison applications. Moreover, for the front-end interfaces, all the parallel system issues

such as data distribution and job scheduling should be solved automatically by the back-end

distributed computing system and hidden for the users.
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Figure 1.2: Organization of this thesis.

Problem 2 Data Distribution To distribute all the data in the distributed system by considering

the constraints we mentioned above, novel data distribution strategies need be developed to

support ATAC problems with large data sets. In this thesis, both the greedy and simulated

annealing (SA) idea are used to solve the data distribution problem. Furthermore, the data

distribution should both consider the scenarios in homogeneous distributed computing systems

and heterogeneous distributed computing systems.

Problem 3 Task Scheduling After distributing all the data files by using the data distribution

strategies developed in this thesis, the following static and dynamic task scheduling strategies

are expected to schedule all the comparison tasks to make full use of the processing power of

the distributed system.

By solving all the above problems, the solution in this thesis can achieve a high overall

performance for distributed processing all-to-all comparison problems with big data sets.
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1.6 Thesis Structure and Contributions

This thesis is organized around the three problems defined in the previous Section 1.5 with the

following Chapters:

Chapter 2 summarises a wide range of technological approaches for solving ATAC prob-

lems. Different data distribution and task scheduling solutions are also discussed in this Chapter.

Besides this, different architectures of distributed systems are discussed. In the end, as part of

our implementation system, different cluster management systems are introduced.

In Chapter 3, the front-end interfaces for our distributed computing framework is designed

from two different aspects. For users who operate the computing framework, the data deploying

and application uploading interfaces are provided. They are defined to give users the easy

way to finish all the needed operations. For developers who develop the ATAC applications, a

programming model for ATAC problems is developed. It abstracts the work flow of distributed

processing ATAC problems and provides simple application programming interfaces (APIs) to

help develop ATAC applications.

In Chapter 4, a large-scale data distribution strategy based on greedy idea is developed for

ATAC problems with big data sets in homogeneous distributed computing systems. In this

strategy, the storage usage on each worker node is reduced to meet the storage limitation. The

data distribution strategy can also keep all the comparison tasks have good data locality without

any data movement. Moreover, static system load balancing is also considered to support static

task scheduling for ATAC problems.

Similarly in Chapter 5, a large-scale data distribution strategy based on SA for homogeneous

distributed systems is also developed. Specific methods are developed to make use of SA

idea to solve ATAC data distribution problem. Beside this, several special cases are analysed

theoretically for the data distribution problem. In the end, the results by using our work and

the Hadoop data distribution strategy are compared to show the improvement of simulated

annealing based solution.

Data distribution in heterogeneous systems are discussed in both Chapter 6 and Chapter 7.

For heterogeneous systems, each of the worker nodes can have different processing power, by

adding this consideration into data distribution, scalable data distribution strategies based on

greedy and SA ideas are developed separately.
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Furthermore, in Chapter 7, a dynamic task scheduling strategy is also provided to make

system achieve load balancing without any data movement. System issues such as changeable

computing power and different computation time for different comparison tasks are considered

in this dynamic task scheduling strategy.

The thesis concludes in Chapter 8 with the summary of the high performance computing

framework. The milestones and processing details for the PhD project are also shown in this

chapter. In the end, further work of this project is discussed.

Three contributions are claimed as follows:

1) Both the user operation interfaces and ATAC programming model with programming

interfaces are developed. ATAC programming model abstracts the workflow of distributed

solving ATAC problems and these front-end interfaces are designed to help users solve

ATAC problems by using distributed computing systems without considering the complex

parallel issues.

2) Data distribution strategies for both the homogeneous and heterogeneous distributed sys-

tems are developed. To design the data distribution strategies fro ATAC problems, the

storage usage, data locality and static load balancing have all been considered based on

both greedy and SA idea.

3) Task scheduling strategies for ATAC problems are developed. Followed by the data

distribution strategies, both the static and dynamic scheduling strategies are developed

to allocate comparison tasks to the suitable worker nodes for the system load balancing.
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Chapter 2

Literature Review

In this chapter, existing efforts for addressing all-to-all comparison problems in distributed

computing systems have been discussed. Data distribution and task scheduling strategies within

different approaches were summarized and analysed to show the limitations of current solutions.

Beside this, the architectures of different distributed systems are outlined. In the end, different

cluster management systems used for big data processing are listed.

2.1 Introduction

This thesis focuses on developing a high performance distributed computing framework for

processing large-scale ATAC problems. In the front-end system, operation interfaces are de-

signed for users to use our distributed computing framework simply. A programming model of

ATAC pattern is designed and powerful programming interfaces are provided to help developers

develop specific-purpose ATAC applications. Beside this, in the back-end computing system,

strategies for data distribution and task scheduling are developed to make the computing system

achieve high performance. For these goals, the literature review can be categorized as follows,

1. Solutions for special-purpose all-to-all comparison problems.

2. Solutions based on Hadoop computing framework.

3. Solutions based on other computing frameworks.

4. Different distributed computing platforms.

13
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5. Different cluster management platforms.

2.2 Existing Solutions for Specific All-to-all Comparison Problems

Several approaches have been developed to address specific all-to-all comparison problems

in bioinformatics. All-to-all comparisons are a key calculation stage in Multiple Sequence

Alignment (MSA) [Nguyen and Pan, 2013, Ye et al., 2015, Zhu et al., 2015] and studying

of phylogenetic diversity in protein families [Trelles et al., 1998]. In general, the computing

of these bioinformatics problems includes the calculation of a cross-similarity matrix between

each pair of sequences [Krishnajith et al., 2013, 2014]. This calculation is followed by several

data grouping stages. Platforms for such bioinformatics computing include clusters, grids and

clouds [Church and Goscinski, 2014].

Data intensiveness describes those applications that are I/O bound or with a need to process

large volumes of data [Church and Goscinski, 2014, Gokhale et al., 2008, Ren et al., 2014].

Comparing to compute-intensive, applications of all-to-all comparison problems devote most

of the processing time on I/O and movement for massive amount of data files [Howard et al.,

1988]. Therefore, to improve the performance of data-intensive problems, the distribution of all

the data sets must be seriously considered.

The earliest research for parallel all-to-all comparison has been carried out by Date et al.

[1993]. In this attempt they focused on distributed memory systems. They proposed a farm

approach to execute the all-to-all comparison in parallel. In this approach one processor (farmer)

breaks the large number of work-units into sub-sets of work-units and distributes them to

one of the other processor (worker). A work-unit is one pair-wise alignment and in a set of

N gene sequences, N(N � 1)/2 work-units need to be completed. The work is distributed

dynamically. A work-unit is sent to a worker processor by the farmer processor, and the worker

processor accepts, if it is free. The result of the alignment sent back to the farmer processor

upon completion. The worker processors do not communicate with each other and all the

communications are routed through the farmer processor. The farm approach has been chosen

by Date et al. [1993] for parallel this problem, for two reasons.

1. The time to process a single work unit is significantly larger than the time to generate and

distribute work.
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2. The order in which the results are collected is not important.

By using this approach, they have archived almost linear speed gain, when the number of

computers increased from 4 to 64. After 5 years Trelles et al. [1998] introduce parallelization

approach for all-to-all comparison in bioinformatics. Their approach is different from Date

et al. [1993]. In their approach, they try to reduce the number of pair-wise comparisons by

avoiding biologically unnecessary comparisons. The method that they use to reduce the number

of comparisons is related to the comparison and grouping algorithms. This kind of algorithmic

related optimizations are out of the scope of this PhD research. The parallelization approach of

their attempt is specific to their solution as they are not computing N(N � 1)/2 comparisons

in N number of sequences. As a result, the parallelization approach that they use cannot be

applied generally for all all-to-all comparison problems.

To process all-to-all comparison problems, various distributed computing systems and run-

time libraries have been used. Heitor and Guilherme [2005] proposed a methodology to par-

allelize a multiple sequence alignment algorithm by using a homogeneous set of computers

with the Parallel Virtual Machine (PVM) library. In their work, a detailed description of the

modules was provided and a special attention was paid to the execution of the multiple sequence

comparison algorithm in parallel.

In 2002, Kleinjung et al. [2002] has proposed another solution for parallelizing MSA, which

has an all-to-all comparison stage. In their approach they use the SIMD architecture. In their

approach they have a sequence profiling stage which can be matched to pre-processing special

case in this research. They use the MPICH package [Lusk et al., 1996] for parallel execution

of all-to-all comparison. Their approach is to carry out multiple pair-wise comparisons in each

node simultaneously. However, they have not provided detailed information on the implemen-

tation and managing memory in their approach.

Meng and Chaudhary [2010] presented a heterogeneous computing platform through a Mes-

sage Passing Interface (MPI) enabled enterprise computing infrastructure for high-throughput

biological sequence analysis. In order to achieve load balancing, they distributed the workload

based on the hardware configuration. The whole database is split into multiple nearly-equal

sized fragments; and then each of the computing nodes is assigned a number of database

fragments according to its processing capacity. However, in practical computing of all-to-all

comparison problems using their approach, data transmissions among the computing nodes
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cannot be avoided at runtime. This drawback will be overcome in our work presented in this

thesis.

Xiao et al. [2011] proposed a design and optimization of the BLAST algorithm in a GPU-

CPU mixed heterogeneous computing system. Due to the specific architecture of the GPU, their

implementation can achieve a six-fold speed-up for the BLAST algorithm. GPUs were also used

for a parallel implementation of MAFFT for MSA analysis [Zhu et al., 2015]. In the work by

Torres et al. [2012], they were configured for exact alignment of short-read genetic sequences.

To accelerate the next generation long read mapping, Chen et al. [2014] made use of FPGA

hardware to speed up sequence alignment. In comparison with all those hardware-dependant

implementations, our work in this thesis does not rely on specific hardware.

Mendonca and de Melo [2013] proposed and evaluated a method for biological sequence

comparisons. They implemented the method by adjusting workload in hybrid platforms com-

posed of GPUs and multicores with SIMD extensions. Providing different task allocation

strategies, their implementation achieved good performance benefits in executing the Smith-

Waterman algorithm.

Singh et al. [2008] implemented Smith-Waterman applications by using desktop grids com-

posed of CPUs and GPUs. In their implementation, two levels of parallel scheduling were

provided: 1) a desktop grid for coarse-grained parallelization, and 2) GPUs for fine-grained

parallelization. In their experiments running on a GPU-accelerated BOINC framework, over 10

times speedup were achieved in comparison with CPU-only systems.

Kedad-Sidhoum et al. [2014] proposed SWDUAL, an implementation of the Smith-Waterman

algorithm on hybrid platforms consisting of multiple processors and GPUs. SWDUAL is based

on a fast dual approximation scheduling algorithm. The algorithm selects the most suitable

tasks to execute on the GPUs while keeping a good balance of the computational load over the

platform. Different from those hardware-dependent methods, our work presented in this thesis

does not rely on specific hardware such as GPU and SSE CPUs.

Zhu et al. [2011] employed the data parallelism paradigm that is suitable for handling large-

scale processing to achieve a high degree of parallelism. In their research, they implemented

the proposed algorithm on a homogeneous cluster using the MPI library and proposed a data

partition and distribution strategy to reach the following requirements:
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1. Load balance

In their research, the completion time of sequential MSA on each processor is propor-

tional to its load. Therefore, they use a parallel clustering scheme to partition the set of

sequences into subsets based on sequence similarity. For n sequences and p processors

for computation, each processors is allocated for n/p sequences

2. Minimized communication time

To minimize communication time, each concurrent process of MSA should avoid access-

ing those subsets located on any of the other processors because the access of the remote

data requires some form of communication. In their research, they only considered the

fixed number of computers and the limitation of communication can also make the same

data cannot be reused between different computers.

Catalyurek et al. [2002] described an approach for caching intermediate results for reuse

in subsequent or concurrent queries for multiple sequence alignment (MSA) in Shard Memory

Parallel machine. In their experiment, they used Sun supercomputing systems which have a

huge memory than the distributed environment we consider.

Several approaches were also developed for load balancing in distributed computing of all-

to-all comparison problems. One version of parallel all-to-all comparison of genome sequences

was carried out by Hill et al. [2008]. In this attempt they have used a cluster of computers

and main intention is provided on load balancing among the clusters. They have divided the

triangular area in the correlation matrix which is to be calculated, into rows. Each row of

comparisons has been assigned to a node of the cluster. Since, the tasks are in different size

and the rows becomes smaller at the ends, they are assigning the rows dynamically to a node

once a node finishes a task. In this attempt they have not considered about the scalability of the

solution since if the number of nodes exceeds the number of rows in the matrix at the beginning

or in the middle of the calculation, some nodes will be idle. At this moment there can still be

dividable tasks available since calculation of each row also can be divided into parallel tasks,

which they have not considered. In their research, the numbers of parallel tasks are not limited

by the available memory, they have not addressed the similar problem considered in this PhD

research.

Gunturu et al. [2009] proposed a load scheduling strategy, which depends on the length of
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the sequence and the number of processors in the network. They assumed that all the processors

in the network already had both sequences to be compared in their local memory. Our work in

this thesis distributes data to the computing nodes with consideration of the computing tasks,

thus avoiding this assumption.

An efficient grid scheduler is designed by Somasundaram et al. [2010] for parallel imple-

mentation of MSA algorithm on a computational grid. It splits a single alignment task into

optimal-size subtasks and then distributes the subtasks among multiple processors. It assumes

that the task running time is much higher than the communication overhead in sending data of

the sub-matrix. This makes the method unsuitable for large-scale ATAC problems.

Church et al. [2011] proposed the design of a multiple sequence alignment algorithm on

massively parallel, distributed memory supercomputers. In order to solve the limitations of

random access memory (RAM) for dealing with large genomic populations, they proposed a

method to break each sequence into small fragments that are distributed to free work nodes.

Though it can improve performance, it would affect the accuracy of the final result.

Macedo et al. [2011] proposed an MPI/OpenMP master/slave parallel strategy to run

DIALIGN-TX in heterogeneous multi-core clusters, with multiple allocation policies. In their

research, they used three strategies: Hybrid Self Scheduling (HSS), Hybrid Fixed (HFixed) and

Hybrid Weight Factoring (HWF). The results showed that the choice of an appropriate task

allocation policy and a powerful master node has a great impact on the overall execution time.

Self-Scheduling policy [Tang and Yew, 1986] always assigns one task to each node. When the

node finishes to process a task, it requests a new one, until there are no more tasks left. This

policy is able to reduce load balancing problems in a heterogeneous environment, at the expense

of an increased communication cost. The Weighted Factoring (WF) policy [Hummel, 1996]

assigns a weight to each node, representing its relative computing power. Task assignments are

done in stages, where the number of tasks distributed in each stage is equal to half the remaining

tasks and the number of tasks assigned to each processor depends on its weight.

Cui et al. [2010] proposed a novel sequence distribution strategy on the heterogeneous

cluster system. In their research, they also only considered the numbers and length of sequences

to determine the operation time. Besides, they did not consider the problem of resending the

same sequences which would affect the performance of the whole system.

Distributing data to everywhere has its advantages and disadvantages. When the data sets
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are distributed everywhere, scheduling any comparison task to any node will achieve perfect

data locality, and the load balancing is straightforward to be promised. However, there are

also obvious and major drawbacks. 1) The brute-force replication of data causes the worst

storage usage, the longest time consumption for data transmission, and the highest cost of

network communications. For example, a typical all-to-all comparison problem presented in

reference [Hess et al., 2011] needs to process 268 GB cow rumen metagenome data. The

worst storage usage pushes the boundary of the limitation of the available storage resources.

In the experiment reported in reference [Das et al., 2013], the average time for deploying 10

GB datasets within a cluster with 14 worker nodes and 10 Mbps network takes nearly 150

minutes. The longest time consumption for data transmission deteriorates the performance of

the overall execution time of the computing problem significantly. 2) Even if all the data sets

can be distributed efficiently, much of the data stored in the nodes will never be used in actual

caparison tasks, wasting the storage resources considerably. 3) These two drawbacks become

even more evident and serious for large-scale all-to-all comparison problems with big data sets.

As all-to-all comparison problems are a typical type of combinatorial problems, the complexity

of processing such problems with big data sets increases exponentially with the increase of the

data size.

2.3 Existing Solutions Based on Hadoop

In addition to the above mentioned specific solutions, recent attempts have been made to im-

plement domain-specific all-to-all comparison applications [Chen et al., 2008, Schatz, 2009] by

using the Hadoop framework. Enabling distributed processing of large data sets across clusters

of commodity servers, Hadoop [Doug and Mike, 2005] is designed to scale up from a single

server to thousands of machines. With a very high degree of fault tolerance, it can achieve high

computing performance for distributed computation that well matches the MapReduce com-

puting pattern. However, the Hadoop distributed file system (HDFS) and its data distribution

strategy are very inefficient for all-to-all comparison problems due to the completely different

computing pattern involved.

In this section, the Hadoop computing framework and Hadoop distributed file system (HDFS)

will be discussed. Furthermore, solutions based on Hadoop will be summarized to show the

limitation of this approach.
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2.3.1 Hadoop Distributed Computing Framework

Hadoop [Doug and Mike, 2005] is a framework for running applications on large clusters built

of commodity hardware. The Hadoop framework transparently provides applications both

reliability and data motion. Hadoop implements a programming model named MapReduce,

where the application is divided into many small fragments of work, each of which may be

executed or re-executed on any node in the cluster. In addition, it provides a distributed file

system (HDFS) that stores data on the compute nodes, providing very high aggregate bandwidth

across the cluster. The Hadoop runtime system coupled with HDFS manages the details of

parallelism and concurrency to provide ease of parallel programming with reinforced reliability.

In a Hadoop cluster, a master node controls a group of slave nodes on which the Map and

Reduce functions run in parallel. The master node assigns a task to a slave node that has any

empty task slot, an overview of Hadoop cluster can be expressed in Figure 2.1:

Figure 2.1: The architecture of Hadoop cluster.

Typically, computing nodes and storage nodes in a Hadoop cluster are identical from the

hardware’s perspective. In other words, the Hadoop’s Map/Reduce framework and the Hadoop’s
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HDFS are, in many cases, running on a set of homogeneous nodes including both computing

and storage nodes. Such a homogeneous configuration of Hadoop allows the Map/Reduce

framework to effectively schedule computing tasks on an array of storage nodes where data

files are residing, leading to a high aggregate bandwidth across the entire Hadoop cluster.

Hadoop framework has been widely used in solving all-to-all comparison problems in var-

ious domains. For hadoop framework, though it provides a complete solution for data distri-

bution, task scheduling and resource management, it is designed for computing problems with

MapReduce pattern. Hence, using MapReduce programming model to implement all-to-all

comparison problems can cause serious performance problems, especially when processing big

data set. Beside this, Hadoop is designed for homogeneous distributed systems, which makes it

cannot achieve high performance when running on top of heterogeneous distributed systems.

2.3.2 MapReduce Programming Model

The MapReduce programming model was proposed by Google [Dean and Ghemawat, 2008] to

support data-intensive applications running on parallel computers like commodity clusters. Two

important functional programming primitives in MapReduce are Map and Reduce. The Map

function is applied on application-specific input data to generate a list of intermediate ( key-

value ) pairs. Then, the Reduce function is applied to the set of intermediate pairs with the same

key. Typically, the Reduce function produces zero or more output pairs by performing a merging

operation. All the output pairs are finally sorted based on their key values. Programmers

only need to implement the Map and Reduce functions, because a MapReduce programming

framework can facilitate some operations (e.g., grouping and sorting) on a set of ( key-value )

pairs.

The beauty of the MapReduce model lies in its simplicity, because the programmers just

have to focus on data processing functionality rather than on parallelism details. The pro-

grammers provide high-level parallelism information, thereby allowing the Map and Reduce

functions to be executed in parallel across multiple nodes.

To use MapReduce programming model, users have to implement two programming inter-

faces: Map and Reduce. Map takes an input pair and produces a set of intermediate key-value

pairs. The MapReduce library groups together all intermediate values associated with the same

intermediate key I and passes them to the reduce function. The reduce function accepts an
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Figure 2.2: The MapReduce programming model.

intermediate key I and a set of values for that key. It merges together these values to form a

possibly smaller set of values. Typically just zero or one output value is produced per reduce

invocation. The intermediate values are supplied to the users reduce function via an iterator.

This allows us to handle lists of values that are too large to fit in memory.

Many researcher chose MapReduce programming model or its extensions to solve ATAC

problems. Though the procedures of processing MapReduce application and ATAC application

have some similarities, there are huge differences which can significantly affect the system

performance. In the following part, the issues of distributed processing ATAC problems by

using MapReduce programming model will be discussed.
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2.3.3 Hadoop Distributed File System

The Hadoop Distributed File System (HDFS) [Borthakur, 2007] is a distributed file system

designed to run on commodity hardware. It has many similarities with existing distributed file

systems. However, the differences from other distributed file systems are significant. HDFS is

highly fault-tolerant and is designed to be deployed on low-cost hardware. HDFS provides high

throughput access to application data and is suitable for applications that have large data sets.

HDFS relaxes a few POSIX requirements to enable streaming access to file system data. The

following is a subset of useful features in HDFS:

• File permissions and authentication.

• Rack awareness: to take a node’s physical location into account while scheduling tasks

and allocating storage.

• Safemode: an administrative mode for maintenance.

• Fsck: a utility to diagnose health of the file system, to find missing files or blocks.

• Fetchdt: a utility to fetch Delegation-token and store it in a file on the local system.

• Rebalancer: a tool to balance the cluster when the data is unevenly distributed among

DataNodes.

• Upgrade and rollback: after a software upgrade, it is possible to rollback to HDFS’ state

before the upgrade in case of unexpected problems.

• Secondary NameNode (deprecated): performs periodic checkpoints of the namespace and

helps keep the size of file containing log of HDFS modifications within certain limits at

the NameNode. Replaced by Checkpoint node.

• Checkpoint node: performs periodic checkpoints of the namespace and helps minimize

the size of the log stored at the NameNode containing changes to the HDFS. Replaces

the role previously filled by the Secondary NameNode. NameNode allows multiple

Checkpoint nodes simultaneously, as long as there are no Backup nodes registered with

the system.
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• Backup node: An extension to the Checkpoint node. In addition to checkpointing it also

receives a stream of edits from the NameNode and maintains its own in-memory copy

of the namespace, which is always in sync with the active NameNode namespace state.

Only one Backup node may be registered with the NameNode at once.

Figure 2.3: HDFS architecture.

Figure 2.4: Example for HDFS data placement strategy.

The Figure 2.3 shows the system architecture of Hadoop Distributed File System (HDFS).

HDFS has the following feathers:
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1. Data Files stored in HDFS are divided into blocks and distributed to different worker

nodes in the system.

Each block unit is 64MB by default. With such a setting, a file can be very large since it

can take advantage of all the disks in the cluster.

2. HDFS system uses the master-slave architecture.

In particular, there is a master node (Namenode) with a number of slave nodes (Datan-

odes). In the cluster, Namenode maintains the file system namespace and the metadata

for all the files while the Datanodes store the blocks. Periodically, every Datanode sends

a heartbeat and a report of block list periodically to the Namenode such that Namenode

can construct and update the blocksMap (a mapping table which maps data blocks to

Datanodes). Because Namenode has the data placement information of all Datanodes,

it coordinates access operations between clients and Datanodes. Finally, Datanodes are

responsible for serving read and write requests.

3. HDFS replicates each block to tolerate fault.

By default, every file has a same replication factor which equals to three. The placement

of replicas follows a rackaware placement policy. Generally speaking, Namenode selects

a random Datanode in the cluster to place the first replica of a block, then it asks this

Datanode copies the block to a different Datanode of the same rack. The blocks third

replica will be stored in a different rack. By storing two replicas in the same rack, this

policy improves the write performance through reducing inter-rack write traffic. Figure

2.4 demonstrates an example of data placement. If the cluster only contains a single rack,

three replicas of a block are randomly assigned to three different Datanodes.

2.3.4 ATAC Solutions Based on Hadoop

Recently, efforts have been made to process all-to-all comparison problems by using computing

frameworks like Hadoop. A scalable and complete genotyping system is proposed by Marc et al.

[2011] to produce genotypes from a variety of genome data. This suite of tools is built on top

of Hadoop and MPI to support multiple nodes and large data sets. CloudBurst [Schatz, 2009]

uses Hadoop for parallel short read-mapping, which is used in a variety of biological analyses

including SNP discovery, genotyping, and personal genomics. The running time of CloudBurst
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is shown to scale linearly with the number of reads mapped, and with near linear speed-up as the

number of processors increases. In all these methods, all the data sets are distributed through

Hadoop’s data distribution strategy.

CloudBlast [Matsunaga et al., 2008] is a distributed implementation of NCBI BLAST. It

integrates a number of technologies, e.g., Hadoop, virtual workspaces and ViNe together, to

parallelize, deploy and manage bioinformatics applications. Comparing with MPI-based solu-

tions such as mpiBLAST, CloudBLAST shows improvement. It also simplifies the development

and management of the computing applications.

MRGIS [Chen et al., 2008] is a parallel and distributed computing platform based on MapRe-

duce for executing geoinformatics applications. A Hadoop environment with 32 homogeneous

worker nodes has been investigated for testing the efficiency of the MRGIS system.

Galaxy CloudMan [Afgan et al., 2010] is a batch queue processing system. It enables

individual researchers to compose and control an arbitrarily sized compute cluster on Amazons

EC2 cloud infrastructure without any informatics requirements. An entire suite of biological

tools is available in CloudMan for immediate consumption. In the architecture of CloudMan, all

data sets are stored in persistent storage components, and are delivered to different nodes from

there. However, as a resource management system, CloudMan does not consider optimization of

data distribution explicitly. In comparison, our work in this thesis investigates the optimization

problem.

Beside this, researches on top of Hadoop also use Hadoop task scheduling strategy to deal

with all the comparison tasks. First In, First Out (FIFO) is a simple and classic task scheduling

strategy. As the default Hadoop scheduler [Dean and Ghemawat, 2008], it orders the jobs in a

queue based on their arrival times, ignoring any heterogeneity in the system [Rasooli and Down,

2012]. Due to treat all the worker nodes in the system equally, Hadoop task scheduling strategy

can be much inefficient when running in the heterogeneous distributed computing systems

[Zaharia et al., 2008].

Recently, some researchers chose to process ATAC problems by using extended MapReduce

programming models like iHadoop and iMapReduce. iHadoop [Elnikety et al., 2011] is a

modified MapReduce model and optimized for iterative computations. iHadoop optimizes for

iterative algorithms by modifying the dataflow and task scheduling to allow iterations to run

asynchronously.
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iMapReduce [Zhang et al., 2011] also provides a framework that can model iterative algo-

rithms. It uses persistent tasks and keep all the tasks alive during the whole iterative process.

iMapReduce keeps a one-to-one mapping between the map and the reduce tasks and its task

scheduler assigns statically every map task and its corresponding reduce to the same worker.

Though each input data item has to be used for many comparison tasks in ATAC problems,

any two different data items only have to be compared once, which makes it have fundamental

differences between typical iterative algorithms [Yu and Hong, 2013]. Hence, treading ATAC

problems directly as iterative computing problems cannot bring significant performance im-

provement. Moreover, considering these solutions are all based on MapReduce programming

model, the issues of using MapReduce programming model are still exist.

The Hadoop distributed file system (HDFS) provides a strategy to distribute and store big

data sets. In the HDFS data strategy, data items are randomly distributed with a fixed number

of duplications among all storage nodes. While multiple copies of data items in HDFS enhance

the reliability of data storage, the HDFS data strategy is inefficient for all-to-all comparison

problems due to its poor data locality, unbalanced task load and big solution space for data

distribution [Qiu et al., 2009].

The inefficiency of Hadoop’s data distribution strategy in all-to-all comparison problems is

mainly due to the following reasons: 1) Although the number of replications of data files can

be manually set in HDFS, one does not know how to set this number and thus tends to use the

default number of three. Once set, this number becomes a constant regardless of the number of

machines and the number of data files. 2) The location of each data file is randomly determined

in HDFS. This is not suitable for general all-to-all comparison problems for high performance

that requires good data locality. 3) Increasing the number of replications of data files does

not necessarily improve the overall computing performance much due to the poor data locality

unless replicating the data files to everywhere.

Despite significant developments in processing all-to-all comparison problems, technical

gaps still exist in this area. The existing solutions mainly focus on parallelizing different all-

to-all comparison algorithms and providing load balancing. None of them have paid special

attention to data distribution. Most previous methods have assumed that all data can be stored

in each worker node, implying poor scalability for big data sets. While some of the existing

methods use distributed file systems such as HDFS in Hadoop, the data strategy in use is
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nonetheless inefficient when processing large-scale all-to-all comparison problems.

2.4 Existing Solutions Based on Other Computing Frameworks

As a technical tool that support processing computing problems with big data sets, computing

framework has emerged recent years in different domains [Dean and Ghemawat, 2008, Hill

et al., 2008, Hindman et al., 2011, Neumeyer et al., 2010, Zaharia et al., 2010]. Addressing

Hadoop’s weakness, improved methods have been proposed by many researchers. In this

section, solutions based on different computing framework are introduced.

2.4.1 All-Pairs

All-pairs [Moretti et al., 2010] is an abstraction for data-intensive computing on campus grids.

This research just focuses on the all-to-all problem and provides an abstraction for users to deal

with this kind of problem.

Figure 2.5: Comparison between two different architectures.

Results in Figure 2.5 compares the difference approach of distributed processing all-to-all

comparison problems. When using a conventional computing cluster, the user partitions the

workload into jobs, then a batch queue distributes jobs to CPUs, where they access data from

a central file server on demand. When using an abstraction like All-Pairs, the user states the

high-level structure of the workload, the abstraction engine partitions both the computation and

the data access, transfers data to disks in the cluster, and then dispatches batch jobs to execute

on the data in place.
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By considering issues such as the number of compute nodes, data distribution, dispatch la-

tency, failure probability, Resource limitations and semantics of failure, the system architecture

of All-pairs framework is briefly shown in Figure 2.6.

Figure 2.6: The architecture of All-pairs computing framework.

In this research, the all-pairs abstraction solves the all-to-all comparison problems in the

following steps:

1. Modelling the computing system and determine the numbers of computing nodes to use.

In order to decide how many CPUs to use and how to partition the work, this research

models the performance of the system by considering the size of input data, network

bandwidth and the dispatch latency of the system.

2. Distributing all the input data to every computing nodes.

To deliver all of the data to every node, a spanning tree method is developed, which

performs streaming data transfers and completes in logarithmic time.

3. Dispatching batch jobs to every computing nodes.

After transferring the input data, the All-pairs framework constructs batch submit scripts

for each of the grouped jobs and queues them in the batch system which instructions to

run on computing nodes.

4. Collecting all the output results.
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All the output results form All-pairs jobs goes to a distributed data structure provided by

the system. The data structure is a matrix whose contents are partitioned across a cluster

of reliable strong nodes maintained separately from the campus grid.

The user invokes All-Pairs as follows:

AllPairs SetA SetB Function Matrix,

where SetA and SetB are text files that list the set of files to process, Function is the function

to perform each comparison, and Matrix is the name of a matrix, where the results are to be

stored. Function is provided by the end user and may be an executable written in any language,

provided that it has the following calling convention:

Function SetX SetY,

where SetX and SetY are text files that list a set of files to process, resulting in a list of

results on the standard output.

In the current implementation of All-paris, the user’s function is essentially a single-CPU

implementation of All-Pairs. Though it has some advantages such as good usability, the benefits

of distributed systems are not fully utilized and the All-pairs is running basically like controlling

multiple single machine programs in the distributed environment through a centralized system.

Though this research provides the solution for solving general all-to-all comparison prob-

lems, there are still some limitations:

1. The All-pairs abstraction focuses on dealing with data that can be stored in every comput-

ing node. Therefore, the abstraction cannot deal with the all-to-all comparison problems

with huge amount of data.

2. The All-pairs abstraction supports only limited numbers of computing nodes that makes

the abstraction hard to be extended and it makes the users cannot make full use of all the

computing resources.

3. The All-pairs abstraction is designed to run in the campus grid which has some specific
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characters which makes the solution hard to run on other kinds of distributed computing

systems.

4. The applications running on All-pairs system are still traditional sequential programs,

which is not originally designed for distributed computing.

2.4.2 Bi-Hadoop

Bi-Hadoop [Yu and Hong, 2013] is an extension of Hadoop to better support binary-input

applications. As shown in Figure 2.7, it includes three parts: 1) An easy-to-use interface for

users to describe the association between a task and its inputs. 2) A task scheduling algorithm

that is able to exploit data locality for binary-input applications. 3) A caching mechanism

to accelerate data reads. The caching mechanism is an integral part of our extension that

materializes the improved data locality exposed by our scheduling algorithm.
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Fig. 1: Bi-Hadoop Extension System Overview

node. Note that existing Hadoop is unable to exploit such data
locality as it is designed with unary-input applications in mind.

Clearly it is necessary to improve Hadoop to better support
binary-input applications. In the following discussion, we will
present our proposed Hadoop extension that can significantly
improve the data locality for such applications.

IV. BI-HADOOP DESIGN

A. Design Challenges
Our extension aims to address the following design chal-

lenges:
• Programmability. We need to extend the programming

interface so that users can specify the inputs to the tasks.
We want the interface to be easy to program so that users
can focus on the main functionality of their applications,
rather than dealing with the interface itself.

• Transparency. The next goal is to make it easier for users
to achieve high performance. For this reason, we do not
want the users to be even aware of the data locality issues.
Bi-Hadoop is simply an improved version of Hadoop
that can execute binary-input applications faster. For this
reason, we reject all design alternatives that require users
to track/handle the locations of the data blocks.

• Non-intrusiveness. Bi-Hadoop takes certain amount of
memory resources at the compute nodes to speed up
binary-input applications. We want Bi-Hadoop to be fully
bypassable when the system is executing unary-input
applications, with close-to-zero overheads. Furthermore,
if a user application tries to use up the available memory,
we want Bi-Hadoop to gracefully disappear in the back-
ground and yield the resources to the user application.

B. Design Overview
Figure 1 illustrates an overview of Bi-Hadoop, which con-

tains the following components: (1) the input interface, (2)
the caching subsystem, and (3) the binary-input locality-aware
scheduler.

• Input interface. This component assigns IDs to splits. Bi-
Hadoop inherits the default Hadoop output format and
adds a hook so that an ID can be designated to each
split. In Bi-Hadoop, tasks are generated by calling a
user-defined filter function that specifies which two splits
would form a valid task. Tasks are internally represented

as a 2-D matrix using either dense or sparse format
depending on the application. The IDs assigned by the
user will be used to identify the splits in the user filtering
functions as well as by the scheduler.

• Scheduler. The scheduler first obtains the task repre-
sentation by applying the filter function from the user
interface, then gathers information about the locations
of the input data blocks (which DataNode has which
blocks), and subsequently calculates a locality-optimized
execution schedule. During the course of the execution,
the scheduler monitors the content of the caches on the
fly, and fine-tunes the schedule according to dynamic
locality information supplied by the caching subsystem.

• Caching subsystem. This component runs on each com-
pute node and is designed to cache the input splits
accessed by existing tasks (with the expectation that they
will also be needed by subsequent tasks). The caching
subsystem sits between MapReduce system and HDFS
system, therefore it is user transparent. It supplies a split
to the requesting map task if the split is in the cache,
and will seamlessly resolve to the native HDFS data read
mechanism when the requested split is missing in the
cache.

In the following, we will discuss the details of Bi-Hadoop
design, and analyze why it is capable of exploring data locality
for binary-input applications.

C. Design Details
1) User Interface
The Bi-Hadoop user interface is designed to assign IDs to

splits by letting the user name splits with strings.

1 // The Bi-Hadoop filter interface
2 public interface BiHFilter {
3 public boolean accept(String split0Id, String

split1Id);
4 }
5
6 // A usage example: matrix-vector multiply
7 public class MatVecMulFilter implements

BiHFilter {
8 public boolean accept(String split0Id, String

split1Id) {
9 if (!isAMatrix(split0Id)) return false;

10 if (!isAVector(split1Id)) return false;
11 colId = getMatrixColId(split0Id);
12 rowId = getVectorRowId(split1Id);
13 if (colId == rowId) return true;
14 return false;
15 }
16 }

Listing 1: Bi-Hadoop User Interface for Defining Tasks

An application can have one of the following input data
formats: (1) Each user input file has a granularity small enough
to define a split. In such case, file names can be naturally
used as the split ID. Users can set a flag in Bi-Hadoop to
specify such configuration. (2) Each input file is structured
and contains multiple file splits. In this case, users just need
to provide an ID file according to a predefined format, listing
split IDs and the file segments that each split maps to. (3)
The input files are unstructured. In this case, users need to
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Figure 2.7: Bi-Hadoop extension system overview.

Considering Bi-Hadoop is developed based on MapReduce programing model, users also

have to use programming interfaces such as Map and Reduce to implement their applications.

Beside this, users only need to perform one extra piece of work: specifying which two splits

form a task.

To finish this work, a user interface shown in Figure 2.8 is designed to assign IDs to splits

by letting the user name splits with strings.
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node. Note that existing Hadoop is unable to exploit such data
locality as it is designed with unary-input applications in mind.

Clearly it is necessary to improve Hadoop to better support
binary-input applications. In the following discussion, we will
present our proposed Hadoop extension that can significantly
improve the data locality for such applications.

IV. BI-HADOOP DESIGN

A. Design Challenges
Our extension aims to address the following design chal-

lenges:
• Programmability. We need to extend the programming

interface so that users can specify the inputs to the tasks.
We want the interface to be easy to program so that users
can focus on the main functionality of their applications,
rather than dealing with the interface itself.

• Transparency. The next goal is to make it easier for users
to achieve high performance. For this reason, we do not
want the users to be even aware of the data locality issues.
Bi-Hadoop is simply an improved version of Hadoop
that can execute binary-input applications faster. For this
reason, we reject all design alternatives that require users
to track/handle the locations of the data blocks.

• Non-intrusiveness. Bi-Hadoop takes certain amount of
memory resources at the compute nodes to speed up
binary-input applications. We want Bi-Hadoop to be fully
bypassable when the system is executing unary-input
applications, with close-to-zero overheads. Furthermore,
if a user application tries to use up the available memory,
we want Bi-Hadoop to gracefully disappear in the back-
ground and yield the resources to the user application.

B. Design Overview
Figure 1 illustrates an overview of Bi-Hadoop, which con-

tains the following components: (1) the input interface, (2)
the caching subsystem, and (3) the binary-input locality-aware
scheduler.

• Input interface. This component assigns IDs to splits. Bi-
Hadoop inherits the default Hadoop output format and
adds a hook so that an ID can be designated to each
split. In Bi-Hadoop, tasks are generated by calling a
user-defined filter function that specifies which two splits
would form a valid task. Tasks are internally represented

as a 2-D matrix using either dense or sparse format
depending on the application. The IDs assigned by the
user will be used to identify the splits in the user filtering
functions as well as by the scheduler.

• Scheduler. The scheduler first obtains the task repre-
sentation by applying the filter function from the user
interface, then gathers information about the locations
of the input data blocks (which DataNode has which
blocks), and subsequently calculates a locality-optimized
execution schedule. During the course of the execution,
the scheduler monitors the content of the caches on the
fly, and fine-tunes the schedule according to dynamic
locality information supplied by the caching subsystem.

• Caching subsystem. This component runs on each com-
pute node and is designed to cache the input splits
accessed by existing tasks (with the expectation that they
will also be needed by subsequent tasks). The caching
subsystem sits between MapReduce system and HDFS
system, therefore it is user transparent. It supplies a split
to the requesting map task if the split is in the cache,
and will seamlessly resolve to the native HDFS data read
mechanism when the requested split is missing in the
cache.

In the following, we will discuss the details of Bi-Hadoop
design, and analyze why it is capable of exploring data locality
for binary-input applications.

C. Design Details
1) User Interface
The Bi-Hadoop user interface is designed to assign IDs to

splits by letting the user name splits with strings.

1 // The Bi-Hadoop filter interface
2 public interface BiHFilter {
3 public boolean accept(String split0Id, String

split1Id);
4 }
5
6 // A usage example: matrix-vector multiply
7 public class MatVecMulFilter implements

BiHFilter {
8 public boolean accept(String split0Id, String

split1Id) {
9 if (!isAMatrix(split0Id)) return false;

10 if (!isAVector(split1Id)) return false;
11 colId = getMatrixColId(split0Id);
12 rowId = getVectorRowId(split1Id);
13 if (colId == rowId) return true;
14 return false;
15 }
16 }

Listing 1: Bi-Hadoop User Interface for Defining Tasks

An application can have one of the following input data
formats: (1) Each user input file has a granularity small enough
to define a split. In such case, file names can be naturally
used as the split ID. Users can set a flag in Bi-Hadoop to
specify such configuration. (2) Each input file is structured
and contains multiple file splits. In this case, users just need
to provide an ID file according to a predefined format, listing
split IDs and the file segments that each split maps to. (3)
The input files are unstructured. In this case, users need to
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Figure 2.8: Bi-Hadoop user interface.

Users specify the map tasks by customizing a filter class, which returns true if a pair of

split IDs form a task, and false otherwise. Figure 2.8 illustrate the simple interface and a usage

example of matrix vector multiplication. Users can manipulate the ID strings in a customized

fashion (such as getMatrixColId()) to identify the file split and form the tasks.

For all-to-all comparison applications, the unary input oriented Hadoop system has multiple

limitations:

1. Developers need to work around the unary input requirement, which makes it less natural

to program the applications.

2. When a workaround method is used, the built-in locality awareness of Hadoop becomes

less effective or non-effective.

3. As binary-input tasks often share their data blocks, there are many unique locality opti-

mization opportunities in these applications that cannot be exploited by existing Hadoop.

By providing a binary-input aware task scheduler and a caching subsystem, it outperforms

Hadoop by up to 3.3 times and a 48% reduction in remote data reads for binary-input applica-

tions.
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The key of this research is the specific caching system designed for all-to-all comparison

problems. It sits between MapReduce system and HDFS system, therefore it is user transparent.

It supplies a split to the requesting map task if the split is in the cache, and will seamlessly

resolve to the native HDFS data read mechanism when the requested split is missing in the

cache. However, though the caching mechanism improves the computing performance, based

on structure in Figure 2.7, all data still needs to be distributed through Hadoop’s data strategy.

Thus, these improved methods still have limitations.

2.5 Classification of Distributed Computing Systems

The computing framework and related strategies proposed in this thesis are based on the dis-

tributed computing systems. To fully understand the characteristics of distributed computing

systems, the classification and development of the distributed computing systems are introduced

in this section. Among different distributed systems, a special attention is paid on the distributed

computing system with distributed storage, which is the target platform for this PhD thesis.

A taxonomy of different computer architectures and their memory models are shown in the

figure 2.9. The broad classification of parallel computer models according to Flynn [1972], is

Single Instruction Multiple Data (SIMD) and Multiple Instructions Multiple Data (MIMD).

SIMD systems were widely used early days of parallel computing, but now facing extinc-

tion. These systems consist of many numbers (even thousands) of processors and each processor

has a local memory. Every processor must execute same instruction over different data, at each

computing or ’clock’ cycle. To bring the data to local memory, an explicit communication must

pass among different processors. The complexity and often the inflexibility has restricted it be

used mostly for special purpose applications [Trelles, 2011].

For MIMD systems, machines are more amendable to bioinformatics [Trelles et al., 1998].

In MIMD computers, each processor can execute asynchronously and independently from other

processors, at its own speed on different data. This flexibility has lead more attention of high

performance parallel computing to MIMD systems, including bioinformatics.

Shared and distributed memory structures have a clear distinction. A system is said to have

shared-memory architecture if any process, running in any processor, has direct access to any

local or remote memory in the whole system. Otherwise, the system has distributed memory
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Figure 2.9: Distributed computing system architecture taxonomy.

architecture.

Shared memory systems have natural advantages on processing all-to-all comparison prob-

lems. For example in the research proposed by Catalyurek et al. [2002], they employs a read-

only cache on Shared-memory system which can support multiple processors access the same

data sets concurrently. However, shared memory structures also have the following limitations:

1. Bandwidth of the shared memory system does not grow as the number of processors in the

machine increases, which implies poor scalability when processing all-to-all comparison

problems with big data sets.

2. Specific hardware are needed to built shared memory systems, which makes high system

cost.

Comparing to the shard-memory system, it is becoming increasingly cost-effective to build

large scale memory distributed computing system by using currently available off-the-shelf

components. Distributed memory systems have been widely used in many areas because of the

high processing power, scalability and availability. In this thesis, we are choosing developing



2.6. DIFFERENT CLUSTER MANAGEMENT PLATFORMS 35

our computing framework based on the distributed memory architecture which can make our

solution support more general scenarios.

2.6 Different Cluster Management Platforms

Driven by different kinds of applications, researchers and practitioners have been developing a

diverse array of cluster computing frameworks to simplify programming the cluster. It seems

clear that new cluster computing frameworks will continue to emerge, and that no framework

will be optimal for all applications. Therefore, a scalable and efficient system that supports a

wide array of both current and future frameworks is important. Two existing resource manage-

ment platforms will be introduced in this section.

2.6.1 Mesos

Apache Mesos [Hindman et al., 2011] is a platform for sharing commodity clusters between

multiple diverse cluster computing frameworks, such as Hadoop and MPI. Sharing improves

cluster utilization and avoids per-framework data replication. Mesos shares resources in a

fine-grained manner, allowing frameworks to achieve data locality by taking turns reading data

stored on each machine.

Figure 2.10: The architecture of Mesos.

Figure 2.10 shown the main components of Mesos. Mesos consists of a master daemon
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that manages slave daemons running on each cluster node, and Mesos applications (also called

frameworks) that run tasks on these slaves.

The master enables fine-grained sharing of resources (cpu, ram) across applications by

making them resource offers. Each resource offer contains a list of . The master decides how

many resources to offer to each framework according to a given organizational policy, such as

fair sharing, or strict priority. To support a diverse set of policies, the master employs a modular

architecture that makes it easy to add new allocation modules via a plugin mechanism.

Different computing frameworks such as Hadoop, Spark, Kafka and Elastic Search can be

implemented on top of Mesos platform. To integrated these frameworks with Mesos platform,

a scheduler and an executor must be implemented. The scheduler that registers with the master

to be offered resources, and the executor process that is launched on slave nodes to run the

frameworks tasks.

While the master determines how many resources are offered to each framework, the frame-

works’ schedulers select which of the offered resources to use. When a frameworks accepts

offered resources, it passes to Mesos a description of the tasks it wants to run on them. In

turn, Mesos launches the tasks on the corresponding slaves. An example of running computing

frameworks on top of Mesos is graphically shown in Figure 2.11.

Figure 2.11: An example of using Mesos.

The system runs in the following steps:

1. Slave 1 reports to the master that it has 4 CPUs and 4 GB of memory free. The master then



2.6. DIFFERENT CLUSTER MANAGEMENT PLATFORMS 37

invokes the allocation policy module, which tells it that framework 1 should be offered

all available resources.

2. The master sends a resource offer describing what is available on slave 1 to framework 1.

3. The frameworks scheduler replies to the master with information about two tasks to run

on the slave, using h2CPUs, 1GBRAMi for the first task, and h1CPUs, 2GBRAMi for

the second task.

4. Finally, the master sends the tasks to the slave, which allocates appropriate resources to

the framework’s executor, which in turn launches the two tasks (depicted with dotted-

line borders in the figure). Because 1 CPU and 1 GB of RAM are still unallocated, the

allocation module may now offer them to framework 2.

Mesos has the following Features:

• Fault-tolerant replicated master using ZooKeeper.

• Scalability to 10,000s of nodes using fast, event-driven C++ implementation.

• Isolation between tasks with Linux Containers.

• Multi-resource scheduling (memory and CPU aware).

• Efficient application-controlled scheduling mechanism (resource offers) that lets frame-

works achieve their own placement goals (e.g. data locality).

• Java, Python and C++ APIs for developing new parallel applications.

• Web UI for viewing cluster state.

2.6.2 Yarn

Yarn is next generation implementation for MapReduce. The fundamental idea of MRv2 is

to split up the two major functionalities of the JobTracker, resource management and job

scheduling/monitoring, into separate daemons. The idea is to have a global ResourceManager

(RM) and per-application ApplicationMaster (AM). An application is either a single job in the
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classical sense of Map-Reduce jobs or a DAG of jobs. By using ResourceManager and Appli-

cationMaster, Yarn can not only support MapReduce computing framework but also computing

frameworks with other computation patterns as shown in Figure 2.12.

Figure 2.12: Different layers of using Yarn.

Figure 2.13: The architecture of Yarn.
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The ResourceManager shown in Figure 2.13 has two main components: Scheduler and

ApplicationsManager.

• The Scheduler is responsible for allocating resources to the various running applications

subject to familiar constraints of capacities, queues etc. The Scheduler is pure scheduler

in the sense that it performs no monitoring or tracking of status for the application. Also,

it offers no guarantees about restarting failed tasks either due to application failure or

hardware failures. The Scheduler performs its scheduling function based the resource

requirements of the applications; it does so based on the abstract notion of a resource

Container which incorporates elements such as memory, CPU, disk, network etc. In the

first version, only memory is supported.

• The ApplicationsManager is responsible for accepting job-submissions, negotiating the

first container for executing the application specific ApplicationMaster and provides the

service for restarting the ApplicationMaster container on failure.

The NodeManager in each worker node is the per-machine framework agent who is respon-

sible for containers, monitoring their resource usage (cpu, memory, disk, network) and reporting

the same to the ResourceManager/Scheduler.

The per-application ApplicationMaster in each worker node has the responsibility of nego-

tiating appropriate resource containers from the Scheduler, tracking their status and monitoring

for progress.

2.7 Summary of Literature Review

In the literature review, we summarise the current approaches of solving all-to-all comparison

problems in distributed computing systems. Though distributed computing frameworks such as

Hadoop have been used, limitations are still exist in this area.

Firstly, solutions have been proposed for special-purpose all-to-all comparison problems

such as the popularly used BLAST [NCBI, 1990] and ClustalW [Center, 2007], or for different

types of computing architectures with GPUs [Xiao et al., 2011] or shared memory [Catalyurek

et al., 2002]. However, all these solutions require that all data files be deployed to each of the

nodes in the distributed system. While distributing whole data sets everywhere is conceptually
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easy to implement, it causes significant time consumption and communication cost and demands

a huge amount of storage space. Therefore, the data distribution strategy from these previous

solutions is not scalable to the big data processing problems considered in this thesis.

Secondly, efforts based on Hadoop computing framework have been summarized. Enabling

distributed processing of large data sets across clusters of commodity servers, Hadoop [Doug

and Mike, 2005] is designed to scale up from a single server to thousands of machines. With a

very high degree of fault tolerance, it can achieve high computing performance for distributed

computation that well matches the MapReduce computing pattern. However, the Hadoop dis-

tributed file system (HDFS) and its data distribution strategy are very inefficient for all-to-all

comparison problems due to the completely different computing pattern involved.

Thirdly, considering different scenarios, many researchers provide different computing frame-

works to overcome the limitation of Hadoop. Though the computing performance can be

improved, the existing solutions share different scenarios with our work. For our work in

this thesis, we plan to design a new computing framework specific for all-to-all comparison

problems, not only extend the Hadoop system or processing small scale ATAC problems.

In the following part, we introduce the different architectures of distributed platforms and

show both the advantages and disadvantages of different architectures. It will help us for fully

understanding the structural characteristics of distributed computing systems.

Finally, we discuss different cluster management platforms for distributed computing sys-

tem, which need to be considered and integrated in our implementation system.

Overall, we have covered most of the related areas of our research and have made a good

base to our research and a good understanding of the current state-of-the-art.



Chapter 3

The Front-end Interfaces for Distributed

Computing Framework of ATAC Problems

In this chapter, after formally defining the all-to-all comparison problem, the design of the

efficient and simple front-end interfaces is provided for the distributed computing framework

of ATAC problems. The front-end interfaces are designed for two purposes: the operation

interfaces for system users and the programming interfaces for application developers. Simple

operation interfaces are developed for uses to deploy their data sets and ATAC applications and

collect all the results. A programming model is designed to abstract the processing procedures

of general ATAC problems. It also provides powerful application programming interfaces

(APIs) to help developing ATAC applications without considering parallel system issues. After

describing the design of the front-end interfaces, this chapter ends with a typical ATAC example

of showing the use of the front-end interfaces.

3.1 All-to-all Comparison Problems

Let A, P , C and M denote the data set to be pairwise compared, the pre-process function on A,

the comparison function on A and the output similarity matrix of A, respectively. Characterized

by the Cartesian product or cross join of the data set A, the all-to-all comparison (ATAC)

problem discussed in this thesis is mathematically stated as follows:

M
ij

= C(P (A
i

), P (A
j

)), i, j = 1, 2, ..., |A| (3.1)

41
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where A
i

represents the ith item of A, M
ij

is the element of M resulting from the comparison

between A
i

and A
j

, |A| means the size of A.

* * * * * * *

* *

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

* *

*

A1 A2 A3 A4 A5 A6 A7 ...

A1

A2

A3

A4

A6

A7

A5

...

Figure 3.1: Similarity matrix of all-to-all comparison problems.

Generally, ATAC problems have the following qualities:

1. C(P (A
i

), P (A
j

)) = C(P (A
j

), P (A
i

))

There is no order between two different data items.

2. C(P (A
i

), P (A
i

)) = 0

The result of comparing two same data items is 0.

The original motivation for studying this problem came from bioinformatics, where the

elements being pairwise compared are typically genes or genomes [Hao et al., 2003, Wang,

2009]. The same pattern also applies in many other domains, e.g., comparing images, video or

audio in biometrics and data mining [Phillips et al., 2005].

In the following subsections, the current researches for ATAC problems in bioinformatic

and other different areas are introduced.

3.1.1 All-to-all Comparison Problems in Bioinformatics

Bioinformatics is a science to store, search and analyse biological information using computer

science and technology [Xu et al., 2007] and all-to-all comparison is a key calculation stage in

Multiple Sequence Alignment (MSA) and studying of phylogenetic diversity in protein families
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[Trelles et al., 1998]. Normally, applications for these problems include the calculation of

a cross-similarity matrix between each pair of sequences followed by several data grouping

stages.

Multiple Sequence Alignments (MSA) is an essential method for protein structure and func-

tion prediction, phylogeny interference and other common tasks in sequence analysis [Edgar

and Batzoglou, 2006]. The first stage for solving a MSA includes calculating a cross-similarity

matrix between each pair of sequences, followed by determining the alignment topology and

finally solving the alignment of sequences. Numerous methods have been proposed to align

more than two sequences (MSA) which involve pair-wise all-to-all comparison [Barton, 1990,

Feng and Doolittle, 1987, Higgins and Sharp, 1988, Jaap and Heringa, 1999, 2002, Notredame

et al., 2000, Schuler et al., 1991, Thompson et al., 1994]. Although these methods give useful

results, they are computationally intensive [Date et al., 1993]. This pair-wise comparison is a

natural target for parallel as each comparison is independent from others [Trelles et al., 1998].

Beside this, alignment-free methods [Vinga and Almeida, 2003] are increasingly used for

genome comparison, in particular for genome-based phylogeny reconstruction. For many pop-

ular alignment-free methods such as feature frequency profile (FFP) [Sims et al., 2009], com-

position vector (CV) [Chan et al., 2010, Wang, 2009], return time distribution (RTD) [Kolekar

et al., 2012], they all have all-to-all comparison as a major computation step.

3.1.2 All-to-all Comparison Problem in Other Domains

Beside bioinformatics, computing problems with the all-to-all comparison pattern can also be

found in domains such as Biometrics and data mining.

Biometrics is the science and technology of identifying humans from measurements of the

body characteristics, such as fingerprints, eye retinas and irises, voice patterns, facial patterns.

For a biometric pattern recognition system, it usually acquires biometric data from an indi-

vidual, extracts a feature set from the acquired data, and compares this feature set against

the template set in the database. Matching scores will be generated to quantify the similarity

between the input and the template representations [Jain et al., 2004].

In the data mining area, one phase of knowledge discovery is reacting to bias or other noise

within a set. In order to improve overall accuracy, researchers must determine which classifiers
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work on which types of noise. To do this, they use a distribution representative of the data set

as one input to the function and a type of noise (also defined as a distribution) as the other. The

function returns a set of results for each classifier, allowing researchers to determine the most

suitable classifier for that type of noise on that distribution of the validation set [Moretti et al.,

2010].

In addition to these areas above, there are also many computing problems that are similar

to all-to-all comparison pattern but for different purposes such as data clustering or filtering

[Andoni and Indyk, 2008, Bayardo et al., 2007].

Based on the above introduction, it is clearly that computing problems with all-to-all com-

parison pattern have been widely applied in various domains and the research for processing

all-to-all comparison problems by using distributed computing systems is necessary to help

users solving this kind of problems efficiently.

3.2 Overview of the Distributed Computing Framework for ATAC Prob-

lems

In this section, the architecture of our distributed computing framework for all-to-all compar-

ison problems is graphically shown in Figure 3.2. For our distributed computing framework,

mainly three roles are involved: the system users, the application developers and the back-end

computing system.

To simplify the utilization of our distributed computing framework, the front-end users and

back-end computing systems are designed to be separated. In Figure 3.2, there are three layers

designed in our distributed computing framework:

1) User Layer.

There are two types of users in our distributed computing framework: 1) users who are

focusing on solving specific ATAC problems and 2) developers who are responsible for

implementing ATAC applications.

Generally users are mainly focusing on getting and analysing the comparison results

for specific purposes. Considering users usually do not have specialized knowledge
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Figure 3.2: Architecture of the All-to-all computing framework.

about distributed computing and application development, freeing them from the imple-

mentation issues can greatly reduce the threshold for using our distributed computing

framework.

To develop the domain-purpose ATAC applications, user should provide application re-

quirements such as all-to-all comparison algorithms, input/output data types to developers
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so the developers can implement all-to-all comparison applications based on these infor-

mation. For these developers, the efficient of developing the ATAC applications in the

distributed environment is closely related to the distributed system issues them have to

consider.

By considering both the users and developers, two different kinds of interfaces are de-

veloped in our distributed computing framework, which will be discussed later in this

chapter.

2) Interfaces Layer.

In our distributed computing framework, to minimize the affections made by the complex

distributed system issues, the interface layer is designed to make the back-end computing

system transparent to users. Hence, users only have to pay attention on the aspects related

to their work. Complex distributed issues will be handled automatically by our computing

framework.

By interacting with the simple interfaces, user and developers do not have to understand

the details of the back-end computing systems. Also, the programming APIs provided

to developers do not require specific parallel programming techniques, which can make

developers implement all-to-all comparison applications efficiently. Moreover, the in-

terfaces are designed for general ATAC problems so ATAC applications with different

algorithms, data types or resources requirements can all be supported.

3) System Layer.

For our distributed computing framework, the data distribution, task scheduling and task

execution are responsible by the back-end computing system. It is based on the distributed

cluster and a master/slaves structure is used in this computing system. After users and

developers providing the required data sets and ATAC application, the whole work flow

will be automatically divided and distributed to different worker nodes by following the

specific data distribution and task scheduling strategies developed in this thesis.

Considering our computing framework is based on general distributed computing ar-

chitecture and does not have any special requirements such as shared-memory, limited

number of worker nodes or specific network topology, the hardware system can straight-

forward to be extended to achieve higher performance, the experiments designed in the

following chapters also show the high scalability for our computing framework.
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In this chapter, we are focusing on describing about the design of front-end interfaces. The

details of back-end computing systems will be discussed in the following chapters.

3.3 User Interfaces Design

As we mentioned in Figure 3.3, for users who aim to solve ATAC problems, the only operations

needed are submitting their data and applications to the system and collecting the final compari-

son results. Thus, to help users finish the necessary work, our distributed computing framework

provides three simple user interfaces: data interface, application interface and result interface.

…
…
…

…
…

…

Figure 3.3: User interfaces for the All-to-all computing framework.

3.3.1 Data Interface

Before running the all-to-all comparison applications, the required data sets need to be deployed

to the distributed system first. In our front-end interfaces, a data interface is designed to help
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users upload their data to the distributed system.

The data interface is designed as follows:

Datadistribution (Source path, Destination path)

Table 3.1: Parameters of the data interface.

Parameters Details
Source path The location of the input data set
Destination path The location to save all the distributed data

In this data interface, users only have to provide the information about the location and

destination of data sets as shown in Table 3.1. Usually the input data sets is stored in the client

node operated by users, where the source path can direct to a folder. For destination path,

though different partitions of data sets will be stored in different worker nodes in the back-end

distributed system, a global unified path is used to simplify the users’ operation.

Based on the information provided by users and the information collected from distributed

systems, our back-end computing system will distribute all the data files to each worker node

based on our data distribution strategies.

3.3.2 Application Interface

Another information needs to be provided by users is the specific ATAC applications developed

for their domain-purpose ATAC problems. Our computing framework provides an application

interface for users to deploy their applications to the back-end distributed computing systems.

The application interface is designed as follows:

ApplicationDeploy (Source path , Destination path, Configuration file)

In the application interface, users need to define three parameters shown in Table 3.2.

Same as the data interface, the ATAC application is usually uploaded from the client node,

where the source path can be direct to the ATAC application. A global unified destination path

is used to show the location of ATAC applications.



3.3. USER INTERFACES DESIGN 49

Table 3.2: Parameters of the application interface.

Parameters Details
Source path The location of the application
Destination path The location to save the deployed application
Configuration file Information related to run the application

Table 3.3: Configurations of the ATAC application.

Items Details
Data path The location of data sets need to be processed
Result path The location of all the comparison results

Configuration file is stored in the master node to provide required information for the master

node. For each ATAC application, each time before starting the application, the data need to be

processed should be determined and the output path of all the comparison results should also be

provided. By putting all these information into the configuration file, developers do not have to

compile the ATAC application each time after these value are changed.

Different from deploying data sets, in our distributed computing framework, the ATAC

applications should be both deployed to the master node and worker nodes. It is because though

the execution parts are finished on different worker node, the master node is responsible for

starting, generating, scheduling and monitoring all the comparison tasks.

By using the application interface, users’ applications can be deployed in both the master

and worker nodes in the back-end computing system. Also, the configuration file can provide

the system the needed information about the comparison tasks.

3.3.3 Result Interface

After finishing all the comparison tasks, all the results are collected and provided to the users

for further processing. For ATAC problem shown in Chapter 2, all the results are organized as

a similarity matrix. In order to make users operate all the results simply and intuitive, in our

result interface a matrix data structure is developed to provide different methods for users to

operate comparison results.

The matrix data structure provides the following methods for users:
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1. Collect all the comparison results.

Matrix Getallresult()

This method is provided for users to collect all the comparison results.

2. Collect the certain comparison result.

Result Getresult(indexx, indexy)

By using this method, users can get certain comparison result by providing the value of

index x and y.

3. Collect results from certain row.

List < Result > Getrowresult(indexx)

By using this method, users can get all the comparison results from a certain row by

providing the value of index x.

4. Collect results from certain column.

List < Result > Getcolumnresult(indexy)

By using this method, users can get all the comparison results from a certain column by

providing the value of index y.

By providing the matrix operation methods for users, it can improve the efficiency of

operating all the comparison results based on users’ purposes. Users can use these interfaces

transfer the comparison results to other analysis tools for further processing.

In this section, three different interfaces are developed for users to operate our distributed

computing framework. These interfaces are designed to support users deploy data sets and

ATAC applications and collect all the comparison results. No distributed system issues are

involved in these operation interfaces, which lowers the study cost of using our distributed

computing framework. In the next section, the development of the programming model for

ATAC problems and application programming interface (API) are described.
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3.4 ATAC Programming Model

As an abstraction of the computation procedures, programming model is designed to handle the

distributed system issues such as data distribution, task scheduling and resource management

automatically and provide users simple application programming interfaces (APIs) to help

implementing computing problems.

In this section, a distributed programming model for ATAC problems is developed. Fol-

lowed by the design targets, our programming model integrated with the specific data distri-

bution strategy and task scheduling strategy for ATAC problems. In the end, the comparison

between our programming model and MapReduce is listed to shown the differences.

3.4.1 ATAC Workflow and Challenges

A general workflow of ATAC problem can be graphically shown as Figure 3.4 :

Sn
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Compare
(S1,Sn)

Compare
(S1,S2)

Compare
(S2,Sn)

DATA Similarity
Matrix

DATA 
Reuse

Input data 
set

Input data 
files

Pair-wise 
Comparison 

Output 
results

Figure 3.4: Processing steps for solving ATAC problems.

In Figure 3.4, we can see that the pair-wise comparison phase is the key step in processing

ATAC problems. Moreover, each comparison operation needs to process two different data files,

which means each data file has to be reused many times. In the end, all the results generated

from comparison operations need to be collected and output as a similarity matrix.

Though it is straightforward to solve ATAC problems in a centralized way, challenges come
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from when distributed processing ATAC problems with big data sets. In a distributed computing

system, the following issues need to be considered:

1. Data reuse may cause massive data movement.

For example in Figure 3.4, if one data file is reused by multiple comparison tasks running

in different worker nodes, this data file has to be copied to all the related worker nodes.

This indicates both the massive data transmission and huge storage usage caused by

numbers of data replications, which can be a serious performance problem in processing

large amount of data files.

2. Data location may cause inefficient task scheduling.

As we mentioned in Chapter 2, data locality is one of the most important principles for

scheduling computation tasks. Tasks gain good data locality can process input data from

local disk, which greatly reduce the cost spend on remote accessing. While for ATAC

problems, data pairs stored in two different worker nodes makes it hard to guarantee good

data locality for the related comparison task. In this situation, scheduling the comparison

task to any one of the worker nodes cannot avoid remote accessing data.

As we discussed in Chapter 2, MapReduce programming model has been chosen to solve

ATAC problems in various application areas. Though the procedures of processing MapReduce

application and ATAC application have some similarities, there are huge differences which can

significantly affect the system performance. In this part, the challenges of distributed processing

ATAC problems are summarized.

Inefficient Workflow Design

To use MapReduce programming model, ATAC applications are implemented by combining

multiple Map and Reduce tasks. Though ATAC problems can be processed based on MapRe-

duce programming model in this way, performance degradation is inevitable if we only piece

together Map and Reduce tasks to form a workflow without considering the design principles

of MapReduce programming model.

1. Modify Map to support binary inputs.
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Figure 3.5 shows parts of a modified MapReduce workflow proposed by Chen et al.

[2013]. In order to make map task support two different input data splits, FPatMiner

tasks are added before Map tasks to pre-process input data splits. By using this method,

two different data splits can be processed by the same Map task.

Split 0

Split 1

Split 2

Split 3

SpatMiner

SpatMiner

SpatMiner

SpatMiner

Map

Map

Read
Read

Figure 3.5: Modified Map tasks to support multiple inputs.

However, the principle for designing Map tasks in MapReduce programming model is

that each Map task is prefer to be scheduled and executed in the worker node with local

input data, which means a good data locality and potential high performance for all the

Map tasks. In this case, it is obviously that each Map task needs to read two different data

splits, which are usually located in different worker nodes.

2. Modify Reduce to take charge of heavy computations.

Considering Reduce task can support multiple inputs, many researchers use it to process

large data sets collected from different worker nodes. For example in the research made

byZheng et al. [2013], scalar multiplication is finished in each Reduce task to process a

complete matrix. While in MapReduce programming model, Reduce tasks are designed

to sum up intermediate results from Map tasks in remote worker nodes, thus it does

not have the qualities such as good data locality, locality-aware scheduling. Therefore,

designing Reduce tasks for large data processing is inefficient due to the original design

limitations of MapReduce programming model.

Moreover, some researches modified Reduce tasks and Map tasks as one-to-one relations

[Singhal and Guddeti, 2014] or one-to-all relations [Farzanyar and Cercone, 2013] to meet

specific requirements. Though these modifications aim to implement complex workflow,

extra programming work is brought for developing these enhanced functions, which

sacrifices the simplicity of MapReduce programming APIs.
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Inefficient Data Distribution and Task Scheduling

As a data parallel processing model, the high performance of MapReduce programming model

gains not only because of the simplified programming interfaces, but also the cooperated data

distribution and task scheduling strategies. The inner reason that solving ATAC problems by

using MapReduce is inefficient is the unsuitable data distribution and task scheduling strategies.

In Hadoop’s data distribution strategy, data items are randomly distributed with a fixed

number of duplications among all storage nodes. This random data distribution strategy works

well for MapReduce programming model due to the following two reasons: 1) Map Task is

designed to process single input and 2) Map tasks are scheduled by locality aware strategy.

While for ATAC problems shown in Figure 3.4, due to each comparison task needs to

process two different data files, randomly distributing data files cannot promise the pair-wise

data co-location. Furthermore, when Map tasks have to process data files stored in two different

worker node, the locality aware scheduling strategy is also invalid. Though approaches like

Bi-Hadoop added data cache system and enhanced task scheduler to solve these problems, the

improvement is still limited by the fundamental system architecture.

In our previous work [Zhang et al., 2014, 2015a,b,c,d], the performance degradation caused

by these issues have been fully discussed. In the next section, a programming model designed

for general ATAC problems is provided to solve the above challenges.

3.4.2 ATAC Programming Model Design Targets

Based on the challenges discussed in Subsection 3.4.1, our programming model for ATAC

problems is designed by considering the following targets:

1. Comparison operation is designed for binary inputs.

As we discussed in Section 3.4.1, ATAC applications are hard to be implemented by using

MapReduce programming model because the multiple inputs are not supported by Map

tasks. Hence, in our programming model, a comparison operation with binary inputs is

provided for users to easily implement ATAC problems.

2. Good data locality for comparison operations.
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Making all the comparison tasks have good data locality is important in achieving overall

high performance. In our programming model, the task-oriented data distribution strategy

is integrated to distribute data in a pair-wise way. Moreover, the locality aware scheduling

is integrated to schedule comparison tasks based on data pairs co-location.

3.4.3 ATAC Programming Model Design

In the following parts, we will explain our programming model from three aspects: program-

ming interface, data distribution and task scheduling.

Programming Interface

One programming interface—Compare is provided by our programming model. Figure 3.6

briefly shows the input and output of the programming interface.

<K1,V1> <K2,V2> <Kn,Vn>…...

Compare <Vi,Vj> <Vij>

Collect by system automaticallyMatrix

Figure 3.6: The programming interface of our programming model.

As shown in Figure 3.6, all the input are organized as key/value pairs. For instance, K
i

and

V
i

can be the index of file i and the content of file i, respectively.

For the Compare function, it accepts two different values V
i

, V
j

and outputs one comparison

result as V
ij

. In our programming model, a list of comparison results will be generated from all

the comparison tasks.

Then, all the comparison results generated by Compare tasks will be collected automatically

by our computing framework through the Collect task. Finally, a similarity matrix is generated

to store all the comparison results.

Our Java implementation gives users freedom to define the types of K
i

, V
i

, V
ij

and a data

structure is also developed to save comparison results as the matrix.
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Data Distribution

In our programming model, each worker node only stores a subset of all the data files. As

we discussed in Section 3.4.1, data distribution affects the performance of comparison tasks

significantly. Our programming model integrates a task-oriented data distribution strategy

(TODD), which has the following qualities:

1. Pair-wise data co-location for all the comparison tasks.

To make all the comparison tasks have good data locality, TODD strategy promises any

two different data files can be found in at least one worker node.

2. Static load balancing for the system.

TODD strategy makes each worker node have numbers of comparison tasks proportional

to its processing power. In this way, static system load balancing can be promised to make

full use of computing resources.

The TODD strategy that meets the above acquirements has been developed in our previous

works to support both homogeneous [Zhang et al., 2014, 2015b,d] and heterogeneous [Zhang

et al., 2015a,c] systems. The details of data distribution strategy will be discussed in the

following chapters.

Task Scheduling

After distributing all the data sets, comparison tasks need to be scheduled and executed. The

task scheduling strategy in our programming model has the following qualities:

1. Locality aware with no data movement.

In the data distribution phase, the data co-location for all the comparison tasks have

already been considered. Hence, our locality aware scheduling strategy is designed to

always allocate comparison tasks to a worker node with all the required data files.

2. System load balancing is promised.

In our programming model, a static scheduling strategy is provided to allocate comparison

tasks by accepting the task assignment suggested by our data distribution strategy Zhang
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et al. [2015a]. Furthermore, considering the changing computing resources and different

execution time for each comparison task, a dynamic scheduling strategy is also provided

to support the more flexible scenarios Zhang et al. [2015a]. The details of task scheduling

strategies will be discussed in the following chapters.

In the next subsection, we will summarise our programming model by comparing with

MapReduce from different aspects.

3.4.4 Comparison with MapReduce Programming Model

One approach for distributed solving ATAC problems is to use MapReduce programming model.

Though the workflow of processing MapReduce application and ATAC application looks similar

(Figure 3.7), there are huge differences which can significantly affect the system performance.
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Results

Input data set Data distribution Task scheduling & execution Output results

Collect()
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S2
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Map()
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MapReduce
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Figure 3.7: Comparison between two programming models.

Here Table 3.4 summarised the different design targets for these two programming models.
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Table 3.4: Comparison between our programming model and MapReduce.

MapReduce ATAC Programming Model

Data
distribution

Data files are randomly distributed to
different worker nodes with fixed number
of replications.

Data files are pair-wise and task-oriented
distributed to different worker nodes.

Data
locality

Map task is designed to have good data
locality and it processes single input data.

Comparison task is designed to have
good data locality and it processes two
different input data.

Locality
aware
scheduling

Map task is scheduled and executed on
the worker node where stores the related
single input data.

Comparison task is scheduled and
executed on the worker node where
stores required input data pairs.

Result
collect

Reduce task is designed to collect remote
intermediate results and generate final
output.

Collect task is designed to collect remote
comparison results and generate final
similarity matrix.

3.5 ATAC Computing Framework Implementation

In this section, after describing the architecture of our implementation system, we will show

how to use the front-end interfaces of our distributed computing framework for solving the

CVTree problem, which is a typical all-to-all comparison problem widely existed in bioinfor-

matics.

By following the above design targets, the implementation of our programming model for

ATAC problems is shown in Figure 3.8 :

3.5.1 ATAC Computing Framework Architecture

In our research, a prototype ATAC computing framework is implemented by integrating differ-

ent open-source distributed systems as shown in Figure 3.9.

In Figure 3.9, there are the following four layers:

1. Application Layer. The programming interfaces described in Subsubsection 3.4.3 is

provided for users to develop ATAC applications.

2. Services Layer. The key components of our computing framework is designed as services

layer. By using the scheduling APIs provided by Mesos, a locality-aware task scheduler
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Figure 3.8: Overview of the ATAC programming model implementation.
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Figure 3.9: ATAC programming model implementation.

which implemented our task scheduling strategy (Subsubsection 3.4.3) is developed. A

task-oriented data distributor is developed to implement our data distribution strategy

(Subsubsection 3.4.3).

3. Support Layer. In our implementation, Mesos is chosen as a distributed system manager
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that provides basic functions such as system resource management, network commu-

nication and task status monitoring. Beside this, distributed file systems like Hadoop

distributed file system (HDFS) is chosen to provide the functions for data storage and

data transmission.

4. Hardware Layer. Our computing framework is designed to run on the distributed sys-

tems with distributed storage, which is widely used because of cost effectiveness, high

reliability and high scalability.

In the next subsection, a typical ATAC application is used to show the efficiency of using

our programming model.

3.5.2 ATAC Computing Framework Execution

The use of our front-end interfaces can be classified into two steps: 1) developing the CVTee ap-

plication by developers and 2) implementing this application on top of our back-end computing

system by users.

The overview of the ATAC computing framework execution is graphically shown in Figure

3.10. In Figure 3.10, to solve an ATAC problem, users and developers only have to use

the operation interfaces and programming interfaces provided by our distributed computing

framework. The whole framework execution briefly includes the following steps:

1. ATAC application Development.

2. Deployment of related data sets and ATAC applications.

3. Execution of all the computing tasks in the back-end computing system.

To users, after implementing required ATAC applications and providing related data sets, all

the inputs will be distributed to different nodes in the system automatically. Then the system will

allocated suitable number of comparison tasks to different worker nodes based on the scheduling

strategy we developed. Finally the results will return to users for the further analysis.
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Figure 3.10: Overview of the execution of our computing framework.

Application Development

In this section, the CVTree application is developed by using the programming interfaces

provided by our programming model.

To develop CVTree application, as we mentioned in Section 3.4.3, methods Compare and

Collect need to be implemented by the developer. The simple codes for CVTree application is

shown as follows:
1 public class Cvtreesystem extends

ComputingSystem<String,String,Double>{
2 ......
3

4 public Double Compare(String content,String content){
5

6 Init();
7 InitVectors();
8 StringReader in = new StringReader(content);
9 ......

10 List<Object> intermediateData = new ArrayList<Object>();
11

12

13 counta=getcount(intermediatedataa);
14 countb=getcount(intermediatedatab);
15 ......
16 return correlation / (Math.sqrt(vector_len1) *

Math.sqrt(vector_len2));}
17

18 public Matrix<String,Double> matrix Collect(){
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19

20 Map<List<String>,Double> resultpairs = matrix.Getallresult();
21 File filename;
22 FileWriter fw = null;
23 ......
24 return resultpairs;}
25 ......}

In the CVTree application, we can see that developers only have to define the comparison

method between two different input data. How to implement this method to all the input data

files among the distributed computing systems will be automatically handles by our computing

system.

Data and Application Deployment

After developing the CVTree application, to make it run in our distributed computing frame-

work, the user needs to distribute the data sets and application to the back-end computing system

by using the user interfaces developed in Section 3.3.

1. Distribute data sets.

In this example, we plan to distribute 124 gene files to our distributed computing system.

The format of the .FAA file is expressed as follows:

> gi|9964581|ref |NP064770.1|

FTKLIKLY CY NTRIDSLKGIENLIKLKEL

In order to distribute all the data files, users have to use the front-end data interface by

providing the following informations:

Datadistribution(\user\data, \home\CV Tree\Data)

2. Deploy CVTree application.

In this step, after providing the CVTree application, users also have to provide a con-

figuration file which includes the name of all the data files need to be processed by the

CVTree application. The application interface can be used as follows:

ApplicationDeploy(\user\app, \home\CV Tree\App, \user\config\config)
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After distributing all the data files and deploying the CVTree application, the user can run

the CVTree application by inputting the simple commands and monitor the running details for

the system graphical interface.

For this example, the final comparison results are stored like this:

Key : [BAdV
A

.faa, AtHV3.faa]V alue : 6.855431355112651E � 4

Key : [ATV.faa,BAdV
A

.faa]V alue : 8.319012406344845E � 4

Key : [BAdV4.faa,BAdV
A

.faa]V alue : 0.016691341041739863

The content of key stores the name of two different input data files and the value represents

the comparison result between these two different data files.

In this chapter, we discussed the front-end interfaces provided by our distributed computing

framework and a CVTree example was used to show the use of our front-end interfaces for

solving a typical all-to-all comparison problem.

3.6 Conclusion

In this chapter, after formally defining the all-to-all comparison problems, the overview of the

ATAC distributed computing framework is presented. Front-end interfaces are developed for

both users and developers to solve ATAC problems. Simple operation interfaces are provided

for users to use the ATAC distributed computing framework without any consideration of back-

end implementation issues. Also, a distributed programming model for ATAC problems is

designed. By abstracting the basic computation of ATAC computing pattern, this programming

model provides powerful and efficient application programming interfaces (APIs) for develop-

ers to implement ATAC applications with different domain backgrounds. In the end, CVTree

applications in bioinformatics is used to show the using of all the front-end interfaces of the

ATAC distributed computing framework.

In Chapter 4, we are going to discuss about the data distribution strategy and static task

scheduling strategy integrated in the back-end distributed computing systems.
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Chapter 4

Heuristic Data Distribution Strategy for ATAC

Problems in Homogeneous Distributed Systems

To solve all-to-all comparison problems with big data sets, as we mentioned in Chapter 1,

distributing huge amount of data files to the distributed computing system affects the overall

computing performance greatly. In this chapter, a heuristic data distribution strategy is de-

veloped for processing all-to-all comparison problems in homogeneous distributed computing

systems. Beginning with the conclusion of principles for data distribution, the challenges of

distributing data files for ATAC problems are discussed from different aspects. After formulat-

ing the data distribution problem, a heuristic data distribution algorithm based on greedy idea

is provided. The data distribution strategy not only saves storage space and data distribution

time but also achieves load balancing and good data locality for all comparison tasks of the all-

to-all comparison problems. Based on the results of data distribution, a static task scheduling

strategy followed with our data distribution strategy is also provided to allocate comparison

tasks in a way that achieving system static load balancing. In the end, different experiments

are conducted to demonstrate the effectiveness of the data distribution strategy in homogeneous

distributed computing systems.

4.1 Principles for Data Distribution

A typical scenario for using distributed computing systems in all-to-all comparison problems

is described as follows and is shown in Figure 4.1. In general, a data manager should manage

and distribute all the data to the worker nodes first. Then, computing tasks are generated and

65



66
CHAPTER 4. HEURISTIC DATA DISTRIBUTION STRATEGY FOR ATAC PROBLEMS IN

HOMOGENEOUS DISTRIBUTED COMPUTING SYSTEMS

allocated by the job tracker to the worker nodes. Lastly, the computing tasks are executed by

the task executor to process related data sets.

It is seen from the work flow in Figure 4.1 that to solve all-to-all comparison problems

efficiently both the data distribution and task computation phases need to be improved.

Figure 4.1: General work flow for solving all-to-all comparison problems in distributed
computing environments.

Two issues affect the overall computing performance of big data processing in distributed

environments. They are data locality and computing task allocation.

• Data locality is a basic principle for processing big data problems. It means that the

computing operation is generally more efficient when it is allocated to a worker node

near the required data. Computation tasks which need to access remote data sets can be

very inefficient due to the heavy network communications and data transmission.

• The distributed computing of big data problems is more efficient when all the worker

nodes are allocated suitable numbers of computing tasks which match their processing

capability. In that case, all the computing power of the system can be efficiently utilized.
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Therefore, a data distribution strategy for distributed computing of all-to-all comparison

problems should enable:

1. Good data locality for comparison tasks.

2. Load balancing of comparison tasks through allocation of tasks with good data locality.

These are the basic principles for design of a data distribution strategy in distributed com-

puting of all-to-all comparison problems.

4.2 Challenges of the Data Distribution Problem

As we mentioned in Chapter 2, storing all the data to everywhere and Hadoop data strategy

are two widely used data distribution strategies in solving ATAC problems. In this section, the

drawbacks of these two data distribution strategies will be deeply discussed.

4.2.1 Issues of Storing All the Data to Everywhere

Storing all the data files to every worker node in the system is a straightforward way in dis-

tributing all the data files. For many solutions such as [Heitor and Guilherme, 2005, Mendonca

and de Melo, 2013], they all choose to make each worker node store all the required data

files. Though in this way high reliability can be achieved by making each data files have the

maximum number of copies and any comparison tasks can be allocated to any worker node, this

data distribution strategy is not suitable for processing large amount of data files.

Huge Storage Usage

Storing all the data files to all the worker node is a natural idea inherited by the centralized

solutions. Distributed systems with this data strategy is straightforward to be designed because

this data strategy avoids the issues brought by partitioning data sets and makes the system

only have to consider scheduling computation tasks. While for putting all the data files to

everywhere, the storing usage can be too huge to afford for processing big data problems.

For example, let us consider M data files have to be processed in a distributed systems with
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N worker nodes. In order to store all the data files to each worker node, totally MN data files

need to be stored in the system.

Considering in the application areas as we mentioned in Chapter 2, typical all-to-all compar-

ison problems usually need to process large amount of data files. For instance, in one experiment

proposed by Moretti et al. [2010], nearly 60000 data file were pair-wise compared on a vary set

of 100-200 machines. In this case, at least 6 million data files need to be stored in the system,

which will cost much distribution time and huge storage usage.

Wasted Storage Usage

Moreover, storing data in this way can make most of the data files never be used. For all-to-all

comparison problems with huge data sets, storing data files just to achieve high reliability can

be a overnighting and waste of resources.

Considering an example with 9 data files and 3 worker nodes. Totally 36 comparison

tasks need to be executed. Figure 4.2 shows a possible data distribution for these 9 data

files. Distributing data files as shown in Figure 4.2 can make each worker node be allocated

12 different comparison tasks. Hence all the comparison tasks can be finished without any

further data movement and the system load balancing can also be achieved.

Figure 4.2: A possible situation for processing 9 data files in a 3 worker nodes distributed
system.

In this simple case, for 9 data files, we only have to store 6 data files on each worker node.

This means it can be 30% storage waste comparing to store 9 data files to each worker node

and the result can be much more worse when the number of data files and the number of worker

nodes are growing.
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4.2.2 Issues of the Hadoop Data Strategy

Hadoop data strategy has been widely used in many researches for solving all-to-all comparison

problems. The Hadoop distributed file system (HDFS) provides a strategy to distribute and store

big data sets. In the HDFS data strategy, data items are randomly distributed with a fixed number

of duplications among all storage nodes. While multiple copies of data items in HDFS enhance

the reliability of data storage, the HDFS data strategy is inefficient for all-to-all comparison

problems due to its poor data locality, unbalanced task load and big solution space for data

distribution [Qiu et al., 2009]. In the following subsections, we will discuss the drawbacks of

using Hadoop data strategy for solving ATAC problems.

Poor Data Locality in HDFS

The Hadoop’s data strategy is designed for a trade-off between high data reliability and low

read/write cost. From this design perspective, it does not consider the data requirements for

comparison tasks that follow.

For example, consider a scenario with 6 data items and 4 worker nodes. A possible solution

for the Hadoop’s data strategy is shown in Figure 4.3. It is seen from Figure 4.3 that although

each of the 6 data items has two copies, there is no worker node that contains all the required

data for certain comparison tasks, (1,3), (1,4), (2,6), (3,5) and (4,5), indicating poor data locality

for these comparison tasks. In this case, runtime data movements among the nodes through

network communications cannot be avoided. These will induce runtime storage costs and also

affect the overall computing performance of the all-to-all comparison problem. This problem

becomes worse when the scale of the computing becomes bigger.

Unbalanced Task Load Resulting from the HDFS

To show an unbalanced task load resulting from the HDFS data strategy, consider a scenario

with 4 data items and 3 worker nodes. A possible Hadoop’s data distribution solution is depicted

in Figure 4.4. Also shown in Figure 4.4 is a possible scheme for allocation of all 6 comparison

tasks to the 3 worker nodes. With the HDFS, there is no way to ensure a balanced comparison

task allocation, which requires each of the 3 worker nodes be allocated 2 comparison tasks.
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Figure 4.3: A possible situation for Hadoop’s data strategy for a scenario with 6 data items and
4 worker nodes.
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Figure 4.4: Data distribution and comparison task allocation from Hadoop’s data strategy for a
scenario with 4 data items and 3 worker nodes.

Inefficiency of Increasing File Replications in HDFS

In the HDFS data strategy, the number of data replications can be manually set by users. But

there is no guidelines on how this number is set and thus users tend to use the default number

of three. Once the number is set, it becomes a constant regardless of the number of machines

to be used and the number of data files to be distributed. Moreover, the location of the data file

replications is randomly determined in the sense of user’s awareness. This causes poor good

data locality, leading to poor performance of the distributed computing. Once might imagine

that further increasing the data replications may help. However, as will be demonstrated later in

the experiments, this is not the case. Unless replicating data files to everywhere, increasing the

data replications in HDFS does not improve the data locality performance much but results in

significant computation costs due to the increased demand in network communications for data

movement at runtime.

Considering a possible HDFS solution with 6 data items and 8 worker nodes shown in Figure
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4.5. It is seen from this figure that even if the number of data file replications is increased to

4, poor data locality (Section 4.2.2) and unbalanced task load (Section 4.2.2) still exist. The

comparison tasks (1,2), (3,4) and (5,6) cannot be completed without remote access of data at

runtime. Data files have to be moved around at runtime to complete the distributed computing

of the all-to-all comparison problem.
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(2,6) Comparison tasks with local data

Figure 4.5: Data distribution and comparison task allocation from Hadoop’s data strategy for a
scenario with 6 data items and 8 worker nodes (The comparison tasks marked with ‘?’ require
remote access of data at runtime).

Big Solution Space of the HDFS Data Distribution

The problem of allocating comparison tasks to worker nodes can be treated as a classic problem

in combinatorial mathematics: to place M objects into N boxes. This pairwise data distribution

problem has the following characteristics:

1. All the comparison tasks are distinguishable. For all-to-all comparison problems, each of

the comparison tasks is different and processes a different data pair. This characteristic

should be considered when distributing related data sets.

2. All worker nodes are indistinguishable in homogeneous distributed computing systems.

In this thesis, the nodes are assumed to have the same processing power and storage space,

and thus can be treated as indistinguishable.
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It is worth mentioning that our work on homogeneous distributed systems in this thesis can

be easily extended to heterogeneous distributed systems. In order not to distract our attention

from the development of a fundamental data distribution strategy in this thesis, this issue will

be addressed in a subsequent publication.

Consider the data locality requirement mentioned previously. Distributing data pairs also

means allocating related comparison tasks. We aim to allocate Q distinguishable comparison

tasks to N indistinguishable worker nodes. From combinatorial mathematics, the total number

of feasible solutions is expressed by the Stirling number S
t

(Q,N) [Gould, 1961]. The Stirling

number of the second kind S
t

(Q,N) counts the number of ways to partition a set of Q distin-

guishable elements into N non-empty subsets. It is zero if one or both of Q or N are zero,

i.e.,

S
t

(0, 0) = 1, S
t

(Q, 0) = 0, S
t

(0, N) = 0.

For N � 1 and N � 1, we have

S
t

(Q,N) = NS
t

(Q� 1, N) + S
t

(Q� 1, N � 1).

Let us consider some special cases for the Stirling number. A special case of N = 2 has

been discussed in our recent conference paper [Zhang et al., 2014]. For another special case of

3 worker nodes (N = 3), we have

S
t

(Q, 3) =
(3

Q � 3 ⇤ 2Q + 3)

6

. (4.1)

S
t

(Q, 3) is graphically shown in Figure 4.6. The trend depicted in Figure 4.6 indicates too

many possible distribution solutions to access in practice even for a very simple case of 3 worker

nodes (N = 3). This implies that it is generally impossible to evaluate all possible solutions

to find the best answer in a reasonable period of time. Therefore, it is necessary to develop

heuristic solutions for data distribution.
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Figure 4.6: The growth trend of the solution space for S
t

(Q, 3).

4.3 Formulation for Data Distribution

This section develops requirements of the data distribution strategy. It begins with overall

considerations and assumptions. This is followed by formulating reduction of the storage usage

and improvement of the computing performance. It ends with an overall optimization problem

to specify the requirements for data distribution.

4.3.1 Overall Considerations and Assumptions

To solve all-to-all comparison problems by using the work flow shown in Figure 4.1, the data

distribution strategy need to be developed to guide the allocation of all the data files. In the

scenario we followed, the data distribution strategy will generate the solution of data distribution

first. Then, all the data files are deployed based on the solution provided.

To design the data distribution strategy, the following aspects need to be considered:

• Storage usage of the distributed system. For all-to-all comparison problems with big data
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sets, distributing data sets among all worker nodes should consider not only the usage of

storage space for each node within its capacity, but also keeping the total time spent on

data distribution at an acceptable level.

• Performance of the comparison computation. For distributed computing, it is important

to allocate comparison tasks in a way to make full use of all available computing power

in the system. Also, good data locality for all comparison tasks can help improve the

computing performance greatly. Hence, the data distribution strategy should be designed

to allocate data items in a way to improve the performance of comparison computation.

To design a data distribution strategy for homogeneous distributed computing systems, the

following assumptions are made in this chapter:

1. All the worker nodes in the distributed system have the same processing power and

storage capability.

2. All the data items have the same size.

3. All the comparison tasks have the same execution time.

In this chapter, we are focusing on providing a data distribution strategy designed for

homogeneous distributed computing systems and the further consideration of heterogeneous

distributed computing systems will be discussed in the following chapters.

Although these assumptions may not necessarily be realistic, they are made for easy un-

derstanding of the simplified design of a fundamental data distribution strategy in this chapter.

They can be relaxed for more realistic development, while retaining the fundamentals of the

data distribution strategy.

In the following, we analyse the requirements for storage usage of the distributed system

and performance of the comparison computation, which we mentioned previously.

4.3.2 Reducing the Storage Usage

Many factors contribute to the time spent on data distribution. Given the network bandwidth,

network topology and the size of the data items, from the assumptions above, the time for data



4.3. FORMULATION FOR DATA DISTRIBUTION 75

distribution is proportional to the number of data items to be distributed. The time for data

distribution, T
data

, can be expressed as:

T
data

/
NX

i=1

(|D
i

|). (4.2)

Beside this, as mentioned previously, the storage usage for each of the worker nodes must

be within its limitation. Given our assumptions, this can be achieved if all data sets are evenly

distributed.

Hence, in the storage usage aspect, the data distribution strategy is designed to meet two

purpose:

1. The total number of data files stored in the distributed system need to be reduced.

2. The number of data files stored on each worker node should be reduced.

Now, we consider both data distribution time and storage limitation. Let |D
i

| denote the

number of files allocated to worker node i. A data distribution strategy is expected to minimize

the maximum of |D1|, · · · , |DN

|, i.e.,

Minimizemax{|D1| , |D2| , ..., |DN

|}. (4.3)

Choosing to minimize the maximum number of data files in the worker nodes has the

following benefits: 1) this target makes all the worker nodes have the similar number of data

files. In the ideal case, the differences of the number of data files among the nodes are at

most one, meaning a balance data storage usage for the distributed systems. 2) Considering the

number of comparison tasks can be executed is proportional to the number of data files stored

in the worker node, this target also makes all the worker nodes have the similar number of

executable comparison tasks.

4.3.3 Improving the Computing Performance

In distributed computing of an all-to-all comparison problem, the overall computation time of

the computing tasks executed is determined by the last finished worker node. To complete each
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of the comparison tasks, the corresponding worker node has to access and process the required

data items.

Let K, T
comparion(i) and T

accessdata(i) represent the number of comparison tasks allocated to

the last finished worker node, the time for comparison operations for task i and the time for

accessing the required data for task i, respectively. The total elapsed computation time of the

all-to-all comparison problem is then expressed as:

T
task

=

KX

i=1

�
T
comparison(i) + T

accessdata(i)

�
. (4.4)

As it has been assumed that all the comparison tasks have the same comparison time C, the

computation time T
task

can be simplified to:

T
task

= CK +

KX

i=1

T
accessdata(i). (4.5)

From Equation (4.5), our new data distribution strategy minimizes the computation time

T
task

by meeting two constraints: load balancing for comparison tasks on the worker nodes,

and good data locality for all pairwise comparison tasks.

For load balancing, the maximum number K of the comparison tasks allocated to the last

finished worker nodes can be minimized. Let T
i

denote the number of pairwise comparison

tasks performed by worker node i. For a distributed system with N worker nodes and M data

files, a total number of M(M � 1)/2 comparison tasks need to be allocated to the work nodes.

Minimizing the value of k can be expressed as follows:

8T
i

2 {T1, T2, ..., TN

}, T
i


⇠
M(M � 1)

2N

⇡
, (4.6)

where d·e is the ceiling function.

Good data locality can also be mathematically formulated. If all required data for a compar-

ison task are stored locally in the node that performs the task, the task will not need to access

data remotely through network communications. Good data locality implies a minimized value

of T
accessdata(i) with its lowest possible value of 0. Let C(x, y), T , T

i

and D
i

represent the

comparison task for data x and data y, the set of all comparison tasks, the set of tasks performed

by worker node i, and the data set stored in worker node i, respectively. Good data locality for
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all comparison tasks can be expressed as follows:

8C(x, y) 2 T, 9i 2 {1, · · · , N},

x 2 D
i

^ y 2 D
i

^ C(x, y) 2 T
i

.
(4.7)

In other words, there must be at least one node i capable of performing each comparison

C(x, y) with local data only.

4.3.4 Optimization for Data Distribution

Considering both storage usage and computing performance as discussed above, a data distri-

bution strategy is expected to meet the target in Equation (4.3) and also satisfy the constraints in

Equations (4.6) and (4.7). When the target in Equation (4.3) is achieved, the storage usage for

all work nodes can be reduced greatly, thus reducing the time spent on distributing all data sets

(T
data

). Meeting the constraints in Equations (4.6) and (4.7) means that the overall comparison

time T
task

can be minimized. As a result, the following total time elapsed for data distribution

and task execution is effectively reduced:

T
total

= T
data

+ T
task

. (4.8)

Therefore, the data distribution problem can be expressed as constrained optimization prob-

lem:

Minimizemax{|D1| , |D2| , ..., |DN

|}

s.t. Equations (4.6) and (4.7)aresatisfied.
(4.9)

As discussed previously, the large number of combinations of data and related comparison

tasks makes the above mentioned optimization problem for data distribution difficult to solve in

practical applications.

4.3.5 Theoretic Results

Theoretic analysis is conducted to derive a lower bound d
max

for max{|D1|, · · · , |DN

|} as well

as an insight to the system reliability items of data availability. These theoretic results are
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summarized in two theorems.

Theorem 1 For the constrained optimization problem defined in Equation (4.9) for distributing

M data files to N computing nodes, a solution max{|D1|, · · · , |DN

|} has a lower bound d
max

as:

max{|D1| , |D2| , ..., |DN

|}

� 1

2

(1 +

p
4M2 � 4M +Np

N
) , d

max

(4.10)

In the following part, two methods based on combinatorial mathematics and graph theory

are used to proof Theorem 1.

Proof For M data files, the total number of comparison tasks in an all-to-all comparison

problem is M(M � 1)/2. Consider the following extreme scenario: if each worker node is

allocated no more than dM(M � 1)/(2N)e comparison tasks (Equation (4.6)), at least how

many data items are needed to complete all comparisons. As each comparison task needs two

different data items as characterized in Equation (4.7), we have the following relationship:

✓
max{|D1| , |D2| , ..., |DN

|}
2

◆
=

⇠
M(M � 1)

2N

⇡
. (4.11)

Solving the equation gives the result in Equation (4.10). This completes the proof.

Proof For the complete graph G = (V,E) with M vertices, totally there are M(M � 1)/2

edges. Considering an extreme situation, the weight of all the edge in every sub-graph is set

to 1, which means each edge e 2 E is covered by one and only one sub-graph. Therefore, the

maximum order of the induced sub-graphs should be the theoretical minimum value.

In this situation, the subgraph with the maximum order is a complete graph with

dM(M � 1)/(2N)e edges. If we let v = max

i=1,..N
|V

i

| represent the number of vertices in this

sub-graph, U=dM(M � 1)/(2N)e, based on the relationship of vertices and edges,

✓
v

2

◆
= U (4.12)
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After solving the equation, we can get that,

max

i=1,..N
|V

i

| � 1

2

(1 +

p
4M2 � 4M +Np

N
) (4.13)

which is the same as the results in Equation 4.10. This completes the proof.

If a data file has only one copy in a distributed system, it will become inaccessible from

anywhere if the node where the data file is stored fails. In this case, the distributed computing

system for the all-to-all comparison problem is unreliable. Therefore, it is an essential reliability

requirement to have at least two data copies stored at different nodes for each data file. The

following theorem shows that this system reliability requirement is guaranteed by the data

distribution approach presented in this chapter.

Theorem 2 For the constrained optimization problem defined in Equation (4.9) for distributing

M data files to N computing nodes, the distribution strategy presented in this chapter gives a

solution that promises at least two data copies stored in different nodes for each data file.

Proof If a data item stored in one worker node is not duplicated on another node, in order

to meet the constraint in Equation (4.7), all the other data items have to be stored in the same

worker node. This implies that the worker node stores all data items. Furthermore, if one node

store all data items, based on Equation (4.3), all the other nodes should store all data items,

which means all the data is distributed to everywhere for no optimization. Hence, for any

optimization results generated, at least two copies stored in different nodes are guaranteed for

each data file. This completes the proof.

4.3.6 Special Case Analyse

In this subsection, we start to analyse the solution of this data distribution problem from some

special cases. We use Data(M,N) to represent the data distribution problem with M data items

and N worker nodes.

To analysis the following cases, let D = {d
i

|i = 1, 2, ...M} represent all the data needs to

be distributed, max presents the maximum number of data stored among all the nodes.

Data(M,2)

max{|D1| , |D2|} = M (4.14)
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Proof Considering that if worker node 1 does not store data item d
i

, all the comparison tasks

related to d
i

must be executed by worker node 2, which means worker node 2 should store data

item d
i

and all the other data items. Hence, worker node 2 must store all the data items.

Data(M,3)

max{|D1| , |D2| , |D3|} �
⇠
2

3

M

⇡
(4.15)

Proof Assume all the worker nodes store less than
⌃
2
3M

⌥
numbers of data items. Considering

any two of them, for example worker node 1 and 2. The number of same data items for these

two node should be |D1 \D2|. It is obviously that |D1 \D2| <
⌃
1
3M

⌥
. In this situation, the

third worker node must execute all the comparison tasks between data items in D � D1 and

D�D2. We can see that |(D �D1) [ (D �D2)| >
⌃
2
3M

⌥
, which is not meet our assumption.

Therefore, all the three worker nodes should store at least
⌃
2
3M

⌥
numbers of data items.

Data(M,M(M-1)/2)

max{|D1| , |D2| , ..., |DN

|} = 2 (4.16)

Proof When the number of worker nodes just equals to the number of comparison tasks, it is

clearly that each worker nodes should just be allocated two different data items.

In the next section, a heuristic algorithm will be developed to solve general cases for the

data distribution problem.

4.4 Heuristic Data Distribution Strategy with Greedy Idea

This section starts with discussions on heuristic rules for data distribution. Then, our data

distribution algorithm is presented with detailed steps. Our data distribution strategy is further

analysed through an example.

4.4.1 Heuristic Rules for Data Distribution

A way to derive a feasible solution to the distribution problem formulated in Equation (4.9) is

to meet the constraints in Equations (4.6) and (4.7). It is seen from the constraint in Equation

(4.7) that if we can determine the location for a specific comparison task C(x, y), the location

of the required data x and y can also be determined. Thus, we will allocate all comparison tasks

to the worker nodes in a way to meet the constraints in Equations (4.6) and (4.7). From this task
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allocation, a feasible solution to the data distribution problem is also obtained.

Consider the scenario shown in Figure 4.7. The right column of the comparison matrix in

the figure shows additional comparison tasks that can be allocated to a specific node k when

a new data file d is distributed to a node with p data files already stored. Therefore, if we can

allocate as many comparison tasks as possible to node k for each new data file d, the total

number of data files needing to be distributed can be minimized.
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Figure 4.7: Additional comparison tasks introduced by adding new data d to node k.

The additional comparison tasks introduced by adding new data d to node k include those

that have never been allocated before (marked by circles in Figure 4.7) and those that have

already been allocated (marked by triangles in Figure 4.7). The related rules for distributing

data are developed as follows:

Rule 1: For those comparison tasks that have never been allocated before, a data distribution

strategy can be designed to allocate as many of these tasks as possible to node k by following

Constraint (4.6).

Rule 2: For those comparison tasks that have already been allocated, the data distribution

strategy can be designed to re-allocate each of these tasks by following Constraint (4.6). For

instance, if a comparison task t has already been allocated to node q, the strategy compares

the numbers of allocated comparison tasks between node k and node q. If node k has fewer

comparison tasks, task t is re-allocated to node k.

From these heuristic rules, an algorithm with detailed steps can be developed for actual data

distribution.
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4.4.2 Data Distribution Algorithm

Our heuristic and task-driven data distribution algorithm is described in detail in the following

steps:

1. Find all unallocated pairwise comparison tasks.

2. Find all data files needed for these unallocated pairwise comparison tasks. Put these data

files in set I , which is initially empty.

3. From the set I , find the data file that is needed by the greatest number of the unallocated

comparison tasks. Let d denote this data file.

4. Choose a set of storage nodes that

• do not have the data file d;

• have been allocated the least number of pairwise comparison tasks; and

• have stored the least number of data files.

Let C denote this set of storage nodes.

5. Check Rule 1 in Subsection 4.4.1 for all nodes in set C. If none of the nodes meet the

constraint in Equation (4.6), remove this data file d from set I and go back to Step 3.

6. Find a node k in set C such that the node is empty or can be allocated the largest number

of new comparison tasks that are introduced by adding the data file d and have not been

allocated before. Distribute data file d to this node k.

7. For comparison tasks that are introduced by adding data file d in Step 6 and have already

been allocated to other nodes before, use Rule 2 in Subsection 4.4.1 to re-allocate these

tasks.

8. Repeat Steps 1 to 7 until all pairwise comparison tasks are allocated to the worker nodes.

This heuristic data distribution algorithm contributes to the minimization problem in Equa-

tion (4.9). Allocating all comparison tasks with as few data items as possible reduces the total

number of data items to be distributed. Evenly distributing data among all worker nodes helps

meet the storage limitation for each node. If all nodes have the same or a similar number
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of comparison tasks, the requirement for load balancing in Equation (4.6) as a constraint in

Optimization (4.9) can be easily satisfied.

4.4.3 Analysis of the Data Distribution Strategy

To analyze the data distribution strategy, consider an example with 6 data files {0, 1, 2, 3, 4, 5}

and 4 worker nodes {A,B,C,D}. Our data distribution algorithm presented above gives the

solution shown in Table 4.1.

Table 4.1: Distribution of 6 data files to 4 worker nodes.

Node Distributed data files Allocated comparison tasks
A 0, 2, 3, 4 (0, 3) (0, 4) (2, 4) (3, 4)
B 0, 1, 4, 5 (0, 1) (1, 4) (1, 5) (4, 5)
C 0, 2, 3, 5 (0, 2) (0, 5) (2, 5) (3, 5)
D 1, 2, 3 (1, 2) (1, 3) (2, 3)

Driven by comparison task allocation, the data distribution algorithm not only allocates data

files to the worker nodes, but also provide comparison task assignments corresponding to the

data file allocation. As a result, each of the worker node is allocated data files and comparison

tasks.

For data allocation, each of the worker nodes stores part of the whole data set. In comparison

with the scenario in which the whole data set is stored everywhere, our data distribution algo-

rithm reduces the size of data stored in each node greatly. In the specific example considered

here, each of the worker nodes stores no more than 4 data items.

For comparison tasks assignment, each of the worker nodes is assigned a similar and thus

a balanced number of comparison tasks. This fulfils the requirement for load balancing among

all worker nodes in the distributed system. In this specific example considered here, the total

15 comparison tasks generated from 6 data files need to be executed by 4 worker nodes. Three

nodes get 4 tasks and the remaining node gets 3 tasks, indicating a well-balanced task allocation.

Allocation of data files and comparison tasks at the same time also ensures good data locality

for the comparison tasks. This is clearly shown in Table 4.1 for the specific example considered

here. No runtime data movements are required from one node to another through network

communications during the execution of the comparison tasks. This eliminates any runtime



84
CHAPTER 4. HEURISTIC DATA DISTRIBUTION STRATEGY FOR ATAC PROBLEMS IN

HOMOGENEOUS DISTRIBUTED COMPUTING SYSTEMS

network communications cost, which is inevitable in a Hadoop based system.

4.5 Experiments

This section presents experiments that demonstrate the effectiveness of our data distribution

strategy. It includes both simulation studies and experiments in a real distributed computing

system. The section begins with development of evaluation criteria. Then, it evaluates the

behaviour and performance of our data distribution strategy against these criteria.

4.5.1 Evaluation Criteria and Experimental Design

Three criteria were used to evaluate our data distribution strategy: storage usage, task execution

performance and scalability.

Storage Saving is one of the objectives of our data distribution strategy. It is measured in

this chapter by a group of experiments with different numbers of storage nodes. The storage

saving behaviour of our data distribution strategy is also compared with that of Hadoop’s data

distribution strategy.

Data Locality reflects the quality of data distribution and is an important indicator of

the computing performance. As mentioned in Subsection 4.1 and Equation (4.9), an all-to-

all comparison task with good data locality means it can access all the required data pairs

locally. Considering comparison tasks are allocated based on the data distribution, the number

of comparison tasks with good data locality can be measured after the data distribution. To show

the different levels of data locality between our data strategy and the Hadoop one, different

numbers of worker nodes and Hadoop data files replications are tested in the experiments.

Execution Performance, characterized by the total execution time for processing an all-to-

all comparison problem, is the ultimate goal we aim to improve subject to the storage usage

and other constraints. As discussed in Section 4.3, the total execution time (T
total

) includes the

time for data distribution (T
data

) and the time for processing comparison tasks (T
task

). All these

time metrics were measured from computing of all-to-all problems on real distributed systems.

Comparisons were made on these performance metrics for our data distribution strategy and

Hadoop’s.
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Scalability is significant for large-scale distributed computing of all-to-all comparison prob-

lems with big data sets. Various scenarios were investigated with a change in the number of

processors on the worker nodes in the same experimental environment. This demonstrates the

scalability of our distributed computing framework. As all data and related comparison tasks

are allocated using our data distribution strategy, this also illustrates the scalability of our data

distribution strategy.

4.5.2 Storage Saving

Consider a scenario with 256 data files and a set of storage nodes with the number of nodes

ranging between 1 and 64. From the optimization problem in Equation (4.9) for data distribu-

tion, the maximum value of the numbers of data items distributed to the worker nodes is used

to characterize the storage usage from our data distribution strategy.

The first group of experiments compares our data distribution strategy with Hadoop’s one

with the number of data duplications in Hadoop being set to be the default value of 3. The

experimental results are tabulated in Table 4.2, which shows storage usage, storage saving

and data locality for both our and Hadoop’s data distribution strategies. The storage saving

is calculated against the storage space required when distributing all data files to every node as

many existing approaches do.

Table 4.2: Storage and data locality of our approach and Hadoop with three data replications
for M = 256 files under different numbers of nodes (N ).

N 4 8 16 32 64
max{|D1, · · · , |DN

|}:
d
max

(Thm.1) 129 91 65 46 33

This paper 192 152 117 85 59
Hadoop(3) 192 96 48 24 12

Storage saving (%): This paper 25 41 54 67 77
Hadoop(3) 25 63 81 91 95

Data locality (%): This paper 100 100 100 100 100
Hadoop(3) 56 48 28 14 7

In comparison with the the data distribution strategy to distribute all data to all nodes, it is

seen from Table 4.2 that both our data distribution strategy and the Hadoop one have significant

storage savings for large-scale all-to-all comparison problems while the Hadoop one saves even
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more space. This implies less data distribution time, especially when the number of storage

nodes becomes very big. For example, for a distributed system with 64 worker nodes, the

storage saving reaches as much as over three quarters (77%) from our data distribution strategy

and even as high as 95% from the Hadoop one.

Though with a lower storage saving in storage space, our data distribution strategy achieves

100% data locality for all computing tasks. This is clearly shown in Table 4.2. In comparison,

the higher storage savings from Hadoop’s data distribution are achieved with a significant

sacrifice of data locality. For example, for a distributed system with 64 data nodes, the data

locality from Hadoop’s data distribution is as low as 7% compared to 100% from our data distri-

bution strategy. Good data locality is particularly important for large-scale all-to-all comparison

problems. It will reduce the data movements among worker nodes at runtime through network

communications for comparison task execution. Thus, it will benefit the overall computing

performance of the all-to-all comparison problem.

One may argue that manually increasing the number of data replications may solve the data

locality problem in Hadoop’s data distribution. However, there are no guidelines on how this

number is set for an all-to-all comparison problem in a given distributed environment. Also,

once set, this number becomes constant in the deployed environment, leading to inflexibility

for a range of other all-to-all comparison problems. Furthermore, even if this number can

be manually tuned every time, it does not fundamentally solve the data locality problem. In

comparison, our data distribution strategy automatically determines the number of data repli-

cations with 100% data locality. To support these claims, the second group of experiments

are conducted, in which we manually tune the number of data replications for Hadoop’s data

distribution strategy to the value that gives a similar maximum number of data files on a node

to that of our distribution strategy. Therefore, a data file is replicated 6, 9, 12 and 15 times

for a distributed system with 8, 16, 32 and 64 data nodes, respectively, as shown in Table

4.3. With these manually settings, the experimental results in Table 4.3 show that our data

strategy behaves with better storage saving performance than the Hadoop one. With more data

replications than our data stretagy, the Hadoop one still demonstrates very poor data locality.

For example, for 64 data nodes, Hadoop’s data distribution only achieves 26% data locality

compared to 100% from our data locality.
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Table 4.3: Storage and data locality of our approach and Hadoop(variable x) for M = 256 files
under different numbers of nodes (N ), where the number (x) of data replications for Hadoop
has to be tuned manually for each case to achieve a similar maximum number of files on a node.

N 4 8 16 32 64
Setting of x in Hadoop(x) 3 6 9 12 15

max{|D1, · · · , |DN

|}:
d
max

(Thm.1) 129 91 65 46 33

This paper 192 152 117 85 59
Hadoop(x) 192 192 144 96 60

Storage saving (%): This paper 25 41 54 67 77
Hadoop(x) 25 25 44 64 77

Data locality (%): This paper 100 100 100 100 100
Hadoop(x) 56 52 38 20 26

4.5.3 Execution Performance

Total execution time (T
total

) is used to measure the execution performance of processing all-

to-all comparison problems. As discussed previously, the total execution time includes the

time for data distribution and the time for comparison computations. All these time metrics

were evaluated in our experiments, and were compared with those from Hadoop-based data

distribution and distributed computing.

The settings for our experiments were as follows:

• The distributed computing system. A homogeneous Linux cluster was built with 9 servers,

which all run 64-bit Redhat Enterprise Linux. Among the five servers, one node acts as the

master node and the remaining eight are worker nodes. All 9 worker nodes use Intel(R)

Xeon E5-2609 and 64GB memory.

• Experimental application. As a typical all-to-all comparison problem in bioinformatics

[Hao et al., 2003], the CVTree problem was chosen for our experiments. The computation

of the CVTree problem has been recently investigated for single computer platforms

[Krishnajith et al., 2013, 2014]. It is further studied in this chapter in a distributed

computing environment. The problem was re-programmed in our experiments by using

the Application Programming Interfaces (APIs) provided by our distributed computing

framework presented in Chapter 3. For comparison, a sequential version of the CVTree
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program was also developed for our experiments and the details of the CVTree program

was also shown in Chapter 3.

• Experimental data.

A set of dsDNA files from the National Center for Biotechnology Information (NCBI)

[NCBI, 1988] is chosen as the input data. The size for each data file is around 150MB

and over 20GB data in total is used in the experiments.

• Experimental cases.

In this experiment, to show that arbitrarily increasing the number of data replications is

inefficient in achieving high computing performance for all-to-all comparison problems

(discussed in Subsection 4.5.2), the Hadoop data strategy with different data replication

numbers are used to compare with our approach. Table 4.4 clearly shows that when each

data has 4 copies for Hadoop’s data distribution (Hadoop(4)), the Hadoop data strategy

distributes more data files to each worker node that our approach.

Table 4.4: The CVTree problem for N = 8 nodes and different numbers of input data files (M ).

M
max{|D1|, · · · , |D8|}

d
max

This chapter Hadoop(3) Hadoop(4)

93 34 53 35 59
109 39 63 41 69
124 45 71 47 78

Let us consider the execution time performance of distributed computing and data distribu-

tion. For a given all-to-all comparison problem with 3 different sizes of data sets, both the data

distribution time (T
data

) and computation time (T
task

) were measured, respectively. Adding

up these two time measurements gives the total execution time for the all-to-all comparison

problem.

For comparison of the execution time performance between our approach presented and

Hadoop-based approaches, it was clear that the Hadoop MapReduce computing framework is

not suitable for supporting the computation pattern of all-to-all comparisons problems directly.

Therefore, the distributed computing framework presented in Chapter 3 for all-to-all compar-

ison problems was integrated with the Hadoop’s data distribution strategy in our experiments

when the execution time performance was evaluated for Hadoop-based distributed computing.
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Figure 4.8 shows the total execution time T
total

for three different data distribution strategies:

ours, Hadoop(3) and Hadoop(4), under different M values. For each of the bar plot which shows

T
total

, the upper part represents T
data

, and the upper part shows T
task

.

Figure 4.8: Comparisons of the T
total

performance between our strategy and Hadoop’s
strategies (lower solid-filled part of the bars: T

data

; upper dot-filled part of the bars: T
task

).

It is clearly seen from Figure 4.8 that our data distribution strategy achieves much better

performance than the Hadoop one. It also confirms that for Hadoop’s data distribution strategy,

simply increasing the number of data replications from 3 to 4, which generates more data files

on a node than our approach, does not improve much the total execution time performance. this

is due to the poor data locality from the Hadoop data distribution and thus requires movement

of a huge amount of data at runtime.

To show the good load balancing from our data distribution strategy, Figure 4.9 depicts

T
task

performance measurements for each of the eight worker nodes under different M values.

It is seen from the figure that for the same M value,T
task

for each of the worker nodes is very

similar and well within the load balancing requirement from Equation (4.6). The balanced tasks

on each node all use local data without the need for data movements among the nodes through

network communications.



90
CHAPTER 4. HEURISTIC DATA DISTRIBUTION STRATEGY FOR ATAC PROBLEMS IN

HOMOGENEOUS DISTRIBUTED COMPUTING SYSTEMS

Figure 4.9: T
task

performance from our data distribution strategy for each of the worker nodes
under different M values.

4.5.4 Scalability

Scalability characterizes the ability of a system, network, or process to handle a growing amount

of work in a capable manner or its ability to be enlarged to accommodate that growth. To support

processing all-to-all comparison problems with big data sets, scalability is an important ability

for our data distribution strategy. It is evaluated in the following experiments by using the

speed-up metric.

Let time(n, x) denote the time required by an n-processor system to execute a program to

solve a problem of size x. Then, time(1, x) is the time required by a sequential version of the

program. Speed-up is measured as:

Speedup(n, x) =
time(1, x)

time(n, x)
. (4.17)

In general, if communication overhead, load imbalance and extra computation are not con-

sidered [Li et al., 1999], a system can achieve a linear speed-up with the increase of the number

of processors. Shown in Figure 4.10 for up to eight worker nodes (plus a manager node) in our

lab, this linear speed-up dotted line can be considered as an ideal speed-up.
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Figure 4.10: Speed-up achieved by the data distribution strategy in this chapter.

Also shown in Figure 4.10 is the actual speed-up achieved from our data distribution strat-

egy. It shows that with the increase of the number of processors, our data distribution strategy

behaves with a linear speed-up. This implies good scalability of the overall distributed computa-

tion. It is worth mentioning that although all-to-all comparison problems incur inevitable costs

in network communications, extra memory demand and disk accesses, the data distribution

strategy presented in this chapter can achieve about 89.5% of the performance capacity of the

ideal linear speed-up. The is measured by 7.16/8 = 89.5% from the results shown in Figure

4.10.

4.6 Conclusion

In this chapter, to address distributed computation of large-scale all-to-all comparison problems

with big data, a scalable and efficient data distribution strategy has been presented. Driven

by comparison task allocation, it is designed to minimize and balance storage usage in the

distributed worker nodes while still maintaining load balancing and good data locality for

all comparison tasks in homogeneous distributed systems. Followed by the data distribution

strategy, a static task scheduling strategy is also developed for allocating comparison tasks with

good data locality and system load balancing. Different Experiments are used to show the high
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performance and scalability of our strategies in solving ATAC problems.

In the next chapter, a metaheuristic data distribution strategy for homogeneous distributed

computing systems will be developed to solve the same data distribution problems by using a

different method.



Chapter 5

MetaHeuristic Data Distribution Strategy for

ATAC Problems in Homogeneous Distributed

Systems

In the previous chapter, in order to solve the data distribution for ATAC problems, a data

distribution strategy with greedy idea has been provided. Though the experiments show the high

computing performance for the heuristic solution, the greedy idea still has some fundamental

limitations in solving optimization problems. Hence, in this chapter, a metaheuristic data distri-

bution strategy is developed for solving the same data distribution problem in homogeneous

distributed computing systems. Considering from different aspects, the challenges of data

distribution are further discussed. After designing the metaheuristic data distribution strategy

based on Simulated Annealing (SA), experiments show the performance improvement by both

comparing Hadoop’s data distribution strategy and our previous heuristic data distribution strat-

egy. The scalability of our data distribution strategy is also shown in the end.

5.1 Problem Statement and Challenges

An ATAC problem is a specific Cartesian product of a data set. Let A, A
i

, C(A
i

, A
j

), M [i, j]

represent the set of input data items, a single data item in set A, the comparison operation

between data items A
i

and A
j

, and an output similarity matrix element, respectively. The ATAC

93
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problem is to calculate

M [i, j] = C(A
i

, A
j

) for i, j = 1, 2, . . . , |A| . (5.1)

For distributed processing of ATAC problems, both data set A and all comparison tasks

C(A
i

, A
j

) need to be distributed to different worker nodes. While different strategies have been

developed previously, performance issues still exist.

5.1.1 Task Balancing Causes Data Storage Issues

Comparison tasks are usually allocated by rows or columns [Moretti et al., 2010, Pedersen et al.,

2015]. Though load balancing is considered, unoptimized data distribution causes severe data

imbalances and high storage usage. Consider an example of 6 data items and 3 nodes. The

workload is divided by the rows. The result in Figure 5.1 shows that although each of the three

nodes has 5 different comparison tasks, the data files are stored in inefficiently. Node 1 has to

store copies of all the data items, but this should be avoided when for data-intensive computing.

Moreover, three worker nodes have 6, 5 and 4 data items, respectively, implying a system data

imbalance.
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6
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* * * *
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*
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      3 4 5 6
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Node 3

Figure 5.1: A data imbalance.

5.1.2 Storage Saving Causes Task Issues

When Hadoop-based solutions have been used to solve ATAC problems, each data item is

randomly distributed to the worker nodes with a fixed number of replications. Although this

achieves high data reliability due to replication, poor performance is inevitable due to the lack

of consideration of comparison task allocation. Take 6 data items and 4 worker nodes for

example. In Figure 5.2, each data item has three copies in three different nodes for reliability.
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Each node stores 50% of the data. However, 9 comparison tasks do not have local data, requiring

massive data movement at runtime to complete the comparisons and consequently poor overall

performance.
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Tasks without local data:

Figure 5.2: Poor data locality for comparison tasks.

5.2 Data Distribution Strategy with Simulated Annealing

This section presents our metaheuristic data distribution strategy for distributed computing of

ATAC problems in homogeneous systems. For efficient derivation of data distribution and

task scheduling, a simulated annealing (SA) algorithm is developed with specific methods for

generating and selecting solutions.

Considering the challenges involved in solving ATAC problems, a data distribution strategy

is presented below to meet the following requirements:

1. The system has good static load balancing (Load balancing);

2. All comparison tasks have the data they need locally (Data locality); and

3. The maximum number of data among all nodes is minimized (Storage saving).

5.2.1 Comparison Between Greedy and SA Idea

In this subsection, we will discuss two techniques for solving optimization problems: greedy

idea and simulated annealing.

Greedy Idea

A greedy algorithm is an algorithm that constructs an object X one step at a time, at each step

choosing the locally best option. Generally greedy algorithms have the following advantages:
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1. Greedy algorithms are often easier to describe and code up than other algorithms.

2. Greedy algorithms can often be implemented more efficiently than other algorithms.

However, greedy idea always gets stuck in a local maxima because downward moves are

not allowed.

Simulated Annealing

Comparing to greedy idea, simulated annealing [Kirkpatrick et al., 1983] (SA) is a probabilistic

optimization technique derived from the physical process of crystallization. It allows downward

steps in order to escape from a local maxima. Annealing emulates the concept in metallurgy;

where metals are heated to very high temperature and then gradually cooled so its structure is

frozen at a minimum energy configuration.

The SA algorithm starts from a randomly chosen initial solution, generates a series of

Markov chains through the decreasing of the control parameter (i.e. temperature). In these

Markov chains, a new solution is chosen by making a small random perturbation of the solution,

and, if the new solution is better, then it is kept, but if it is worse, it is kept with some probability

related to the current temperature and the difference between the new solution and the previous

solution. Each Markov chain is associated with a given temperature, and it can be described as

a thermal equilibrium procedure, or the inner loop. According to the iteration of solutions, an

optimal one was found [Wu et al., 2014].

While many efforts have been made to both theoretical and experimental studies of these

ideas, it is hard to say which method is preferable to others because the effectiveness of the

algorithms always have a strong relationship with the specific optimization problems. Hence, in

this chapter, we plan to developed an algorithm based on SA ideas to solve the data distribution

and task scheduling problems for ATAC computations.

To use an SA approach, we must determine:

1. The Annealing module and Acceptance Probability module.

2. An initial solution, the neighbourhood selection method and the fitness equation.
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5.2.2 Annealing Module and Acceptance Probability Module

The setting of the SA module has significant effects on the final result [Wu et al., 2014]. As

one of the fastest decreasing temperature methods, we use Cauchy scheduling [Keikha, 2011].

Parameters used for the example in Section 5.4 are shown in Table 5.1.

Table 5.1: SA module parameter settings (k represents the iteration step).

Item Setting
Temperature decreasing function t

k

= T0/k

Starting temperature 1.0
Ending temperature 10

�5

Inner loop iteration threshold 100
Acceptance probability function P (�E) = exp(��E/t)

Initial Solution

For ATAC problems with M data items, M(M � 1)/2 comparison tasks must be allocated.

Hence, for a homogeneous system with N nodes, an initial solution can be generated by

randomly and evenly allocating all comparison tasks and related data items. Let M , N , D
i

,

T
i

and U represent the number of data files to be processed, the number of nodes in the system,

the set of data files stored on node i, the comparison task set allocated to node i and the set of

tasks that have not yet been scheduled, respectively. An initial solution is generated as follows:

1. Keep picking up comparison tasks from set U and allocating them to each node i 2

{1, 2, . . . , N} until all have been allocated, i.e., |T
i

| =
l
M(M�1)

2N

m
or U = ;; and

2. Based on each task set T
i

, distribute all related data files to data set D
i

.

The solution S = {(T1, D1), (T2, D2), ..., (TN

, D
N

)} is then a feasible solution, which meets

both our initial requirements.

Neighbourhood Selection Method

Following the design of the initial solution, a new neighbourhood solution S 0 can be generated

from a solution S from the following steps:
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1. Randomly choose two nodes i and j;

2. Randomly pick up two comparison tasks t
k

2 T
i

and t
l

2 T
j

and swap them; and

3. Update related data files in data set D
i

and D
j

.

Considering that all the nodes in a homogeneous system can be treated as indistinguishable, this

method promises that each new solution has the capability to solve the ATAC problem and all

possible solutions can be generated theoretically.

Fitness Equation

Considering the requirements mentioned at the beginning of this section, the fitness equation

F (S) for a solution S is defined as the set of the number of data files allocated to each of the

worker nodes:

F (S) = {|D1| , |D2| , . . . , |DN

|} . (5.2)

The difference �F between two different solutions S and S 0 is calculated as follows. Firstly,

the elements in both F (S) and F (S 0
) are sorted in descending order. Then, �F is obtained as:

�F = F (S)� F (S 0
) = {(|D1|� |D0

1|), . . . , (|DN

|� |D0
N

|)} . (5.3)

Finally, the value of the cost change �f is defined as:

�f =

8
><

>:

the 1st non-zero element value in Eqn. (5.3), if one exists

0, otherwise.
(5.4)

This method promises that solution S with less maximum values in F (S) always be accepted

as required by SA. Moreover, unlike only comparing the maximum values in F (S) and F (S 0
),

this method utilizes much more information from other elements. Hence, the SA algorithm has

a higher efficiency in searching for better solutions.

Data Distribution Algorithm

By integrating all the above designs, our data distribution algorithm using SA is presented as

Algorithm 1.
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Algorithm 1 Data Distribution Algorithm
Initialisation:

1: Randomly generate initial solution S using the method in Initial Solution;
2: Set parameters based on Table 5.1;
3: Set the current temperature t to be the starting temperature.

Distribution:
4: while The current temperature t is higher than the ending temperature do
5: while The iteration step is below the inner loop iteration threshold do
6: Generate a new solution S 0 from S (using the Neighbourhood Selection Method);
7: Calculate the change of fitness, �f , from Equation (5.4)
8: (The fitness method for F , �F and �f are developed in Fitness Equation);
9: if exp(��f/t) > random[0, 1) then

10: Accept the new Solution: S  S 0

11: end if
12: Increment the iteration step by 1;
13: end while
14: Lower the current temperature t based on the function in Table 5.1;
15: end while
16: Return final solution S.

5.3 Static Comparison Task Scheduling Strategy

After distributing data files, all the comparison tasks need to be scheduled to different worker

nodes. In our data distribution strategy designed in Section 5.2, by considering the system

load balancing during deploying data files, comparison tasks need to be executed by each

worker node have also be generated simultaneously. Hence, a static task scheduling strategy

is developed followed by our data distribution strategy.

5.3.1 Static Scheduling for ATAC Computing Framework

In our ATAC computing framework designed in Chapter 3, a static comparison task scheduling

function is provided. In static task scheduling, the work load is distributed depending upon the

performance of each worker node at the beginning of execution. A task is always executed on

the node to which it is allocated. Though static load balancing methods are nonpreemptive, it

can minimize the communication delays in the system.

In Figure 5.3, after distributing all the data files by using our data distribution strategy

designed in this chapter, the master node can generate related comparison tasks for all the

worker node. Thus, for each work node in the system, all the comparison tasks have to be

executed are determined before the computation begin.
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Figure 5.3: Static scheduling of the framework for All-to-All comparison problems.

In our static scheduling, each worker node execute their own comparison tasks without

considering the runtime statues of other worker nodes, which can minimize the network com-

munication among the network. During the computation, the status of each comparison task is

upgraded by the worker node and managed by the master node until all the comparison tasks

are finished.

Due to all the task lists are generated based on the data distribution, data movement can be

avoid during computation and the number of comparison tasks on each list is determined by

following the load balancing constraint in our data distribution strategy.

5.3.2 Task Scheduling Strategy Design

In this subsection, the static task scheduling strategy generated with our data distribution strat-

egy is formally described. For all-to-all comparison problems, considering all the comparison

tasks are independent and there is no running priority for general ATAC problems, the static

task scheduling strategy in this chapter is focusing on achieve system load balancing for homo-

geneous distributed computing systems.

Due to the static scheduling strategy is developed based on our data distribution strategy, the

static scheduling strategy is designed to have good performance for the following assumptions:

1. All the comparison tasks have the same execution time.
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2. The processing power for each worker node is not changing during computation.

The static task scheduling strategy is designed in algorithm 2. In the algorithm, each worker

node in the system keeps executing the comparison tasks that have been allocated to it when it

has available computing resources.

Algorithm 2 Static Task Scheduling
Initial:

1: Task set T
i

composed of all comparison tasks allocated to worker node i;
Static Scheduling:

2: for Each worker node i do
3: while There are unscheduled tasks in task set T

i

and
4: enough available computing resources on node i do
5: Pick an unscheduled comparison task from T

i

;
6: Assign this task to node i;
7: Mark this comparison task as scheduled;
8: Update the available computing resources on this node i;
9: end while

10: end for

In Algorithm 2, scheduling is conducted for each of the worker nodes (Line 2). While there

are still unallocated tasks in the task set (Line 3) and the node has sufficient computing resources

to accommodate more tasks (Line 4), keep allocating tasks from the unallocated task set one

after another to the node (Lines 5 to 8). Since the tasks have been pre-allocated to the nodes, the

only scheduling decision made here is to choose the order in which to perform the comparisons

on each node.

Moreover, the static scheduling is also inherently considered in our data distribution strategy

described in Chapter 4. Hence, the algorithm described in Algorithm 2 can be also used in

Chapter 4.

By implementing the data distribution strategy and static task scheduling strategy, all-to-all

comparison problems can be solved by using our computing framework designed in Chapter 3.

This static scheduling algorithm works well provided we have good data locality and (static)

load balancing. It requires that all information acquired about the nodes, data files and compar-

ison tasks is accurate. It also requires that the distributed system does not have major changes

in its environment and thus does not exhibit much uncertainty. If any of these conditions is not

met, runtime dynamic scheduling may be required to compensate, which will be discussed in

Chapter 7.



102
CHAPTER 5. METAHEURISTIC DATA DISTRIBUTION STRATEGY FOR ATAC

PROBLEMS IN HOMOGENEOUS DISTRIBUTED SYSTEMS

In the next section, different experiments are designed to show the performance of solving

all-to-all comparison problems in homogeneous distributed systems.

5.4 Experiments

We conducted experiments to evaluate the following aspects of our algorithm: storage savings,

task allocations, data scalability and computing performance.

5.4.1 Storage Saving, Task Allocation and Data scalability

An example with 4 nodes and 8 data items is used to show the effectiveness of our data

distribution strategy. The results are summarized below in Table 5.2:

Table 5.2: Distributing of 8 data files to 4 worker nodes.

Node Distributed data files Allocated comparison tasks
A 0,2,3,6,7 (0,2) (0,3) (0,6) (0,7) (2,3) (2,6) (2,7)
B 1,3,5,6,7 (1,3) (1,5) (1,6) (1,7) (3,7) (5,7) (6,7)
C 0,1,2,4,5 (0,1) (0,4) (0,5) (1,2) (1,4) (2,4) (2,5)
D 3,4,5,6,7 (3,4) (3,5) (3,6) (4,5) (4,6) (4,7) (5.6)

It can be seen from these results that data balancing and static load balancing are achieved.

Each worker node only stores 5 data items. Moreover, each node is allocated 7 comparison

tasks all with good data locality.

As the numbers of data items and nodes increases, Table 5.3 shows our strategy still achieves

good results in storage saving, load balancing and data locality, compared with Hadoop’s

strategy (using 3 copies of each data item). Each node has an equal number of comparison tasks

with good data locality in our solution. Although Hadoop’s strategy uses less storage space

overall, runtime performance issues are inevitable due to the poor data locality for comparison

tasks. Figure 5.4 shows that our approach still has good data scalability, and is far better than

the brute-force ATAC solution of copying all data items onto every node.
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Table 5.3: Storage usage and storage savings of our work versus Hadoop for 256 files.

No. of Max. # of files on a node Storage space saving # of tasks on each node
nodes This work Hadoop This work Hadoop This work

8 150 96 41% 63% 4080
16 116 48 55% 81% 2040
32 83 24 68% 91% 1020
64 56 12 78% 95% 510
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Figure 5.4: Data scalability.

5.4.2 Computing Performance

We also conducted experiments with a bioinformatics ATAC application. The experimental

environment was set as:

• A homogeneous cluster with 5 machines, all running Redhat Linux. One acts as the

master node, and all the nodes have one core and 64 GB of RAM.

• Sequential and distributed versions of the CVTree application, which is a typical ATAC

problem in bioinformatics [Hao et al., 2003].

• DsDNA data files from the National Center for Biotechnology Information (NCBI).
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Figure 5.5: Computation time performance.

Figure 5.5 shows the different computation times between our data distribution strategy and

Hadoop’s strategy. By considering the three requirements summarized in Section 5.2, our data

distribution strategy achieves much higher computing performance than Hadoop’s strategy. As

we discussed in Section 5.1, this is because Hadoop’s strategy needs to move numerous data

items between nodes during the computation, due to poor data locality.

5.4.3 Computing Scalability

In order to evaluate the scalability of our data distribution strategy, two different data sets from

the UCI machine learning repository are chosen to be processed by using our solution with

various number of worker nodes. The details of data sets are described in Table 5.4.

Table 5.4: Experimental cases.

ATAC Data sets
application PubMed abstracts synthetic data

NMF application 9.5G 62G
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Figure 5.6: Scalability of our programming model.
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The two parts of the Figure 5.6 illustrate the computation time caused by processing two

different data sets PubMed abstracts and synthetic data. As is shown in these two figures, with

the number of worker nodes increasing, the time spend on computation decrease gradually,

which indicates a good scalability for our programming model to support large scale ATAC

problems.

5.5 Conclusion

A scalable and efficient data distribution strategy using simulated annealing has been presented

for distributed computing of all-to-all comparison problems in homogeneous distributed sys-

tems. It is designed to use as little storage space as possible while still achieving system load

balancing and good data locality. Experiments have shown that although our approach uses

more overall storage than Hadoop’s, we achieve greatly reduced computation times.



Chapter 6

Heuristic Data Distribution Strategy for

Heterogeneous Distributed Systems

Recently, distributed computing systems with heterogeneous configurations have been widely

used in solving all-to-all comparison problems. For these systems, different worker nodes may

have different processing power and storage capability, which makes it hard to make full use of

all the computing resources. In this chapter, a data distribution strategy for all-to-all comparison

problems is developed to support heterogeneous distributed systems. With the same problem

backgrounds, the new challenges caused by heterogeneous distributed systems are summarized

and discussed. By formulating the targets and constraints designed for heterogeneous systems,

the data distribution algorithm for heterogeneous systems are developed. Also, the static task

scheduling strategy is provided to achieve system load balancing for heterogeneous systems.

Experiments have been designed to show the performance of the data distribution and static

task scheduling strategies in the end.

6.1 Development of Heterogeneous systems

In the previous Chapters 4 and 5, the data distribution strategies for solving all-to-all comparison

problems in homogeneous distributed systems have been well developed. For homogeneous

distributed systems, the unified hardware configurations make us can treat all the worker nodes

as the same, which some kind simplifies the data distribution problems.

However, over the last decade, heterogeneous distributed systems have been emerging as

107
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popular computing platforms for solving all-to-all comparison problems. Heterogeneous dis-

tributed systems are usually composed of diverse sets of resources with different capabilities

and interconnected with networks to meet the requirements of widely varying applications

Bharathi and Kumaresan [2012]. For these systems, due to different worker nodes have different

processing power and storage capabilities, using the data distribution strategy for homogeneous

systems cannot achieve high performance. Hence, in this chapter, the data distribution strategy

designed for heterogeneous distributed systems is developed.

Comparing to homogeneous distributed systems, the heterogeneous system is more widely

used because of the following reasons:

1. Hardware updating is very frequently, especially to meet the requirements of big data

computing problems. Considering hardware cost, resource utilization and system scale,

mixing worker nodes with different capabilities is a popular choice for many research and

commercial organizations.

2. To make full use of the computing power provided by the distributed systems, usually

multiple applications are running on top of the system at the same time. The shared using

of system can also cause the available computing resources become different for different

worker nodes.

Therefore, providing data distribution strategy that supports heterogeneous distributed systems

is a must for meeting the growing requirements from various application areas.

6.2 Existing solutions for Heterogeneous systems

Currently, though many researches have been proposed based on heterogeneous distributed

systems, they all have the following limitations:

1. Original designed for homogeneous distributed systems.

As we mentioned in Chapter 2, most existing methods for distributed computing of

ATAC problems are inherently assumed for homogeneous systems. Though they can

also be used in heterogeneous distributed systems, the overall performance can be greatly

degraded.
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2. Lack the consideration of data distribution.

Some researchers schedule work loads based on the processing power of each worker

node in the system. While load balancing for these solutions can be achieved for hetero-

geneous distributed systems, the lack consideration of data distribution will cause massive

unnecessary data deployment. Moreover, massive data transmission at runtime can be a

serious performance problem, especially when the data need to be processed is growing

big.

To address those challenges, advanced strategies are required for distributed computing of

ATAC problems in heterogeneous distributed systems.

6.3 Problem Statement

An ATAC problem is a specific Cartesian product of a data set. Let A, A
i

, C(A
i

, A
j

), M [i, j]

represent the set of input data items, single data item in set A, the comparison operation between

data items A
i

and A
j

, and output similarity matrix element, respectively. The ATAC problem is

formulated as:

M [i, j] = C(A
i

, A
j

) i, j = 1, 2, ..., |A| (6.1)

6.3.1 Feature of Heterogeneous Systems

As we mentioned in Section 6.1, many solutions designed for homogeneous distributed systems

cannot achieve high performance when they are running on top of heterogeneous distributed

systems. To distribute data files and all the comparison tasks to the heterogeneous systems,

there are the following differences need to be considered:

1. Different processing power.

For heterogeneous distributed systems, different processing power for each worker node

makes the system load balancing should be allocated by considering the processing power

for each worker node.

2. Different storage capability.



110
CHAPTER 6. HEURISTIC DATA DISTRIBUTION STRATEGY FOR HETEROGENEOUS

DISTRIBUTED SYSTEMS

Usually, worker nodes in the heterogeneous system have different storage capability. Data

distribution in the system should also consider the different capability for each worker

node.

In the following Subsection, the challenges of distributing data files for ATAC problems in

heterogeneous systems are discussed.

6.3.2 Similar Research Problems

(D,c)-coloring

There are some research problems in graph theory that are similar to our data distribution

problem, such as graph covering, graph partitioning, graph coloring. Though neither of them

have the exactly same constraints and objective functions, they are still very useful to help us

understand the complex of the data distribution problem.

A (D, c)� coloring of the complete graph Kn is a coloring of the edges with c

colors such that all monochromatic connected sub-graphs have at most D vertices.

Many research focuses on the (D, c) � coloringProblem. The solution bound and special

cases with small value of D and c have been discussed in a mathematical way but the methods

to get the solution have not been discussed.

Balanced Incomplete Block Design

A BIBD is defined as an arrangement of v distinct objects into b blocks such that each block

contains exactly k distinct objects, each object occurs in exactly r different blocks, and every

two distinct objects occur together in exactly � blocks (for k, r,� > 0). The construction of

BIBDs was initially attacked in the area of experiment design; however, nowadays BIBD can

be applied to a variety of fields such as cryptography and coding theory.

BIBD generation is a NP-hard problem [Corneil and Mathon, 1978] and it makes complete

methods be inherently limited by the size of the problem instances. Though different solutions

have been provided, there are still a number of open instances that have not been solved yet

[Rueda et al., 2009].
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6.4 Challenge of the Data Distribution Problem

In this section, we will discuss about the challenges of solving the data distribution problem

from different aspects. Some challenging situations of solving the data distribution problem are

summarised and analysed.

Hadoop-based solutions are widely used for distributed computing of ATAC problems, they

are inefficient for the ATAC pattern. However, with the focus on the MapReduce pattern,

Hadoop is inefficient for the ATAC pattern of the ATAC problems. Challenges of executing

ATAC problems by using Hadoop are summarised in the following three aspects:

6.4.1 Poor Data Locality of Comparison Tasks

Good data locality is one of the principles in processing data intensive problems. It is often

better to move the computation close to where the data is located [Khan et al., 2014].

For Hadoop, good data locality for Map tasks are almost promised due to two reasons: 1)

Hadoop assumes that a Map task is expected to process a single data split; and 2) In Hadoop’s

data distribution, each data with a fixed number of replications is randomly distributed into

different worker nodes. However, for ATAC problems, each comparison task needs to process

two different data items. Therefore, Hadoop’s data distribution becomes inefficient.

Let us consider an example of 4 data items and 6 worker nodes. If each data stored in HDFS

has 3 copies (default setting), a possible data distribution is depicted in Figure 6.1. It is seen

from Figure 6.1 that poor data locality exists for four comparison tasks C(1, 2), C(2, 3), C(1, 4)

and C(3, 4). To execute these four tasks, data items must be transferred at runtime among

the nodes. For large-scale ATAC problems, moving massive data around at runtime causes

significant degradation of the overall computing performance.

6.4.2 Invalid locality-aware Scheduling of Comparison Tasks

Data locality is important in processing a large volume of data sets. In Hadoop, data locality

information is used to schedule Map tasks. Map tasks are executed in the worker nodes with

required data. However, the data locality for Hadoop’s Map tasks is lost when dealing with

ATAC problems. For example, again for the scenario shown in Figure 6.1, it is a problem for
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Figure 6.1: Poor data locality for comparison tasks.

Hadoop’s task scheduler to decide in which worker nodes the tasks C(1, 2), C(2, 3), C(1, 4) and

C(3, 4) are executed because each of the nodes stores only half of the required data items for

each of these comparisons.

Another example is shown in Figure 6.2. Assume that two comparison tasks C(2, 4) and

C(2, 6) are ready to dispatch for execution and only work nodes 3 and 4 are idle at the moment.

If C(2, 4) and C(2, 6) are scheduled to worker nodes 3 and 4, respectively, both tasks have local

data to complete the execution. However, if these two tasks are swapped between worker nodes

3 and 4, task C(2, 6) will have no local data for execution on node 3. Hadoop’s task scheduling

does not guarantee that the later occasion does not happen.
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Figure 6.2: Task scheduling with globe consideration requires C(2, 4) and C(2, 6) are allocated
to worker nodes 3 and 4, respectively, for data locality when these two nodes are idle for more
tasks.

Hadoop is not effective in the above two examples because Hadoop is not designed for

ATAC computing pattern. It has a lack of the capability to make a global decision to schedule

comparison tasks with consideration of all available idle nodes in ATAC computing. Therefore,

task scheduling in Hadoop is not data locality aware in general for ATAC problems.
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6.4.3 Inefficiency in Heterogeneous Systems

Hadoop inherently assumes all the machines have the same processing capabilities. Though

this simplifies the system modeling and implementation, it leads to poor use of the computing

resources of a heterogeneous system.

For instance, in a cluster with four worker nodes, two nodes have twice as much computing

power as that in other nodes. If there are 18 comparison tasks waiting for execution, each of

the four nodes are allocated three tasks first. Then, the remaining six tasks should be evenly

distributed to nodes 3 and 4 for the best use of the computing resources. This is clearly shown

in Figure 6.3. However, Hadoop does not have such a mechanism to dispatch tasks with full

consideration of computing resources in heterogeneous systems.
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Figure 6.3: The best use of computing resources requires tasks 13 to 18 are evenly distributed
to worker nodes 3 and 4, which have twice as much computing power as that in the other two
nodes.

The above three challenges indicate the ineffectiveness of Hadoop’s strategy in solving

ATAC problems in heterogeneous environments. The following section develops a new data

and scheduling strategy to address these challenges.

6.5 Data and Task Distribution Strategy

In this section, an abstraction is developed for the requirements of data distribution and task

distribution from the challenges discussed in Section 6.4. Then, a heuristic strategy is pre-

sented for data distribution and task scheduling for distributed computing of ATAC problems in

heterogeneous systems. Examples will also be given for further analysis of the strategy.



114
CHAPTER 6. HEURISTIC DATA DISTRIBUTION STRATEGY FOR HETEROGENEOUS

DISTRIBUTED SYSTEMS

6.5.1 Strategy Targets

To address the challenges discussed in Section 6.4, a data and task scheduling strategy will be

designed to meet the following requirements:

1. Data are distributed in a way to enable all comparison tasks to have good data locality

(Challenge 6.4.1).

2. Comparison tasks are always scheduled with good data locality (Challenge 6.4.2).

3. Each of the worker node is assigned comparison task load proportional to its computing

power (Challenge 6.4.3).

4. For storage saving, data replications are as fewer as possible, and the maximum number

of data items among all worker nodes is minimized.

Distributing data items to worker nodes in a heterogeneous system can be treated as a

complex combinatorial mathematics problem. The optimization of a combinatorial mathematics

problem is difficult, even in a homogeneous system as we have investigated previously [Zhang

et al., 2014]. Therefore, a heuristic algorithm will be developed to address this problem in the

following part.

6.5.2 Strategy Design

For the data and task scheduling problem, a reasonable idea is to pre-consider task allocation

during data distribution. In this way, the task scheduling will become data-aware. Consequently,

runtime data re-arrangement can be avoided.

In actual heuristic task scheduling, the computing tasks are assigned to the work nodes one

after another. Therefore, choosing which node to assign a task most appropriately is critical.

This chapter uses a concept of node completeness to quantify the degree of the appropriateness

for a node to have the next task assignment. Then, a full process is designed to assign all tasks

to the worker nodes.
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Completeness of a Node

Let |T
i

| denote the total number of comparison tasks that should be allocated to node i. From the

load balancing requirement 3) listed above, |T
i

| should be proportional to the computing power

of node i. As an ATAC problem has a finite number of comparison tasks, |T
i

| can be determined

before data distribution is conducted. Now, let |A
i

| denote the number of comparison tasks

that have already be assigned to node i. The following ratio R
i

is defined to describe the

completeness of node i:

R
i

= |A
i

| / |T
i

| , 0  R
i

 1

(6.2)

When R
i

= 0, no tasks have been assigned to node i. If node i has been fully assigned tasks in

comparison with all other nodes in terms of their computing power, R
i

= 1.

With the definition of node completeness, the next task should be assigned to a node with

the smallest completeness value among all nodes. Using R
i

instead of |A
i

| in determination

of a node for assignment of the next task will help avoid load imbalance among the nodes in a

heterogeneous system.

Rules for Data and Task Distribution

Figure 6.4 shows the distribution of a new data d to node i that has already been assigned p data

files (1, 2, · · · , p). The connecting arrows represent new comparison tasks available at node

i due to the distribution of the new data. There are two types of comparison tasks: those that

have never been allocated (dotted arrows), and those that have already been allocated previously

(solid arrows). We have developed rules for both types of tasks:

Rule 1. For the comparison tasks that have never been allocated, allocate as many tasks as

possible to node i by meeting the load balancing requirement 3).

Rule 2. For the comparison tasks that have already been allocated previously, re-allocate

each of them by meeting the load balancing requirement 3). During data distribution, for a

comparison task C(x, y), there could be more than one worker nodes with both data items x

and y. In this case, compare the completeness of all these worker nodes and re-allocate the

comparison task C(x, y) to the node with the lowest completeness value defined in Eq. (6.2).
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Figure 6.4: New available comparison tasks for distributing new data d to node i. They
include those that have never been allocated (dotted arrows) and those that have been allocated
previously (solid arrows).

For an ATAC problem with M data items, the total number of comparison tasks is M(M �

1)/2. All these tasks are allocated by meeting the load balancing requirement 3). If the task

allocation is further constrained by meeting the data locality requirements 2) and 3) discussed

previously, a solution to the problem of data distribution and task scheduling is obtained to

fulfil all of our design targets. Furthermore, for each new distributed data file d to node i, by

allocating as many newly introduced tasks as possible to node i and re-locating those tasks that

have already been allocated before, the total number of data files need to be distributed can be

minimized. This tends to give a good solution to meet the requirement 4) discussed before.

6.5.3 Strategy for Data Distribution and Task Scheduling

From the discussions above, a heuristic strategy is formally given in the following algorithm for

data distribution and task scheduling of ATAC problems in heterogeneous systems:

1. Calculate the number of comparison tasks that should be allocated to each worker node

(Requirement 3).

2. Find all unallocated comparison tasks.

3. Find all data items needed for these unallocated tasks; Put them in set I , which is initially

empty.

4. From the set I , find the data item which is needed by the greatest number of unallocated

comparison tasks. Let d denote this data file.

5. Choose a set of nodes (denoted by C) that

• do not have the data file d,
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• have the lowest completeness computed from Eq. (6.2),

• have stored the least number of data files.

6. Check Rule 1 in Section 6.5.2 for all nodes in set C. If none of the nodes meet the

requirement 3), remove this data file d from set I and go back to Step 4.

7. Find a node i in set C such that the node is empty or can be allocated the largest number

of new comparison tasks that are introduced by adding the data file d and have not been

allocated before. Distribute data file d to this node i.

8. For comparison tasks that are introduced by adding data file d in Step 7 and have already

been allocated to other nodes before, use Rule 2 in Section 6.5.2 to re-allocate these tasks.

9. Repeating Steps 2 to 8 until all comparison tasks have been allocated.

By following the above steps, allocating all comparison tasks with as less number of data

items as possible will help compress the maximum number of data among all worker nodes.

Also, allocating comparison tasks according to the computing power of each node leads to

good load balancing.

6.5.4 Analysis of the Presented Strategy

Consider an example with seven data files numbered {0, 1, 2, 3, 4, 5, 6} and five nodes labelled

{A,B,C,D,E}. Assume that worker nodes A and B have twice as much computing power as

that in the other nodes. A solution obtained from our strategy is shown in Table 6.1.

Table 6.1: Distribution of seven data files to five worker nodes.

Node Distributed data files Allocated comparison tasks
A 1,2,3,5,6 (1,2) (1,5) (1,6) (2,3) (2,6) (5,6)
B 0,1,3,4,6 (0,6) (1,3) (1,4) (3,4) (3,6) (4,6)
C 0,3,5 (0,3) (0,5) (3,5)
D 0,1,2,4 (0,1) (0,2) (0,4)
E 2,4,5 (2,4) (2,5) (4,5)

It is seen from Table 6.1 that the task scheduling solution obtained from our strategy allo-

cates twice as many tasks to each of nodes A and B as those to each of the other nodes. This
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is consistence with the computing power of the worker nodes. Also, all allocated tasks to each

node have good data locality. Therefore, good load balancing can be achieved during actual

task execution. This implies that the three challenges discussed in Section 6.4 have been well

addressed.

6.6 Experiments

In this section, experiments are conducted to evaluate our strategy for data distribution and task

scheduling strategy from three aspects: 1) storage saving and task allocation; 2) computing

performance; and 3) scalability.

6.6.1 Storage Saving and Task Allocation

An ATAC problem with a data set with 256 data files is considered in a heterogeneous system.

The heterogeneous system is composed of a number of nodes with the number changing be-

tween 2 and 64. Half of the nodes (Type B) have twice as much computing power as that of

the other nodes (Type A). For Hadoop’s strategy, the number of replication is set to the default

value 3.

With the number of nodes growing, Table 6.2 shows at least how much storage space our

strategy and Hadoop’s data strategy can save in comparison with the method to distribute the

whole date set to every node. The allocation of comparison tasks by using our strategy is also

presented in Table 6.2.

Table 6.2: Storage usage, storage saving and task allocation.

No. of Max. no. of files on a node Storage space saving (%) No. of tasks on each node (Ours)
nodes Our Hadoop Ours Hadoop Type A Type B

4 225 192 12 25 5440 10880
8 207 96 19 63 2720 5440

16 163 48 36 81 1360 2720
32 113 24 56 91 680 1360
64 79 12 69 95 340 680

It is seen from Table 6.2 that Hadoop saves the storage space the most. But this is achieved

with significant sacrifice of data locality [Zhang et al., 2014]. Our strategy also saves much
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storage space, especially when the mount of nodes becomes great. Although our strategy does

not save as much storage space as the Hadoop strategy, all allocated comparison tasks from

our strategy have 100% data locality. This improves the overall computing performance of the

ATAC problem significantly.

Results in Table 6.2 also show a static task scheduling obtained from our strategy. Worker

nodes of B Type with more processing power are allocated more comparison tasks. This is not

implicitly considered in Hadoop’s strategy.

6.6.2 Computing Performance

Both computing performance and scalability are important in processing big data problems in

heterogeneous systems. Experiments are designed with a real ATAC application to evaluate our

data and task distribution strategy.

A heterogeneous cluster with 5 machines is built for experiments. All the machines run

64-bit Redhat Enterprise Linux. One node acts as the master node, the other four are worker

nodes. Two of the worker nodes have dual cores and 64 GB RAM, while the other two worker

nodes have a single core and 32 GB RAM.

We have implemented a CVTree application, which is a typical ATAC problem in bioinfor-

matics [Hao et al., 2003]. In the CVTree problem, a set of dsDNA viruses files from the National

Center for Biotechnology Information [NCBI, 1988] are chosen as the input data. A sequential

version of the CVTree computing is also developed as the basis for scalability evaluation.

Figure 6.5 shows comparisons of the computation time performance between our strategy

and Hadoop’s one. By considering the three requirements summarized in Section 6.5.1, our

data and task distribution strategy achieves much higher computing performance than Hadoop’s

strategy. This is because our strategy guarantees good data locality and load balancing. How-

ever, Hadoop’s strategy causes runtime movement of a large amount of data during computation.

Also, it does not make full use of the computing resources in the heterogeneous environment,

leading to poor load balancing. Therefore, the computation time performance of the ATAC

problem by using Hadoop’s strategy becomes much poorer.

The good load balancing of our strategy is confirmed by the experimental results shown

in Figure 6.6. This results from the fact that the worker nodes are allocated the number of
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Figure 6.5: Comparisons of the computation time performance.

comparison tasks proportional to their respective computing power. Therefore, the computing

resources of the heterogeneous system are fully utilized.

6.6.3 Scalability

Scalability is the capability of a system to have a linearly increased performance when the

system ensemble size is scaled up. It is widely used to predict the performance of distributed

systems at a large system size based on their performance at small size [Sun et al., 2005].

In general, a system exhibits a linear speedup as the number of processors increases if the

communication overhead, load imbalance and extra computation are not considered [Li et al.,

1999]. In Figure 6.7, the 1:1 linear speedup in dot line can be considered as an ideal speedup.

Results from our experiments are depicted in Figure 6.7. It is seen from Figure 6.7 that

that with the increase of the number of processors, our data and task distribution strategy

achieves a linear speedup. This implies that though ATAC problems incur inevitable costs

in network communications, memory and disk I/O, good scalability is still achieved on the
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Figure 6.7: Speed-up achieved by the data and task distribution strategy.

overall distributed computing. Our strategy presented in this chapter achieves about 88.5% of

the performance capacity of the ideal 1:1 linear speedup. The is measured by 5.31/6 = 88.5%

at 6 cores from the results shown in Figure 6.7.
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6.7 Conclusion

A new data distribution strategy has been presented which solves all-to-all comparison problems

by using distributed computing systems. It is designed to minimize and balance the usage of

storage space while still keep load balancing and good data locality for all the comparison

tasks. Besides, to allocate comparison tasks that fully utilize the computing performance in

heterogeneous distributed systems, both the high performance static and dynamic scheduling

strategies are developed. Experiments have been conducted to show the good results of the data

distribution strategy and the computing framework for all-to-all comparison problems.



Chapter 7

MetaHeuristic Data Distribution Strategy for

ATAC Problems in Heterogeneous Distributed

Systems

Solving large-scale all-to-all comparison problems using distributed computing environments is

increasingly significant for various applications. Previous work in Chapter 6 provides a heuris-

tic data distribution strategy for processing all-to-all comparison problems in heterogeneous

systems. Static task scheduling is also considered in that strategy. In Chapter 5, a metaheuristic

data distribution strategy is also developed for processing all-to-all comparison problems in ho-

mogeneous systems. Considering metaheuristic algorithm shows a great performance improve-

ment in solving all-to-all comparison problem, in this chapter, we present a data-aware task

scheduling approach for solving all-to-all comparison problems in heterogeneous distributed

systems. Our approach formulates the requirements for data distribution and comparison task

scheduling simultaneously as a constrained optimization problem. Then, metaheuristic data

pre-scheduling and dynamic task scheduling strategies are developed along with an algorithmic

implementation. This approach provides perfect data locality for all comparison tasks, avoiding

the need to rearrange data at run time, achieves load balancing among the heterogeneous com-

puting nodes, to enhance the overall computation time, and reduces data storage requirements

across the network. The effectiveness of our approach is demonstrated through experimental

studies.

123
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7.1 Problem Statement and Challenges

An all-to-all comparison calculation pairwise compares data items for a whole data set. An

example is shown in Figure 7.1 as a graph where vertices represent data files to be compared

and edges represent each necessary comparison task between two data files. As it can be seen

from the figure, for an all-to-all comparison problem with M data files, the total number of

comparison tasks is M(M � 1)/2. We denote the number of vertices and edges in such a graph

as the pair (M,M(M � 1)/2).

7.1.1 Principles of the All-to-All Scheduling Problem

As noted above, existing all-to-all comparison approaches have considered data deployment and

task scheduling in two separate phases. This means that data distribution is conducted without

considering the requirements of pairwise comparisons, and task scheduling is carried out with-

out considering the data distribution results. This leads to poor data locality and a consequent

need for remote data access to complete comparison tasks. As a result, a large number of data

files need to be relocated at runtime, degrading overall execution time performance.

Efficient scheduling of comparison tasks for all-to-all comparison problems with big data

sets requires us to consider the available computational resources and to avoid runtime data

movement. From this perspective, two basic principles are essential for scheduling all-to-all

comparison tasks with big data sets:

1. Data distribution must be task-oriented; and

2. Comparison tasks must be scheduled to avoid remote data access.

Following these two principles, a general design of data distribution and task scheduling

Figure 7.1: Graph representation of an all-to-all comparison problem. The vertices and edges
of the graph represent data files and pairwise comparison tasks, respectively.
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Figure 7.2: A general design for data distribution and task scheduling.

is depicted in Figure 7.2. It consists of two main stages: pre-scheduling, and runtime static

and dynamic scheduling. (These major stages are followed by a trivial results-gathering step to

produce the final matrix of pairwise comparison outcomes.) For each of the two major stages,

we present below theoretical development and detailed design of our solution.

7.1.2 Challenges of the All-to-All Scheduling Problem

When each worker node stores only part of the data set, a well-designed data distribution

strategy is needed to meet the above two principles, especially when the size of the data set

becomes large. However, the Hadoop framework, widely used in distributed computing with

big data sets, deviates from these two principles when used for all-to-all comparisons. With a

fixed number of data replications, it allocates data files randomly to distributed worker nodes.

Experiments reported by Qiu et al. [2009] have demonstrated the inefficiency of the Hadoop

framework for all-to-all comparison problems:

1. The computation iteratively switches between ‘map’ and ‘communication’ activities; and

2. Hadoop’s simple scheduling model may not produce optimal scheduling of comparison

tasks.

These properties result in poor data locality and unbalanced task loads when using a framework

like Hadoop for all-to-all data processing.

We can summarize the characteristics of the all-to-all scheduling problem as the following

four challenges.
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Distributing Data Evenly Does not Mean Load Balancing

In order to achieve system load balancing, an obvious approach is to evenly distribute data files

to worker nodes. However, for all-to-all comparison problems, such a data distribution method

does not promise that the data pairs needed for comparisons are available locally on the same

worker node. For example, given a comparison problem with 6 data items the total workload

can be expressed as a graph with the number of vertices and edges equal to (6, 15), as shown

in Figure 7.1. Assuming we have 4 worker nodes, a possible task allocation using an even data

distribution strategy is shown in Figure 7.3. There are 2 copies of each of the 6 data items and

each of the 4 worker nodes stores 3 data items. However, load balancing is not achieved as

the nodes have different numbers of comparison tasks: Node 1 and Node 3 have 3 tasks, but

Nodes 2 and 4 only have 2 tasks. Even worse, there are 5 comparison tasks that cannot even

execute due to the lack of data locality. For instance, no node has copies of both data items 3

and 6.

Figure 7.3: A possible data distribution of 6 files on 4 nodes. Solid lines, dotted lines, solid
points and hollow points represent scheduled tasks, unscheduled tasks, scheduled data items
and unscheduled data items, respectively.

Task Load Balancing May Cause Data Imbalances

Another way of attempting to achieve load balancing is to schedule similar workloads to each

of the worker nodes. While this promises to put a similar number of comparison tasks on

each node, the separation of task allocation from data distribution can cause a severe data

imbalance, resulting in large amounts of wasted storage, particularly when processing big data

sets. Consider a scenario with 9 data items, which means that 36 comparisons are required.

Figure 7.4 shows how these 36 comparison tasks could be distributed across 6 worker nodes.

For load balancing, each worker node is allocated 6 tasks. It can be seen that to achieve the
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necessary data locality, it is sufficient for Node 1 to store only 4 data items. However, Node 6

has to store 8 data items, double the number of Node 1, to avoid the need for remote data

accesses.

Figure 7.4: A possible data distribution of 9 files on 6 nodes.

Heterogeneous Systems are Harder to Schedule than Homogeneous Ones

To make full use of the computing resources in heterogeneous distributed systems, the worker

nodes should be allocated a task workload proportional to their respective processing power.

However, many existing solutions, e.g., Hadoop, are designed with an implicit assumption of

a homogeneous environment. For instance, consider a scenario with 6 data items, thereby

requiring 15 comparisons, and 3 worker nodes, as shown in Figure 7.5. A possible data

task scheduling solution for a homogeneous environment, with balanced data distribution, is

shown in the upper part of Figure 7.5. In this case, each of the 3 worker nodes is allocated

5 comparison tasks to ensure good data locality, thus balancing data distribution and the number

of comparison tasks. However, the same solution may cause a significant load imbalance in a
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heterogeneous system in which the worker nodes have different computing power. For instance,

if Node 1 has triple the processing power of either Node 2 or 3, load balancing can only be

achieved when Node 1 is assigned 9 tasks and each of the other two nodes is allocated 3 tasks.

Unfortunately, with the data distribution strategy suitable for a homogeneous system, there is

no way to allocate enough tasks to Node 1 to prevent it finishing its computation long before

the other two nodes. An incomplete attempt at allocating the tasks in this scenario is shown in

the lower part of Figure 7.5. Not all of the 15 comparisons have been scheduled, but adding any

further tasks to node 1 will unbalance the data distribution.

Figure 7.5: Load balancing in a homogeneous system (upper part), and a potential load
imbalance in a heterogeneous system for the same data distribution solution (lower part),
assuming Node 1 has triple the computing power of Nodes 2 and 3. (In the heterogeneous
case not all tasks have been allocated yet.)

The Large Solution Space for Task Scheduling

The problem of scheduling comparison tasks and distributing related data to worker nodes can

be treated as a classic problem in combinatorial mathematics: to place M objects into N boxes

under certain constraints. The scheduling problem investigated in this chapter has the following

characteristics:

1. All comparison tasks are distinguishable. For all-to-all comparison problems, each of the

comparison tasks is different and processes a different data pair.

2. All worker nodes are distinguishable in a heterogeneous distributed environment, and
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generally have different computing power and storage capacities.

These characteristics must be considered when designing task scheduling and data distribution

strategies.

Consider a scheduling problem that allocates Q distinguishable comparison tasks to N

distinguishable worker nodes. Each worker node should be allocated at least one comparison

task. From combinatorial mathematics, the total number of feasible solutions P (Q,N) is

expressed based on the Stirling number S
t

(Q,N) [Gould, 1961] as:

P (Q,N) = N !S
t

(Q,N). (7.1)

The Stirling number S
t

(Q,N) counts the number of ways to partition a set of Q distinguishable

elements into N non-empty subsets:

S
t

(Q,N) =

1

N !

NX

i=0

(�1)i
✓
N

i

◆
(N � i)Q, (7.2)

where
�
N

i

�
is a binomial coefficient.

Let us consider a special case of N = 4. From Equations (7.1) and (7.2), the number of all

possible distribution solutions P (Q, 4) is:

P (Q, 4) = 3 ⇤ 2Q+1 � 4 ⇤ 3Q + 4

Q � 4 . (7.3)

P (Q, 4) is shown graphically in Figure 7.6. It can be observed from the figure that the number

of possible solutions increases exponentially as the number of tasks increases. For 10 tasks and

4 worker nodes, P (10, 4) is over 800,000! In real-life applications, this means that any non-

trivial scenario has hundreds of thousands of possible solutions that would need to be evaluated

in order to find an optimal one [Zhang et al., 2014].

This growth trend, for even the trivial case of 4 workers, implies that it is generally impossi-

ble to evaluate all possible solutions to find the best answer in a reasonable period of time. Thus,

developing heuristic solutions is the only viable approach for all-to-all scheduling problems in

heterogeneous environments. This is discussed further below after the problem is formalized in

Section 7.2.
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Figure 7.6: The growth trend of the solution space for P (Q, 4), for scenarios with 4 worker
nodes and Q tasks to be distributed.

7.2 Formulation for Pre-Scheduling

As discussed in Section 7.1.1, to solve the scheduling of all-to-all comparison problems in

heterogeneous distributed systems, data distribution should be task-oriented. Since the location

of the distributed data files has a direct impact on task scheduling, here we formalize the require-

ments for pre-scheduling of data distribution and comparison tasks. Formulating the overall

objective and constraints from these requirements, pre-scheduling is defined as a constrained

optimization problem.

7.2.1 Overall Considerations and Assumptions

From the two principles developed in Section 7.1.1, the following three aspects must be consid-

ered for task-oriented data distribution:

• Time and storage consumption for distributing data. For large-scale all-to-all comparison
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problems, distributing data sets among all worker nodes should consider not only the

storage used on each node, which must be within its storage capacity, but also the time

consumed in distributing the data.

• Execution performance of a single comparison task. Executing a comparison task requires

access to and processing of the related pair of data files. Remotely accessing data will

delay a task’s execution. Hence, data pre-scheduling must co-locate pairs of data files to

be compared on a given node, i.e., it must maximize ‘data locality’ for all comparison

tasks.

• Overall execution time performance of the all-to-all comparison problem. In a heteroge-

neous system, all worker nodes, each with different computing power, perform their own

comparison tasks concurrently. The overall comparison problem is completed only when

all worker nodes have completed their respective tasks. Therefore, making full use of the

computing power for each of the worker nodes and allocating data and tasks to the worker

nodes with a minimum load imbalance are critical to improving the overall performance

of the computing problem.

These three aspects are formalized in Sections 7.2.2 to 7.2.5.

To design a pre-scheduling algorithm for data distribution and task allocation, two assump-

tions are made herein:

A1. All data items have the same size; and

A2. All comparison tasks have the same execution time.

Although these assumptions are not necessarily realistic, they are made for easy understanding

of the pre-scheduling problem’s initial development. In Section 7.4.2, dynamic scheduling is

used to allow us to relax these assumptions to support more general and realistic scenarios.

7.2.2 Reducing Time and Storage Consumption

Though time consumption for data distribution is affected by many factors, it is largely propor-

tional to the total size of the data sets to be distributed for a given system configuration. Let

|D
i

| denote the number of files to be allocated to worker node i and N represent the number of
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worker nodes in the system. From Assumption A1 in Section 7.2.1, that all data files have the

same size, the time consumption T
data

for distribution of all data files to N worker nodes can

expressed as:

T
data

/
P

N

i=1(|Di

|) . (7.4)

For storage usage, each of the worker nodes must be assigned data files within its storage

capacity. When the storage usage on every worker node is reduced, the total storage usage in

the distributed system can also be reduced.

Considering the goal of reducing the data distribution time and data storage usage, pre-

scheduling of data distribution aims to minimize the amount of data stored on any node 1 to N ,

i.e., the constraint is to:

Minimizemax{|D1| , |D2| , ..., |DN

|} . (7.5)

7.2.3 Improving Performance for Individual Tasks

For all-to-all comparison problems, each of the comparison tasks running on the corresponding

worker node has to access and process the required data items. The time spent on data process-

ing is problem-specific. It depends on what the specific comparisons are, what algorithms are

used and how the algorithm is implemented. The time spent on data access can be minimized

to its lowest possible value when all required data items are made available locally.

The requirement for good data locality is formulated as follows. For a worker node i, let

D
i

and T
i

respectively denote the data and task sets allocated to that node. Also, let C(x, y)

represent the comparison task for data items x and y. T denotes the set of all comparison tasks

of the all-to-all comparison problem and N is the number of worker nodes. Perfect data locality

for all comparison tasks is then defined as a situation where each task is allocated to a node

containing both data items it needs, i.e.:

8C(x, y) 2 T, 9i 2 {1, · · · , N},

x 2 D
i

^ y 2 D
i

^ C(x, y) 2 T
i

.
(7.6)
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7.2.4 Improving Overall Computational Performance

The best possible overall performance of an all-to-all comparison problem in a heterogeneous

distributed environment is achieved if all worker nodes are allocated a workload proportional

to their respective processing capabilities. This is load balancing requirement means that all

worker nodes will complete their respective set of comparison tasks at around the same time.

The requirement for load balancing is formalized as follows. Let |T
i

| be the number of

pairwise comparison tasks performed by worker node i, and P
i

be the processing power of

node i. For an all-to-all comparison problem with M data items pairwise compared on N

worker nodes, the total number of comparison tasks is M(M � 1)/2. Load balancing requires

the number of comparison tasks allocated to each node to be proportional to its processing

power. This is achieved if the tasks are divided as evenly as possible among the nodes, taking

into account each node’s relative processing power, i.e., for each node i we have

|T
i

| 
&

P
iP

N

i=1 Pi

· M(M � 1)

2

'
(7.7)

where d·e is the ceiling function.

7.2.5 Optimization for Data Pre-Scheduling

With the three requirements described above, the data pre-scheduling problem can be formal-

ized. For the overall system, we aims to achieve the objective in Equation (7.5) while meeting

the constraints in Equations (7.6) and (7.7). Minimizing the objective in Equation (7.5) implies

saving storage space and data distribution time, while meeting the constraints in Equations (7.6)

and (7.7) means improving the computing performance of both individual comparison tasks and

also the whole set of tasks.

Therefore, the data pre-scheduling requirement is formalized as the following constrained

optimization problem:

Minimizemax{|D1| , |D2| , ..., |DN

|}

while satisfying Equations (7.6) and (7.7).
(7.8)

Importantly, similar optimization problems have been tackled previously. Examples include
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block design [van der Linden et al., 2004] and graph coving [Thite, 2008]. In these optimization

problems, Balanced Incomplete Block Design is an NP-hard problem [Corneil and Mathon,

1978] and the graph coving problem is NP-complete [Thite, 2008].

Similar to these known NP problems, our scheduling problem formalized in Equation (7.8)

is a typical combinational optimization problem. It faces the challenge of a large number of

combinations of data items and related comparison tasks. Finding the best solution from this

large solution space is difficult, particularly for heterogeneous distributed systems. In the next

section, a metaheuristic strategy is developed to solve this challenge.

7.3 MetaHeuristic Data Pre-Scheduling

In this section, we present a metaheuristic data pre-scheduling strategy based on the simulated

annealing (SA) process. To improve the SA’s performance, specific methods are developed for

generation and selection of solutions. The pre-scheduling strategy is then implemented as an

algorithm and its properties are analyzed through an example.

7.3.1 Features of the Optimization Problem

The pre-scheduling optimization problem formulated in Equation (7.8) has the following char-

acteristics:

1. It is not difficult to find a feasible solution that meets both constraints but which does

not necessarily optimize the objective in Equation (7.8). For a given all-to-all comparison

problem as shown in Figure 7.1, the total number of comparison tasks (edges) is finite and

fixed. Any distribution of these tasks and related data files to worker nodes by following

these two constraints gives a feasible solution for pre-scheduling.

2. The quality of each solution can be evaluated quantitatively, by checking the two con-

straints to validate the feasibility of the solution, and calculating and comparing the

objectives of two candidate solutions.

3. New solutions can be generated by changing the existing solutions. There are many ways

to do so, but a simple strategy is to swap tasks between two worker nodes.
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From these features, solving the pre-scheduling optimization problem can begin with a

randomly-generated initial solution. Then, we keep generating new solutions and checking their

feasibility and their improvement on the objective, retaining improved solutions and discarding

others. This is achieved below through metaheuristics and simulated annealing.

7.3.2 Simulated Annealing

Simulated annealing [Kirkpatrick et al., 1983] has been widely used in solving combinatorial

optimization problems. Its name derives from annealing in metallurgy. The process imitates the

behaviour of physical systems which melt a substance and lower its temperature slowly until it

reaches the freezing point.

Let S denote the solution space, i.e., the set of all possible solutions. The objective function

is denoted by f , which is defined on members of S. The aim of simulated annealing is to

find a solution S
i

2 S that minimizes f over S. SA makes use of an iterative improvement

procedure determined by neighbourhood generation. Firstly, an initial state is generated. Then,

SA generates neighbourhood solutions at each temperature, which is gradually lowered, until

a stopping criterion becomes true. The SA procedure is controlled by a group of parameters,

which are called a cooling schedule. Theoretically, SA is guaranteed to converge to the global

optimum.

While the features of our pre-scheduling optimization problem justify the suitability of SA

for solving the problem, the following issues need to be addressed:

• Determine the Annealing and Acceptance Probability modules. For an SA module, a

suitable set of parameters of the cooling schedule is important for the efficiency and ac-

curacy of the algorithm. The parameters to be set include the starting temperature, ending

temperature, temperature reduction function and termination criterion. In addition, an

acceptance probability function must also be chosen for SA to accept an undesirable

intermediate state which may lead to a better global solution. In a local optimization

algorithm, a new state is accepted when it optimizes the cost function, however, SA

can accept an undesirable state based on the value of the chosen acceptance probability

function.

• Determine the neighbourhood selection method and fitness equation. As a local searching
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technique, within each temperature, SA generates a new neighbourhood solution ran-

domly from the current solution. For each solution, a fitness equation is used to determine

the quality of the solution. Both the neighbourhood selection method and fitness function

need to be designed to be specific for our pre-scheduling problem.

7.3.3 Annealing Design for All-to-All Pre-Scheduling

In this section we address the issues identified in Section 7.3.2 for our pre-scheduling problem.

Determination of the Annealing Module

For a SA strategy with relatively high starting temperature and slow temperature decreasing,

if the ending temperature is low enough, the classic SA strategy can theoretically converge

to global optimum but the long searching time also means very poor efficiency for the com-

putation, which can be a serious problem when dealing with a huge solution space. Also,

a SA strategy with lower starting temperature and decreases temperature rapidly can reduce

the computation time greatly. However, the accuracy of the final solution is not convincing

enough because of the insufficient local searching for the neighbourhood solutions within each

temperature.

To balance the accuracy of the final solution and the performance of the SA process, here

we choose geometric cooling, which is one of the most widely used SA schedules [Cohn and

Fielding, 1999] and determine the SA algorithm’s parameters specifically for our pre-scheduling

problem. At each temperature, a certain number of iterations are carried out to search for more

solutions. Table 7.1 shows a choice of parameter settings, which are used in Section 7.3.4 below.

Table 7.1: Cooling parameter settings (k represents the iteration step).

Item Setting
Temperature decreasing function t

k+1 = 0.99t
k

Starting temperature 1.0
Ending temperature 10

�5

Inner loop iteration threshold 100
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Acceptance Probability Function

The second SA module to be designed is the acceptance probability function. Here we choose

the Boltzmann function [Keikha, 2011, Pepper et al., 2002], which is defined as

P
r

(�E) = exp(��E/t) (7.9)

where P
r

(·) is the acceptance probability function, �E is the energy difference between the

neighbouring state and the current state, and t is the temperature.

The chance of accepting an energy-increasing move, i.e., a solution with poorer quality,

decreases with the temperature. This enables SA to escape shallow local minima early on and

explore deeper minima more fully as the SA process progresses.

Initial Solution

For the pre-scheduling problem in Equation (7.8), a feasible solution can be derived by fol-

lowing the constraint in Equation (7.7) to allocate comparison tasks and also by following the

constraint in Equation (7.6) to distribute data. We use the same notations explained before: M

for the number of data files to be processed, N for the number of worker nodes, D
i

for the data

files stored on node i, and T
i

for the task set allocated to node i. In addition, let U denote the

set of tasks that have not yet been scheduled. An initial solution can be randomly generated as

follows:

1. For each worker node i 2 {1, 2, · · · , N}, randomly pick comparison tasks from set U

and assign them to T
i

until |T
i

| meets Equation (7.7) or |U | = 0. Thus a scheduling of all

comparison tasks is obtained: T = {T1, T2, · · · , TN

}.

2. For each task set T
i

2 T , schedule all required data files to node i. This forms data set

D
i

.

Once this is done the set of task and data allocations to the worker nodes, S = {(T1, D1), (T2, D2)

, ..., (T
N

, D
N

)}, is a feasible solution, which meets both constraints in Equation (7.8).

Such a randomly-generated initial solution S is unlikely to be optimal in general, however,

so the SA process improves it step by step until a solution is obtained with acceptable quality.
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Neighbourhood Selection Method

The solution neighbourhood defines the way to get from the current solution to another. Our

basic idea for generating a new neighbouring solution is to move a comparison task from one

node to another or to swap comparison tasks between two nodes. The generated neighbour-

hoods should cover the whole solution space. Therefore, the new neighbourhood solution S 0 is

generated from current solution S by using the following neighbourhood selection method:

1. Randomly pick two different worker nodes i and j from all worker nodes 1, · · · , N .

2. Randomly swap two comparison tasks between Nodes i and j, then update set T
i

and T
j

.

3. Re-schedule all required data files to node i and j based on sets T
i

and T
j

.

Using this method, our SA algorithm will have enough randomness to reach an arbitrary point

in the neighbouring solution space.

Fitness Equation

A fitness equation is used to determine the quality of candidate solutions. Our solutions are

expressed as S = {(T1, D1), (T2, D2), · · · , (TN

, D
N

)} as defined in Section 7.3.3. From the

solution’s structure, the fitness equation for S can be defined as the set of numbers of data files

allocated to each of the worker nodes. Let F (S) denote the fitness of solution S:

F (S) = {|D1| , |D2| , · · · , |DN

|} . (7.10)

The cost difference between two alternative solutions S and S 0 is calculated as follows.

Firstly, the data set sizes in both F (S) and F (S 0
) are sorted in descending order. Then, the cost

difference �F is defined as:

�F = F (S)� F (S 0
)

= {(|D1|� |D0
1|), · · · , (|DN

|� |D0
N

|)} .
(7.11)
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Finally, the value of the cost difference �f is defined as:

�f =

8
><

>:

the 1st non-zero size in �F , if any

0, otherwise.
(7.12)

In this way solutions with smaller differences (Equation (7.11)) are always accepted. Also, in

comparison with other methods that only compare the maximum values in F (s) and F (S 0
), our

evaluation method makes full use of the information of all elements in F (S) and F (S 0
). The

resulting SA algorithm thus has a higher efficiency in moving from one solution to better ones.

Data Pre-Scheduling Algorithm

Algorithm 3 summarizes all the features presented in Sections 7.3.3 to 7.3.3. Our solution uses

SA as the underlying optimization technique with consideration of the specific requirements

of all-to-all comparison problems. In the algorithm, the temperature decreases from its initial

value (Line 3) to the stopping value (Line 4) by following the temperature decreasing function

(Line 16). At each temperature, the algorithm generates a number of new solutions (Lines 5

and 7). For each new solution, the algorithm calculates its fitness and the change in the fitness

level (Line 9), and then decides whether to accept or discard this new solution (Lines 11 to 13).

At the end of the algorithm, the final solution is returned (Line 18).

7.3.4 Analysis of the Data Pre-Scheduling Strategy

To analyze our data pre-scheduling strategy, consider a scenario with 7 data files (numbered

from 0 to 6) and 5 heterogeneous worker nodes (labelled from A to E). Assume worker nodes

A and B are twice as powerful as the other three. By applying Algorithm 3 to this scenario, a

pre-scheduling solution is obtained as shown in Table 7.2.

Table 7.2 shows that with task-oriented data distribution, our pre-scheduling algorithm

not only suggests data allocations to the worker nodes but also proposes task assignments

corresponding to the data allocations. For data allocation, each worker node stores part of the

whole data set. In this example, each worker node is allocated 4 data files. For task assignments,

worker nodes A and B are each assigned 6 tasks, which is double the number of tasks given to

nodes C, D and E. This is in accordance with the assumed computing power of the workers,
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Algorithm 3 Data Pre-Scheduling Algorithm
Initial:

1: Randomly generate initial solution S using the method in Section 7.3.3;
2: Set parameters based on Table 7.1;
3: Set the current temperature t to be the starting temperature.

Pre-Scheduling:
4: while The current temperature t is higher than the ending temperature do
5: while The iteration step is below the inner loop iteration threshold do
6: (The loop threshold is defined in Table 7.1)
7: Generate a new solution S 0 from S: S 0  new(S)
8: (The method new is described in Section 7.3.3);
9: Calculate the change of Fitness, �f , from Equation (7.12)

10: (Fitness methods for F , �F and �f are given in Section 7.3.3);
11: if exp(��f/t) > random[0, 1) then
12: Accept the new Solution: S  S 0

13: end if
14: Increment the iteration step by 1;
15: end while
16: Lower the current temperature t based on the function in Table 7.1;
17: end while
18: Return final solution S.

Table 7.2: Pre-scheduling of 7 data files to 5 worker nodes.

Node Distributed data files Allocated comparison tasks
A 0, 1, 2, 3 (0, 1) (0, 2) (0, 3) (1, 2) (1, 3) (2, 3)
B 2, 4, 5, 6 (2, 4) (2, 5) (2, 6) (4, 5) (4, 6) (5, 6)
C 0, 3, 4, 6 (0, 4) (0, 6) (3, 6)
D 0, 1, 3, 5 (0, 5) (1, 5) (3, 5)
E 1, 3, 4, 6 (1, 4) (1, 6) (3, 4)

and thus suggests a good load balance in this heterogeneous environment.

Moreover, in our previous work on heterogeneous systems [Zhang et al., 2015c], we showed

that solving the same example using a greedy strategy distributed 5 data files to two of the

worker nodes. Thus even in a small case like this our new data pre-scheduling strategy presented

here results in better storage outcomes. A further comparison with the heterogeneous case

appears in Section 7.5.

Task-oriented data distribution and task assignment as per Table 7.2 also achieves perfect

data locality for all comparison tasks. Executing the comparison tasks based on this static task

assignment avoids runtime data movement completely, which would be, however, inevitable in

a Hadoop-based system.
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7.4 Runtime Task Scheduling Design

As per Figure 7.2, two scheduling mechanisms can be used to schedule comparison tasks, static

and dynamic. In static task scheduling, the tasks are distributed to worker nodes based on

fixed information about the computing power of the worker nodes. Once allocated to a specific

worker node, a task will always execute on that node. Static scheduling allows for a simplified

system design and minimized runtime communication costs.

In the previous chapters, we have already developed the static task scheduling strategy for

all-to-all comparison problem, which can also be used in this chapter.

In practice, however, the properties of computing nodes can change dynamically, especially

in situations where the worker nodes are shared with other system users. In comparison with

static scheduling, dynamic task scheduling makes decisions about task assignments at run

time, allowing the computation to adapt to changes in the computing environment, such as the

processing power on a particular node being preempted by other system users. In this section

we define the dynamic scheduling of large-scale all-to-all comparison problems.

7.4.1 Initial Task Schedulability

Given the pre-scheduling approach developed in Section 7.3 and the basic principles presented

in Section 7.1.1, the runtime task scheduling problem can be defined as the need to find a worker

node with all required data items for each comparison task.

Using the notations previously defined, let C(x, y) represent the comparison task between

data items x and y and D
i

is the data set stored on worker node i. Then L
c

is the set of all

worker nodes available to execute task C(x, y):

L
c

= {i | x 2 D
i

^ y 2 D
i

} . (7.13)

From Equation (7.6), for each comparison task C(x, y), node set L
c

is guaranteed to be non-

empty after distributing all data items by using our pre-scheduling strategy, thereby ensuring

the schedulability of all comparison tasks.
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7.4.2 Runtime Dynamic Scheduling

Our design for runtime dynamic task scheduling also follows the data pre-scheduling approach

from Section 7.3. To give an insight into the dynamic scheduling strategy, consider the follow-

ing simple example. Assume an all-to-all comparison problem with 10 data items (numbered

from 0 to 9) to be pairwise compared on 4 worker nodes. Figure 7.7 shows a feasible data

distribution solution. Nodes 1 to 4 are allocated data items (0, 1, 4, 5, 6, 8, 9), (0, 1, 2, 4, 5, 7, 9),

(1, 2, 3, 6, 7, 8, 9) and (0, 2, 3, 4, 5, 6, 7), respectively.

Comparison tasks for each worker node are also shown in Figure 7.7, in which the number

in each cell represents how many worker nodes can perform that particular comparison task.

For example, comparison task (0, 4) between data items 0 and 4, can be executed on Nodes 1, 2

or 4, so in each of the matrices corresponding to these nodes the number 3 appears in the cell for

this comparison. With such a range of options, dynamic task scheduling then needs to decide to

which node each specific comparison task is allocated.

Flexibility for Dynamic Scheduling

As shown in Figure 7.7, the location of all the data items are fixed by our pre-schedule, so there

is only a limited number of worker nodes that can execute each comparison task.

Let |L(c)| denote the number of worker nodes that can execute comparison task c with data

locality. Set U represents all comparison tasks that have not yet been scheduled in the system.

We quantify the ‘flexibility’ of the schedule as:

F
`

=

X

c2U

|L(c)| . (7.14)

The highest flexibility occurs when any comparison task can be executed on any worker

node. In this extreme situation, the system is able to easily resolve any load imbalance at

runtime. In contrast, if each of the comparison tasks can only execute on one worker node, the

system has no flexibility to make any runtime adjustment for load balancing.

For all-to-all comparison problems, the initial system flexibility is determined by our data

pre-scheduling before the computation begins. Thus, runtime dynamic task scheduling focuses

on allocating comparison tasks that have not yet started to execute. The number of these tasks
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Figure 7.7: All possible comparison tasks for each of 4 worker nodes. The row and column
numbers identify the data files stored on each node. The numbers in the cells represent how
many worker nodes can perform the specific comparison between two such files.

decreases as the computation progresses.

Let set G
i

represent those comparison tasks that can be executed by worker node i and set U

be all comparison tasks that have not yet been scheduled or have not started to execute in the

system. When a comparison task c is scheduled to worker node i, the resulting change in the

system’s flexibility is denoted by �F
`

. We have:

�F
`

= |L(c)| , where c 2 U, c 2 G
i

. (7.15)

How to manipulate �F
`

for dynamic task scheduling determines the scheduling priorities. Two

typical examples are to maximize �F
`

and or to minimize �F
`

.

Maximising Flexibility First (MaxFF). As shown in the upper part of Figure 7.8, the compar-

ison tasks with the most suitable worker nodes are scheduled in this strategy (maximum �F
`

).
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At the beginning, all worker nodes can get enough workload. However, as the computation

progresses, the system’s imbalance cannot be resolved. Though some worker nodes have idle

computing resources (e.g., Node 2), the remaining comparison tasks cannot be scheduled to

them because they cannot execute on those nodes.

Minimising Flexibility First (MinFF). The lower part of Figure 7.8 shows that the system

can start with allocating and executing the comparison tasks with the least number of suitable

worker nodes (minimum �F
`

). As the computation proceeds, the remaining comparison tasks

have the flexibility to be assigned to more suitable worker nodes. This enables the system to

have enough flexibility to deal with load imbalances at runtime.

Scheduler

Node 1
Node 2
Node 3
Node 4 (3,4) (3,5)

(1,3) (2,8)

(0,8) (4,8)
?

?
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×
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Figure 7.8: MaxFF (upper part) and MinFF (lower part) dynamic scheduling strategies.

Dynamic Scheduling Design

The aim of dynamic scheduling is to minimize the change in the system’s flexibility after

scheduling each comparison task while avoiding any remote data accesses. This is expressed

as:

Minimize �F
`

. (7.16)

Using previously defined notations, let G
i

represent the comparison tasks that can execute

on worker node i, set U be all comparison tasks that have not been scheduled or have not start

to execute, and |L(c)| be the number of worker nodes that can perform comparison task c. The
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objective in Equation (7.16) can be achieved by choosing a task c using the following rule:

|L(c)| = min{|L(i)| | i 2 U ^ i 2 G
i

}. (7.17)

Accordingly, our dynamic scheduling strategy is designed in Algorithm 4.

Algorithm 4 Dynamic Task Scheduling
Initial:

1: Set U composed of all the unscheduled comparison tasks;
2: Set G

i

composed of all comparison tasks that can be executed by each node i;
3: |L(c)| for each comparison task c in set U .

Dynamic Scheduling:
4: while There are unscheduled tasks in set U and
5: a worker node i asks for a comparison task do
6: while There are unscheduled tasks in set U and
7: enough available computing resources on node i do
8: Pick a comparison task c from U , satisfying Equation (7.17);
9: Assign this task c to node i;

10: Mark this comparison task c as scheduled and update set U ;
11: Update the available computing resources on this node i;
12: end while
13: end while

Figure 7.9 shows the dynamic scheduling mechanism provided by our distributed computing

framework in Chapter 3. In our distributed computing framework, when a worker node in

the system asks for comparison tasks, the master node will determine and schedule suitable

comparison tasks based on Algorithm 4.

The effectiveness of this dynamic scheduling strategy is demonstrated below through exper-

imental studies.

7.5 Experiments

In this section we evaluate the performance of our data-aware task scheduling approach for

large-scale all-to-all comparison problems in heterogeneous distributed systems. The perfor-

mance evaluation was conducted from four main perspectives: storage saving, data locality,

execution time and scalability.

Storage Saving. Storage savings were measured in our experiments by using a group of

experiments with different numbers of storage nodes in heterogeneous environments. The
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Figure 7.9: Dynamic scheduling process in our distributed computing framework.

results from our approach were also compared with those from Hadoop’s data distribution

strategy.

Data locality. Our task-oriented data pre-scheduling aims to achieve good data locality. By

meeting the constraint in Equation (7.6), all data files are distributed to the worker nodes to

allow local accessibility of data pairs for comparisons. The data locality performance of our

pre-scheduling approach was compared with that of the widely used Hadoop data distribution

strategy.

Execution Time Performance. Execution time performance was measured for distributing

data and pairwise comparing data items, respectively. The time spent on comparison tasks

was evaluated for individual tasks, individual worker nodes, and all worker nodes as a whole.

Considering both time for data distribution and time for task execution, the total execution time

of the all-to-all comparison problem could be evaluated. The results were compared with those

from the Hadoop framework.

Scalability. Scalability is one of the main issues that have to be addressed in large-scale

distributed computing. Experiments at different scales were carried out to evaluate the scala-

bility of our data-aware task scheduling approach. Changes in the problem’s scale included the

numbers of input files and worker nodes.
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Table 7.3: Storage and data locality of the heterogeneous approach in this chapter, our previous
work on heterogeneous systems, and Hadoop(3) for M = 256 files and N varying from 8
to 64. Half of the nodes had twice the computing power of the other half. The number of data
replications in Hadoop was set to be the default value 3.

N 8 16 32 64
max{|D1, · · · , |DN

|}:
This chapter 162 128 94 60
Previous work 207 163 113 79
Hadoop(3) 96 48 24 12

Storage saving (%): This chapter 37 50 63 77
Previous work 19 36 56 69
Hadoop(3) 63 81 91 95

Data locality (%): This chapter 100 100 100 100
Previous work 100 100 100 100
Hadoop(3) 48 28 14 7

Table 7.4: Storage and data locality of our heterogeneous approach and Hadoop(variable r) for
M = 256 files and N varying from 8 to 64. Half of the nodes had twice computing power than
the other half. The number of data replications r for Hadoop was tuned manually for each case
to achieve a similar maximum number of files on each node.

N 8 16 32 64
Setting of x in Hadoop(x) 6 9 12 15

max{|D1, · · · , |DN

|}:
This chapter 162 128 94 60
Hadoop(r) 192 144 96 60

Storage saving (%): This chapter 37 50 63 77
Hadoop(r) 25 44 63 77

Data locality (%): This chapter 100 100 100 100
Hadoop(r) 52 38 26 20

7.5.1 Storage Saving and Data Locality

In our experiments, an all-to-all comparison problem with 256 data files was investigated. The

distributed system was composed of multiple worker nodes with the number of nodes varying

from 8 up to 64. These nodes were grouped into two halves: each of the two halves had

the same computing power, but one half had twice more computing power than the other. For

comparisons with Hadoop’s framework, the number of data replications was set to be the default

value 3 unless otherwise specified.
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With the increase in the number of worker nodes, Table 7.3 shows the storage savings as a

percentage for the data pre-scheduling from this paper, our previous work on heterogeneous

systems [Zhang et al., 2014] and Hadoop’s data distribution strategy. It can be seen from

Table 7.3 that all three strategies save much storage space (Comparing to put all data to all

nodes), implying a lower time cost on data distribution. This is important especially for big

data problems with a large number of worker nodes. For instance, for a distributed system with

64 worker nodes, the storage saving reaches as high as over three quarters (77%) for our data

pre-scheduling strategy. It is even as high as 95% for Hadoop.

However, Hadoop is designed without consideration of data locality for comparison tasks.

Therefore, a large number of comparison tasks have to be executed with remote data access.

This causes runtime data re-arrangement and significant computing performance degradation.

For example, it can be seen from Table 7.3 that only 7% of comparison tasks have data locality

in a system with 64 nodes, implying that 93% of the comparison tasks rely on remote data access

to execute. By comparison, for our data pre-scheduling strategy, which meets the constraint in

Equation (7.6), all comparison tasks have perfect data locality for any number of worker nodes.

Moreover, compared to our previous work on heterogeneous systems [Zhang et al., 2014],

the approach in this chapter achieves better results. For instance, (79 � 60)/79 = 24% more

storage savings can be made in a system with 64 nodes, which means much less storage usage

and predictable performance improvement.

Table 7.5: T-test at a 5% significance level for the results of our approach for the experiments
shown in Table 7.3 (mean values from 10 runs for all cases).

N max{|D1|, · · · , |DN

|} Pass Ci Variance
8 162 Yes [159.2392 162.9608] 6.766667

16 128 Yes [127.9879 129.6121] 1.288889
32 94 Yes [93.87054 95.52946] 1.344444
64 60 Yes [59.76032 61.43968] 1.377778

Beside this, quantitative t-test results using the R language show that for each of the four

cases, the null hypothesis that the results come from a normal distribution with the mean value

shown in Table 7.5 cannot be rejected at the significance level of 5%. The parameter Ci in

Table 7.5 indicates the region into which 95% of the results will fall. It further demonstrates

that 95% of the results in each case fall into a small region around the mean value, implying
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that consistent results can be obtained by using our approach.

One might argue that storing more data copies in the distributed system using the Hadoop

framework would solve the problem of the lack of data locality. However, the experimental re-

sults in Table 7.4 do not support this argument. Instead, they show the inefficiency of arbitrarily

increasing and distributing data copies to the worker nodes. For Hadoop’s data strategy, the

number of data replications was manually tuned to achieve a similar maximum number of data

files at each node when compared to our data distribution strategy. For a system with 64 worker

nodes, even with a complicated tuning, Hadoop achieved only as low as 20% data locality. Even

then the effort of manually tuning Hadoop is prohibitive and the flexibility of using the Hadoop

framework is lost.

7.5.2 Execution Time Performance

To evaluate the computation’s performance, experiments were designed with the following

settings:

(1) Distributed computing system. A heterogeneous Linux cluster was built with 9 servers,

which all run 64-bit Redhat Enterprise Linux. One node acted as the master, and the other eight

were workers. Among the eight worker nodes, four had dual cores and 64 GB RAM memory,

and the other four had a single core and 32 GB RAM memory.

(2) Domain application. As a typical all-to-all comparison problem, the bioinformatics

CVTree problem [Hao et al., 2003] was chosen for our experiments. The computation of the

CVTree problem has been recently investigated in single computer platforms [Krishnajith et al.,

2013, 2014]. We re-programmed the problem in our experiments for distributed computing.

For comparison, a sequential version of the CVTree program was also developed for our exper-

iments.

(3) Experimental data. A set of dsDNA files from the National Center for Biotechnology

Information (NCBI) [NCBI, 1988] was chosen as the input data for the CVTree problem. The

size of each data file was around 150 MB, and over 20 GB of data in total were used in the

experiments.

(4) Experimental scenarios. Tables 7.3 and 7.4 compare the storage savings and data locality
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Table 7.6: Experimental scenarios for the CVTree problem with N = 8 and different M values.

M
max{|D1|, · · · , |D8|}

This chapter Hadoop(3) Hadoop(6)
78 53 30 59
93 68 35 70

109 79 41 82
124 90 47 93

between our data distribution strategy and Hadoop’s under different settings for general all-to-

all comparison problems. For the specific CVTree problem, Table 7.6 further compares our data

distribution strategy, Hadoop(3) and Hadoop(6). Hadoop(r) means the Hadoop data distribution

strategy with r data replications. It can be seen from Table 7.6 that Hadoop(6) distributes more

data files to each worker node than our approach.

(5) To demonstrate our data distribution and task scheduling strategies, four different solu-

tions were designed, which were quantitatively compared through the CVTree problem:

1. The Hadoop(3) solution using Hadoop’s data distribution (3 data replications) and task

scheduling;

2. The Hadoop(6) solution;

3. Our solution using our data pre-scheduling approach and static task scheduling; and

4. Our solution using our data pre-scheduling approach and dynamic task scheduling.

Figure 7.10 compares the total execution time performance T
total

from the four solutions to

the CVTree problem. In Figure 7.10, each bar chart is composed of two parts: the lower part

represents the time T
data

spent on data distribution, while the upper part represents the time

T
task

spent on comparison task execution. The height of the bar represents the total execution

time T
total

of the CVTree problem for the specific solution: T
total

= T
data

+ T
task

. The first

observation from Figure 7.10 is that both our static and dynamic solutions outperform the two

Hadoop solutions significantly in terms of overall performance T
total

. The second observation

is that increasing the number of data replications from 3 to 6 in Hadoop improves T
total

but at a

cost of increased storage demands. However, the improved performance is still far behind our

static and dynamic solutions. This is mainly due to our solutions’ perfect data locality, which
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Hadoop’s solutions do not have. The third observation from Figure 7.10 is that our dynamic

solution behaves with better T
total

performance than the static one, as expected.

The dynamic scheduling strategy proposed in Subsection 7.4.2 achieves better performance

than the static scheduling strategy shown in Section 7.3 mainly because different comparison

tasks may cost different execution time in practical, which makes the theoretical static load

balancing hard to be promised. Figure 7.11 points out that to make all the worker nodes finish

at the similar time, some worker nodes may need more or less number of comparison tasks than

the static allocation, which is considered in our dynamic scheduling strategy.
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Figure 7.10: Total execution time T
total

performance for all four solutions.

Figure 7.11 shows the numbers of comparison tasks allocated to each worker node from all

four solutions. As half of the 8 nodes (numbered 5 to 8) have twice the processing power of

the other half (numbered 1 to 4), both our static and dynamic solutions allocate roughly twice

as many comparisons to the four high-performance nodes as to the other four nodes. The static

schedule allocates comparison tasks purely based on prior knowledge of the system resources,

while the dynamic solution uses real-time information of the system’s state. In comparison with

our solutions, both Hadoop(3) and Hadoop(6) solutions do not differentiate high-performance

and low-performance nodes directly in task scheduling. As a result, the numbers of tasks
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Figure 7.11: The number of comparison tasks completed on each node. Nodes 1 to 4 have
twice the computing power of Nodes 5 to 8.
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of our static and dynamic solutions.

allocated tasks by Hadoop is quite different from those from our solutions, leading to poor

load balancing and the need for remote data access. This is clearly shown in Figure 7.11.

Comparisons of the task execution performance between our static and dynamic solutions

are given in Figure 7.12. It can be seen from this figure that for either the static or dynamic
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solution, all nodes complete their respective comparison tasks at a similar time with small

deviations, implying good load balancing. But the deviations in task execution time are smaller

in the dynamic solution than in the static solution. This means that the dynamic solution

balances the load better than the static one. It can also be seen from Figure 7.12 that the

dynamic solution completes all comparison tasks around 10% faster than the static solution.

This mainly results from the fact that the dynamic solution makes use of real-time information

of the system for better task scheduling and execution, while the static one does not.

7.5.3 Scalability

Scalability characterizes the ability of a system, network, or process to handle a growing amount

of work in a capable manner or its ability to be enlarged to accommodate that growth [Bondi,

2000]. Scalability is a critical requirement to support distributed computing of large-scale all-

to-all comparison problems with big data sets. It was evaluated in our experiments by using the

speed-up metric.

Let time(n,M) denote the time required by an n-processor system to execute a program to

solve a problem of size M . Then, time(1,M) is the time required by a sequential version of

the program. Speed-up is measured as [Mark, 1990]:

Speedup(n,M) =

time(1,M)

time(n,M)

. (7.18)

The dotted line in Figure 7.13 shows the ideal 1:1 linear speed-up which could be achieved

if communication overheads, load imbalances and extra computation effort were not consid-

ered [Li et al., 1999]. In practice, of course, no solution can achieve this. For the CVTree prob-

lem investigated in our experiments, the actual speed-up achieved by our data pre-scheduling

and dynamic task scheduling is also depicted in Figure 7.13. It increases linearly with the

increase in the number of processors available for the computation of the problem, indicating

good scalability of our scheduling approach in distributed computing of all-to-all comparison

problems.

It is also worth mentioning that despite the inevitable overheads due to network commu-

nications, extra memory demands and disk accesses, our heterogeneous scheduling approach

achieved about 93% of the ideal 1:1 linear speed-up performance. The was measured at 12
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Figure 7.13: Speed-up achieved by our dynamic scheduling algorithm for the CVTree problem
compared to the theoretical ideal.

cores as 11.2/12 = 93% from the results shown in Figure 7.13.

7.6 Conclusion

We have presented a data-aware task scheduling approach for distributed computing of large-

scale all-to-all comparison problems with big data sets in heterogeneous environments. It

was developed from a formalization of the requirements for storage saving, data locality and

load balancing as a constrained optimization problem. To solve this optimization problem,

metaheuristic scheduling was used for task-oriented pre-scheduling of data distribution. Then,

static and runtime dynamic scheduling strategies were developed for allocation of comparison

tasks to worker nodes. Experiments have shown that our data-aware task scheduling approach

achieves advantages of storage savings, perfect data locality for comparison tasks, improved

total execution time performance, and good scalability.



Chapter 8

Conclusion

8.1 Summary

All-to-all comparison is a type of computing problem with a unique pairwise computing pattern.

It involves comparing two different data items from a data set for all possible pairs of data

items. All-to-all comparison problems are widely found in various application domains such as

bioinformatics, biometrics and data mining.

The performance of distributed processing ATAC problems largely depends on the data

distribution, task decomposition, and task scheduling strategies. For existing solutions, sig-

nificantly degraded performance is inevitable due to inappropriate data distribution, poor data

locality for the computing tasks, and unbalanced computational loads among the distributed

worker nodes. Moreover, to develop ATAC applications running in distributed systems, dis-

tributed system issues such as data management, network communication and load balancing

have to be considered, which bring heavy burdens to developers without experts experiences in

distributed systems.

Hence, in this thesis, a high performance and scalable distributed computing framework

for all-to-all comparison problems with big data sets is developed. By improving the perfor-

mance of data distribution and task execution, this thesis has proposed the following distinctive

contributions:

1. Simple and powerful front-end interfaces. For framework users, operation interfaces are

developed for uploading applications, data sets and collecting comparison results. All

155



156 CHAPTER 8. CONCLUSION

the distributed system implementation issues are hidden from users, which makes the

distributed computing framework can be easily used by users without any distributed

system experiences.

Besides this, a distributed programming model for all-to-all comparison problems has

been designed. It separates the front-end interfaces and back-end implementation systems

and provides powerful application programming interfaces (APIs) for developers. By

using four APIs developed in this thesis, developers only have to focus on implementing

specific all-to-all comparison algorithms.

2. High performance and scalable data distributed strategies. In this thesis, the task oriented

data distribution strategies both for homogeneous and heterogeneous distributed systems

are developed. By considering data locality, load balancing and storage usage, heuristic

strategies with greedy idea and metaheuristic strategies with simulated annealing are

developed. Experiments show great performance improvement and high scalability for

our data distributed strategies.

3. Static and dynamic task scheduling strategies. In this thesis, followed by our data dis-

tribution strategies, both the static and dynamic task scheduling strategies are developed

to achieve system load balancing. In the static scheduling part, all the comparison tasks

are scheduled based on the pre-allocation during data deployment. Though static load

balancing methods are nonpreemptive, it can minimize the communication delays in the

system.

Beside this, dynamic task scheduling strategy is also developed to adaptive the resource

changing during computation. In the dynamic scheduling design, all the comparison

tasks are scheduled by considering the flexibility of the distributed systems. In this

way, the change in the system’s flexibility after scheduling each comparison task can

be minimised and remote data accessing can be avoided. Experiments in Chapter 7 show

high performance is achieved by using our scheduling strategies.

Comparing to other researches for solving all-to-all comparison problems, the solution in

this thesis has the following advantages:

1. Designed for general all-to-all comparison problems. Unlike other specific solutions,

our distributed computing framework provides a high performance solution for general
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all-to-all comparison computing problems. For computing problems with all-to-all com-

parison pattern, applications can be implemented by using our application programming

interfaces (APIs) and automatically executed based on the back-end computing systems.

2. Designed for general distributed systems. The strategies for data distribution and task

scheduling in this thesis are developed without any specific requirements on system

architectures, which make them support general distributed computing systems. Com-

paring to many strategies, our solution also consider the heterogeneous features of the

distributed systems, which make it be able to achieve high performance in heterogeneous

environment.

3. Data distribution with the consideration of task execution. Distributing and processing

data files are the two key phases in solving all-to-all comparison problems. In this

thesis, the data distribution and task execution are considered together, which makes the

deployment of all the data files can not only save storage space but also improve the

following computation performance. Beside this, scheduling comparison tasks based on

the result of data distribution can also make full use of the good qualities generated by

using our data distribution strategy.

8.2 Limitations

The thesis has some limitations that have not been investigated. These limitations are beyond

the scope of this research work.

1. System Reliability is not fully considered in this work. Reliability is an important quality

for large scale distributed computing systems. Both the hardware and software failure can

happen during the computation phase. While in this thesis, we mainly focus on improving

the performance of solving all-to-all comparison problems.

2. Incremental data distribution is not considered in this work. Our research is based on the

scenario that the all-to-all comparison problem needs to be solved is given first. Thus, our

work in this thesis mainly focuses on improving the overall performance of processing all-

to-all comparison problems in distributed systems. However, our current work is easily to

be extended to support adding extra data items to the existing data distribution solutions..
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8.3 Future Work

There are several interesting directions that this study could be extended to follow in the future.

Firstly, for some scenarios, users may want to add more data files into the distributed

computing systems and combine with the exiting distributed data files. The data distribution

strategies developed in this thesis can be straightforward extended to support this requirement.

Secondly, as a data intensive and computing intensive problems, many all-to-all comparison

problems require frequent memory operations and huge memory space. Hence, one way to

accelerate the computation is to optimize the in-memory operations. The current strategies for

data distribution and task scheduling are file and hard disk based. Hence, the memory-based

strategies for all-to-all comparison problems can be further considered in the future work.



Appendix A

Codes for ATAC applications

A.1 CVTree Application Codes

To develop CVTree application, as we mentioned in Chapter 3, Compare method needs to be

implemented by the developer. The simple codes for CVTree application is shown as follows:

1 public class Cvtreesystem extends
ComputingSystem<String,String,List<Object>,Double>{

2 /*
3 * Read all the files in folder

hdfs://192.168.11.188:9000/root/cvtree/input1 and generate a
Map saving all the data;

4 * the keys are file name, the values are the whole file content
5 * @see ComputingSystem#Reader()
6 */
7

8 public HashMap<String,String> Reader(){
9 String path="/home/yifan/Public/part/";

10 HashMap<String,String> pairsforpreprocess = new
HashMap<String,String>();

11 File inputfiles = new File(path);
12 String[] filename = inputfiles.list();
13 File[] files= inputfiles.listFiles();
14

15 for(int i=0;i<files.length;i++){
16 StringBuffer wholeContent = new StringBuffer();
17 try{
18 FileReader freader = new FileReader(files[i]);
19 BufferedReader buffreader = new BufferedReader(freader);
20 while((buffreader.ready())){
21 wholeContent.append((char)buffreader.read());
22 }
23 freader.close();
24 buffreader.close();
25 }
26 catch(Exception e){
27 e.printStackTrace();
28 }
29 pairsforpreprocess.put(filename[i],wholeContent.toString());
30 }
31 return pairsforpreprocess;

159
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32 }
33

34

35 /*
36 * the following methods are belonging to the Preprocess part,

including the Preprocess method and other methods
37 * other methods are used to do the preprocess;
38 */
39

40 void Init(){
41 M2 = 1;
42 for (int i=0; i<LEN-2; i++) // M2 = AA_NUMBER ˆ (LEN-2);
43 M2 *= AA_NUMBER;
44 M1 = M2 * AA_NUMBER; // M1 = AA_NUMBER ˆ (LEN-1);
45 M = M1 *AA_NUMBER; // M = AA_NUMBER ˆ (LEN);
46 }
47

48 void InitVectors(){
49 vector = new int[M];
50 second = new int[M1];
51 one_l= new int[AA_NUMBER];
52 total = 0;
53 total_l = 0;
54 complement = 0;
55 }
56

57 void init_buffer(char[] buffer){
58 complement++;
59 indexs = 0;
60 for (int i=0; i<LEN-1; i++){
61 int enc = encode(buffer[i]);
62 one_l[enc]++;
63 total_l++;
64 indexs = indexs * AA_NUMBER + enc;
65 }
66 second[indexs]++;
67 }
68

69 void cont_buffer(char ch){
70 int enc = encode(ch);
71 one_l[enc]++;
72 total_l++;
73 int index = indexs * AA_NUMBER + enc;
74 vector[index]++;
75 total++;
76 indexs = (indexs % M2) * AA_NUMBER + enc;
77 second[indexs]++;
78 }
79

80 int encode(char ch){
81 return code[ch-’A’];
82 }
83

84 /*
85 * Preprocess method, generate a list including all the values,

values can be different type;
86 * @see ComputingSystem#Preprocess(java.lang.Object)
87 */
88 public List<Object> Preprocess(String content){
89 Init();
90 InitVectors();
91 StringReader in = new StringReader(content);
92

93 try{
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94 int ch=0;
95

96 while ((ch = in.read())!=-1){
97 if (ch == ’>’){
98 while ((in.read()) != ’\n’); // skip rest of line
99 char[] buffer = new char[LEN-1];

100 in.read(buffer,0,LEN-1);
101 init_buffer(buffer);
102 }
103 else if (ch != ’\r’ && ch != ’\n’)
104 cont_buffer((char)ch);
105 }
106 in.close();
107 }
108 catch(IOException e){
109 e.printStackTrace();
110 }
111

112 int total_plus_complement = total + complement;
113 double total_div_2 = total * 0.5;
114 int i_mod_aa_number = 0;
115 int i_div_aa_number = 0;
116 int i_mod_M1 = 0;
117 int i_div_M1 = 0;
118

119 double[] one_l_div_total = new double[AA_NUMBER];
120 for (int i=0; i<AA_NUMBER; i++)
121 one_l_div_total[i] = (double)one_l[i] / total_l;
122

123 double[] second_div_total = new double[M1];
124 for (int i=0; i<M1; i++)
125 second_div_total[i] = (double)second[i] /

total_plus_complement;
126

127 one_l=null;
128 second = null;
129 count = 0;
130 double[] t = new double[M];
131

132 for(int i=0; i<M; i++){
133 double p1 = second_div_total[i_div_aa_number];
134 double p2 = one_l_div_total[i_mod_aa_number];
135 double p3 = second_div_total[i_mod_M1];
136 double p4 = one_l_div_total[i_div_M1];
137 double stochastic = (p1 * p2 + p3 * p4) * total_div_2;
138

139 if (i_mod_aa_number == AA_NUMBER-1){
140 i_mod_aa_number = 0;
141 i_div_aa_number++;
142 }
143 else
144 i_mod_aa_number++;
145

146 if (i_mod_M1 == M1-1){
147 i_mod_M1 = 0;
148 i_div_M1++;
149 }
150 else
151 i_mod_M1++;
152

153 if (stochastic > EPSILON) {
154 t[i] = (vector[i] - stochastic) / stochastic;
155 count++;
156 }
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157 else
158 t[i] = 0;
159 }
160

161 one_l_div_total=null;
162 second_div_total=null;
163 vector=null;
164

165 tv = new double[count];
166 ti = new int[count];
167

168 int pos = 0;
169 for (int i=0; i<M; i++){
170 if (t[i] != 0){
171 tv[pos] = t[i];
172 ti[pos] = i;
173 pos++;
174 }
175 }
176

177 t=null;
178

179 List<Object> intermediateData = new ArrayList<Object>();
180

181 intermediateData.add(count);
182 for(int m=0;m<count;m++)
183 intermediateData.add(tv[m]);
184 for(int n=0;n<count;n++)
185 intermediateData.add(ti[n]);
186

187 tv=null;
188 ti=null;
189

190 return intermediateData;
191 }
192

193

194 /*
195 * the following methods are belonging to the Compare part;
196 * first few methods define how to deal the List and get separate

values;
197 */
198

199 int getcount(List<Object> list){
200 int thecount;
201 thecount = (int)list.get(0);
202 return thecount;
203 }
204

205 double[] gettv(List<Object> list){
206 int thecount;
207 thecount = getcount(list);
208 double[] tv = new double[thecount];
209

210 for(int i=0;i<thecount;i++)
211 tv[i]=(double)list.get(i+1);
212 return tv;
213 }
214

215 int[] getti(List<Object> list){
216 int thecount;
217 thecount = getcount(list);
218 int[] ti = new int[thecount];
219
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220 for(int i=0;i<thecount;i++)
221 ti[i]=(int)list.get(i+thecount+1);
222 return ti;
223 }
224

225 /*
226 * Compare method, compare two different intermediate value and

get the result
227 * @see ComputingSystem#Compare(java.lang.Object,

java.lang.Object)
228 */
229 public Double Compare(List<Object> intermediatedataa,List<Object>

intermediatedatab){
230 counta=getcount(intermediatedataa);
231 countb=getcount(intermediatedatab);
232 tva=gettv(intermediatedataa);
233 tvb=gettv(intermediatedatab);
234 tia=getti(intermediatedataa);
235 tib=getti(intermediatedatab);
236

237 double correlation = 0;
238 double vector_len1=0;
239 double vector_len2=0;
240 int p1 = 0;
241 int p2 = 0;
242

243 while (p1 < counta && p2 < countb){
244 int n1 = tia[p1];
245 int n2 = tib[p2];
246 if (n1 < n2){
247 double t1 = tva[p1];
248 vector_len1 += (t1 * t1);
249 p1++;
250 }
251 else if (n2 < n1){
252 double t2 = tvb[p2];
253 p2++;
254 vector_len2 += (t2 * t2);
255 }
256 else{
257 double t1 = tva[p1++];
258 double t2 = tvb[p2++];
259 vector_len1 += (t1 * t1);
260 vector_len2 += (t2 * t2);
261 correlation += t1 * t2;
262 }
263 }
264 while (p1 < counta){
265 double t1 = tva[p1++];
266 vector_len1 += (t1 * t1);
267 }
268 while (p2 < countb){
269 double t2 = tvb[p2++];
270 vector_len2 += (t2 * t2);
271 }
272

273 tva=null;
274 tvb=null;
275 tia=null;
276 tib=null;
277

278 return correlation / (Math.sqrt(vector_len1) *
Math.sqrt(vector_len2));

279 }
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280

281 /*
282 * Users use Writer function to operate the final results
283 * here just print all the index and results;
284 * @see ComputingSystem#Writer(Matrix)
285 */
286

287 public void Writer(Matrix<String,Double> matrix,String Taskvalue){
288

289 Map<List<String>,Double> resultpairs = matrix.Getallresult();
290 Iterator<Entry<List<String>, Double>> resultiterator =

resultpairs.entrySet().iterator();
291

292 String outputpath = "";
293 File filename;
294 FileWriter fw = null;
295

296 try {
297 outputpath = "/home/yifan/result/outputfile"+Taskvalue+".txt";
298 filename = new File(outputpath);
299 filename.createNewFile();
300

301 fw = new FileWriter(outputpath);
302

303 while(resultiterator.hasNext()){
304 Map.Entry<List<String>, Double> entry =

resultiterator.next();
305 fw.write("Key:"+entry.getKey().toString()+
306 "Value:"+entry.getValue().toString()+"\n");
307 }
308 fw.close();
309 } catch (IOException e) {
310 // TODO Auto-generated catch block
311 e.printStackTrace();
312 }
313 resultpairs=null;
314 }
315

316 int number_bacteria;
317 char[][] bacteria_name;
318 int M, M1, M2;
319 static int code[] = new int[] {0, 2, 1, 2, 3, 4, 5, 6, 7, -1, 8,

9, 10, 11, -1, 12, 13, 14, 15, 16, 1, 17, 18, 5, 19, 3};
320 private static final int LEN=6;
321 private static final int AA_NUMBER=20;
322 private static final double EPSILON=1e-010;
323 int counta;
324 double[] tva;
325 int[] tia;
326 int countb;
327 double[] tvb;
328 int[] tib;
329 int[] vector;
330 int[] second;
331 int[] one_l;
332 int indexs;
333 int total;
334 int total_l;
335 int complement;
336 int count;
337 double[] tv;
338 int[] ti;
339 List<Object> intermediateData;
340 }
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A.2 NMF Application Codes

Another ATAC application we used in Chapter 3 is NMF, which is a data mining program. The

simple codes for NMF application is shown as follows:
1

2 public class Datamining extends
ComputingSystem<String,ArrayList<String>,ArrayList<String>,Double>{

3

4 public static List<String> alllines;
5 public static double[][] A = new double[2000][2000];
6 static boolean initial=false;
7

8 HashMap<String,ArrayList<String>> Reader() throws IOException{
9

10 if(initial==false){
11 try {
12 Datamining.getAllLine();
13 } catch (IOException e) {
14 e.printStackTrace();
15 }
16 }
17

18 HashMap<String,String> map = new HashMap<String,String>();
19 HashMap<String,ArrayList<String>> finalmap = new

HashMap<String,ArrayList<String>>();
20

21 //call getAllLines to initialize alllines
22 String curline = "";
23 if(!alllines.isEmpty()){
24 curline = alllines.get(0);
25 alllines.remove(0);
26 System.out.println(curline);
27 }else{
28 System.out.println("All A are finished!!");
29 }
30

31 String contentA = "";//is not used for sparse format
32 String contentW = "";
33 String contentH = "";
34 int itr = 1;
35

36 //inside while{}
37 String[] tmp = curline.split("-");//line A index
38

39 //construct matrix A
40 //read content A
41 String filea = dataminingpath2 + curline;
42

43 File file = new File(filea);
44 if (file.exists()) {
45 BufferedReader brA = new BufferedReader(new FileReader(file));
46 String lineA;
47 while ((lineA = brA.readLine()) != null) {
48 String[] str = lineA.split(",");
49 int row = Integer.parseInt(str[0]);
50 int column = Integer.parseInt(str[1]);
51 double entry = Double.parseDouble(str[2]);
52 int highrow = row/50;//50 is row block number
53 int highcolumn = column/10;//10 is column block number
54 int startrow = highrow*50;
55 int startcolumn = highcolumn*10;
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56 A[row-startrow][column-startcolumn] = entry;
57 }
58 brA.close();
59 }else{
60 System.out.println("File " + filea + " does not exist");
61 }
62

63 //read content W
64 String filew = dataminingpath3 + (itr-1) + "/w" + tmp[1];
65 file = new File(filew);
66 if (file.exists()) {
67 BufferedReader brW = new BufferedReader(new FileReader(file));
68 String lineW;
69 while ((lineW = brW.readLine()) != null) {
70 contentW += lineW + ";"; //; is the line break mark and

within one line, the element is separated by " " or Tab
71 }
72 brW.close();
73 }else{
74 System.out.println("File " + filew + " does not exist");
75 }
76

77 //read content H
78 String fileh = dataminingpath4 + (itr-1) + "/h" + tmp[0];
79 file = new File(fileh);
80 if (file.exists()) {
81 BufferedReader brH = new BufferedReader(new FileReader(file));
82 String lineH;
83 while ((lineH = brH.readLine()) != null) {
84 contentH += lineH + ";"; //; is the line break mark and

within one line, the element is separated by " " or Tab
85 }
86 brH.close();
87 }else{
88 System.out.println("File " + fileh + " does not exist");
89 }
90

91 //concatenate content of A_ij, W_i and H_j for the value of
HashMap<String,String> map

92 //to be noted, there is only one set of <k,v> in this map
93 String value = contentW + "/+" + contentH; //contentA + "+" +
94 map.put(curline, value);
95

96 ArrayList<String> firstline = new ArrayList<String>();
97 ArrayList<String> secondline = new ArrayList<String>();
98 firstline.add(value);
99 secondline.add(curline);

100 finalmap.put(curline,firstline);
101 finalmap.put(curline+"1",secondline);
102

103 return finalmap;
104 }
105

106 public ArrayList<String> Preprocess(ArrayList<String> map){
107 return map;
108 }
109

110 public Double Compare(ArrayList<String> inputlines,
ArrayList<String> inputfileIndex){//input is one line of map,
the content of A_ij, W_i and H_j

111

112 ArrayList<String> lines = new ArrayList<String>();
113 ArrayList<String> fileIndex = new ArrayList<String>();
114
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115 for(int i=0;i<inputlines.size();i++)
116 lines.add(inputlines.get(i));
117

118 if(lines.get(0).contains("/+")){
119 for(int i=0;i<inputfileIndex.size();i++)
120 fileIndex.add(inputfileIndex.get(i));
121 } else{
122 lines = new ArrayList<String>();
123 for(int i=0;i<inputfileIndex.size();i++)
124 lines.add(inputfileIndex.get(i));
125

126 for(int i=0;i<inputlines.size();i++)
127 fileIndex.add(inputlines.get(i));
128 }
129

130 //let X be m by n, W m by k, H n by k
131 String v = lines.get(0);
132

133 String[] str = v.split("/+");//sparse format only contains two:
str[0] W, str[1] H, dense format has three: str[0] A, str[1]
W, str[0] H

134

135 //construct matrix W
136 double[][] W = new double[2000][10];//10 is the value of k
137 String[] wline = str[0].split(";");//; line break
138 for(int i = 0; i < W.length; i++){
139 String[] temp = wline[i].split(",");//, element break
140 for(int j = 0; j < W[0].length; j++){
141 W[i][j] = new BigDecimal(temp[j]).doubleValue();
142 }
143 }
144 //get W’
145 double[][] WT = transpose(W);
146 //construct matrix H
147 double[][] H = new double[2000][10];//10 is the value of k
148 wline = str[1].split(";");//; line break
149 for(int i = 0; i < H.length; i++){
150 String[] temp = wline[i].split(",");//, element break
151 for(int j = 0; j < H[0].length; j++){
152 H[i][j] = Double.parseDouble(temp[j]);
153 }
154 }
155 //get H’
156 double[][] HT = transpose(H);
157

158 //define intermediate matrices
159 double[][] S = new double[10][10];// k by k
160 double[][] X = new double[10][2000];//k by n
161 double[][] Y = new double[10][2000];//k by n
162 double[][] HTnew = new double[10][2000];//n by k
163

164 //calculate S=w’w
165 S = multiply(WT,W);
166

167 //calculate X=w’A
168 X = multiply(WT,A);
169

170 //calculate Y=SHT
171 Y = multiply(S,HT);
172

173 //caluculate HT = HT*(X/Y) entry-wise
174 for(int i = 0; i < HT.length; i++){
175 for(int j = 0; j < HT[0].length; j++){
176 if(Y[i][j] == (double) 0){
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177 HTnew[i][j] = (double) 0;
178 }else{
179 HTnew[i][j] = HT[i][j]*(X[i][j]/Y[i][j]);
180 }
181 }
182 }
183

184 double[][] Hnew = transpose(HTnew);
185

186 //define intermediate matrices
187 double[][] P = new double[10][10];// k by k
188 double[][] U = new double[10][2000];//k by n
189 double[][] V = new double[10][2000];//k by n
190 double[][] Wnew = new double[2000][10];//n by k
191

192 //calculate P=hh’
193 P = multiply(HTnew,H);//use HTnew instead of HT
194

195 //calculate U=Ah’
196 U = multiply(A,Hnew);
197

198 //calculate V=wP
199 V = multiply(W,P);
200

201 //caluculate W = W*(U/V) entry-wise
202 for(int i = 0; i < W.length; i++){
203 for(int j = 0; j < W[0].length; j++){
204 if(V[i][j] == (double) 0){
205 Wnew[i][j] = (double) 0;
206 }else{
207 Wnew[i][j] = W[i][j]*(U[i][j]/V[i][j]);
208 }
209 }
210 }
211

212

213 ////////////////////write Hnew and Wnew into
Disk/////////////////////////

214 //need the value of itr to write into folder W/itr/ or H/itr/
215 //also need the key of map, curline, to write as the W_i and H_j
216 String[] index = fileIndex.get(0).split("-");//index[0] is i

and index[1] is j
217 ////////////////////////
218

219 return 123.00;
220 }
221

222 public static void cacheWH(int itr) throws IOException{
223

224 String[] w = new String[50];
225 String[] h = new String[10];
226 File file;
227 File folder = new File(dataminingpath3 + itr);
228 File[] listOfFiles = folder.listFiles();
229

230 //read content W
231 for (int i = 0; i < listOfFiles.length; i++) {
232 if (listOfFiles[i].isFile()) {
233 String filew = listOfFiles[i].getName();
234 file = new File(filew);
235 if (file.exists()) {
236 BufferedReader brW = new BufferedReader(new

FileReader(file));
237 String lineW;String contentW = "";
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238 while ((lineW = brW.readLine()) != null) {
239 System.out.println(lineW);
240 contentW += lineW;
241 }
242 brW.close();
243 w[i] = contentW;//content of w_i
244 }else{
245 System.out.println("File " + filew + " does not exist");
246 }
247 } else if (listOfFiles[i].isDirectory()) {
248 System.out.println("Directory " +

listOfFiles[i].getName());
249 }
250 }
251

252 //read content H
253 folder = new File(dataminingpath4 + itr);
254 for (int i = 0; i < listOfFiles.length; i++) {
255 if (listOfFiles[i].isFile()) {
256 String fileh = listOfFiles[i].getName();
257 file = new File(fileh);
258 if (file.exists()) {
259 BufferedReader brH = new BufferedReader(new

FileReader(file));
260 String lineH;String contentH = "";
261 while ((lineH = brH.readLine()) != null) {
262 contentH += lineH;
263 }
264 brH.close();
265 h[i] = contentH;//content of h_i
266 }else{
267 System.out.println("File " + fileh + " does not exist");
268 }
269 } else if (listOfFiles[i].isDirectory()) {
270 System.out.println("Directory " +

listOfFiles[i].getName());
271 }
272 }
273

274 //at the end we get content of all W and H block matrices in
two array

275 //we can set two global array for this and update them at the
end of each iteration

276 }
277

278 public static void getAllLine() throws IOException{
279

280 List<String> lines =
Files.readAllLines(Paths.get(dataminingpath1),
StandardCharsets.UTF_8);

281 alllines = lines;
282 initial=true;
283 }
284

285 static Properties p;
286 static String dataminingpath1;
287 static String dataminingpath2;
288 static String dataminingpath3;
289 static String dataminingpath4;
290

291 //matrix operation functions
292

293 // return C = A * B
294 public static double[][] multiply(double[][] A, double[][] B) {
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295 int mA = A.length;
296 int nA = A[0].length;
297 int mB = B.length;
298 int nB = B[0].length;
299 if (nA != mB) throw new RuntimeException("Illegal matrix

dimensions.");
300 double[][] C = new double[mA][nB];
301 for (int i = 0; i < mA; i++)
302 for (int j = 0; j < nB; j++)
303 for (int k = 0; k < nA; k++)
304 C[i][j] += (A[i][k] * B[k][j]);
305 return C;
306 }
307 // return C = AˆT
308 public static double[][] transpose(double[][] A) {
309 int m = A.length;
310 int n = A[0].length;
311 double[][] C = new double[n][m];
312 for (int i = 0; i < m; i++)
313 for (int j = 0; j < n; j++)
314 C[j][i] = A[i][j];
315 return C;
316 }
317 }
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