1,165 research outputs found

    PERTS: A Prototyping Environment for Real-Time Systems

    Get PDF
    PERTS is a prototyping environment for real-time systems. It is being built incrementally and will contain basic building blocks of operating systems for time-critical applications, tools, and performance models for the analysis, evaluation and measurement of real-time systems and a simulation/emulation environment. It is designed to support the use and evaluation of new design approaches, experimentations with alternative system building blocks, and the analysis and performance profiling of prototype real-time systems

    Scheduling of Early Quantum Tasks

    Get PDF
    An Early Quantum Task (EQT) is a Quantum EDF task that has shrunk its first period into one quantum time slot. Its purpose is to be executed as soon as possible, without causing deadline overflow of other tasks. We will derive the conditions under which an EQT can be admitted and can have an immediate start. The advantage of scheduling EQTs is shown by its use in a buffered multi-media server. The EQT is associated with a multimedia stream and it will use its first invocation to fill the buffer, such that a client can start receiving data immediately

    Statistic Rate Monotonic Scheduling

    Full text link
    In this paper we present Statistical Rate Monotonic Scheduling (SRMS), a generalization of the classical RMS results of Liu and Layland that allows scheduling periodic tasks with highly variable execution times and statistical QoS requirements. Similar to RMS, SRMS has two components: a feasibility test and a scheduling algorithm. The feasibility test for SRMS ensures that using SRMS' scheduling algorithms, it is possible for a given periodic task set to share a given resource (e.g. a processor, communication medium, switching device, etc.) in such a way that such sharing does not result in the violation of any of the periodic tasks QoS constraints. The SRMS scheduling algorithm incorporates a number of unique features. First, it allows for fixed priority scheduling that keeps the tasks' value (or importance) independent of their periods. Second, it allows for job admission control, which allows the rejection of jobs that are not guaranteed to finish by their deadlines as soon as they are released, thus enabling the system to take necessary compensating actions. Also, admission control allows the preservation of resources since no time is spent on jobs that will miss their deadlines anyway. Third, SRMS integrates reservation-based and best-effort resource scheduling seamlessly. Reservation-based scheduling ensures the delivery of the minimal requested QoS; best-effort scheduling ensures that unused, reserved bandwidth is not wasted, but rather used to improve QoS further. Fourth, SRMS allows a system to deal gracefully with overload conditions by ensuring a fair deterioration in QoS across all tasks---as opposed to penalizing tasks with longer periods, for example. Finally, SRMS has the added advantage that its schedulability test is simple and its scheduling algorithm has a constant overhead in the sense that the complexity of the scheduler is not dependent on the number of the tasks in the system. We have evaluated SRMS against a number of alternative scheduling algorithms suggested in the literature (e.g. RMS and slack stealing), as well as refinements thereof, which we describe in this paper. Consistently throughout our experiments, SRMS provided the best performance. In addition, to evaluate the optimality of SRMS, we have compared it to an inefficient, yet optimal scheduler for task sets with harmonic periods.National Science Foundation (CCR-970668

    Scheduling Techniques for Operating Systems for Medical and IoT Devices: A Review

    Get PDF
    Software and Hardware synthesis are the major subtasks in the implementation of hardware/software systems. Increasing trend is to build SoCs/NoC/Embedded System for Implantable Medical Devices (IMD) and Internet of Things (IoT) devices, which includes multiple Microprocessors and Signal Processors, allowing designing complex hardware and software systems, yet flexible with respect to the delivered performance and executed application. An important technique, which affect the macroscopic system implementation characteristics is the scheduling of hardware operations, program instructions and software processes. This paper presents a survey of the various scheduling strategies in process scheduling. Process Scheduling has to take into account the real-time constraints. Processes are characterized by their timing constraints, periodicity, precedence and data dependency, pre-emptivity, priority etc. The affect of these characteristics on scheduling decisions has been described in this paper

    Rate Monotonic vs. EDF: Judgment Day

    Get PDF
    Since the first results published in 1973 by Liu and Layland on the Rate Monotonic (RM) and Earliest Deadline First (EDF) algorithms, a lot of progress has been made in the schedulability analysis of periodic task sets. Unfortunately, many misconceptions still exist about the properties of these two scheduling methods, which usually tend to favor RMmore than EDF. Typical wrong statements often heard in technical conferences and even in research papers claim that RM is easier to analyze than EDF, it introduces less runtime overhead, it is more predictable in overload conditions, and causes less jitter in task execution. Since the above statements are either wrong, or not precise, it is time to clarify these issues in a systematic fashion, because the use of EDF allows a better exploitation of the available resources and significantly improves system’s performance. This paper comparesRMagainstEDFunder several aspects, using existing theoretical results, specific simulation experiments, or simple counterexamples to show that many common beliefs are either false or only restricted to specific situations

    Real-time disk scheduling in a mixed-media file system

    Get PDF
    This paper presents our real-time disk scheduler called the Delta L scheduler, which optimizes unscheduled best-effort disk requests by giving priority to best-effort disk requests while meeting real-time request deadlines. Our scheduler tries to execute real-time disk requests as much as possible in the background. Only when real-time request deadlines are endangered, our scheduler gives priority to real-time disk requests. The Delta L disk scheduler is part of our mixed-media file system called Clockwise. An essential part of our work is extensive and detailed raw disk performance measurements. The Delta L disk scheduler for its real-time schedulability analysis and to decide whether scheduling a best-effort request before a real-time request violates real-time constraints uses these raw performance measurements. Further, a Clockwise off-line simulator uses the raw performance measurements where a number of different disk schedulers are compared. We compare the Delta L scheduler with a prioritizing Latest Start Time (LST) scheduler and non-prioritizing EDF scheduler. The Delta L scheduler is comparable to LST in achieving low latencies for best-effort requests under light to moderate real-time loads and better in achieving low latencies for best-effort requests for extreme real-time loads. The simulator is calibrated to an actual Clockwise. Clockwise runs on a 200MHz Pentium-Pro based PC with PCI bus, multiple SCSI controllers and disks on Linux 2.2.x and the Nemesis kernel. Clockwise performance is dictated by the hardware: all available bandwidth can be committed to real-time streams, provided hardware overloads do not occur

    Rate Monotonic vs. EDF: Judgment Day

    Full text link

    Xoncrete: a scheduling tool for partitioned real-time systems

    Get PDF
    International audienceARINC 653 defines a partitioned framework where the partitions are scheduled according to a predefined cyclic plan and the processes of each partition are scheduled with a fixed priority policy. The timing characteristics defined in ARINC (period and duration) can hardly be used to precisely represent the timing requirements of the applications. We extend the timing model of ARINC 653 to consider deadlines and the periodic behaviour of the individual processes. A novel definition of how to model periodic activities and how this new model is specially useful in an heterogeneous partitioned system is also presented. The new model and the set of scheduling algorithms have been implemented in a scheduling tool (called Xoncrete) to assist the designer to generate the cyclic plan table. Although founded on solid theoretical results, Xoncrete is not a general purpose tool, it is a tool designed to provide real help to the system designer
    corecore