295 research outputs found

    Localization And Mapping Of Unknown Locations And Tunnels With Unmanned Ground Vehicles

    Get PDF
    The main goals of this research were to enhance a commercial off the shelf (COTS) software platform to support unmanned ground vehicles (UGVs) exploring the complex environment of tunnels, to test the platform within a simulation environment, and to validate the architecture through field testing. Developing this platform will enhance the U. S. Army Engineering Research and Development Center’s (ERDC’s) current capabilities and create a safe and efficient autonomous vehicle to perform the following functions within tunnels: (1) localization (e.g., position tracking) and mapping of its environment, (2) traversing varied terrains, (3) sensing the environment for objects of interest, and (4) increasing the level of autonomy of UGVs available at the ERDC. The simulation experiments were performed in the STAGE Simulator, a physics-based multi-scale numerical test bed developed by Robotic Operating System (ROS). Physical testing was conducted in Vicksburg, MS using a Coroware Explorer. Both the simulation and physical testing evaluated three SLAM algorithms, i.e., Hector SLAM, gMapping, and CORESLAM to determine the superior algorithm. The superior algorithm was then used to localize the robot to the environment and autonomously travel from a start location to a destination location. Completion of this research has increased the ERDC’s level of autonomy for UGVs from tether to tele-operated to autonomous

    C-LOG: A Chamfer Distance based method for localisation in occupancy grid-maps

    Full text link
    In this paper, the problem of localising a robot within a known two-dimensional environment is formulated as one of minimising the Chamfer Distance between the corresponding occupancy grid map and information gathered from a sensor such as a laser range finder. It is shown that this nonlinear optimisation problem can be solved efficiently and that the resulting localisation algorithm has a number of attractive characteristics when compared with the conventional particle filter based solution for robot localisation in occupancy grids. The proposed algorithm is able to perform well even when robot odometry is unavailable, insensitive to noise models and does not critically depend on any tuning parameters. Experimental results based on a number of public domain datasets as well as data collected by the authors are used to demonstrate the effectiveness of the proposed algorithm. © 2013 IEEE

    Using the Jensen-Shannon, density power, and Itakura-Saito divergences to implement an evolutionary-based global localization filter for mobile robots

    Get PDF
    One of the most demanding skills for a mobile robot is to be intelligent enough to know its own location. The global localization problem consists of obtaining the robot's pose (position and orientation) in a known map if the initial location is unknown. This task is addressed applying evolutionary computation concepts (Differential Evolution). In the current approach, the distances obtained from the laser sensors are combined with the predicted scan (in the known map) from possible locations to implement a cost function that is optimized by an evolutionary filter. The laser beams (sensor information) are modeled using a combination of probability distributions to implement a non-symmetric fitness function. The main contribution of this paper is to apply the probabilistic approach to design three different cost functions based on known divergences (Jensen-Shannon, Itakura-Saito, and density power). The three metrics have been tested in different experiments and the localization module performance is exceptional in regions with occlusions caused by different obstacles. This fact validates that the non-symmetric probabilistic approach is a suitable technique to be applied to multiple metrics.This work was supported by the Competitive Improvement of Drilling and Blasting Cycle in Mining and Underground-Works through New Techniques of Engineering, Explosives, Prototypes, and Advanced Tools, which is a Research and Development project undertaken by the following companies: Obras Subterr a neas, MaxamCorp Holding, Putzmeister Iberica, Subterra Ingenieria, Expace On Boards Systems, Dacartec Servicios Informaticos, and Cepasa Ensayos Geotecnicos

    Automatic Reconstruction of Textured 3D Models

    Get PDF
    Three dimensional modeling and visualization of environments is an increasingly important problem. This work addresses the problem of automatic 3D reconstruction and we present a system for unsupervised reconstruction of textured 3D models in the context of modeling indoor environments. We present solutions to all aspects of the modeling process and an integrated system for the automatic creation of large scale 3D models

    Global Localization based on Evolutionary Optimization Algorithms for Indoor and Underground Environments

    Get PDF
    Mención Internacional en el título de doctorA fully autonomous robot is defined by its capability to sense, understand and move within the environment to perform a specific task. These qualities are included within the concept of navigation. However, among them, a basic transcendent one is localization, the capacity of the system to know its position regarding its surroundings. Therefore, the localization issue could be defined as searching the robot’s coordinates and rotation angles within a known environment. In this thesis, the particular case of Global Localization is addressed, when no information about the initial position is known, and the robot relies only on its sensors. This work aims to develop several tools that allow the system to locate in the two most usual geometric map representations: occupancy maps and Point Clouds. The former divides the dimensional space into equally-sized cells coded with a binary value distinguishing between free and occupied space. Point Clouds define obstacles and environment features as a sparse set of points in the space, commonly measured through a laser sensor. In this work, various algorithms are presented to search for that position through laser measurements only, in contrast with more usual methods that combine external information with motion information of the robot, odometry. Therefore, the system is capable of finding its own position in indoor environments, with no necessity of external positioning and without the influence of the uncertainty that motion sensors typically induce. Our solution is addressed by implementing various stochastic optimization algorithms or Meta-heuristics, specifically those bio-inspired or commonly known as Evolutionary Algorithms. Inspired by natural phenomena, these algorithms are based on the evolution of a series of particles or population members towards a solution through the optimization of a cost or fitness function that defines the problem. The implemented algorithms are Differential Evolution, Particle Swarm Optimization, and Invasive Weed Optimization, which try to mimic the behavior of evolution through mutation, the movement of swarms or flocks of animals, and the colonizing behavior of invasive species of plants respectively. The different implementations address the necessity to parameterize these algorithms for a wide search space as a complete three-dimensional map, with exploratory behavior and the convergence conditions that terminate the search. The process is a recursive optimum estimation search, so the solution is unknown. These implementations address the optimum localization search procedure by comparing the laser measurements from the real position with the one obtained from each candidate particle in the known map. The cost function evaluates this similarity between real and estimated measurements and, therefore, is the function that defines the problem to optimize. The common approach in localization or mapping using laser sensors is to establish the mean square error or the absolute error between laser measurements as an optimization function. In this work, a different perspective is introduced by benefiting from statistical distance or divergences, utilized to describe the similarity between probability distributions. By modeling the laser sensor as a probability distribution over the measured distance, the algorithm can benefit from the asymmetries provided by these divergences to favor or penalize different situations. Hence, how the laser scans differ and not only how much can be evaluated. The results obtained in different maps, simulated and real, prove that the Global Localization issue is successfully solved through these methods, both in position and orientation. The implementation of divergence-based weighted cost functions provides great robustness and accuracy to the localization filters and optimal response before different sources and noise levels from sensor measurements, the environment, or the presence of obstacles that are not registered in the map.Lo que define a un robot completamente autónomo es su capacidad para percibir el entorno, comprenderlo y poder desplazarse en ´el para realizar las tareas encomendadas. Estas cualidades se engloban dentro del concepto de la navegación, pero entre todas ellas la más básica y de la que dependen en buena parte el resto es la localización, la capacidad del sistema de conocer su posición respecto al entorno que lo rodea. De esta forma el problema de la localización se podría definir como la búsqueda de las coordenadas de posición y los ángulos de orientación de un robot móvil dentro de un entorno conocido. En esta tesis se aborda el caso particular de la localización global, cuando no existe información inicial alguna y el sistema depende únicamente de sus sensores. El objetivo de este trabajo es el desarrollo de varias herramientas que permitan que el sistema encuentre la localización en la que se encuentra respecto a los dos tipos de mapa más comúnmente utilizados para representar el entorno: los mapas de ocupación y las nubes de puntos. Los primeros subdividen el espacio en celdas de igual tamaño cuyo valor se define de forma binaria entre espacio libre y ocupado. Las nubes de puntos definen los obstáculos como una serie dispersa de puntos en el espacio comúnmente medidos a través de un láser. En este trabajo se presentan varios algoritmos para la búsqueda de esa posición utilizando únicamente las medidas de este sensor láser, en contraste con los métodos más habituales que combinan información externa con información propia del movimiento del robot, la odometría. De esta forma el sistema es capaz de encontrar su posición en entornos interiores sin depender de posicionamiento externo y sin verse influenciado por la deriva típica que inducen los sensores de movimiento. La solución se afronta mediante la implementación de varios tipos de algoritmos estocásticos de optimización o Meta-heurísticas, en concreto entre los denominados bio-inspirados o comúnmente conocidos como Algoritmos Evolutivos. Estos algoritmos, inspirados en varios fenómenos de la naturaleza, se basan en la evolución de una serie de partículas o población hacia una solución en base a la optimización de una función de coste que define el problema. Los algoritmos implementados en este trabajo son Differential Evolution, Particle Swarm Optimization e Invasive Weed Optimization, que tratan de imitar el comportamiento de la evolución por mutación, el movimiento de enjambres o bandas de animales y la colonización por parte de especies invasivas de plantas respectivamente. Las distintas implementaciones abordan la necesidad de parametrizar estos algoritmos para un espacio de búsqueda muy amplio como es un mapa completo, con la necesidad de que su comportamiento sea muy exploratorio, así como las condiciones de convergencia que definen el fin de la búsqueda ya que al ser un proceso recursivo de estimación la solución no es conocida. Estos algoritmos plantean la forma de buscar la localización ´optima del robot mediante la comparación de las medidas del láser en la posición real con lo esperado en la posición de cada una de esas partículas teniendo en cuenta el mapa conocido. La función de coste evalúa esa semejanza entre las medidas reales y estimadas y por tanto, es la función que define el problema. Las funciones típicamente utilizadas tanto en mapeado como localización mediante el uso de sensores láser de distancia son el error cuadrático medio o el error absoluto entre distancia estimada y real. En este trabajo se presenta una perspectiva diferente, aprovechando las distancias estadísticas o divergencias, utilizadas para establecer la semejanza entre distribuciones probabilísticas. Modelando el sensor como una distribución de probabilidad entorno a la medida aportada por el láser, se puede aprovechar la asimetría de esas divergencias para favorecer o penalizar distintas situaciones. De esta forma se evalúa como difieren las medias y no solo cuanto. Los resultados obtenidos en distintos mapas tanto simulados como reales demuestran que el problema de la localización se resuelve con éxito mediante estos métodos tanto respecto al error de estimación de la posición como de la orientación del robot. El uso de las divergencias y su implementación en una función de coste ponderada proporciona gran robustez y precisión al filtro de localización y gran respuesta ante diferentes fuentes y niveles de ruido, tanto de la propia medida del sensor, del ambiente y de obstáculos no modelados en el mapa del entorno.Programa de Doctorado en Ingeniería Eléctrica, Electrónica y Automática por la Universidad Carlos III de MadridPresidente: Fabio Bonsignorio.- Secretario: María Dolores Blanco Rojas.- Vocal: Alberto Brunete Gonzále

    Objective error criterion for evaluation of mapping accuracy based on sensor time-of-flight measurements

    Get PDF
    An objective error criterion is proposed for evaluating the accuracy of maps of unknown environments acquired by making range measurements with different sensing modalities and processing them with different techniques. The criterion can also be used for the assessment of goodness of fit of curves or shapes fitted to map points. A demonstrative example from ultrasonic mapping is given based on experimentally acquired time-of-flight measurements and compared with a very accurate laser map, considered as absolute reference. The results of the proposed criterion are compared with the Hausdorff metric and the median error criterion results. The error criterion is sufficiently general and flexible that it can be applied to discrete point maps acquired with other mapping techniques and sensing modalities as well
    corecore