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A dissertation submitted by in partial fulfillment of the

requirements for the degree of Doctor of Philosophy in

Electrical Engineering, Electronics and Automation

Universidad Carlos III de Madrid

Advisor:

Luis Enrique Moreno Lorente

Tutor:

Luis Enrique Moreno Lorente

June 2022



This thesis is distributed under license “Creative Commons license Attribution –
Non Commercial – Non Derivatives”.



Con un pouco de unto vello que o ben soupen aforrar e ca fariñiña munda xa tiña
para cear. Fixen un caldo de groria que me soupo que la mar, fixen un bolo do pote

que era cousa de envidiar.

i



ii



Agradecimientos

En primer lugar quiero agradecer a mi familia, a mis padres Luis e Isabel y mi
hermano Pablo por ser un referente en todos los sentidos aunque eso lo haga un poco
más dificil a veces. Sin ellos esto no habŕıa sido posible aunque no les haya hecho
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Abstract

A fully autonomous robot is defined by its capability to sense, understand and move
within the environment to perform a specific task. These qualities are included within
the concept of navigation. However, among them, a basic transcendent one is local-
ization, the capacity of the system to know its position regarding its surroundings.
Therefore, the localization issue could be defined as searching the robot’s coordinates
and rotation angles within a known environment. In this thesis, the particular case
of Global Localization is addressed, when no information about the initial position
is known, and the robot relies only on its sensors. This work aims to develop several
tools that allow the system to locate in the two most usual geometric map repre-
sentations: occupancy maps and Point Clouds. The former divides the dimensional
space into equally-sized cells coded with a binary value distinguishing between free
and occupied space. Point Clouds define obstacles and environment features as a
sparse set of points in the space, commonly measured through a laser sensor.

In this work, various algorithms are presented to search for that position through
laser measurements only, in contrast with more usual methods that combine external
information with motion information of the robot, odometry. Therefore, the system
is capable of finding its own position in indoor environments, with no necessity of
external positioning and without the influence of the uncertainty that motion sensors
typically induce. Our solution is addressed by implementing various stochastic opti-
mization algorithms or Meta-heuristics, specifically those bio-inspired or commonly
known as Evolutionary Algorithms. Inspired by natural phenomena, these algorithms
are based on the evolution of a series of particles or population members towards a
solution through the optimization of a cost or fitness function that defines the prob-
lem.

The implemented algorithms are Differential Evolution, Particle Swarm Optimiza-
tion, and Invasive Weed Optimization, which try to mimic the behavior of evolution
through mutation, the movement of swarms or flocks of animals, and the coloniz-
ing behavior of invasive species of plants respectively. The different implementations
address the necessity to parameterize these algorithms for a wide search space as
a complete three-dimensional map, with exploratory behavior and the convergence
conditions that terminate the search. The process is a recursive optimum estimation
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search, so the solution is unknown. These implementations address the optimum
localization search procedure by comparing the laser measurements from the real po-
sition with the one obtained from each candidate particle in the known map. The
cost function evaluates this similarity between real and estimated measurements and,
therefore, is the function that defines the problem to optimize.

The common approach in localization or mapping using laser sensors is to estab-
lish the mean square error or the absolute error between laser measurements as an
optimization function. In this work, a different perspective is introduced by benefit-
ing from statistical distance or divergences, utilized to describe the similarity between
probability distributions. By modeling the laser sensor as a probability distribution
over the measured distance, the algorithm can benefit from the asymmetries provided
by these divergences to favor or penalize different situations. Hence, how the laser
scans differ and not only how much can be evaluated. The results obtained in differ-
ent maps, simulated and real, prove that the Global Localization issue is successfully
solved through these methods, both in position and orientation. The implementation
of divergence-based weighted cost functions provides great robustness and accuracy
to the localization filters and optimal response before different sources and noise levels
from sensor measurements, the environment, or the presence of obstacles that are not
registered in the map.
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Resumen

Lo que define a un robot completamente autónomo es su capacidad para percibir el en-
torno, comprenderlo y poder desplazarse en él para realizar las tareas encomendadas.
Estas cualidades se engloban dentro del concepto de la navegación, pero entre todas
ellas la más básica y de la que dependen en buena parte el resto es la localización,
la capacidad del sistema de conocer su posición respecto al entorno que lo rodea. De
esta forma el problema de la localización se podŕıa definir como la búsqueda de las
coordenadas de posición y los ángulos de orientación de un robot móvil dentro de un
entorno conocido. En esta tesis se aborda el caso particular de la localización global,
cuando no existe información inicial alguna y el sistema depende únicamente de sus
sensores. El objetivo de este trabajo es el desarrollo de varias herramientas que per-
mitan que el sistema encuentre la localización en la que se encuentra respecto a los
dos tipos de mapa más comúnmente utilizados para representar el entorno: los mapas
de ocupación y las nubes de puntos. Los primeros subdividen el espacio en celdas
de igual tamaño cuyo valor se define de forma binaria entre espacio libre y ocupado.
Las nubes de puntos definen los obstáculos como una serie dispersa de puntos en el
espacio comúnmente medidos a través de un láser.

En este trabajo se presentan varios algoritmos para la búsqueda de esa posición uti-
lizando únicamente las medidas de este sensor láser, en contraste con los métodos más
habituales que combinan información externa con información propia del movimiento
del robot, la odometŕıa. De esta forma el sistema es capaz de encontrar su posición
en entornos interiores sin depender de posicionamiento externo y sin verse influen-
ciado por la deriva t́ıpica que inducen los sensores de movimiento. La solución se
afronta mediante la implementación de varios tipos de algoritmos estocásticos de op-
timización o Meta-heuristicas, en concreto entre los denominados bio-inspirados o
comúnmente conocidos como Algoritmos Evolutivos. Estos algoritmos, inspirados en
varios fenómenos de la naturaleza, se basan en la evolución de una serie de part́ıculas
o población hacia una solución en base a la optimización de una función de coste que
define el problema.

Los algoritmos implementados en este trabajo son Differential Evolution, Particle
Swarm Optimization e Invasive Weed Optimization, que tratan de imitar el com-
portamiento de la evolución por mutación, el movimiento de enjambres o bandas de
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animales y la colonización por parte de especies invasivas de plantas respectivamente.
Las distintas implementaciones abordan la necesidad de parametrizar estos algorit-
mos para un espacio de búsqueda muy amplio como es un mapa completo, con la
necesidad de que su comportamiento sea muy exploratorio, aśı como las condiciones
de convergencia que definen el fin de la búsqueda ya que al ser un proceso recur-
sivo de estimación la solución no es conocida. Estos algoritmos plantean la forma de
buscar la localización óptima del robot mediante la comparación de las medidas del
láser en la posicion real con lo esperado en la posición de cada una de esas part́ıculas
teniendo en cuenta el mapa conocido. La función de coste evalúa esa semejanza entre
las medidas reales y estimadas y por tanto, es la función que define el problema.

Las funciones t́ıpicamente utilizadas tanto en mapeado como localización medi-
ante el uso de sensores láser de distancia son el error cuadrático medio o el error
absoluto entre distancia estimada y real. En este trabajo se presenta una perspec-
tiva diferente, aprovechando las distancias estad́ısticas o divergencias, utilizadas para
establecer la semejanza entre distribuciones probabiĺısticas. Modelando el sensor
como una distribución de probabilidad entorno a la medida aportada por el láser, se
puede aprovechar la asimetŕıa de esas divergencias para favorecer o penalizar distintas
situaciones. De esta forma se evalúa cómo difieren las medias y no solo cuanto. Los
resultados obtenidos en distintos mapas tanto simulados como reales demuestran que
el problema de la localización se resuelve con éxito mediante estos métodos tanto re-
specto al error de estimación de la posición como de la orientación del robot. El uso de
las divergencias y su implementación en una función de coste ponderada proporciona
gran robustez y precisión al filtro de localización y gran respuesta ante diferentes
fuentes y niveles de ruido, tanto de la propia medida del sensor, del ambiente y de
obstáculos no modelados en el mapa del entorno.
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Chapter 1

Introduction

Robotics, automation and ”intelligent” systems have changed our way of life in the
past century, from the way manufacturers and warehouses operate to, more recently,
meddling in our daily life, affecting the way we commute every day, the way we com-
municate and our daily tasks at home. Robots and autonomous systems have evolved
from aggressive industrial machinery aimed to deliver us from factory repetitive tasks
into more flexible, mobile and autonomous devices, able to perform a task outside an
specific workspace, react to unexpected situations, interact with all kind of objects
and living beings. Hand in hand with this physical evolution, its computational abil-
ity or intelligence has evolved from simple active systems programmed to perform
a task regardless of the environment, through reactive ones, able to sense, detect
and interact and into intelligent systems capable of extracting conclusions from the
environment, learn and decide.

Mobile robots are those that are able to move from one place to another au-
tonomously, that is, without any physical help from external parties. Unlike the
majority of industrial robots, typically manipulators, which are limited to an spe-
cific workspace, mobile robots have the specific quality of moving freely within the
environment to achieve a desired goal. This mobility is precisely what makes them
suitable for a large amount of applications, both in structured and non structured en-
vironments. Ground mobile robots are distinguished in Wheeled Mobile Robots and
Legged Mobile Robots, but mobile robots also include Unmanned Aerial Vehicles
(UAV’s) or Autonomous Underwater Vehicles. They have become an essential tool in
industrial an commercial environments. Mobile robots are easily found transporting
materials in hospitals for several years. Warehouses take advantage of autonomous
mobile robots to efficiently transport goods between loading zones and shelves for
storage to complete customer orders. Military and security robotic systems have
been historically on the lead of robotic research. And increasingly conquering do-
mestic environments as consumer products, from household tasks, assistance for the

1
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Figure 1.1: ADAM: Mobile manipulator platform developed in the Robotics Lab.

most dependent and as pure entertainment, good examples are autonomous vacuum
cleaners or lawnmowers.

Therefore, a fully modern autonomous robot should be able to perform one or
more specific or complex tasks obtaining information from the environment, moving
throughout it without human assistance and avoiding circumstances that may prevent
it from succeeding or that may risk its integrity. A further step would consist in
learning and adopting new capabilities or new methods to perform the task. When
fully autonomous, meaning no necessity of external assistance nor guidance, and
working in a non-structured environment, the attention focuses in a fundamental
issue: navigation. Navigation comprises everything a robot needs to get from point A
to point B, interacting with the environment, as efficiently as possible. This problem
breaks down into several sub-problems:

� It needs to know where it is (Localization).

� It needs to detect and avoid obstacles (Collision Avoidance).
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� It has to be able to explore new terrain memorizing its surroundings (Mapping).

� It has to be able to plan a route from point A to point B (Trajectory Planning).

As its has been widely said and discussed there is not a specific or at least a unique
definition of what a robot is, there are many kinds of robots, many kinds of au-
tonomous robots, with different levels of autonomy, and the level required depends
on the specific task and field. In addition, many other tasks or skills that define
the performance of a robot rely on a proper self-location. This work will focus on
the basis of navigation: localization, the capability of the system to know its current
position and location within the environment.

Global Localization (GL) can be defined as the search of a robot’s pose (position
and orientation) in a two-dimensional (2D) or three-dimensional (3D) environment
when the initial location is unknown. In this thesis, a set of optimization techniques
based on Evolutionary Algorithms (EAs) will be developed as a continuation of the
work carried out in the Robotics Lab research group of the Systems Engineering and
Automation Department of the Carlos III University of Madrid (UC3M) in this field.
These algorithms, which try to emulate nature in its way of selection for survival, will
be presented and implemented as a feasible solution to this issue for different cases
in 2D and 3D environments, both simulated and real. These maps represent the
worst-case scenario of indoor or underground situations with no external information
available, and the robot has to rely uniquely on its sensory system. The core of this
selection is usually managed through an evaluation function. Different alternatives for
these cost, fitness or selection functions will be presented as a more flexible approach
than the commonly used Euclidean distance when comparing possible locations of
the mobile robot based on range sensor information.

Real laser data used in this thesis has been acquired through the mobile platform
ADAM(Figure 1.1), developed by the Robotics Lab group. The sensing capability
of this platform includes RBG vision, time-of-flight Infrared data (IR), 2D and 3D
laser telemetry, with a special prototype High-Density Light Detection and Ranging
(HD-Lidar) designed specifically for mapping and localization. Differential Evolution
algorithm (DE)[7] has been applied to a localization filter for simulated and semi-
simulated environments, 2D and 3D occupancy maps of different indoor buildings.
For 3D Point Cloud-based maps using real data acquired trough ADAM’s LiDAR,
Particle Swarm Optimization (PSO)[8] and Invasive Weed Optimization (IWO) [9]
have also been developed and will be compared with the mentioned DE. The result-
ing GL-filters have been tested in different maps and different common situations
including perception noise and the presence of obstacles. The overall performance
and accuracy results prove to be comparable with other reserach group investiga-
tions, even outstanding in some situations.
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The main objectives of this thesis are:

� Review the state of the art in localization for mobile robots and related topics
as mapping and scan-matching.

� Review the state of the art on Evolutionary Optimization and its applications.

� Develop a Global Localization method based on Evolutionary Algorithms.

� Consider different approaches to map representation using different cost func-
tions.

� Test and validate the proposed solutions in 2D and 3D environments.

This document is structured in five chapters. In this first chapter, an introduc-
tion to the Global Localization problem addressed in this thesis, the environment
considered, and the data utilized together with the main objectives of this work were
presented. A review of the existing solutions for mobile robot localization in known
and unknown maps is provided in Chapter 2 under the title of State of the art, in-
cluding different approaches to localization and the existing techniques regarding the
utilization of laser beam sensor for geometric environment perception. A review of
the existing stochastic optimization methods, with a deeper theoretical explanation of
the implemented ones, is also included. Chapter 3 describes the different evolutionary
techniques and their application to a multi-environment GL-filter, the considerations
assumed for each map representation, and the adjustment of required parameters
and data processing stages. A novel approach to optimization function selection for
the Global Localization task based on probabilistic considerations of the laser mea-
surements is presented, together with the specific cost functions implemented. The
experimental results and their discussion are presented in Chapter 4, while the most
remarkable conclusions and future developments are included in Chapter 5.



Chapter 2

State Of The Art

Once the set of tasks a mobile robot is determined to perform is defined, a challeng-
ing shared problem to solve for all of them is navigation through the environment
or workspace. No matter what the task is or how thoroughly the characteristics of
the environment are represented, to perform successful navigation, the robot accom-
plishes different phases: perception, localization, cognition, and motion control. In
the perception phase, information about the surroundings is acquired through the
robot’s sensors to extract meaningful data to interpret the environment. If not pre-
viously provided, this interpretation could be used to perform a model commonly
represented as a map. This map could include, in a simple categorization, geometri-
cal, topological, or semantic information. The next step is the localization process,
where the robot searches for its position within that map. Once the environment
is represented and the position and orientation of the robot are known, trajectory
planning and motion control stages will lead that robot towards its destination.

The main contribution of this document is to solve the Global Localization prob-
lem for 2D and 3D environments using evolutionary techniques on different map
models. Although the recent tendency in autonomous robots is to combine the pre-
viously detached mapping and localization problems into Simultaneous Localization
And Mapping (SLAM), a Global Localization module is still needed. The ability to
accurately estimate the robot’s position and orientation on a known map without
any information about the initial location still solves the kidnapped robot situation,
for instance, where even a mobile robot able to perform SLAM could lose previous
information or could be abducted to an unidentified place. This chapter presents the
current state of the art in the topics that affect our approach to GL: localization itself,
different techniques of mapping focusing on metric representations through the use of
Point Clouds (PC), SLAM, and Scan Matching techniques to search the spatial rela-
tion between PCs, and finally Evolutionary Algorithms and the different optimization
functions that manage them.

5
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2.1 Localization on Mobile Robotics

The main characteristic that differentiates a mobile robot from its predecessors,
robotic arms and manipulators, is its ability to navigate within the environment,
increasing its flexibility to adapt to a major number of tasks. As stated, navigation
can not be performed without the localization module. The result of this localization
provides position and orientation (x, y, θ) or (x, y, z, α, β, γ) depending if considering
a 2D or 3D environment and the number of Degrees-Of-Freedom (DOF). Regarding
the available information about the robot’s initial location, the localization issue could
be divided into position tracking, global localization, and kidnapped robot problem.

� Re-localization or tracking systems: Position tracking assumes that the ini-
tial position of the robot is known, at least with some uncertainty. The basic
principle of these systems is to maintain a reliable estimation of the robot’s
pose for each lapse of time during its navigation. The vast majority of current
localization algorithms present a solution to this problem mainly because of
its simplicity and low computational cost in comparison to the GL situation.
Tracking relies on proprioceptive (odometry mainly) and exteroceptive sensor
information to reduce the uncertainty of the estimate or belief for proper local-
ization. A well-known and widely used example of this kind of algorithms is the
Kalman and Extended Kalman Filters (EKF) [10], [11], [1], which acquire good
results and are very efficient computationally speaking. The main drawback is
that a fine initialization is necessary. In addition, statistical modeling of the
properties of the system is to be determined accurately.

Figure 2.1: Tracking experiment using EKF [1].

� GL systems: On the other side, dealing with the absence of initial information
opens up another category. This kind of methods do not assume any infor-
mation on either position or orientation of the robot. Therefore, the whole
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environment must be considered as a search space, in contrast with tracking,
where only a local area is necessary. This turns it into a more difficult task
as the mathematical models as well as the information integration are more
complex.

� Kidnapped Robot situation: A third category that could be considered a de-
viation from the previous ones deserves attention. In the kidnapped robot
situation, a properly localized robot should be able to deal with the uncertainty
of being abducted to an undefined position or losing pose tracking. Recovery
from this situation is necessary and encompasses pose monitoring to be aware of
being kidnapped and re-localization, which can be seen as a Global Localization
problem.

We will focus on GL systems, as this work proposes different approaches to solve
this issue. In a first division, GL can be classified into two different categories depend-
ing on how the information is provided: positioning and self-localization systems.

� Positioning systems rely on information exchange with the exterior, which may
include both receiving position information from external sources (beacons) or
even sending signals towards external sensors and receiving from them the lo-
cation of the robot. In general, they use different methods to triangulate an
estimation of the robot’s location. Among the different positioning systems,
the most widely known is the GPS. A positioning system that provides location
and time information anywhere on the surface of the earth where there is no
obstruction for electromagnetic waves toward four or more GPS satellites. In
our case of study, indoor or underground spaces, it is far more difficult to es-
tablish a reliable positioning system. This is due to the difficulty of generating
good coverage because of the necessity to place a high amount of emitters and
receivers. Current indoor positioning systems using radio frequencies, vision,
laser beams, or ultrasounds obtain accurate results but with the big disadvan-
tage of incredibly depending on the external disposition of the elements, and
even though they do not require a detailed map, which is an advantage, they
surely depend on knowing the beacons’ position, which makes them an almost
inflexible system.

� Self-localization systems, on the other hand, are those that obtain the infor-
mation directly from onboard sensors. Typical examples of these systems are
LiDAR or computer vision-based for 2D and 3D scanning localization modules.
Referring to the use of LiDAR, the idea is to acquire a set of distances from a
laser sweep across the environment. This type of localization module requires
a more detailed and complex predefined map than positioning systems. Self-
localization systems have been studied in this project as our work is focused on
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indoor environments for which they are a more interesting solution from a con-
ceptual point of view as well as more reliable and flexible. A particularization
of self-positioning localization systems that do not require previous knowledge
about the map is SLAM, first proposed in 1991 [12], which has become the main
subject of study in the last decades. A review of SLAM is presented in section
2.1.2.

Different approaches, conceptual and mathematical, to all these different cases of
GL problems have been considered. The next sections present two different categories
for this approach: Probabilistic methods and Autonomous Map Building.

2.1.1 Probabilistic Localization Approaches

Probabilistic map-based global localization approaches identify and compute the
probability of the robot to be located at each point of the environment representation
or on a subset of candidate points. The exteroceptive and proprioceptive information
noise affects the sensor data introducing uncertainty. Therefore, inevitably, localiza-
tion can not be measured but only estimated. Among these methods, three categories
could be distinguished:

� Bayesian-based methods: This type of method integrate motion and external
sensor information into a a posteriori probability density function in a step of
prediction and perception update. In a second step, the robot’s pose is esti-
mated according to specific criteria such as maximum density point or average
value. Once it has converged, the probability distribution is focused on a small
area surrounding the estimate. The key to these methods is to create an ac-
curate model for the density function to cover the most feasible areas. In its
basis, Bayesian approximation considers a continuous function for the proba-
bility density. Modifications of this concept have approximated and discretized
this function to reduce complexity. These modifications have been widely stud-
ied and applied in the field of localization, common examples among them may
be Grid-based probabilistic filters [13], [2], [14], Monte-Carlo (MC) localization
methods [15]. MC reduces the search to a subset of particles to represent the
approximate belief of the robot state, considering a small number of possible
locations. In [16], Dellaert et al. applied a sampled-based representation of the
density while Klaess et al. [17] considered 3D grid maps to apply MC with
probabilistic observation models. Kummerle et al. [18] worked on a 6DOF
localization of the robot for outdoor application using a MC particle filter by
matching laser scans to a 3D map of the environment, a solution with the same
approach as the presented in this work.
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Figure 2.2: Evolution of the maximum probability position density with the amount
of sensor readings over an occupancy grid map [2].

� Optimization-based methods: in this kind of algorithms, all the computational
efforts are aimed at optimizing the value of a fitness or cost function. This
function is designed to integrate all the system’s information. Typically these
methods are population-based, and after each cycle or iteration, the estimated
pose of the robot results from the element with the optimum cost function
value. Two different ideas result in two different strategies. The well-known
Kalman filters derive the cost function to compute the solution. They present
good computational performance, but they cannot deal with multi hypothesis
distributions. Therefore, they have often been applied to tracking problems
(re-localization), where only a single hypothesis is needed when computing the
robot’s pose. The second idea is to perform a stochastic search over the space
of the optimum estimate. Evolutionary Algorithms or Metaheuristics such as
DE or Particle Swarm Optimization (PSO) filters rely on this idea. Genetic
Algorithm (GA) and Ant Colony Optimization (ACO) are a few examples of
these kinds of algorithms. A specific review on these methods can be found
in [19] and [20]. Both DE and PSO methods are compared with MC in [21].
Lisowski et al. [22] have implemented an hybrid version that mixes DE and MC.
A different evolutionary technique called Harmony Search algorithm [23] is the
basis of the GL filter designed by Mirkhania et al. [24]. As cited before, the DE
method was applied in our previous work [25], [26], [27]. Ronghua and Birong
[28] have proposed a mixture between MC and a genetic algorithm optimizer.
Chien et al. [29] have applied PSO to implement a modified version of MC that
avoids premature convergence. Other nature-inspired algorithms are used as in
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[3], where Neto et al. proposed the Leader-Based Bat Algorithm to estimate
the location through a smaller number of microbats in pursuit of the best place
to start the colony. Comparison with standard Bat Algorithms, Particle Filter,
and PSO is provided. An example of the performance of this method for the
kidnapped robot problem is shown in Figure 2.3. The bat population (in blue)
converges into a new position after an abduction.

Figure 2.3: LLBA algorithm behavior after robot kidnapping problem [3].

� Hybrid methods also called multi-hypotheses Kalman filters [30], [31], [32], [33]
are another kind of algorithms were the set of solutions considers decision trees
and geometric constraints. These methods imply Bayesian rules, are constituted
by normal (Gaussian) probability distributions, but the generation, selection, or
elimination of solutions are not only based on probability criteria. Each prob-
ability distribution is driven by a Kalman Filter, and to manage the problem,
decision trees and geometric constraints are mixed together with probabilistic
attributes to solve the problem. In [34], laser range measurements are fused
with odometry to calculate a covariance for pose estimation through an MC
method. The iterative Closest Point (ICP) matching algorithm uses that out-
come as a starting point. A feature-based EKF is presented in [35] that extracts
geometric features from the environment to perform the correction stage, while
in [36] a combination between particle and Kalman filters is presented.

Different methods have been recently applied mainly for 3D environments and full
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6DOF. Localization matching extracted features from data and model [37], multi-
sensor fusion over an EKF-based solution for uneven indoor terrains [38], the use
of laser range finder plus artificial reflector [39] and with the advance of technology
in cameras and vision the increase of computer-vision techniques [40, 41], that turn
localization into a scene recognition problem matching a different kind of features like
Scale-Invariant Feature Transform (SIFT) and Speeded Up Robust Features (SURF)
[42]. Finally, as previously stated, the apparition of SLAM, which merges Localization
and Mapping, has become the commonly selected approach to solve localization,
mainly regarding 3D environments. The next section (2.1.2) reviews the state of the
art in this particularization.
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2.1.2 SLAM - Mapping

These previously discussed (Section 2.1.1) localization strategies all rely on the previ-
ous knowledge of the environment map. However, an increase in flexibility, the main
attribute of mobile robotics, comes hand in hand with adaptation to large and dy-
namically changing environments. Global localization becomes a more difficult task
in these environments, and previously conceived maps would intuitively lead us to
expect higher inaccuracies in the estimation. These situations have been addressed
in the past three decades through autonomous map building since the apparition of
the SLAM concept [12]. The initial assumption for the SLAM technique is that there
is no initial information at all, neither positioning nor environment representation.
Therefore, the strategy of the robot is to explore its surroundings, acquiring sensory
data, both proprioceptive and exteroceptive, recursively integrating this information
with previous perceptions in a consistent manner to construct a map simultaneously
with the navigation process. As stated, global localization estimates the current po-
sition and orientation of the robot within a map. For this map to be constructed,
the robot’s pose in each step must be known to maintain spatial consistency when
incorporating new perceptions. Therefore, incremental mapping and localization are
undetachable concepts.

The first concepts to be taken into account for robotic mapping are the desired
or necessary complexity of the representation and the information sensing capacity
available or required, depending on the autonomous system’s purposes. An initial
classification distinguishes between metric or geometrical, topological, and semantic
maps. In almost every case, even for a topological or semantic representation, met-
ric information is required for feasible navigation. Topological and semantic data
represent a higher conceptual level, mainly focused on cognition and trajectory plan-
ning stages, and will be discarded in this work. Metric measurements are acquired
through idiothetic and allothetic, proprioceptive and exteroceptive, self-proposition,
and external purpose sensors. Those are typically encoders for odometry and 2D and
3D laser range sensors, LiDAR, InfraRed (IR), or Time-of-Flight (ToF) sensors for
obstacle detection and environment measures.

Mathematically speaking, the SLAM problem has been divided into two different
probabilistic approaches according to Siciliano et al. [43].

The first one, denominated fullSLAM, addresses the problem by estimating the
posterior of the complete robot’s path together with the resulting map and its denoted
by:

p(Xt,m|Zt, Ut), (2.1)

where Xt is the full path until instant t, m is the resulting map, Zt = {z1, ..., zt}
contains the sensor perceptions for each pose in Xt and Ut is the propioceptive motion
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information for the path.
The second approach, onlineSLAM consists on the estimation of each current

location of the robot independently:

p(xt,m|Zt, Ut), (2.2)

where the difference is denoted by the term xt which represents each individual
location of the robot in contrast with the whole path estimation in fullSLAM. Ex-
tracted from equations 2.1 and 2.2, the system must know two models to complete
the process, a mathematical model that links the information from motion sensors
ut to locations xt and another that converts exteroceptive perception zt into these
locations and the map m.

The use of probabilistic techniques has been widely studied for mapping [44, 45, 46]
and initially led to satisfactory results when solving the problem posed. Typical ex-
amples are occupancy grid maps, where the map is divided into grids where every cell
or voxel has an associated probability that distinguishes between free space, obstacle,
or undetermined. Relative positioning between two different poses, determining its
relative translation and rotation, is the key to map building and was typically ap-
proached with dead reckoning algorithms such as Kalman Filter, Markov, Montecarlo
[47], and Extended Kalman Filter (EKF) [48]. The main drawback of these methods
is that they typically rely on internal sensors such as encoders or Inertial Measurement
Units (IMUs) and are consequently affected by their uncertainties. When the robot is
moving, the position calculated by the internal sensors inevitably drifts, introducing
inaccuracies and deviations. As a result, apart from dead reckoning from inertial
sensors, external information obtained from the surrounding environment is usually
needed for robot positioning, such as from vision sensors, range sensors, or GPS. With
the development of visual sensors, visual-SLAM (vSLAM) has emerged as a success-
ful approach. The use of vSLAM has been widely discussed as it simplifies sensor
configuration, with less possible technical difficulties and simpler hardware mounted
on the robot. As described in [49], vSLAM could be categorized in: featured based
[50], direct [51, 52] and RGBD based [53] depending on whether it relies on features
or distinctive points, the whole image or they combine image and depth information
from RGBD cameras. Focusing on RGBD-SLAM, a technology that has been widely
studied in recent years due to the apparition of low-cost sensors, the same direct [54],
or feature-based [55] approaches have been developed with the particularity of the
inclusion of depth information that could also be considered in isolation [56], with
the same concept as laser-based SLAM.

There are different classifications that could be made on SLAM as it is a wide field
of study, with multiple technologies involved and different types of maps and sensors
implied in the process. Since this work presents techniques applied for both 2D and 3D
geometrically described environments, an initial distinction could be made depending
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on the map dimensions and the DOF that define the robot’s pose within that map.
A pose in a two-dimensional map would be defined by a three-parameter vector −→p =
(x, y, θ) where θ represents the rotation over de z axis. In three-dimensional maps,
the pose vector would be parametrized as −→p = (x, y, z, α, β, γ) including the roll,
pitch and yaw angles (α, β, γ). However, concessions are often made for 3D mapping
depending on the DOF considered for the localization method and the availability of
sensor information. Authors have constructed volumetric maps using a combination
of horizontal a vertical 2D laser range finders [57, 58]. Nevertheless, it still remains a
3DOF localization method as the sensor used for that purpose still works in (x, y, θ)
space.

Figure 2.4: 2D projection of 3D EKF-Slam resulting map presented in [4].

Focusing on the metric representation of the environment, SLAM could be classi-
fied into the next categories based on the strategy selected.
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� EKF-based approaches: This approach was historically the first formulation for
SLAM solutions. It consists of a probabilistic approach using a non-linear ver-
sion of the Kalman Filter, the most widely used variant of Bayes filters. This
type of filter integrates all the available information and computes all measure-
ments (typically odometry and range information) to estimate the actual value
of the robot’s location. FastSlam is a well-known reference in this category
[59]. Again like in pure GL, the uncertainty of sensor information could lead to
inaccuracies. Initially developed for planar mapping using 2D laser range sen-
sors, still is the most utilized SLAM strategy for 2D [60, 61, 62] and 3D SLAM
solutions [4]. An example of the results can be observed in Figure 2.4. Cheein
and Tobeiro propose in [63] a hybrid scheme between MC and EKF, which cre-
ates an uncertainty map to direct the robot to uncertainty regions while the
MC scheme extracts these points and their estimated probability. In [61], Va-
liente et al. propose a comparison between Stochastic Gradient Descent and
EKF. The latter presents better accuracy for low Gaussian noise environments.
Limitations of these methods rely on assumptions of linear propagation means
and covariances when normally sensor and motion models possess a non-linear
nature.

Figure 2.5: (a) Laser measurements plotted according to raw odometry data (b)
Occupancy map generated by the proposed SLAM algorithm [5].

� UKF-based approaches: this evolution of EKF was developed to cope with its
limitations. Different authors apply this technique to SLAM [64, 65, 66]. The
difference is the utilization of the unscented transform to linearize motion and
measurement models. In [65], Schymura et al. develop a potential field strategy
for the exploration of acoustic SLAM, proven to be more accurate and faster
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than previous methods. Fernandez et al. propose a strategy that combines
odometry with panoramic images, applying MC localization. A UKF based
approach with cartographer control reference using distinctive points in the
surroundings was introduced in [67]

� Evolutionary-based approaches: Many evolutionary algorithms have been im-
plemented to SLAM and mapping solutions. PSO heuristic methods are widely
used for post-localization optimization. An improved version of FastSLAM was
presented in [68] using PSO as a resampling method. In [69], an implemen-
tation of (ν + λ)ES and (ν + 1)ES evolutionary algorithms is considered for
robot formation self-localization and multi-resolution mapping. Begum et al.
propose a novel combination of Fuzzy Logic and Genetic Algorithm (GA) in
[5]. Fuzzy logic substitutes normal distribution to model odometry uncertainty
while GA iterates over a sample-based position uncertainty. The improvement
for 2D mapping compared to odometry-based mapping can be seen in Figure
2.5

Most of these techniques have been mainly applied to planar mapping in 2D en-
vironment representation. When speaking of 3D representations for 6DOF localiza-
tion, the environment information requirements increases, and so does the necessity
to compensate for odometry inaccuracies and prediction through the environment
information. Advances in vision, LiDAR end telemetric sensors hand in hand with
computational capacity allow to switch from dead reckoning approaches to a more
environment-based strategy. A well-known example of this technique was the appari-
tion of the Iterative Closest Point (ICP) [70] applied in [71] to a mapping method
based on the alignment of 3D scans combined with a heuristic for Loop Detection
(when a point in the map is revisited and the position uncertainty can be updated).
One of the more important concepts of laser-based SLAM is how to compare two scans
reducing odometry errors between the two positions. This technique, known as Scan
Matching, Scan Alignment, or Point Registration, estimates the rigid transformation
between each pair of scans and thus the relative position of the robot between those
scans. As each scan is received, it can be placed in reference to the previous one
following this transformation and so recursively building a three-dimensional map.
This strategy has become the main approach to 2D and 3D metric mapping, both for
motion-based pose estimation error minimization and in isolation as a relative pose
estimation method.

Algorithms developed in this thesis are applied to 2D environments and extended
into two types of representation maps for 3D. Firstly, an occupancy grid map con-
structed through elevation of simulated and real 2D maps that we could consider
semi-simulated. Finally, for the LiDAR 3D Point Cloud map obtained through the
platform ADAM, mentioned in Chapter 1 and obtained through evolutionary-based
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SLAM techniques [72]. Therefore, localization in 2D environments is given as a 3DOF
vector, while for 3D is a full 6DOF localization method.
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2.1.3 Scan Matching

This work presents an alternative approach to GL on previously known geometric
maps applying evolutionary techniques. The importance of geometric representation
of the space is crucial to understanding the solutions proposed for 2D and 3D envi-
ronments. A review of the different localization and mapping techniques has been
presented in sections 2.1.1 and 2.1.2 respectively. In this section, different approaches
to Point Registration or Scan Matching are outlined. Scan Matching could be con-
sidered the milestone for this work as it encompasses both localization and mapping
purposes in one concept. From now on, mapping references are always referred to as
geometric Pont Cloud-based representations, although in some cases, image or RGB
information is also present. One of the primary purposes of building a good consis-
tent map is to be able to transform the scans or point cloud into another type of
data like an occupancy grid to perform path planning and navigation. Scan regis-
tration optimizes the spatial error between perceptions to maximize the accuracy of
the map. There are two wide categories on which the different point registration al-
gorithms are spread depending on the approach: deterministic and probabilistic. To
main algorithms deserve special attention as they have been the foundation of many
implementations and variations through the years: Iterative Closest Point (ICP) [70]
and Normal Distribution Transform (NDT)[73].

Figure 2.6: The Scan Matching Problem.

� Deterministic approaches:

This category encompasses the ICP algorithm and its modifications. ICP is the
predominant solution in this category and in point registration in general. It has
been the seed and one of the most used and modified algorithms. Its functioning
is quite straightforward, intuitive, and yet effective, the main reason for its
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popularity. The objective is to estimate the spatial transformation between a
pair of scans or representative set of n-dimensional points implying rotation and
translation (R, t) that matches both clouds and therefore obtaining the relative
location of the sensor in those two instants (Figure 2.6). This is achieved by
minimizing the least-squares of the distance of all the points that belong to
different observations defined by scans A and B, which yields the minimum
possible distances between them. Equation 2.3 depicts the L2-norm fitness
function upon which the classic ICP algorithm is based, where the fitness value
E is calculated by the summation of all Euclidean distances between each point
a in A and each resulting point from applying rotation R and translation t to
each point contained in the B set. Na and Nb are the total number of considered
points in both data sets. The ICP method has become the most common scan
matching solution. This first approach paved the way for many other researchers
that tried to improve its performance and implement different versions of the
algorithm. ICP workflow consists of a recursive iteration, as each selected point
in the source finds the closest point in the target. Then the transformation
matrix is estimated and applied to the rest of the source selected points. The
algorithm computes the root squared cost function and repeats the process until
convergence conditions, typically when E(R, t) falls under a threshold value.
The key step and what implies the highest computational cost is the closest
point selection step.

E(R, t) =
Na∑
i=1

Nb∑
j=1

||ai − (Rbj + t)||2, (2.3)

Many modifications and updates have been developed since its apparition, dif-
ferent distance considerations to minimize a cost function as Point To Line [74]
or Point To Plane [75] which can increase the convergence speed.

Although a highly consistent method, one of the main drawbacks of ICP is its
elevated computational cost. This seems obvious considering that laser sen-
sor’s technology and resolution have advanced enormously in the past years,
increasing the scan sizes and inducing an exponential rise of computational
times mainly during the nearest neighbor match stage computed for each point
data of the source cloud. Therefore, reducing the number of representative
points could optimize the solution. This reduction of data is mainly achieved
by point cloud simplification or downsampling methods that could be random,
uniform, or feature-based. Another approach was presented in [76], where, as-
suming that laser data is assorted in the same way when using the same sensor,
modification of the coordinate system type into polar coordinates simplifies the
nearest neighbor search by considering bearing in the polar coordinate space
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only. With the use of data structures like k-d tree [77] and octree, the closest
point search is accelerated, increasing the ICP computational efficiency.

Other implementations of ICP try to avoid local minima convergence. Rough
pre-alignments are considered previous to ICP refinement using feature descrip-
tors or correspondences. Distinctive points are described by a set of parameters
that define a characteristic point of the scan, considering the shape around that
point, normally through normal vector computation. An initial alignment is
fed to the ICP by matching features with similar descriptor values. Examples
of the use of these features are Fast Point Feature Histogram [78] and SHOT
[79]. A popular example of the pre-alignment strategy based on descriptors is
RANdom SAmpling Consistency (RANSAC) [80].

The IMPR method, proposed by Lu and Milios [81], limits the maximum trans-
formation considered (rotation and translation). Correspondences are found
within a range of distance and rotation of the target, not considering the whole
space. A variation combines ICP and IMRP. The translation is computed by
the ICP method, and the rotation is estimated by the IMRP method.

Figure 2.7: Examples of 3D Mapping using solely LiDAR information and ICP-Scan
Matching. Left: Indoor Environment. Right: Outdoor Environment.

� Probabilistic approaches:
these methods are based on the use of Maximum Likelihood Estimator (MLE)
[82]. The main representation of these approaches is the Normal Distribution
Transform (NDT) method, which states that a scan can be subdivided into
piece-wise continuous and differentiable probability density and uses this in-
formation to match successive scans using Newton’s algorithm. Peter Biber
introduced in [73] this new approach to solve the scan matching problem, which
is different from the classical ICP. In this method, the matching is not done
by finding the minimum distance between two scans. In the NDT algorithm,
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the scans are represented by probability functions, and the alignment is done
by getting the vector pose that optimizes a score that is computed according
to the probability distributions. The values of the probabilities vary depending
on the transform applied to the moving scan. The optimum score will be the
minimum when both scans are aligned. By doing this, the NDT does not rep-
resent an occupancy grid but a probability grid. The first characteristic is that
the point cloud space is divided into voxels of regular size. All the contained
points in each voxel are taken into account to calculate the mean and the co-
variance matrix. The last step is to model each mean/covariance matrix pair
through normal distribution. Finally, the PC is divided into N equally sized
voxels defined by a normal distribution. NDT algorithm was expanded to 3D
environments in [83] and compared to ICP, concluding that it could be consid-
ered faster. The probability of convergence was higher from a wider range of
initial pose estimates, but so was the resulting rotation error.

Many other researchers have developed several variations of the NDT algo-
rithm. For example, Takubo et al. [84] have designed an NDT version for
high-resolution maps. Ulas and Temeltas have made a multi-layer NDT to
extract features [85] and Einhorn and Gross [86] have implemented a 2D/3D
SLAMmethod based on NDT maps. Most of these previous works have used the
NDT method in the classical optimization way (like ICP), using an optimiza-
tion method that relies on the gradient or Newton’s algorithm. In our previous
work [72] a Differential Evolution driven DE-NDT scan matching method was
developed.
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2.2 Evolutionary Algorithms

As it can be extracted from sections 2.1.1 and 2.1.2, the GL problem, for a previously
known environment or through SLAM techniques, is an estimation process that in-
volves uncertainties and probabilistic models. In this work, we consider the situation
of localizing a mobile robot inside an indoor or underground environment, with no in-
formation from external sources (positioning) and no knowledge at all about its initial
position, just each local scan obtained by a laser range finder. The larger the environ-
ment and the amount of data obtained (laser points), the bigger the search space for
a solution. Obtaining a mathematical function or model to solve the problem implies
simplifications that alter the outcome. In addition, the concept of localization itself
requires adaptative approaches that should be flexible enough to adapt to different
environments or information sources, implying that the more adaptative, general, or
high level the strategy selected to solve this problem is, the easier to be expanded to
a different situation or information sources. Therefore, considering all these qualities,
a Stochastic Optimization approach is depicted as a feasible choice for this matter.
In section 2.1.1 stochastic probability-based approaches have been presented, which
were the base for the GL study.

Stochastic optimization methods use randomness to generate a non-deterministic
solution or to emulate a non-deterministic behavior, implying rather than using a
non-deterministic process that does not converge into a single solution from the same
initial conditions to a deterministic problem (GL searches for a single solution even
being an estimation) or introducing some kind of randomness in the process to imitate
non-deterministic processes, with not one single solution. This randomness implied in
the process does not mean that the optimization behavior is random. Optimization
algorithms sample the space in a rational manner [87]. Classic stochastic approaches
to approximate a probability density function are Markov and MC methods (2.1.1).

Another interesting concept of stochastic optimization is the inductive learning
perspective. Inductive learning is defined as the capability of an individual to im-
prove its characteristics through the passing of time when contrasted to an objective
or reference. In optimization, this is represented in algorithms that are able to evolve
a set of candidates or possible solutions in each iteration when contrasted to a func-
tion that evaluates each candidate’s performance. This evaluation function receives
many names in the literature: objective function, cost function, fitness function, or
health function. Learning from the example establishes the assumption that a set of
candidates as a representative sample of the whole domain could be a single solution
or a population that iteratively, through a process of generation, test and selection,
improves its knowledge about the environment (cost function). This perspective is
acquired from k-armed bandit theory from the field of Game Theory [88], for en-
hancing and gaining information from the environment simultaneously with decision
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making (where to evolve towards). At the end of the 1980s and the 1990s, a sub-
field of Artificial Intelligence (AI), Computational Intelligence, often referred to as
scruffy or soft AI, started to focus on strategy-based algorithms. This field aimed
to approach the constitution of complex behavior in a simpler or more intuitive man-
ner, in a rather descriptive way based on the procedure more than the reason for
success. This led to opening up to a wider spectrum of inspiration sources, and the
result was the introduction of Natural and Biologically Inspired Computing, Fuzzy
Systems, or Artificial Neural Networks. These techniques can be encompassed under
the category of Metaheuristics. Those are strategy-based techniques that trade-off
precision or quality in favor of effectiveness, simplicity, adaptability, and flexibility.
Metaheuristics define a high-level strategy for a black-box problem type, where there
is a poor mathematical definition of the problem. Basically, they are sets of proce-
dures of the general appliance to optimization problems inspired by different fields
of study, animals, plants, nature, biology, neurology, physic or cultural events, and
many others. Metaheuristics are guides on a search for a near-optimal solution for
non-deterministic unspecified problems. Although the proper nomenclature for this
type of algorithm should be Metaheuristics, it should be noted that typically Neural
Networks (NN) are detached from the rest of the approaches due to the great amount
of investigation surrounding them in the last decade. The rest of the algorithms,
even though not all of them involve genetic inspiration, are commonly denominated
Evolutionary Algorithms.

Boosted by the advances of computational power in this century, these stochastic
iterative processes have been possible to implement with the inherent computational
waste. The sometimes inefficient random nature may revisit previously explored ar-
eas of the domain and may require a large number of samples to obtain an optimal
solution. In contrast, the adaptability and non-dependence of prior knowledge of the
problem can lead to innovative solutions in many implementations.

This section does not intend to present all algorithms, as the list is large and
the common characteristics of some of them are difficult to extract but to overview
different strategies that could be encompassed in a small classification. Depending
on the field of inspiration, Metaheuristics excluding NN could be classified in:

� Nature Inspired:

Nature-inspired or bio-inspired algorithms try to extract optimization tech-
niques from different sources in nature. These sources are animal, plant, or
genetically related. They have become the most commonly applied Metaheuris-
tics for their adaptability and their intuitive understanding. The two most
relevant categories for autonomous robotic applications are:
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– Evolutionary Algorithms: There is an instant relation between stochastic
optimization and evolution theory, adaptation, survival of the strongest,
and Darwin’s Theory. Evolutionary Algorithms try to mimic a simplified
version of genetic material propagation mechanisms, mutation, and its
adaptability to changes in the environment. The first expression of these
algorithms was Genetic Algorithm (GA) [89], and modifications have cre-
ated a wide range of other EAs. In this Metaheuristic, population-based,
the parameters of the solution are codified as genes of each population
member. The most qualified elements, in terms of the fitness function,
contribute at a higher level to the genetic material of the next generation
or offspring. DE [7] is a modified version of GA for a more exploratory
approach in terms of global search. Differing from GA, all members of the
population have random possibilities of contributing to the offspring. A
extended review of DE is presented in section 2.2.1.

– Swarm Intelligence Algorithms: When considering intelligent behaviors in
nature, it seems intuitive to appeal to swarm intelligence. Many animals
benefit from rejecting individual conduct as they would not survive on their
own. When observing nature, it is impressive to analyze some groups of
animals’ collective search for food, defense against predators, or route selec-
tion, and the parallelism with population-based algorithms seems natural.
Many collective animals’ behavior has been imitated, from ant colonies,
swarms of bees, schools of fishes, or bacteria. The aim is to replicate the
adaptability and scalability speed that collective intelligence implies. The
most common particularizations of these algorithms are Bee Algorithm [90]
and Particle Swarm Optimization (PSO)[8]. Bee Algorithm emulates food
foraging of honey bee colonies. It is a population-based algorithm that
establishes local searches through exploratory bees, communication possi-
bilities to attract other bees of each exploratory bee depend on the cost
function. In [91], BeA is used to distribute swarm robot members into
different tasks depending on the necessities. Shortest trajectory planning
using BeA is presented in [92]. A extensive explanation of PSO is given in
2.2.2.

� Physical Algorithms:

Physical algorithms encompass all those inspired by physical phenomena. It is
a broad category that includes music-inspired algorithms like Harmony Search
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[93], metallurgy inspired in Simulated Annealing [94], or society-based regard-
ing knowledge and cultural habits in Cultural Algorithm [95]. In this author’s
opinion, the most remarkable algorithm for its peculiarity is Harmony Search,
based on the search for harmony in jazz music improvisation. Each parameter
of candidate solutions is represented by a musician in search of a good har-
mony in the band. Variations in the tone of each instrument in each iteration
may find a better harmony that is stored in the memory of the group. Current
work in our investigation group is working on applying HS to SLAM techniques.
Another interesting physically inspired algorithm is Simulated Annealing (SA),
inspired by metallurgic processes where metal is heated and slowly cooled to
favor crystal formation. SA is a single element algorithm, randomly selected
inside the search space, that manages the selection of a neighboring element
through probability. Each element’s temperature is calculated, but there is a
probability of selecting a worse candidate even with the worst cost function
value, escaping from local minimums.

� Probabilistic Algorithms:

Probabilistic Algorithms generally alternate iterations between generating a set
of possible solutions using a probabilistic model and converting the existing pop-
ulation into a probability model. Examples of this category are Cross-Entropy
Method [96] and Bayesian Optimization Algorithm. Cross-Entropy assumes a
probability distribution for the search space sampling using that distribution.
Samples are determined individually by calculating the same type of distribu-
tion from a group of better candidates. With each iteration, the distribution is
refined.

� Stochastic Algorithms:

Although all optimization algorithms in this classification are considered stochas-
tic, Stochastic Algorithms are those that lack an external source of inspiration
rather than the stochastic concept itself and the strategy of the local search pro-
cedure. Examples of these algorithms are Random Search [97], Tabu Search[98]
or Stochastic Hill Climbing [99]. Random Search is a direct search strategy
based on uniform distribution sampling of the whole parameter searching space.
Its heuristic is simple, for a limit of iterations, generate a random uniform distri-
bution over the search space and, evaluate all samples, select the more efficient
one in terms of cost until the iteration limit is reached. Its main applications in
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robotics are the initialization for other optimization methods and as a standard
comparison of the performance of other algorithms.

As stated, we have selected three different nature-inspired algorithms to develop a
GL filter that is presented in the next sections. Those are DE, PSO, and Invasive Weed
Optimization (IWO), a rather recent bio-inspired stochastical optimization algorithm
based on invasive habits of weed expansion. Selected algorithms are population-based,
with an explorative nature which makes them suitable for large search spaces like GL
in a full 3D environment. An explorative nature is needed regarding the search space
considered in largely known maps and the number of local minimums encountered in
possible symmetric locations.

2.2.1 Differential Evolution

The solution proposed is based on the DE method described by Storn and Price in
[7] for global optimization problems over continuous spaces. It has been developed
in previous work [25] and [27]. A theoretical description will be given in this section.
Differential Evolution is included in the nature-inspired Evolutionary Algorithms. It
is a population-based stochastic optimization method that presents an artificial rep-
resentation of the mutation effects in evolution. Although it could be stated that
the search space parameters are coded as chromosomes, it is not considered a ge-
netic algorithm as its metaphoric definition is distant from accurate evolution theory
explanations. DE considers a fixed set of possible solutions and performs a compe-
tition procedure for every single candidate in terms of the cost function value. Each
competition confronts each element of the population and a mutated combination of
three randomly selected elements. The possible next-generation member is a genetic
(parameter) mixture of the original candidate and that mutated element. For each
pair, the fittest in terms of evaluation function value reaches the next generation.

The algorithm starts with a randomly generated population of Np candidates,
defined by d parameters each, to cover the entire map. The size of this popula-
tion remains constant during the whole process. Each d-dimensional vector xk

i =
(xk

i,1, ...., x
k
i,d) is a possible solution to the optimization problem in the kth generation,

where i ∈ [0, Np], and works as starting point for Np parallel direct searches. After
initialization, a new population is generated by adding the weighted difference be-
tween two candidates to a third vector. This operation is called mutation. A mutated
vector’s parameters are then mixed with each of the original vector’s parameters, and
a randomly selected mutated vector is assigned to each candidate. To complete each
iteration, the two populations, old and new, are compared through a cost function in
order to select the Np better members in each performance.

The first step after initialization in a DE algorithm is to generate new parameter
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Figure 2.8: Example of a three-dimensional parameter mutated vector generation.

vectors by adding a weighted difference between two random members of the popu-
lation to a third one and so, creating a mutated equivalent for each member of the
old population. This way an intermediate population is created such as:

vi,k = xr0,k + F ∗ (xr1,k − xr2,k),

with random different indexes r1,r2 and r3 ∈ [1 − Np] indicating the three ran-
domly selected candidates in generation k and parameter F > 0, which controls the
amplification of the difference or mutation. A three-dimensional example of this new
member generation is shown in Figure 2.8.

In order to increase the diversity of the perturbed vectors, the crossover concept is
introduced. Denoted by uk

i , new intermediate population members are created from
the combination of parameters from each original population member xk

i of the old
generation with other parameters from the previously mentioned mutated candidates
vki . To this point, the trial vector u

k
i = (uk

i,1, u
k
i,2, ...., u

k
i,d) is created with its parameters

being:

uk
i,j =

{
vki,j, if pki,j ≤ CR

xk
i,j, otherwise

where pki,j is a randomly chosen number among the interval [0,1], typically over a
normal distribution, for each parameter j of each candidate i. d is usually defined
as the number of chromosomes, the number of parameters that define the search
space, and hence each candidate vector. The crossover stage is controlled by the
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Figure 2.9: Illustration of the crossover process for D = 6 parameters.

CR variable, which marks the probability of assuming parameters from a mutated
member of the population over the existing ones. An illustration of the crossover
process for a 6-dimensional vector is given in Figure 2.9.

In order to decide whether this new intermediate population member should re-
place or not its competitor in the next generation of candidates, each one of the
trial vectors uk

i is compared with the target (original) member of the population xk
i

through a cost function. If vector uk
i delivers a smaller cost function value than xk

i

then it will replace it as a member in the next generation, otherwise the old candidate
xk
i is retained.

There are many applications in several optimization fields of the DE metaheuris-
tic. In the field of robotics, several examples have already been mentioned as our
previous work on DE-based GL, [25, 26, 27] or DE-based NDT scan matching [72].
In [100], Joshi et al. present an optimization of the minimal representation approach
for multi-sensor-based robotic manipulation path planning. A DE modified scheme
which employs a statistical representation of the population rather than the actual
estimates is presented in [101] for computational cost reduction in a Cartesian robot
motion control. A multi-robot path planning optimization using a combination of DE
optimization and Q-learning was developed in [102]. In [21], a comparative of popu-
lation necessities, convergence rate, and speed between DE, PSO, and MC methods
is performed for a 2DOF robot in a 2D map representation. Conclusions yield that
metaheuristic approaches require fewer particles and less processing time to converge
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into a localization solution. Unluckily no accurate information is given.

2.2.2 Particle Swarm Optimization

A second solution is proposed based on another nature-inspired stochastic optimiza-
tion algorithm, in this case, in the field of swarm intelligence. Our election, moti-
vated by the simplicity of the concept, was PSO, formulated in 1995 by Eberhart
and Kennedy in [8]. A theoretical description will be given in this section. It is
a population-based Meta-heuristic that presents an artificial representation of the
swarm behavior of schools of fishes or flocks of birds in the search for an optimum
path during navigation or flight. PSO, in contrast with Bee Algorithm or Ant Colony,
does not imitate a particular collective, hence the use of the world particle. Immedi-
ate parallelism can be established between the position evolution of each member of
a swarm during movement towards a goal and the search space of a set of particles
to find the optimum solution to a GL problem. The search space is sampled with a
set of particles using a uniform distribution. Through all iterations, PSO maintains
a particle memory and a global memory, where each candidate keeps track of its par-
ticular best position and the swarm’s collective best position, respectively. On each
iteration, every member is awarded a velocity, consisting of a weighted sum of current
velocity and distances to personal and collective best.

Figure 2.10: Illustrative example of swarm movement.

The algorithm starts with a randomly generated population of Np particles, de-
fined by d parameters each, to cover the entire domain. This is typically done through
a uniform distribution. The size of this population remains constant during the whole
process. Each d-dimensional position of particle pki = (xk

i,1, ...., x
k
i,d) is a possible solu-

tion to the optimization problem in the kth movement, where i ∈ [1, Np], and works
as starting point for Np parallel direct searches. After initialization, the position
of the whole swarm is redistributed, recalculating each particle’s velocity in terms
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of distance and direction within the search space coordinates by a weighted sum of
vectors (Figure 2.10):

vi(k + 1) = [wvi(k)] + [c1rd1(p
best
i − pi(k))] + [c2 ∗ rd2 ∗ (pgbest − pi(k)];

where vi(k + 1) represents the new velocity assigned to the ith particle, w is the
inertia weight indicating the influence of the current velocity vi(k), c1 and c2 are
the bias weights attributed to the influence of the differences between ith particle
current position with its historical best pbesti and with the swarm’s global best pgbest
respectively. Coefficients rd1, rd2 and rd3 are uniformly selected random variables
∈ [0, 1].

A maximum velocity for each dimension of the search space is set so that:

vi,j(k + 1) =

{
vi,j(k + 1), if vi,j(k + 1) ≤ vmaxj

vmaxj, otherwise

where j represents each coordinate of the vector ∈ [0, d] where d is the dimension
of the domain. The new position of the ith particle is therefore obtained from:

pi(k + 1) = pi(k) + vi(k + 1),

In contrast with evolutionary algorithms, there is no selection mechanism or com-
petition. The particles all remain the same, and they are simply modified by updating
their position. Each iteration terminates with the update of individual and collective
memories. After the set of particles’ positions is modified, it is evaluated through a
cost or fitness function defined depending on the optimization problem. If the new
position pi(k+1) provides a better cost value than its personal best or than the global
best, any of those are replaced. The new position becomes that singular particle’s
own reference or the entire swarm’s reference.

pbesti =

{
pi(k + 1), if fc(pi(k + 1)) ≤ fc(p

best
i )

pbesti , otherwise

pgbest =

{
pi(k + 1), if fc(pi(k + 1)) ≤ fc(pgbest)

pgbest, otherwise

PSO has been widely implemented in a wide variety of fields, including robotic
applications. As a paradigm in swarm-intelligence-based algorithms, its utility in
multi-robot scenarios is obvious [103, 104, 105, 106]. In [107] a GL filter using PSO
for scan-matching based localization over grid maps was implemented, and results
show localization errors lower than 10cms. Havangi et al. implemented a PSO-based
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sampling method for a FastSLAM improved version using unscented transform [108].
Another intuitive application is path planning. An example can be found in [109],
where Roberge et al. present a comparison between implementations of GA and PSO
for fixed-wing UAV’s optimal trajectory planning in complex 3D environments by
implementing multi-objective cost functions. The same approach is employed in [110]
for combined path planning and obstacle avoidance applying the Probabilistic Road
Method in a multi-objective cost function.

2.2.3 Invasive Weed Optimization

A third iterative bio-inspired metaheuristic has been considered for implementing a
GL filter. In this case, a rather recent approach in comparison with the early men-
tioned DE and PSO (2.2.1,2.2.2), which mimics the colonial behavior and the survival
adaptability of invasive weed plants. Invasive Weed Optimization was introduced in
2006 by Mehrabian et al. in [9], as an attempt to imitate the facility of weed plants
to colonize unexpected fields, with adaptability to changes in the environment, en-
durance in the field, reproductive speed and rapid occupation and displacement of
other plant species. These are interesting qualities for our case of study, where a
large search domain and multiple and unpredictable local minimums are always to
be expected, and good coverage of the variable domain appears like an appropriate
solution. Like previously presented algorithms, IWO samples the domain through
an initial randomly distributed set of plants. Each plant is awarded a distinctive
reproduction capability depending on its suitability to endure in the environment.
Depending on this reproductive ability, a number of seeds are spread within a dis-
tance of each plant’s position in the domain. In each generation, the new set of
scattered seeds is evaluated and competes with original plants so that only the fittest
ones are selected once a maximum number of elements in the colony is reached.

The algorithm starts with a uniform distribution of an initial random population
of Nini seeds over the d-dimensional search space, where d indicates the number of
parameters that determines a possible solution for the optimization problem. The size
of this population, unlike previously analyzed heuristics, evolves in each generation k
until a specific maximum Nmax is reached. Each d-dimensional position of plant pki =
(xk

i,1, ...., x
k
i,d) is a possible solution to the optimization problem in the kth generation of

the plant colony, where i ∈ [1, Nk], and works as starting point for Nk parallel direct
searches. Each seed grows into a plant and is awarded for spreading a number of
seeds depending on its position within the colony’s fitness minimum and maximum,
as shown in Figure 2.11. This fitness is evaluated through the cost function that
defines the optimization problem.

Extracted from this concept, the number of seeds awarded to plant pki is:



32 CHAPTER 2. STATE OF THE ART

Figure 2.11: Seed retribution for each plant. S:No of seeds. Cost: fitness value.

Sk
i = Smin + (Smax − Smin)

(cpki − cwrst)

(cbest − cwrst)
,

Smax and Smin are two constants representing the reproduction capability chosen
for the more and less suitable plant in each iteration in terms of the objective function.
This cost is represented by cbest and cworst respectively and cpki is the fitness function

result for each plant i in the colony on generation k. For each plant, each Sk
i generated

seed will be spread randomly within a distance from its parent plant. The new position
is a random number within the normal distribution around the original position of
the parent plant so that:

pki,j = rand(f(x)),

f(x) =
1

σit

√
2π

e
− 1

2
(
x−pki
σit

)2
,

where j ∈ [1, Sk
i ] represents an index for every scattered seed from plant pki , and

f(x) is the normal distribution over the original position pki with standard deviation
σit. The standard deviation for this normal distribution is defined by a variable
standard deviation, σit:

σit =
(itmax − k)n

(itmax)n
(σinitial − σfinal) + σfinal, (2.4)
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As it can be extracted from equation 2.4, for each generation k the standard
deviation σit decreases exponentially from an initial value σinitial to a final value σfinal.
The exponent n controls the decreasing speed of the possible distance of dispersion of
seeds on each iteration from initial and final values. Therefore, the capacity of each
plant in the colony to spread its awarded seeds far from its own position decreases as
the colony evolves to an optimum position in the search space.

In the final stage of the algorithm, in order to decide which elements endure in the
next generation of the colony, plants and spread seeds are evaluated in a collective
manner, not individually, as explained in section 2.2.1 for DE. The best elements
succeed and remain part of the colony while the worst are eliminated. This occurs
once the maximum possible plants in the colony Nmax is reached. Until then, all seeds
are accepted.

IWO is a relatively novel algorithm in contrast with previously presented DE
and PSO or other more classic bio-inspired methods such as GA or Ant Colony;
therefore, less literature can be found in robotic field applications. Nevertheless,
there is some interesting work developed as [111], where a minimum energy suitable
path for robotic arm trajectory planning using IWO was presented. In [112, 113]
IWO is applied to solve navigation issues. Panda et al. [113] used a combination of
PSO and IWO to optimize each path of a multi-robot system applied in dynamically
changing environments, optimizing the time and distance of each robot mixed with
collision avoidance. Another interesting approach is the optimization of Q values on
an LQR controller to control the Robogymnast presented in [114].

2.2.4 Fitness Functions

As depicted in section 2.2, stochastic optimization algorithms or Metaheuristics are
iterative strategy-based processes to estimate a solution for any problem that can be
presented as the search for a combination of certain parameters that optimizes certain
cost or fitness function. Therefore, Metaheuristics are not task-oriented algorithms
but applicable methods to a broad amount of problems, hence the use of the prefix
meta.

When applying any Metaheuristic, like bio-inspired optimization or Evolutionary
Algorithms, to a given task, the efficacy of the method highly depends on the function
that defines the problem or the target function to optimize. This function receives
many names in literature, fitness function, cost function, health function, or target
function.

Global Localization is a physical task, meaning that the goal is to obtain an
accurate position of the robot in a 2D or 3D space, and typically it is achieved through
acquiring metric information about the environment by measuring distances from the
robot to different obstacles within the sensor range. Most common sensors are laser



34 CHAPTER 2. STATE OF THE ART

range finders or ToF sensors like IR depth cameras, so the goal is to find a good
estimation that minimizes the error between prediction and actual observations of
the sensor. Information from laser measurements comes in a discrete form, as a set of
(xi, yi) or (xi, yi, zi) points, depending on the dimensions of the environment, hence,
GL could be reduced to a Scan Matching problem as introduced in section 2.1.3.
Point registration techniques use distance metrics as cost functions, as their objective
is to minimize the distance between observed and predicted points. Therefore the
applied cost functions are distance-error minimization related. Among all of them,
Root Mean Squared Error (RMSE) or L2 loss is the most common:

RMSE =

√∑n
i=0(pi − p̂i)2

n
,

where n is the amount of point pairs considered, pi is the real observation point
and p̂i is the estimated observation. Other options involving distance error are, the
Mean Absolute Error or L1 loss:

MAE =

∑n
i=0 |pi − p̂i|

n
,

computed as the sum of absolute errors between actual and estimated points or a
simple Mean Error (ME).

Iterative Closest Point, the reference on scan matching processes, uses the RMSE
between transformed source points and target cloud in order to minimize the matching
error, the expression for the ICP cost function can be observed in Equation 2.3.
Feature-based ICP variations rely on walls, columns, or other singular features of the
known map to distinguish among the different possible locations, matching is done
for a reduced set of points, but the cost function remains the same. The absolute
error was chosen in our previous work for a comparison with RMSE [115]. Other
authors have also proposed different approaches. Donoso et al. minimize the distance
between two sets of points through the Hausdorff distance [116]. Fox et al. [2]
not only consider the perceived information but also minimize the ”future expected
uncertainty, which is measured by the entropy of the future belief distributions”. The
Mahalanobis distance is adopted by the future-based approach made by Arras et al.
[30].



Chapter 3

Evolutionary Techniques for Global
Localization Filters

As stated in previous chapters, a proper localization module is key to successful per-
formance in a baste amount of tasks a mobile robot has to perform. The localization
task can be defined as the knowledge or estimation of all the necessary parameters
that define the robot’s pose inside an environment. Two very different situations
could be considered: Re-localization or tracking, where the system knows at least ap-
proximately its initial location, and global localization or kidnapped robot situation
when there is no knowledge of the initial pose, this information was lost, or the robot
was abducted to an unspecified place. Hence, global localization or at least recovery
from a kidnap situation is necessary for an autonomous robot. This second kind of
situation will be studied in the next chapters, and a set of implementations of feasible
methods for solving this problem are presented.

Our approach is based on the assumption that there is previous knowledge of
the geometric map that defines the environment where the autonomous mobile robot
performs its tasks. Depending on this map, localization becomes a two-dimensional
problem, where the pose of the robot is typically defined by position (x, y) and rotation
over the z axis θ, or a simplified 3D where it is assumed that rotation only takes place
within the horizontal plane and therefore the robot works with 4DOF, (x, y, z, θ). In
previous work of our research group, an evolutionary filter solution was presented for a
2D map [25] which solved the GL problem satisfactorily and was then extended to 3D
as an improvement [27]. This evolutionary filter, based on DE algorithm, has been the
foundation of this work. Extracted from that work, the evolutionary filter structure,
noise modeling, and a comparison between L1 and L2 norms as fitness functions
for the selection mechanism served as an inspiration to continue the development
into a fully 6DOF filter, with probabilistic modeling of the laser sensor measure
and the implementation of different non-symmetric statistical divergences as cost

35
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functions to manage the evolutionary filter. In this work, we will address both 2D
and 3D situations, but in the latter considering that the robot could vary any of the
6DOF that fully define a three-dimensional environment. Therefore its pose would
be defined by (x, y, z, α, β, γ) encompassing position and orientation (roll, pitch, yaw)
in a 3D space. But more important than the classification of 2D and 3D in this work
is the difference between sparse and continuous maps, or Point Cloud-based and
grid-based maps as it could also be presented. As it can be seen in Figure3.1 two
different concepts of environment models will be utilized for indoor situations. A
sparse Point Cloud environment model reconstructed through evolutionary mapping
techniques presented in [72] and a continuous one, where a structured simulated laser
cloud could be generated from any given position. The first is formed by a set of
spatial points representing laser beam measures. This map is built through SLAM
techniques concatenating local PCs in a consistent spatial manner to form a global
PC map. Hence, the localization issue could be addressed as a global/local PC pair
scan matching search, local regarding the current PC obtained from the robot in
the actual position. On a second model, the 2D or 3D space is represented as an
occupancy grid map. Therefore, the whole environment is represented as occlusion
or free space in contrast with sparse PC representation. On occupancy maps, laser
measures can be simulated over the model.

Figure 3.1: Different environment maps studied. Left: Real data sparse PC Struc-
tured Map. Top Right: 2D Occupancy Grid. Bottom Right: Simulated 3D Occu-
pancy Grid.

A bio-inspired optimization solution is presented for both two-dimensional and
three-dimensional environments and different conceptual map representations. The
location of the robot within a map is represented as a set of possible position and
orientation combinations spread over the environment space. Iterative stochastic
optimization evolves this set of candidate locations throughout the space by weight-
ing each estimate by a fitness function. For 2D and 3D occupancy grid maps, this
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stochastic engine is an implementation of the Differential Evolution method. On
sparse Point Cloud 3D maps, three bio-inspired or Evolutionary Meta-heuristics are
implemented, DE, Particle Swarm Optimization, and Invasive Weed Optimization.
A new approach in contrast with commonly used Euclidean distance cost functions is
presented, applying a set of probabilistic divergences using a different concept. The
laser sensor information is modeled as a probability distribution over the measured
distance. Statistical distances or divergences are now considered to measure the sim-
ilarity between laser measurements, penalizing or favoring different situations for a
more robust localization outcome.

3.1 The Localization Principle

The classic localization hypothesis depicts a robot keeping track of its movement
through a known environment using odometry from its onboard sensor (encoder).
The inherent uncertainty of this odometry causes confusion about the actual position
of the robot in each instant, growing exponentially the more the movement con-
tinues. Therefore, the system must periodically confirm its current position within
the environment or map, avoiding the uncertainty of increasing unbounded. Typical
exteroceptive sensor systems may include vision, laser range finders, or ultrasonic
sensors. The sensor information is then combined with the odometry to correct both
position and uncertainty. In conclusion, an accurate position can not be measured
directly. The localization system using that information will estimate the best candi-
date. These beliefs about the robot’s location are typically represented as probability
density functions [6]. An intuitive example of the correction of the perception phase
is shown in Figure3.2. The prediction obtained by the odometry is corrected through
external info (laser beam), and therefore uncertainty shrinks on the probability den-
sity function (dotted to continuous line in Figure3.2 (b)).

Therefore classic localization approach is divided into prediction update and cor-
rection update, and the available information on any instant of time t is:

Yt = {z0:t, u0:t} = {z0, u0, z1, u1, ..., zt−1, ut−1}.

where z0:t and u0:t contain the external and odometry information respectively
and so the probability density function for any instant could be p(xt|Yt,m) where m
represents the known map of the environment. It is assumed that in this stochastic
process, future states do not depend on the past state but only on the present state,
and so the recursive determination of future probabilistic density functions could
be computed from a Bayesian point of view, assuming that the observation zt is
conditionally independent from previous measurements.
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Figure 3.2: Localization motion prediction and perception update (a) Prediction (b)
Perception [6].

p(xt|Yt) =

∫
Rn

p(zt|xt)p(xt|Yt−1)dxt. (3.1)

p(xt+1|Yt) =

∫
Rn

p(xt+1|xt, ut)p(xt|Yt)dxt. (3.2)

Equations 3.1 and 3.2 represent the measurement update and prediction respec-
tively providing the solution to the bayesian recursive estimation problem. The mul-
tidimensional integrals of these equations can not be solved, have no analytical so-
lution when the probability models are neither linear nor Gaussian. In equation 3.1
p(xt+1|xt, ut) represents the probabilistic motion model or a probabilistic generaliza-
tion of the kinematics, and its computed from the state space model of the robot:
xt+1 = f(xt;ut) + vt. It represents the probability density of the following possible
states xt+1 based on current state xt and the input ut. The term vt takes into account
the motion noise often modeled as a Gaussian distribution.

The second term p(zt|xt) is considered the probabilistic observation model. It
represents the posterior density over the possible sensor measurements, based on
the uncertainty about the external information captured by exteroceptive sensors
expressed as zt = h(xt) + ϵt where the term added ϵt expresses the noise sensor,
typically represented as a normal distribution as well. With the assumption that the
environment map is known, it is possible to compute the distance measurements zt
that would be observed from the estimated position xt.

Based on the representation of the probability density function, different types of
localization filters have been applied. As shown in equations 3.1 and 3.2, the Bayesian
recursive filter entails the evaluation of integrals that are even feasible, as they are
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composed of known functions, require a high computational cost, and are based on
the next iteration estimates that involve an associated error.

There are many variations that approximate de Bayesian approach by discretizing
the continuous density function p(xt|Yt) over a limited space.

Figure 3.3: Probability density approximations: (a) mixture of Gaussians, (b) Piece-
wise approximation, (c) Monte Carlo approximation.

As it is represented in figure 3.3, those are Mixture of Gaussians, Piecewise ap-
proximation, and Monte Carlo approximation. Mixture of Gaussians approximates
the density distribution into a sum of weighted Gaussian distributions replacing in-
tegrals by a finite sum, many examples of its utilization in localization can be found
in the literature [1], [32], [31]. Piecewise approximation divides the space into cells.
Each one of the cells in that grid is assigned an associated probability, and again the
integral is approximated to a finite sum. Piecewise is successfully used for localization
in [13], [2]. Finally, the Monte Carlo approximation is a particle-based method. The
probability density function is sampled accordingly to the probability distributions,
and again the integral is approximated into a sum of weighted samples [117], [15],
[16].

Although Bayesian-based methods explain the localization problem and are used
to estimate a solution for it, they lack simplicity for non-linear or non-Gaussian situ-
ations. Each estimate parameter in Rn has an associated value on the density proba-
bility function. The density function is calculated in that space for all the conditions
given by the robot and the sensors for a given time t, but this must be managed by
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a weighting function to determine the unique estimation x̂t. Hence, localization is an
optimization problem that can be solved by calculating the Maximum A Posteriori
estimator (MAP)

x̂MAP
t = argmaxxp(xt|Yt) =

t∏
i=1

pe(zi|xi)
t∏

i=1

pv(xi|xi−1, ui−1)p(x0) (3.3)

where pe(zi|xi) and pv(xi|xi−1, ui−1) represent the probability density function for
the observation and motion respectively including noise e of perception zi and noise
v for odometry ui−1. Equation 3.3 can be expressed in a recursive manner as:

f0(xt) =
t∑

i=1

logp(zi|xi) +
t∑

i=1

logpv(xi|xi−1, ui−1) + logp(x0)

= logpe(zt|xt) + logpv(xt|xt−1, ut−1) + f0(t− 1),

(3.4)

and assuming that there is an optimal solution at time t−1 the location estimation
is solved by calculating:

x̂t = maxx(logpe(zt|xt) + logpv(xt|xt−1, ut−1)),

A recursive estimation to optimize equation 3.3 improves Bayesian methods in
terms of computational costs and implementation facility apart from being less de-
pendent on statistical hypothesis. In this work, we are considering laser range finder
sensors both from 2D and 3D measuring of the environment, and there is no motion
information or odometry. Equation 3.3 can be simplified into:

x̂t = maxx(logpe(zt|xt),

where the estimation depends entirely on the probability of observing zt from
xt. Assuming that laser sensor measurement’s error can be modeled as a Gaussian
probability distribution of zero mean and variance σ, the combined probability of all
sensor beams forming a laser sensor could be denoted by:

p(zt|x̂t) =
Ns∏
i=1

p(zt,i|x̂t) =) =
Ns∏
i=1

1

(2πσ2)1/2
e−1/2

(zt,i− ˆzt,i)
2

σ2 , (3.5)

where Ns es the number of beams employed by the sensor, zt,i is the actual mea-
surement of beam i in instant t and ẑt,i is the same beam measure expected if the
robot was in position xt,i. Introducing this expression in equation 3.4 and eliminating
constant terms we obtain:
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f0(xt) = −
Ns∑
i=1

(zt,i − ẑt,i)
2

2σ2

and therefore the resulting cost function is the minimization of f
′
0(xt) = −f0(xt),

the L2-norm:

fL2(x
t
i) =

Ns∑
i=1

(zt,i − ẑt,i)
2

2σ2
(3.6)

where zt = (zt,1, ...., zt,Ns) is the observation or distance vector provided by the
3D laser scanner in t, ẑt,1 = (ẑt,1, ...., ẑt,Ns) are the expected observations for that
measurements if the robot was situated in xt,i and σ2 is the observation error variance.
Ns the number of laser beams in each scan.

A suitable cost function for Global Localization based on observation estimation
only, assuming Gaussian noise distributions for the laser beam sensor, is the RMSE or
L2-norm between actually observed measures and expected measures if the position
of the robot was our considered estimate. One of the main contributions of this
work is to implement a different approach to this idea, improving the performance in
some situations where the L2-norm does not cope due to the constrained situation
of expecting normally distributed perturbations on the laser, not considering other
types of noise or unmodeled obstacles.

3.2 Environment Models

Once the localization problem is formulated and a feasible solution is presented, it is
necessary to comment on the different conceptual representations considered of the
environment. As stated in our proposed solution, localization is approached as the es-
timation of position and orientation from a motion-less point of view (in opposition to
tracking) and assuming that a map of the environment is known. With this premise,
the objective is to find an estimated position through the search space that minimizes
a specific cost function. This is performed by comparing the actual perception of the
robot from its real position against the estimated perception from each candidate. In
this work, 2D and 3D map representations are considered. Two different representa-
tion concepts involve a different approach in each case: approximated representations
(simulated or semi-simulated) and real data maps. Both are presented in this section.
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3.2.1 Simulated Environments

Simulated and semi-simulated maps in this thesis are based on occupancy grid maps,
both in 2D and 3D. It has been assumed that the map is represented by an occupancy
grid map, which is one of the most typical approaches in GL. In this type of map, the
2D environment is discretized using cells with a fixed size. A value between zero and
one is computed for each cell to represent the probability of being occupied. If each
cell of the map is denoted by mij, a 2D full map can be defined by the following set:

m = {mij : 1 ≤ i ≤ n, 1 ≤ j ≤ o}, (3.7)

where i and j are positive integers that take the map limits into account (n and
o). The occupation probability of each cell is p(mij). This notation lets us define
the map estimation problem as the computation of the individual probabilities of
each cell. Equation 3.7 is easily extended to 3D representation denoting mijk and
p(mijk) as cell or voxel and its probability respectively, where k represents the third
dimension.

Since the map is known and subdivided into cells with a determined occupation
probability, this representation is helpful for laser modeling purposes. Information
about the environment is given by laser sensor measurements, both planar for 2D and
multi-plane full rotation model for 3D.

Figure 3.4: Semi-simulated model example and laser scan from estimated pose.

In this type of map, the sensor is a laser scanner that measures the cells crossed by
each laser beam. These measurements are simulated both from actual and estimated
positions, meaning that no real data is introduced. The laser sensor perception is
simulated by computing the distance covered by each laser beam to the first occu-
pied cell in that direction. Hence, each obstacle position is measured in cells. Our
algorithms have been tested over blueprint representations and real-data-based occu-
pancy grids for 2D environments. For 3D maps, a projection of these two-dimensional
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maps over the z axis has been carried out. Maps considered may represent real or
testing environments, but no real sensor data is used over occupancy maps. We will
refer to them as simulated or semi-simulated situations. An example of a 3D laser
sweep simulation over a 3D projected 2D real map is shown in Figure 3.4 to illustrate
this concept. The advantage that occupancy maps bring, in contrast to Point Cloud-
based representations, is their continuity. When considering an estimated position
on the map, the expected perception from that pose can be simulated when the laser
angular resolution is known, searching in a computationally feasible manner for the
first obstacle for each laser beam.

Our sensor model for 2D simulated environments is formed by a vector of 61
readings separated 3◦ covering 180◦ Field Of View (FoV). For 3D LiDAR simulations,
the sensor model covers a 360◦ rotation over the horizontal plane with a 5◦ resolution,
FoV over pitch rotation encompasses 30◦ with a resolution of 5◦. The 3D sensor model
covers 7 planes of 72 measures each.

3.2.2 Real Environments

In contrast with simulated environments, where obstacles or occupied spaces are
represented in a continuous way through occupancy maps, sparse real-data-based
environments are also considered in this thesis. This information is obtained using
a 3D LiDAR sensor. Different dispositions and angular resolutions available in the
market induce a higher or lower detail level obtained from the environment but also
higher or lower implicit computational cost. First implementations of lidar sensing
were typically approached by a perpendicular disposition of two 2D sensors. In this
work, a sensor with a 360◦ FoV in the horizontal plane and 90◦ on the vertical sensor
has been utilized, with an angular resolution of 0.7◦.

Figure 3.5: Point Cloud map example and laser scan from estimated pose.

The resulting measurements from this sensor come in the form of a Point Cloud, a
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structured set of three-dimensional points representing the traveled distance of each
laser beam from the sensor to the nearest obstacle in that direction. This concept
does not differ from the one presented in section 3.2.1 for simulated occupancy maps.
The PC-based environment map is constructed through SLAM and Scan-Matching
techniques introduced in Chapter 2, matching each reading from the LiDAR sensor to
the previous one, obtaining the rigid transformation that optimizes the difference in
terms of distance of significant points. As described in section 2.1.3, there are different
methods to register point-cloud pairs. This registration could be local, matching two
individual scans, or global, where each scan is registered with the accumulated global
model. The advantage of local Scan Matching is that it can be corrected with loop
detection mechanisms when, in a global case, if an incorrect match is introduced, it
can not be corrected. Also, regarding the technique, Scan Matching is divided into
probabilistic and deterministic methods, being the latter, through the ICP method,
its maximal representation. Depending on the points considered, Scan Matching can
be divided into point-based, feature-based, or mixed.

An example of PC maps utilized in this work is shown in Figure 3.5. This map was
constructed by Evolutionary Optimization driven point-based local Scan Matching.
Each scan has been matched individually with its predecessor, without the use of
distinctive points or features. An iterative method based on the DE algorithm seeks
the best-estimated transformation (translation+rotation) between scans to minimize
the L2-norm, as considered in the ICP method [77]. In Figure 3.5 the resulting map
and a single scan can be observed.

The Global Localization approach presented in this work for this type of known
map could be considered as a global Scan Matching between the PC map and a single
scan. This single scan represents the perception from the robot’s current position,
to be determined. Three different bio-inspired solutions, presented in section 2.2, are
implemented for this task. Before describing its implementation, some pre-processing
steps have to be presented in order to reduce computational costs.

Downsampling

A single scan coming from a high-resolution state-of-the-art LiDAR sensor is consti-
tuted by more than 260000 points. Evaluating this amount of comparisons through a
cost function can be computationally highly expensive. In addition, the entire map is
possibly formed by 500 or more single PC. This amount of data involved is interesting
for modeling purposes. High-resolution sensors capture more details of the geometry
of the environment, but in return, processing time increases, and using the original
size of each scan is hardly inefficient computationally speaking. To deal with this
issue, the amount of points involved has to be reduced. This process is commonly
known as downsampling. There are three different concepts applied in downsampling
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methods:

� VoxelGrid Downsampling: The 3D space that contains the cloud is divided into
equal-sized voxels or cubes. Each cube is reduced to the centroid value of points
contained in its interior. This method returns a more uniformly distributed
point cloud, reducing redundant points into one single point representing each
voxel. The geometric characteristics of the cloud are maintained with a custom
resolution.

� Non-Uniform VoxelGrid Downsampling: The concept applied is similar to Vox-
elGrid, in the sense that a set of points is reduced to its centroid value. In this
case, the size of the grid is variable, depending on a maximum amount of points
instead of a fixed size. Each group of user-specified n points is converted into
one, determined by its centroid. This method is less computationally efficient
but, unlike VoxelGrid, maintains the density distribution over the cloud.

� Random downsampling: The number of points is reduced in a percentage. Ran-
dom points are selected within the cloud. This is yet simple in concept but more
effective in point registration tasks. Although the spatial characteristics of the
cloud are possibly affected by shape and feature recognition, selected points are
real in contrast with previous methods.

As our task is to obtain an accurate point cloud registration between the actual
local scan and global cloud map, Random Downsampling is the suitable choice, as it
allows data reduction, thus maintaining real measures. An example the downsizing
step is shown in Figure 3.6. The top figure shows the complete result, the colored
cloud represents the global map including all points, the red dots indicate the local
scan after a successful localization matching. The bottom cloud shows the same result
using the downsized clouds.

3.3 Evolutionary Localization Filters

Proposed global localization solutions are based on bio-inspired and evolutionary
Metaheuristics. These algorithms are probabilistic but do not involve derivatives or
probability density functions in order to estimate an optimal solution. Three dif-
ferent methods have been implemented and are detailed in this section, but there
are common ground characteristics among the three of them. Algorithm 1 describes
an overview of the common scheme for the different methods. All three algorithms,
Differential Evolution, Particle Swarm Optimization, and Invasive Weed Optimiza-
tion, are population-based. A set of elements, candidates, or particles is allocated
and evaluated through a fitness function to consider their qualification (lines 3− 6 in
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Figure 3.6: Example of localization success. Pose: [x,y,z]=[0.72,-0.04,-0.03]. Top:
Original cloud. Bottom: Downsized cloud.

Alg. 1). This function evaluates the similarity between real and estimated perception
data. All methods are population-based, where every member represents a possible
pose of the robot. We will address 2D and 3D solutions, but explanations in this
section will address a 6DOF consideration over a 3D domain. Therefore, each can-
didate is represented as a 6-parameter vector p̂i = (xi, yi, zi, αi, βi, γi) where i is an
index ∈ [1, Np] indicating each candidate on population Np. Vector ẑi = (z1, ..., zNs)
is defined as the perception vector from the estimation, where Ns is the number of
laser beams involved. This perception information is not known but only estimated.
Just real data from the actual location of the robot is an input to the system. This
induces the main difference between simulated and real environments and is reflected
inside the PERCEPTION EST step in lines 4 and 10 of Algorithm 1. Depending
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on the type of map, vector p̂i is obtained in two different ways:

Algorithm 1 Metaheuristic Global Localization.
1: function Ev 6DOF GL(global map, real scan)
2: INITIALIZATION ← (params, pop)
3: for i = 1 : Npop do
4: est dists(i)← PERCEPTION EST (map type)
5: cost(i)← EV ALUATION(fitness function, est dists(i))
6: end for
7: while (CONVERGENCE CONDITIONS) do
8: for i = 1 : Npop do
9: new pop← EV OLV E(alg params)

10: est dists(i)← PERCEPTION EST (map type)
11: cost(i)← EV ALUATION(fitness function, est dists(i))
12: end for
13: SELECTION
14: [solution, error]← min(cost)
15: convergence checking(...)
16: end while
17: end function ▷ return solution, error

� Laser measurements from each candidate in occupancy grid maps can be sim-
ulated from each pose as explained in section 3.4, calculating the number of
cells crossed by each laser beam until reaching the first obstacle. LiDAR model
simulation from real and estimates from 1 to Np are compared through a cost
function.

� On the other side, for real PC maps, this is not applicable, as it is a sparse
model with a much higher amount of points involved. Laser perception modeling
from each candidate, unlike in occupancy grid maps, is computationally non-
efficient. Local scans, even after downsampled, are formed by thousands of
points. Calculating the first obstacle (in this case represented by a point of the
global map) in each direction of each point of the real scan is computationally
very expensive, even more, due to the sparsity of the global map. There is
no certainty that a projection of the vector pointing at each point of the local
scan from a candidate location of the robot will coincide with a point of the
global cloud. A recursive search over that line, within a distance threshold
from each step of that beam direction, would be necessary but unmanageable
in terms of computational time for thousands of points and Np candidates.
Another approach is needed. This concept is illustrated in Figure 3.7. For
this type of map, the perception from the estimation will consist of applying a
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Figure 3.7: Recursive search over scan point direction.

transformation to the real observed point cloud to place it in reference to each
candidate’s position and, therefore, evaluating its matching with the global
map cloud. Hence, a local/global iterative Scan-Matching method where each
estimated transformation applied to the actual laser scan represents a candidate
localization of the robot in the three-dimensional space. Once each candidate
vector p̂i = (xi, yi, zi, αi, βi, γi) is spread over the 3D space and the real local
scan from the true position is transformed into those coordinates, coincidence
with the global map is evaluated by the cost function.

Once the initial population is distributed on the 3D space and evaluated, the
members of that population are modified or evolve into new candidates and evaluated
(Lines 9 and 12 of Alg. 2.2) These steps occur in a different manner depending on
the Metaheuristic and are developed in the next sections. EV ALUATION step is
common for all bio-inspired methods. It is only defined by the selected fitness function
and the method to obtain a comparison of scans depending on the map type. As
commented previously in this section, perception from each estimated candidate in
occupancy grid maps is obtained through laser scan modeling, while in PC maps,
we consider a point registration process between the true scan transformed into the
candidate’s pose and the global map. In both environments, we consider a point-
to-point evaluation to quantify the similarity between scans. In occupancy maps,
that evaluation is intuitive as modeled laser scans from true and estimated positions
contain the same amount of points and are sorted, meaning that each position of
the vector containing each measure distance represents the same beam from the laser
sensor (angle in the horizontal and vertical resolution of the LiDAR sensor). There
is a spatial correlation between laser beams from real and candidate positions; hence
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they can be evaluated in a sorted way.

When considering sparse PC-based environment representations, the evaluation
occurs by comparing the true scan with the global map when that scan is trans-
lated and rotated into each candidate’s location. Imagine this concept as searching
where a piece of the puzzle best fits by recursively placing it in different possibili-
ties while mounting the whole puzzle. A point-to-point evaluation to quantify the
similarity has to be approached in a different manner. For each point contained
in the estimated scan, a counterpart in the global map is allocated. This pair of
source and target points are obtained by implementing the Nearest Neighbor Search
(NN-search). kNN−search algorithms are recursive search algorithms that find the
k nearest neighbors regarding a specific distance. In our case, Euclidean distance
is considered. The most common implementation of nn-search takes advantage of
a structured tree-based division of data. For our task, a NN search powered by a
3d-tree is utilized. A 3d-tree structure is a 3D space partitioning data structure that
recursively bisects the longest dimension of the 3D search space considered, forming
boxes that are related to each other by a tree structure representing the parent and
child for each bisection. Given the coordinates of a 3D point, this tree structure
accelerates the search by descending through the tree structure, discarding a big part
of the volume in each decision.

In our implementation, once the real PC scan is transformed into each candidate’s
location, the global cloud is reduced to the volume of the candidate scan to reduce
the computational cost, and for every point of the local cloud, the nearest neighbor
is considered in the global map. Each pair of points is compared in the cost function.

Once the population candidates have been modified and evaluated, the SELEC-
TION steps (line 13) decides the members that remain in the next iteration.

3.3.1 DE-Based Global Localization

The localization algorithm described in this section, DE, is part of the formerly men-
tioned stochastic optimization-based methods. More specifically, it is included among
the EA’s, which somehow try to imitate the evolution model of the species proposed
by Charles Darwin, following a series of nature-related concepts such as mutation,
selection, and reproduction.

This section presents an implementation of DE for a GL-filter for 6DOF over a 3D
known map. As commented, DE is a population-based algorithm. The population
set contains candidates to be the correct location of the robot. These candidates are
weighted by a cost value that compares sensor information from the true pose to sensor
estimates from the candidate using the known map. The engine of the filter is the DE
method that was first developed by Storn and Price [[7] and has been applied to solve
optimization problems in multiple fields. The algorithm has been presented in 2.2.1
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and its implementation is detailed in this section. The method described is presented
for 3D environments for 6DOF global localization over a known map. Although
experiments have been carried out over 2D environments with 3DOF, explanations
can be easily reduced to that case. Algorithm 2 presents a pseudocode scheme of the
implemented filter.

The objective is to estimate a 6 coordinate vector p̂i = (xi, yi, zi, αi, βi, γi) that
correspond to the robot’s pose in a known map in position (xi, yi, zi) and orientation
over Euler angles (αi, βi, γi). Before the iterative procedure, an initialization process
encompasses various steps (line 2-8 in Alg. 2). First, a pre-processing step is required
to input the sensor scan from the real location (line 2 in Alg. 2). This step differs
when considering occupancy maps or PC maps. In occupancy maps, the real pose is
introduced by the user, and sensor measurements are simulated in the known map.
This concept was explained in section 3.2.1 and an example of the resulting laser
simulation is depicted in Figure 3.4. In this implementation, our sensor model is
formed by a vector of 61 readings in the horizontal plane (x, y) separated 3◦ covering
180◦ Field Of View (FoV) for 2D simulated environments. For 3D LiDAR simulations,
the sensor model covers a 360◦ rotation over the horizontal plane with a 5◦ resolution,
FoV over pitch rotation encompasses 30◦ with a resolution of 5◦, covering 7 planes
of 72 measures each. This configuration can be modified to increase the detail level
of the map information or reduced for more computational efficiency. Our resolution
selection is a compromise between speed and performance on the maps tested. In
PC-based environments, a real laser scan is directly obtained by the LiDAR and
introduced into the algorithm through a previous downsampling method to reduce
the number of points. The downsampling method was set to a random selection of
10% points of the cloud. Again, lower downsampling would increase the detail of the
environment sensed but, in contrast, elevate computational times. Through any of
these two methods, depending on the type of map, the real scan input of the system
is introduced.

DE is a population based bio-inspired stochastic algorithm so the method starts
by selecting a configuration of Np candidate locations through the environment (line
3 in Alg. 2). This population contains candidates to be the correct location of the
robot p̂i = (xi, yi, zi, αi, βi, γi). Depending on the optimization task, this population
can be distributed based on a priori knowledge, in this case no previous location
or estimation is considered so these candidates are randomly spread over the map
volume following a uniform distribution.

On the next step of initialization, the different parameters that define the algo-
rithm are selected. The scale factor F defines the mutation capability of the pop-
ulation, CR is the crossover rate, the capability of the population to acquire ADN
information (parameters of the location) from mutated candidates. Both parameters
influence the exploratory nature of the algorithm. After these steps, the algorithm
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Algorithm 2 DE-based 3D Global Localization.
1: function DE 6DOF GL(global map, real position)
2: real scan← preprocessing(real position) ▷ perception from real location
3: pop← randompop(NP )
4: parameters← (F,CR,NP,max iter)
5: for i = 1 : NP do
6: est scan(xi)← PERCEPTION EST (global map)
7: cost(xi)← fitness function(real scan, est scan) ▷ cost initial pop
8: end for
9: while (not CONVERGENCE) do
10: for i = 1 : NP do
11: MUTATION(F ) ▷ vi = x1 + F (x2 − x3)
12: CROSSOV ER(CR) ▷ return ui,genetic combination of xi and vi
13: est scan(ui)← PERCEPTION EST (global map)
14: cost(ui)← fitness function(real scan, est scan)
15: ▷ cost function value calculation for next generation
16: SELECTION with THRESHOLDING
17: end for
18: DISCARDING ▷ removing worse candidates
19: [solution, error]← min(cost)
20: convergence checking(...)
21: end while
22: end function ▷ return solution, error

loop commences, and the candidate’s laser perception is obtained and evaluated by
a fitness function. Again, different approaches are considered depending on the map
type. For occupancy grids, the laser from each member of the population is simu-
lated, considering its position and orientation on the map, using the same method
previously described. For real maps, each candidate involves a transformation of the
real scan. After this transformation, each corresponding point on the global map
is computed through a NN -search as mentioned in section 3.2.2. Hence, for each
candidate, a laser perception of the global map from that location is obtained. The
sizes of the two vectors zi = (zi,1, ..., zi,Ns) and ẑt = (ẑt,1, ...., ẑt,Ns) is equal to the
amount of beams considered by modeling or PC downsampling and a point-to-point
fitness function can be applied. As mentioned in section 3.1, on static consideration
and assuming normally distributed noise, a suitable function is the L2-norm. Alter-
natives to this function are presented in section 3.4. Each candidate vector from the
initial population xi is awarded a cost value based on the fitness value that compares
the real scan and est scan.

Once the parameters and initial population are initialized, the iterative process
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of the stochastic search commences in line 9. This loop continues until one con-
vergence condition is satisfied. Convergence conditions applied are common for all
implementations and are described later in this chapter. In each iteration and for the
whole population set (lines 10 − 17), the DE-filter creates the candidates to replace
the current population members. Two evolutionary operators are applied to gener-
ate the new candidates. First, the mutation combines members of the population to
form mutated vectors. After that, the diversity is increased by the crossover stage.
New candidates are created by mixing (combining parameters) of current population
members in each iteration and mutated ones.

The first step inside this loop is to generate new location vectors by adding a
weighted difference between two random members of the population to a third one
and so, creating a mutated equivalent for each member of the old population. This
way an intermediate population is created such as:

mutki = popka + F (popkb − popkc ), (3.8)

with random different indexes a,b and c ∈ [1, Np] indicating three selected popu-
lation members in generation or iteration k and parameter F > 0, a scale factor that
controls the intensity of the mutation (the evolution rate) by the amplification of
differential variation. Notice that non of the elements popa, popb, popc coincide with
element popi, the candidate vector considered in the loop. These three candidates
are selected randomly among the rest of the population, ensuring that a ̸= b ̸= c
for population diversity. A mutated vector is generated by perturbing element popa
with the scaled difference of popb − popc generating a mutation of the robot’s pose
for each original member of the population. Mutation can be generated from a ran-
dom candidate or the best candidate in each iteration. The first shows better general
performance increasing exploratory qualities while mutation from best candidate im-
plies faster convergence for local or previously biased searches as position-racking.
Mutation Factor F must be a positive value, values of F > 1 have shown no better
performance that optimum values between 0−1 for same tasks. F = 1 would decrease
population diversity as popka+(popkb−popkc ) = popkb+(popka−popkc ). Our selected value
is a variable F decreasing from 0.9 to 0.3 in two steps depending on the proximity to
convergence conditions, explained in section 3.3.4.

In order to increase the diversity of the perturbed vectors, the crossover con-
cept is introduced. Denoted by trki , new intermediate population members are cre-
ated from the combination of parameters of the position and orientation from each
original population member popki of the old generation with other parameters from
the previously mentioned mutated candidates mutki . To this point, the trial vector
trki = (trki,1, tr

k
i,2, ...., tr

k
i,d) is created with its parameters being:
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trki,j =

{
mutki,j, if pki,j ≤ CR

popki,j, otherwise.
(3.9)

where pki,j is a randomly chosen number among the interval [0,1], typically over a nor-
mal distribution, for each parameter j of each candidate i. The dimensions of both
vectors is 6, recombination forms another possible location of trki = (xt, yt, zt, αt, βt, γt).
The crossover stage is controlled by the CR factor, which marks the probability of
assuming parameters from a mutated member of the population over the existing
ones. This variable is set to 0.85 in our implementation to encourage recombination
for a higher diversity, which is important in big search spaces.

In order to decide whether this new intermediate population member should re-
place or not its competitor in the next generation of candidates, each one of the trial
vectors trki is compared with the target (original) member of the population popki
through a cost function. If vector trki delivers a smaller cost function value than popki
then it will replace it as a member in the next generation, otherwise the old candidate
popki is retained. Again like in line 6 of Algorithm 2, a new perception over the global
map is generated for each trial vector.

The selection step evaluates the new trial and the current one by a cost function
and selects the fittest as a population member for the next generation. A thresholding
mechanism is added to the selection process to reduce the eagerness of the algorithm.
This mechanism introduces a limit or threshold to choosing new solutions. When
the fitness values are compared, the new candidate is only accepted if the difference
between costs is larger than a pre-specified threshold. The objective is to avoid the
optimization caused by the sensor noise. This threshold is set as a percentage of the
cost function value of the older candidate. It was empirically set to 0.98 based on
an expected sensor noise of 2% as described in our previous work [27]. The selection
step is represented by:

popk+1
i =

{
trki,j, if fc(tr

k
i ) < fc(pop

k
i ) ∗ τ

popki , otherwise.
(3.10)

where fc() represents the cost value, and τ = 0.98 the thresholding value selected.
The thresholding mechanism can cause degradation of the convergence properties

because fewer solutions are accepted in each iteration. In order to increase the speed,
the discarding step is implemented after a new generation is selected (line 18). At the
end of each iteration, the worst population members (according to their costs) are
substituted by solutions that are close to the best candidates. After each iteration,
the worst 5% of the population members are substituted by one of the members of
the best 20%. When the algorithm converges, the best population member is chosen
to be the estimate of the robot’s pose on the known map.
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3.3.2 PSO-Based Global Localization

A second stochastic solution has been implemented to solve the mobile robot GL
problem. PSO, like DE, is part of the formerly mentioned nature-inspired methods.
In this case, a paradigm of swarm-intelligence-based Meta-heuristics was introduced
in 1995 by Eberhart et al. [8]. Like the previous method, PSO is population-based.
As explained in section 2.2.2, a set of possible solutions or particles evolve, changing
its position on each iteration. Each movement of each particle depends on a velocity
determined by a weighted sum of its previous velocity (inertia), its historical best
position in terms of cost, and the historical best position of the whole swarm. Again,
no information about the robot’s position is known, only the global map and the lo-
cal scan. In this thesis, the PSO method is implemented for real environments based
on sparse PC information. Therefore, the initialization process is equivalent, with a
uniform distribution of random particles (candidates) and the same downsampling
method for the real scan from the actual position. The pseudocode for this imple-
mentation of the PSO-GL method is presented in Algorithm 3, initialization covers
lines 2− 10.

The objective remains the same, to estimate a 6 coordinate vector, represented
as particle p̂i = (xi, yi, zi, αi, βi, γi) that corresponds to an optimum estimation of
the robot’s pose in a known map in position (xi, yi, zi) and orientation over Euler
angles (αi, βi, γi). In PC maps, as explained, this particle represents a transformation
(translation and rotation) over 6DOF, which optimizes the matching between local
scan (robot scan) and global scan (map). On the next step of initialization, the
different parameters that define the algorithm are selected. The velocity weights:
w for the inertia, c1 and c2, for the personal and global best direction, and finally,
the maximum module of the velocity vector, V elMax (line 3). The main difference
between the PSO initialization step and DE is that PSO maintains a particle memory
and a global memory, where each candidate keeps track of its particular best position
and the swarm’s collective best position, respectively. Hence, after spreading these
particles and evaluating their fitness function, a global best and a particle best are
updated (lines 8 and 10).

Once the initialization finishes, the swarm is spread over the 3D map, the param-
eters that manage the algorithm are selected, and the iterative optimization process
commences. This occurs in the main loop from lines 11-25 of Algorithm 3 until any
of the convergence conditions are satisfied. These conditions are explained later in
this section.

In each iteration, the PSO-filter moves each candidate particle to a different loca-
tion in the search space. The next position of each particle is a result of its previous
coordinates plus a velocity vector. The calculation of this vector is the key to PSO
performance and follows the next equation:
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Algorithm 3 PSO-based 3D Global Localization.
1: function PSO 6DOF GL(global map, real position)
2: real scan← dowsampling ▷ perception from real location
3: parameters← (w,wdamp, c1, c2, V elMax,NP ,max iter)
4: particles← randompop(NP )
5: for i = 1 : NP do
6: est scan(i)← PERCEPTION EST (real scan, global map)
7: cost(i)← fitness function(real scan, est scan) ▷ cost initial pop
8: best(i)← update
9: end for

10: glbest← update
11: while (not CONVERGENCE) do
12: for i = 1 : NP do
13: velocity(i) with threshold← CALCULATE
14: ▷ vi = wvi + c1(best(i)− pi) + c2(glbest− pi)
15: MOV E ▷ pi = pi + vi
16: est scan(i)← PERCEPTION EST (real scan, global map)
17: cost(i)← fitness function(real scan, est scan)
18: ▷ cost function value calculation for next generation
19: best(i)← update
20: end for
21: REDUCE INERTIA(wdamp)
22: glbest← update
23: [solution, error]← glbest
24: convergence checking(...)
25: end while
26: end function ▷ return solution, error

vi(k + 1) = [wvi(k)] + [c1rd1(p
best
i − pi(k))] + [c2 ∗ rd2 ∗ (pgbest − pi(k)];

Three different terms influence the velocity that will displace particles in each
iteration. A first-term denominated inertia term, wvi(k), accounts for the current
velocity of the particle in that same iteration. Inertia weight w defines how influential
this current velocity is. On the other terms, the historical terms, the position of each
particle’s historical best, and the swarm’s collective historical best are considered.
Two different weights control this influence, c1 and c2 which are multiplied by a ran-
dom number ∈ [0, 1] to introduce variety by randomness on the optimization search.
A maximum velocity vector V elMax establishes a threshold for each component of
the resulting velocity so that:
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vi,j(k + 1) =

{
vi,j(k + 1), if vi,j(k + 1) ≤ V elMax(j)

V elMax(j), otherwise

Conceptually, the inertia weight w controls the trade-off between global and local
exploration of the particles for a given maximum velocity V elMax. This maximum
also enhances global search, but it is controlled by the inertia/historical ratio. The
swarm may converge faster with a higher V elMax but to a possible local minimum
depending on the inertia weight. In our implementation, the maximum velocity is set
to a percentage of each dimension of the global map to favor exploratory nature on the
larger dimensions of the map due to its asymmetries. V elMax is set to 10% of each
coordinate’s limits in the map, both for position and orientation. Studies like the one
presented in [118] suggest, through experimental adjustment of the inertia weight with
regard to the maximum velocity values, that for high maximum velocities, the inertia
weight can be lower in comparison with historical weights, where statistically a higher
global weight c2 in comparison with particular best weight c1 shows better convergence
results. In our implementation, based on expectancy of global search requirements
V elMax was set to a quite high proportional value while c1 = 1.25 and c1 = 1.75 in
comparison with the initial value of inertia w = 1. An interesting characteristic has
been introduced, a variable inertia weight that decreases in each iteration through a
dumping factor, wk+1 = wk ∗0.99. For each iteration, this weight decreases on a 1% of
its previous value. This is intended to favor the displacement of the set of candidates
towards the global best once the population is expected to converge to a solution.
A value of 0.99 implies a low damping factor, but as several iterations are expected,
this could prevent our implementation from converging rapidly to a local minimum.
Inertia is corrected after each iteration (line 21) once all the present particles of the
swarm have been moved to a new location and evaluated (line 17).

Unlike DE or other evolutionary and nature-inspired Metaheuristics, PSO lacks
a selection stage. All particles remain on duty until the optimal solution has been
estimated. The update phase modifies the behavior of the swarm for each movement.
After each move, every single particle updates its historical best (line 19), and the
global best is updated for the whole swarm, altering the velocity calculation for the
next movement if these values have improved.

3.3.3 IWO-Based Global Localization

A third and last Metaheuristic is implemented for the Global Localization problem
solution in PC-based maps. The same approach is considered an optimal solution
for the location of the robot in a 3D sparse map representation, including the full
6DOF configuration that defines position and orientation in this known map. IWO,
presented in 2006 by Mehrabian et al. [9] is another population-based bio-inspired
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stochastic optimization algorithm. This Metaheuristic, as presented in section 2.2.3
attempts to emulate the reproductive and endurance qualities of weed plants. Each
plant in the colony is awarded with a reproductive capability, determined by the
number of seeds spread. These seeds are scattered within a distance from the original
plant until a maximum number of plants is reached, following a normal distribution
of variable variance. The value of this dispersion rate evolves with each iteration,
decreasing exponentially for each generation of the colony. The pseudocode for this
IWO-based GL filter implementation is shown in Algorithm 4. The parameters that
manage the algorithm are introduced in line 3. Smax and Smin represent the maximum
and the minimum number of seeds awarded for the fittest and weakest plant of each
generation, σini and σfin are the first and last values of variable variance that manages
the possible spreading distance and n or exp is the exponential value by which this
variance decreases through each iteration.

Again common initialization routines are present in this implementation. Pre-
processing step in line 2 consists of a 10% random downsampling. Lines 6 and 16
refer to the obtainment of a homologous point on the global map for each point in
the real scan when it is rotated and translated to each estimate’s location.

The algorithm starts with a uniform sampling of the map, spreading a set of
plants in a random manner. Each plant p̂i = (xi, yi, zi, αi, βi, γi) represent a possible
solution for the location of the robot. IWO considers a variable population in the
colony. NPini members constitute the first generation. This population increases
each iteration until a maximum is reached. After the initial population is scattered
throughout the volume of the map, each candidate’s local scan is evaluated in a point-
to-point matching with its homologous on the global map. The population is sorted
by this cost value, and the best and worst locations are registered (lines 9 and 10).

The algorithm starts to iterate until convergence conditions are fulfilled. The
main loop covers lines 11-25. Each plant in the colony is awarded a number of seeds
following the next equation:

Sk
i = Smin + (Smax − Smin)

(cpki − cwrst)

(cbest − cwrst)
, (3.11)

The worst candidate location of the robot, with cost value cwrst, receives the min-
imum number of seeds, the best cbest receives the maximum and the intermediate
population cpki follow a proportional distribution between both values Smax and Smin

depending on the relative position in the colony regarding fitness. The values of mini-
mum and maximum seed affect the global or local search tendencies of the algorithm.
The bottleneck in terms of computational cost in these implementations is the NN -
search process. Therefore a compromise solution between a high number of seeds and
efficiency has been applied. The selected values are Smax = 6 and Smin = 2. Some
implementations propose no reproductivity for the worst candidates but as the basin
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Algorithm 4 IWO-based 3D Global Localization.
1: function IWO 6DOF GL(global map, real position)
2: real points← preprocessing(real position) ▷ perception from real location
3: parameters← (Smax, Smin, σini, σfin, exp,NPini, NPmax,max iter)
4: colony ini← randompop(NP ini)
5: for i = 1 : NP do
6: est points(i)← PERCEPTION EST (map type)
7: cost(i)← fitness function(real points, est points) ▷ cost initial pop
8: end for
9: glbest← update
10: glworst← update
11: while (not CONVERGENCE) do
12: for i = 1 : NP do
13: S(i)← reproductive seeds(Smax, Smin, σini, glbest, glworst)
14: RANDOM SPREAD SEEDS ← S(i)
15: ▷ dispersion distribution σ = f(σini, σfin, exp)
16: est points(i)← PERCEPTION EST (global map)
17: cost(i)← fitness function(real points, est points)
18: ▷ cost function value calculation for next generation
19: end for
20: SELECTION ▷ removing worse candidates until NPmax

21: glbest← update
22: glworst← update
23: [solution, error]← glbest
24: convergence checking(...)
25: end while
26: end function ▷ return solution, error

of attraction of the optimum solution is small, meaning that the optimum solution
could be proximal to a highly expensive candidate, a relatively high number of seeds
is awarded to the worst estimates.

For each candidate plant pi in generation k, Sk
i seeds are scattered randomly

within a distance from its parent plant, the new position is a random candidate
location within the normal distribution around the parent value of each parameter so
that:

pki,j = rand(f(x)),

f(x) =
1

σit

√
2π

e
− 1

2
(
x−pki
σit

)2
,

where j ∈ [1, Sk
i ] represents an index for every scattered seed from plant pki ,
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and f(x) is the normal distribution with 0 mean over the original position pki with
standard deviation σit. The standard deviation for this normal distribution is defined
by a variable standard deviation, σit:

σit =
(itmax − k)n

(itmax)n
(σinitial − σfinal) + σfinal, (3.12)

These parameters are less intuitive to adjust than previous optimization schemes.
The standard deviation in each iteration controls how global the search over the
3D space may be. A high initial value of σini combined with a low exponential n
ensures wide global search on the first iterations. This may cause a non-convergence
of the algorithm due to instability. These parameters were empirically tested and in
our experience convergence ratio improves with a lower σini = 0.8 combined with a
proper sampling of the search space with the initial population. σfin and exponential
n are set to 0.1 and 2, respectively, low values to more fine local search when the
algorithm is expected to converge.

In the selection stage (line 20), when every new seed from every generation is
evaluated by the fitness function, the selection mechanism is responsible for deciding
which members of the colony remain. IWO proposes a collective selection. The fittest
members among new seeds and previous plants endure. The maximum members of
the colony are selected through parameter NPmax. Before this number of candidates
is reached, no element is removed. The best and worst candidates are registered for
the next iteration.

3.3.4 Convergence Conditions

All the presented implementations are based on an iterative process to stochastically
optimize a fitness function that defines our problem. This iterative process continues
until an optimum value of this function is obtained, but in the majority of situations,
this value is unknown. The algorithm must rely on other sets of considerations.
There are some situations where convergence can be easily noticed, for example,
constrain-related optimization, where if all constraints are satisfied, the algorithm
has converged. Multi-objective or multi-modal optimization convergence criteria are
more difficult to define. GL is a multi-modal optimization problem as it can be
described as a problem with multiple solutions, meaning that different locations may
lead to very similar optimum values of the fitness function. In this type of problem,
considering the cost value as a convergence criterion may be problematic, as it is
not easy to quantify. Besides, several fitness functions will be presented in the next
section, with different ranges of values. Even considering the L2-norm, where we
could expect an optimum value of the cost function for the estimated solution close
to 0, as low distances between map and scan are expected, the presence of noise
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and obstacles can lead to confusion if convergence criteria are based on cost function
values.

Other options are population-based convergence conditions. Examples of these
are differences between the best and worst candidates in each iteration. This can
lead to premature convergence after initialization, with non-optimal but similar cost
values in the population. Besides, information regarding the fitness value on optimal
solutions is needed.

Another classic approach is iteration-based criteria or time limitations. A maxi-
mum number of iterations allowed is set or a maximum amount of time. These are
suitable for unknown fitness function optimal values.

In these implementations, as the optimum fitness values can not be expected, and
the use of several fitness functions is considered. A mix of iteration and population-
based conditions has been implemented that do not ensure convergence but have
experimentally proven to lead to good results. Three different convergence conditions
can terminate the procedure:

� Number of iterations: A number of maximum iterations are reached. This
criterion is totally empiric, and this maximum is set to an elevated number in
order to let the algorithm converge through other methods.

� Invariance: A number of iterations where neither the best, the worst, nor the
average cost function of the population varies.

� Total convergence: All population members possess the same cost. Experiments
have shown that this criterion must be combined with a minimum of iterations
and a suitable population number to avoid fast convergence.

� Normal convergence: For each iteration, the best, worst and average costs of
the population are considered. If the worst/best ratio and the average/best
ratio are below 105%, convergence is considered. This is suitable in large search
spaces with large population numbers. Otherwise, it can lead to premature
convergence.

3.4 Divergences: Implementation of Fitness Func-

tions

The fitness function represents the evaluation mechanism for a stochastic optimization
algorithm to differentiate between candidates and evolve to an optimum solution.
Therefore, it represents a general concept that may vary in its implementation in as
many ways as existing problems to solve. A representative fitness function is strictly
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related to the robustness of any Metaheuristic considered. In the task that concerns
us, it is reduced to a suitable manner to distinguish between a set of distances provided
by two laser scans. How accurately this difference is evaluated and how precisely
the possible situations are represented in a mathematical function will have a great
influence on how effective the GL procedure is. In robotics, this situation has been
typically addressed through the L1-norm and the L2-norm because of their good
behavior, mainly in terms of accuracy and speed. The main disadvantage when using
these types of metrics is that they are symmetric, meaning they do not provide any
information on how the sets differ but only provide quantity information.

As explained in section 3.1, a suitable cost function for global localization tasks
is the RMSE or L2-norm. Equations 3.3 to 3.6 assume a recursive optimization
method, where no information from the motion sensors is received. Only exteroceptive
perception from a laser beam model is provided. If the sensor noise is modeled as a
Gaussian distribution, the combined probability of all sensors (eq. 3.5) is introduced
in the recursive version of the MAP optimization solution (eq. 3.3), induces the
L2-loss equation (Eq.3.6). Although expecting a normally distributed sensor noise
is assumable, the idea is restricted to a limited perspective of the variety of noise
distributions and perturbations that may affect the laser observation. Besides, RMSE
has proven to obtain non-satisfactory results when the normal distribution assumption
diverges from reality.

A different approach is followed in this work, considering both sets of laser mea-
surements as probability distributions. Therefore the distance or difference between
probability distributions can be evaluated through a series of statistical metrics or
divergences. In this work, four different probability-based cost functions have been
implemented based on the following divergences: Kullback-Leibler (KL) [119], Jensen-
Shannon (JS) [120], Density Power (DP) [121], and Itakura-Saito (IS) [122]. The
objective is to test the performance of the GL module with this type of cost function
in contrast with Euclidean-based metrics, checking the capabilities of the GL-filters
(section 3.3) are maintained and evaluating the specific advantages of this approach.
According to the state of the art, the most common strategy when developing a cost
function for this type of filter is to choose an asymmetric metric. The KL divergence,
for instance, is an asymmetric distance included in a wider class of metrics known
as Csiszár- Morimoto f−divergences. The main advantage of asymmetry is that it
allows to penalize or favor different situations depending on the error between real
pose and estimated measured distance. A cost function with an asymmetric diver-
gence can be designed to improve the performance in some unexpected situations.
This feature has been exploited to increase the robustness of the localization method
in the presence of occlusions. Utilizing divergence-based fitness functions requires
that the data provided by the laser has to be modeled as a probability distribution.
Laser measurements are no longer defined only by a specific distance but through a
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probability distribution that represents the whole range of the beam. Different types
of distributions are merged into this beam model with different weights that are com-
bined to model possible events. Cases with possible occlusions in the real perception
are favored by the coefficient selection on the fitness function. Hence, the probability
profiles and the divergence-based cost functions allow for improving the evolutionary-
based localization performance when the robot is in an environment with significant
occlusions. The asymmetry of the distance is exploited to increase robustness. In
this section, the perception model that makes it possible to improve localization in
environments with occlusions is described. Then, all the different divergence-based
fitness functions are detailed.

3.4.1 Laser Beam Probabilistic Model

As stated previously, the different divergences applied are dependent on the proba-
bility distribution profiles. These profiles are selected based on the specific problem
to solve and the chosen method of perception based on a laser range sensor. Each
laser measurement is constituted by Ns returned distances, depending on the reso-
lution required when modeling or the downsampling applied to the PC scan. Each
component of the beam vector (zt,i) can be modeled as a probability distribution de-
pending on the distance obtained for each unidirectional beam. This model is often
named raytracing or raycasting as it can be observed as the evolution of the surface
explored by each laser beam over the environment to calculate the expected quantity.
Therefore, in occupancy grid models, each cell’s probability can be modified as the
laser sensor reveals its path traveling free space cells until the collision.

Different authors have proposed a Bayesian model to approximate the behavior
of the range sensor beam model for dynamic environments [123]. These probabilistic
models provides us p(zt|xt,m) for a LiDAR sensor, which denotes the probability of
obtaining the perception zt on environmental representationm if the actual position of
the robot is xt. Several considerations have to be evaluated, as the realistic approach
must consider inherent measurement noise introduced by this type of sensor. In
addition, perturbations between the actual perception of the sensor and the known
map occur and must be considered, aside from inaccurate pose estimation. Hence, a
probabilistic model must differ from an ideal sensor model where the observation can
be expressed by the equation that defines the theoretical observation from a certain
position.

As a quick review on sensor measurement modeling, researches as [124], [2] present
a discrete grid mapping in contrast with geometric continuous approaches [125], [126],
[127]. Other groups implement a non-normal probabilistic density sonar distance
over a discrete grid map. In these approaches, the probability must be computed for
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all possible locations of the robot, a computationally inefficient task to accomplish
in real-time implementations. A more time-efficient perspective is presented in [2]
by considering only the distance to the first obstacle for each single laser beam.
The model represents different types of scenarios. The laser beam detects modeled
obstacles present in the map representation or an unmodeled obstacle. This approach
was extended [127] by Thrun et al. into considering the presence of people in the
surroundings of the robot and a threshold distance measurement representing the
maximum range.

In the model presented in this work two different sources of distance measurements
are considered: modeled or unmodeled obstacles. The laser may indicate the distance
from the possible position in a particular direction to an obstacle present in th known
map or an unpredicted presence. The evolutionary-based stochastic search engine
evaluates the similarity of the estimate’s laser vector and the actual perception vector,
uncertain positions behind the obstacle detected must be considered in the model. In
that way, the one-dimensional probability distribution for each pair of beams cover
the same distance in case the first obstacle detected for each measure compared is at
a different distance. The information for the space behind the obstacle is absent, and
the model should represent this situation. With all these assumptions the probability
distribution for a single beam can be described as:

p(zt,k|xt,m) = khphit(zt,k|xt,m) + kopoccl(zt,k|xt,m) + kupunkn(zt,k|xt,m), (3.13)

where phit, poccl, and punkn are the probability densities that represent known or
modeled obstacles, possible occlusions (unexpected obstacles), and uncertain places
respectively, and may reflect a value between ∈ [0, 1].

The coefficients kh, ko and ku are constant weights considered to favor or penalize
certain situations on the comparison.

A Gaussian distribution is considered to model the probability around the distance
measure obtained from the sensor, integrating measurement noise, an assumable con-
sideration as commented in previous section 3.1. this distribution can be expressed
as:

phit(zt,k|xt,m) =
1√
2πσ2

e−
(zt,k−z∗t,k)2

2σ2 , (3.14)

where z∗t,k, is the distance indicated by the laser sensor, σ2 is the sensor noise variance.

Unexpected or unmodeled occlusions are modeled with a uniform distribution.
These obstacles shorten the laser distance in regard to expected map occlusion. A
clear example of this type of perturbation can include people in the view range of the
laser or small mobile objects. For the posterior points, the unknown spaces after the
laser measurement, a uniformly distributed model is considered, from the obstacle
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Figure 3.8: Probability distribution for a single laser beam.

to the maximum range of the sensor. Through the weight coefficients ko and ku,
the influence of unexpected measurements and unknown spaces in the probability
distribution is controlled, as the value of pocc and punkn is one when an occlusion or
unknown space is found. This concept and Equations 3.14 and 3.13 can be clarified
by observing Figure 3.13 where the probability distribution that models a single laser
beam is represented.

The distance reflected by the laser measurement is 5 m in this example, and
phit is represented by a normal distribution. The mean of this Gaussian is equal
to 5, while the variance depends on the expected sensor noise. The distance before
the sensor measure is a uniform distribution with a very low value (ko = 0, 05).
This is due to the fact that if the laser measurement is distributed around 5m, the
presence of an unmodeled obstacle is very unlikely on the ray casting principle. For
the unknown spaces beyond the Gaussian distribution, where there is no information,
the probability value chosen is ku = 0, 5, a value between occupied and free space.

The cost function compares the real measurement with the estimated one. The
probability distribution for the estimated measurement is

p(ẑt,k|x̂t,m) = k̂hphit(ẑt,k|x̂t,m) + k̂opoccl(ẑt,k|x̂t,m) + k̂upunkn(ẑt,k|x̂t,m), (3.15)

where all the same equivalent values are applied for the same possible situations.
These two probability distributions in Equations 3.13 and 3.15 are previously nor-
malized to add up to one and then fed to the cost function for laser comparison. The
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normalization factor is not included for simplicity in the equations. The different sit-
uations considered inside the cost function based on the values of real and estimated
distributions are explained in the next section.

3.4.2 Robustness To Occlusions - The Coefficient Selection

Considering the optimum candidate location of the robot, an occlusion originates a
difference when evaluating the actual and estimated scans. This error is induced
by unmodeled obstacles, those not represented on the map. This can be observed
in Figure 3.9. The real measurements (left) perceive that obstacle, but it is not
considered in the laser scan from the optimum estimate (right) as it is not modeled
in the known map. Therefore, what could be the optimum estimate, the accurate
position of the robot, presents an occlusion error.

Figure 3.9: Laser scan example of occlusion. Left: possible occlusion, unmodeled
obstacle. Right: laser scan without unmodeled obstacles. (Laser beams given by the
estimate and not contained in the real measurements in dashed lines).

The divergence-based cost functions will compute the distance between two prob-
ability distributions (PS and PŜ, real observation and estimated one) for each laser
measurement of the scan. The probability distribution for each laser beam is defined
according to the concepts explained in this Chapter. Equation 3.15 defines the proba-
bility distribution for each laser beam. The different weights present in this equation
phit,pocc and punkn, are adjusted empirically to deal with possible occlusions. This
is depicted in Table 3.1, where the different values for these coefficients in distinct
situations are shown. This section presents different considerations and coefficient
introduction to deal with the possibility. In summary, this implementation exploits
the non-symmetry on the consideration of possible errors in the same laser beam.
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Lower measurements by the real scan are considered as possible occlusions, while
higher values are penalized due to their infeasibility.

Table 3.1: Values for the constants on Equations 3.8 and 3.15 depending on the
relation between the real measurement zt,kand the estimation ẑt,k.

zt,k << ẑt,k zt,k ≤ ẑt,k zt,k > ẑt,k zt,k >> ẑt,k
ko 0.1 0.1 0.1 0.95

k̂o 0.05 0.05 0.05 0.05
kh 0.9 0.9 0.9 0.95

k̂h 0.95 0.95 0.95 0.05
ku 0.15 0.5 0.9 0.95

k̂u 0.5 0.5 0.5 0.05

If we define zt,k as the laser measurement k from the actual position and ẑt,k as
the same measurement form the estimate location, the different possible situations
are:

� zt,k << ẑt,k: The measured real distance is considerably lower than the estimate.
In this case, the cost function will not penalize this difference as a possible
occlusion is considered: The probability profiles maintain a similar distribution
to the one shown in Figure 3.8. The weight coefficient for this situation is
represented in the first column of Table 3.8. The main modification to the
reference probability distribution is the decrease of ku = 0.15 not to penalize
the unknown space behind the possible occlusion.

� zt,k ≤ ẑt,k: The real distance is equal to or slightly under the estimate. An
occlusion is feasible, but the influence of sensor noise is also possible. By main-
taining the unknown weight of the real probability, this difference is slightly
penalized over the section behind possible obstacle distance. This factor has no
impact when zt,k = zt,k.

� zt,k >> ẑt,k: Considering the optimum estimation, this situation is impossible
and therefore is strongly penalized. Coefficients selected for this situation are
shown in the last column of table 3.8. All equivalent weights are set to a
difference of 0.95 − 0.05 to award the maximum cost. The estimate is, with a
high probability, wrong and should be discarded by the GL-filter.

� zt,k > ẑt,k. The estimated distance is slightly higher than the real one. Again
in an ideal situation, this case will induce a wrong estimation, although it is
not as heavily discarded as it could be neighboring the optimum. In addition,
the possible presence of sensor noise may alter the error in this direction. A
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weight of ku = 0.9 for the unknown space behind the real measure has proven
to penalize fairly.

3.4.3 Divergence-Based Fitness Functions

Although there are multiple divergences that could be applied to implement the cost
function of the GL strategy, four metrics have been chosen in this work. Each one
will be explained in this section. The KL divergence is a non-symmetric statistical
distance that measures how probability distribution P differs from Q or the surprise
when referring to a situation with actual distribution P by using Q as a model. The
JS divergence can be viewed as a symmetric version of the KL divergence. The
DP divergence can be equivalent to a quadratic error version when using probability
distributions. The IS distance is similar to the KL divergence when its formula is
analyzed. These divergences belong to different families of metrics with interesting
properties and connections between them. Different works have been published to
establish formal relations between metrics in information theory [128], [129],[130].
Among them, Cichocki and Amari [128] have studied wide families of divergences
named Alpha, Beta, and Gamma. The dissimilarity measures applied in this paper
can be included in the first two categories. The researchers use power functions to
generalize the KL divergence and to obtain different classes of divergences. They
report that power functions allow to increase the robustness with respect to outliers
and, therefore, the performance is better or more flexible (an example can be found
in [131]). By using this approach, it is possible to define three families of diver-
gences (Alpha, Beta, and Gamma) that can be viewed as generalizations of the KL
divergence. All classes are linked, and it is possible to do transformations between
them [132]. These families are derived from the well-known Csiszar–Morimoto (CM)
f−divergence and the Bregman divergence. The CM f−divergences are obtained
using the following equation:

dCM(P ||Q) =
∑
i

q(i)f(
p(i)

q(i)
) (3.16)

where f is the generator function, and p and q are the densities of two probability
distributions P and Q. The Bregman divergences are given by:

dCM(P ||Q) =
∑
i

[Φ(p(i))− Φ(q(i))− δΦ

δq(i))
(p(i)− q(i))], (3.17)

where Φ is the generator function. The Alpha divergence [133] is a special case of
CM f−divergence defined by the following formula:
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d
(α)
A (P ||Q) =

∑
i[p

α(i)q1−α(i)− αp(i) + (α− 1)q(i)]

α(α− 1)
, (3.18)

This metric depends on the variable parameter α. For example, when α −→ 1, the
generalized KL divergence is obtained (

∑
i[p(i)ln(p(i)/q(i)) + p(i)− q(i)]).

From the CM divergences, it is possible to establish some basic properties for
the Alpha divergences: non-negativity (d

(α)
A ≥ 0 and d

(α)
A = 0 if and only if P =

Q), convexity with respect to both P and Q, continuity (continuous function of

real variable α), duality (d
(α)
A = d

(1−α)
A ), etc. The reader can consult [128] to find

more properties and a more detailed explanation. The Beta divergence [121], [134] is
obtained from the Bregman divergence:

d
(β)
B (P ||Q) =

∑
i[p

β(i) + (β − 1)qβ(i)− βp(i)qβ−1]

β(β − 1)
, (3.19)

This divergence is dependent on β. The connection between the Bregman and
the Beta divergences is strong, and the properties of the Bregman divergence are also
valid for the Beta divergence: non-negativity (d

(β)
B ≥ 0 and d

(β)
B = 0 if and only if P =

Q), convexity with respect to P, linearity (a positive linear combination of Bregman
divergences is also a Bregman divergence), invariance under affine transforms, etc.
The Beta divergence has a single global minimum equal to zero for P = Q and
increases with the absolute value of the difference between p and q. The cost functions
are detailed and connected to the families of divergences. Finally, an illustrative
example of a single laser beam is shown.

Kullback-Leibler

The KL divergence, proposed by Kullback et al. in 1951 [119] can be defined as
”a non-symmetric measure of the difference between two probability distributions P
and Q. This concept describes the ”a measure of the expected number of extra bits
required to code samples from P when using a code based on Q, rather than using a
code based on P” in information theory. In statistics, P is associated with the actual
distribution (our real perception vector of distances), while Q is an approximation or
a model of that probability distribution (our estimated candidate’s perception). The
definition in a continuous domain is:

dKL(P ||Q) =

∫ + inf

− inf

p(x) ln
p(x)

q(x)
dx, (3.20)

where p and q are the densities of P and Q. When applied to to discrete spaces like
our approach:
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dKL(P ||Q) =
∑
i

p(i) ln
p(i)

q(i)
. (3.21)

The KL divergence exists for probability distributions in which the densities add
up to one (

∑
i p(i) =

∑
i q(i) = 1). The individual components (each i) are included

in the formula only if q(i) > 0 and p(i) > 0. The quantity 0 ln 0 is assumed to be
zero. It has some interesting properties:

1. dKL(P ||Q) ⩾ 0.
2. dKL(P ||Q) = 0⇔ P = Q.
3. dKL(P ||Q) ̸= dKL(Q||P ).
4. If P1(x), P2(y), Q1(x) and Q2(y) are independent distributions, with joint
distributions P (x, y) = P1(x)P2(y) and Q(x, y) = Q1(x)Q2(y), then
dKL(P ||Q) = dKL(P1||Q1) + dKL(P2||Q2).

Analyzing the third property, the KL divergence from P to Q does not coincide
with the value calculated from Q to P. Hence; the KL divergence is normally referred
to as a distance rather than a metric due to this is non-commutative property. This
variable can also be interpreted as the average of the logarithmic difference between
P and Q, where the average is weighted by P .

If S(x, z) = {mx,z
i,j } is the area (in cells) that is crossed by an observation z

when the robot is located at x, the KL divergence for a given orientation (k) can be
expressed by

dkKL(PS(xt,zt,k)||PŜ(x̂t,ẑt,k)
) =

∑
i,j∈ST

pS(xt,zt,k)(mij) ln
pS(xt,zt,k)(mij)

pŜ(x̂t,ẑt,k)
(mij)

, (3.22)

where ST is the maximum between S(xt, zt,k) and Ŝ(x̂t, ẑt,k). amount of accupancy
cells traveled by the whole laser sweep S(xt, zt,k) differs from the surface in term of

cells covered by a determined candidate Ŝ(x̂t, ẑt,k). In our laser model, each free cell
is added to the distance measured by each beam, until the first uncertain value is
reached, just after the obstacle. The additive property of the KL divergence (prop-
erty 4 on the list) is applicable because of the assumption that each cell’s probabilty
value is independent.

A simplification of Equation 3.22 could be denoted as:

dkKL(PSk||PŜk) =
∑

i,j∈ST

pSk(mij) ln
pSk(mij)

pŜk(mij)
, (3.23)
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where pSk(mij) is the probability of the cell mij of being occupied with observation
z covering the area S from location x. This formula compares observations and
estimates with the same bearing. It obtains the KL divergence for a given orientation.
The KL divergence equation for the complete scan formed by Ns observations can be
expressed as:

dKL(PS||PŜ) =
Ns∑
k=1

dkKL(PSk||PŜk). (3.24)

As indicated in its properties, the KL divergence value is positive or equal to zero.
The minimum value occurs when the discrete probability density from the actual and
estimated positions are the same. A correction factor is introduced to distinguish
between places where the same cost value is obtained but the number of occlusions
is different:

KLD = dKL(PS||PŜ)e
Nocc
Ns , (3.25)

where Nocc represents the number of occlusions (zt,k << ẑt,k) found. This correction
factor has been chosen empirically. A typical problem of the KL divergence has to
be considered. When q(i) is very low for a particular i, the specific term p(i) = q(i)
can dominate the result. This issue has not been found in the experiments that have
been performed in this work. Observing Figure 3.8 and Table 3.1, PŜ is in the interval
[0.05, 0.95]. In this way, the difference between larger and lower probabilities is not
large enough to cause the cited problem in the current implementation.

Density Power

DP divergence was developed by Basu et al. [121]. Following the same ideas explained
in the previous sections to develop the cost function of the GL filter, the next formula
is applied to compute the DP divergence for a given orientation:

dkDP (PSk||PŜk) =
∑

i,j∈ST

[
p1+α
Sk (mij)−

(
1+

1

α

)
pŜk(mij)p

α
Sk(mij)+

1

α
p1+α

Ŝk
(mij)

]
. (3.26)

This dissimilarity measure is a version of the Beta divergence. It has the same
properties: a single global minimum for PSk = PŜk, non-negativity, and increment
dependent on the absolute value of the difference between densities. The authors in
[12] believe that the most important motivation to study this metric from a practical
point of view is to increase the robustness of the learning algorithms with respect to
outliers.
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It can be appreciated that this metric is dependent on a variable factor. It has
been reported in [121] that when α = 1, the DP divergence is equivalent to the L2-
norm. The indefinition that appears when α = 0 is solved by using the L’Hôpital’s
rule. The generalized KL divergence is obtained in this case.

Due to the versatility of the current method, this factor could be set to a fixed
value or introduced as an additional parameter in the population set to be optimized.
Both options have been tested. However, in the current version of the method, α will
tend to one if Equation 3.26 is optimized. According to the formula, lower values are
obtained for the cost function when α = 1. A different approach to the optimization
problem is needed in order to exploit α as an additional optimization factor. When
the whole scan is considered, the next formula is computed:

dDP (PS||PŜ) =
Ns∑
k=1

dkDP (PSk||PŜk). (3.27)

Finally, the cost value when the correction factor that considers occlusions is
introduced is computed by

DPD = dDP (PS||PŜ)e
Nocc
Ns . (3.28)

It has to be remarked that one advantage of this formula is that, since α is
fixed to one, the cost value is equivalent to a quadratic error version but using the
probability profiles approach. The DP divergence has been recently applied to point
set registration in computer vision [135], multivariate analysis [136], or active learning
[137].

Itakura-Saito

IS divergence was proposed in the sixties by Itakura and Saito [122]. As KL it is
part of the non-symmetric Bregman divergences. It is applied to the current problem
following the same ideas described for the other divergences. For a given orientation
of the laser scan, it is expressed as

dkIS(PSk||PŜk) =
∑

i,j∈ST

[
pSk(mij)

pŜk(mij)
− ln

pSk(mij)

pŜk(mij)
− 1

]
. (3.29)

It is directly derived from Equation 3.19 when β = 0. Therefore, the properties of
the Beta divergences are inherited. It can be observed that the Beta divergences
connect the IS divergence (β = 0), the generalized KL divergence. (β = 1), and the
Euclidean L2-norm (β = 2). The same can be concluded using different values of α
because Equation 3.26 relies on a different version of the Beta divergence. Cichocki
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and Amari [128] explain that the choice of β is related to the statistical distribution
of the data sets. For example, the optimal choice for the normal distribution is β = 2
and for the gamma distribution is β = 0. Although the problem studied here cannot
be strictly linked to a known probability distribution, this analysis suggests that a
further study about the statistical properties of the problem would help to choose the
most suitable metric. When the whole scan is considered, it is equal to:

dIS(PS||PŜ) =
Ns∑
k=1

dkIS(PSk||PŜk). (3.30)

Finally, the cost value when the correction factor that considers occlusions is
introduced is computed by

IS = dIS(PS||PŜ)e
Nocc
Ns . (3.31)

Jensen-Shannon

The JS divergence [120] is derived from the KL divergence. Given the KL divergence
between two probability distributions (Equation 3.24), the JS divergence is

dJS(P ||Q) =
1

2
[dKL(P ||M) + dKL(M ||Q)], (3.32)

where M = (P +Q)/2.
This metric can be classified as a symmetrized Alpha divergence. In general, there

are two ways to symmetrize divergences. The first option is to use Equation 3.32. The
JS divergence is a special case of Alpha divergence that is obtained when Equation
3.32 is applied to symmetrize the Alpha divergence (using dA instead of dKL) and
the limit for α −→ 0 is computed. The Jeffreys divergence [138] is obtained with the
second symmetrization option:

dJF (P ||Q) =
1

2
[dA(P ||Q) + dA(Q||P )], (3.33)

In this case, the limit for α −→ 1 has to be computed for Equation 3.33. Due
to its relation with the JS divergence, some results using the Jeffreys divergence
are included in the experiments. The next formula is applied to compute the JS
divergence for the whole scan:

dJS(PSk||PŜk) =
1

2
[dKL((PSk||M) + dKL(PŜk||M)], (3.34)

where M = (PSk + PŜk)/2.
This divergence is also known as information radius (IRad) [139] or total diver-

gence to the average [140]. It has important differences with respect to the KL
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divergence because it is symmetric, and it always results in a finite value. The square
root of the JS divergence is usually referred to as JS distance [141].

This metric is based on Jensen’s inequality [142] and the Shannon entropy. Jensen’s
inequality ’relates the value of a convex function of an integral to the integral of the
convex function’. The application of its related theorems to information theory is
used to define both the KL and the JS divergences. The Shannon entropy, named
after the American mathematician Claude Shannon, is a well-known measurement
used in information theory that is defined as H = −

∑
i p(i) logb p(i).

The JS divergence has been applied to multiple fields, such as computer sci-
ence, machine learning, medicine, history, etc. Some examples are given in papers
about quantum information theory [143], machine learning [144], and medicine [145].

Finally, the cost value when the correction factor that considers occlusions is in-
troduced is computed by

JSD = dJS(PSPŜ)e
Nocc
Ns . (3.35)

Illustrative example

An example where the divergences are computed for a single laser orientation can be
observed in Figure 3.10. The first measurement (k=1) of the laser scan from the real
pose and the estimate are represented in a grid map. The first step is to model the
probability distributions of the laser beams. Different options have been defined. The
values that have to be considered for computing the four divergences are shown in
Table 3.2. This case is only an introductory example to explain the concepts behind
the last sections.

For each cell crossed by each, the laser beam in its bearing direction in increasing
order, different values are awarded to the free space (0.05), obstacles hit by the laser
(0.95), and the uncertain cells right before obstacle detection (0.5) as indicated in
Table 3.1. Represented in Figure 3.10, the first laser beam from the real position
is constituted by traveling 11 free cells, and 13 probability values form the discrete
probability distribution p1 where cell 12 is denoted by the 0.95 as it represents the hit
value and immediately posterior cell is the uncertainty probability (0.5). The same
procedure is followed for the first beam of the estimate’s perception (p2), formed by 9
free space cells, an obstacle hit, and several uncertainty values after cell number 10 to
square the number of cells compared. These probabilities are not yet normalized, as
indicated by the KL divergence definition. After adding the terms of the fourth row,
the KL divergence is equal to 0.3475. The average sum of the fifth and sixth rows is
the JS divergence, which is 0.3897 in this case. The DP divergence is equal to 1.2150.
The IS divergence is 3.6578. It can be observed that the parameter that is used
to measure the difference between probability distributions is completely different
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Figure 3.10: Measurement comparison from real pose (left) and estimate(right). Dis-
tance measured in cells on a occupancy grid map.

depending on the metric.

Table 3.2: Probability distributions for the example shown in Figure 3.10. Values:
free space=0.05, obstacle=0.95, unknown space=0.5. p1(cell) = psk(mij), p2(cell) =
pŝk(mij).pM(cell) = [p1(cell) + p2(cell)]/2. Left column: divergence for which the
parameters of each row are needed.

cell 1 2 ... 9 10 11 12 13
p1(cell) 0.05 0.05 ... 0.05 0.05 0.05 0.95 0.5
p2(cell) 0.05 0.05 ... 0.05 0.95 0.5 0.5 0.5
pM(cell) 0.05 0.05 ... 0.05 0.5 0.275 0.725 0.5

KL p1(cell)ln
p1(cell)
p2(cell)

0 0 ... 0 -0.14725 -0.1151 0.6098 0

JS p1(cell)ln
p1(cell)
pM (cell)

0 0 ... 0 -0.1151 -0.0852 0.2568 0

JS p2(cell)ln
p2(cell)
pM (cell)

0 0 ... 0 0.6098 0.2989 -0.1858 0

DP [p1(cell)− p2(cell)]
2 0 0 ... 0 0.8100 0.2025 0.2025 0

IS p1(cell)
p2(cell)

− lnp1(cell)
p2(cell)

0 0 ... 0 1.9971 1.4026 0.2581 0



Chapter 4

Experimental Results and
Discussion

This chapter is divided into three different sections regarding each type of environ-
ment representation. The experiments over 2D occupancy grid maps are presented
in the first section while its extension for the 3D version can be found in section 4.2.
Finally, section 4.3 shows the experiments for sparse PC-based GL. All three sections
demonstrate the robustness of the different solutions for GL presented in this work
regarding the accuracy, sensor noise response, and different considered perturbations,
based on the uniform distribution of singular occlusions and different distribution
of unmodeled obstacles. Furthermore, the different tests are presented for various
Meta-heuristics in the case of PC-based maps and the different divergence-based fit-
ness function implementations.

4.1 2D Simulated Environments

This section will present several experiments conducted with the DE-based GL algo-
rithm over 2D occupancy grid maps. The objective of is to validate the performance
of the method and the influence of the different divergences implemented as cost
functions (KL, DP, IS, JS). Different variables can measure the performance of each
method. Among them, the robustness to occlusions and the accuracy are of special
interest. Other characteristics to be measured are the robustness before sensor noise
levels, population requirements, and convergence properties.

Two-dimensional performance is tested in simulated environments obtained from
the blueprints of the Department of Systems Engineering and Automation (DISA)
of the Carlos III University of Madrid. Different sizes of the department’s blueprints
are taken into account depending on the qualities evaluated. A map of the entire
building floor can be seen in Figure 4.1, and Figure 4.4 shows only the DISA. Real

75
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Figure 4.1: GL in simulated map. All units in cells.

maps are also considered, occupancy map representations of 2D maps based on real
laser data. Two examples are tested in this section: a small representation of the
DISA department (Figure 4.2), and a real map of the Intel Laboratory provided by
Dieter Fox, which has been widely used in localization research and thus will be very
helpful as a performance comparison. As a reminder, the laser sensor is simulated
over a 180◦ FoV, formed by 61 distance measurements. Configuration parameters
of the DE-filter are: mutation coefficient F = 0.8 and crossover rate CR = 0.75.
The sensor noise is modeled as a Gaussian distribution over each laser beam reading,
a standard deviation of 2% is considered except when specified. DP-divergence, as
explained in section 3.4 is controlled by a variable parameter, in these experiments
α = 1, as a probability equivalent of the L2-norm.

Figure 4.2: GL in a real map. All units in cells.
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4.1.1 Performance and Accuracy

One of the main performance characteristics to be measured and compared is the
accuracy and the proximity of the optimum estimation to the real location. A GL
method’s accuracy is a key value to optimum performance.

In the first experiment, the localization outcome when the robot is situated in di-
verse locations of the simulated map of Figure 4.1 are registered in Tables 4.1 and 4.2.
The population requirements are only shown in the last table for simplicity. Each cell
is a square of 12.1 cm side, and the total map has 960x300 = 288, 000cells(4200m2).

The robot’s position and orientation are defined by a vector of three coordinates
(x, y, θ). The first two parameters define the position, and the orientation is given by
the third coordinate (zero when pointing right in the horizontal direction, increasing
clockwise). The positioning error is expressed in cm and defined by the difference
between the robot’s true position and the estimate. The orientation error measures
differences in degrees.

Table 4.1: Translation GL error when the robot is located in the simulated map of
Figure 4.1. Errors in mean ± standard deviation (cm).

Pose KL DP IS JS
(750, 50, 90) 1.69± 0.97 1.72± 1.27 1.99± 1.13 2.46± 1.02
(600, 130, 180) 8.29± 7.01 11.52± 3.83 12.56± 7.9 10.66± 4.45
(860, 60, 0) 1.36± 0.48 2.19± 1.99 1.38± 1.00 1.61± 1.22
(805, 245, 0) 1.15± 0.57 2.36± 1.26 1.63± 1.10 3.11± 1.20
(230, 30, 0) 6.24± 1.81 6.11± 2.51 6.10± 0.99 7.08± 1.07
(190, 33, 0) 5.86± 1.30 9.40± 2.46 9.40± 1.71 9.08± 2.43
(568, 84, 3) 2.87± 0.91 5.69± 4.35 3.51± 3.18 4.76± 4.56

When speaking about qualitative performance, a distinction between localized or
not localized is necessary. A distance threshold must be defined to evaluate if the
estimated location matches the real pose (the distance between them is lower than a
specified threshold) or if the estimation and the reality do not match. The success
rate expresses the percentage of coincidences between reality and estimation over
the total amount of trial tests performed. Since, during the experiments, the true
location is known, it is possible to define a distance threshold, which is fixed to 50 cm.

Analyzing the results shown in Table 4.1, the position error when the robot is
located in 7 distinct poses is in the interval [1.15, 12.56]cm for all the different diver-
gence analyzed. This range error is accurate enough to consider that the GL issue
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is solved for all fitness functions considered. We cannot establish a clear behavior
pattern when comparing the different performances in terms of positioning error be-
tween the distinct cost functions. However, KL divergence seems to have one of the
lowest, if not the lowest, positioning errors for all the different positions tested. The
rest of the tested options do not yield conclusive results.

Table 4.2: Orientation error when the robot is located in the simulated map of Figure
4.1. Errors in mean ± standard deviation (◦).

Pose KL DP IS JS
(750, 50, 90) 0.04± 0.03 0.06± 0.05 0.05± 0.02 0.04± 0.03
(600, 130, 180) 0.16± 0.47 0.09± 0.06 0.09± 0.84 0.18± 0.18
(860, 60, 0) 0.00± 0.01 0.07± 0.10 0.03± 0.08 0.05± 0.09
(805, 245, 0) 0.02± 0.03 0.08± 0.06 0.00± 0.01 0.05± 0.06
(230, 30, 0) 0.15± 0.14 0.18± 0.19 0.13± 0.10 0.38± 0.19
(190, 33, 0) 0.20± 0.19 0.77± 0.29 0.75± 0.22 0.67± 0.34
(568, 84, 3) 0.34± 0.12 0.11± 0.07 0.19± 0.13 0.18± 0.11

Table 4.3: Percentage of localization success when the robot is located in the simulated
map of Figure 4.1.

Pose Np KL DP IS JS
(750, 50, 90) 250 95 90 90 90
(600, 130, 180) 350 95 100 95 100
(860, 60, 0) 250 100 100 100 100
(805, 245, 0) 250 100 100 100 100
(230, 30, 0) 300 95 100 100 90
(190, 33, 0) 400 90 100 100 100
(568, 84, 3) 250 100 100 100 100

Referring to the observed orientation error (Table 4.2), its value is proximal to
zero with all divergences and stays among the interval [0.00, 0.77]deg. Therefore, it
can be concluded that all cost functions show optimum performance in orientation
accuracy. Table 4.3 shows the percentage of success in finding a location for each one
of the divergences tested in the different locations. As it can be seen, this factor is
over 90% for every case studied.

To extend our analysis, accuracy experiments over real maps have been conducted.
First, Figure 4.2 shows an example of GL over a real map registered by the Robotics
Lab. In this map, each cell is a square of 5.6 cm side, and the whole map contains
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Table 4.4: Translation GL error when the robot is located in the real map of Figure
4.2. Errors in mean ± standard deviation (cm).

Pose KL DP IS JS
(500, 120, 0) 5.88± 3.27 4.84± 1.66 3.07± 2.18 3.54± 1.20
(650, 50, 0) 4.16± 1.62 6.40± 0.88 5.01± 1.54 4.73± 1.67
(750, 170, 0) 2.06± 0.51 2.20± 0.48 2.26± 0.32 2.17± 0.63
(560, 120, 90) 3.62± 0.92 3.47± 0.78 4.59± 0.63 4.52± 1.07
(785, 135, 0) 2.43± 1.55 3.08± 2.17 2.67± 1.93 2.55± 1.89
(390, 170, 0) 0.45± 0.84 0.02± 0.01 0.38± 0.60 0.62± 0.85
(100, 100, 0) 1.58± 1.27 1.68± 0.77 0.71± 0.57 1.51± 1.17

Table 4.5: Orientation GL error when the robot is located in the real map of Figure
4.2. Errors in mean ± standard deviation (◦).

Pose KL DP IS JS
(500, 120, 0) 0.16± 0.08 0.14± 0.10 0.14± 0.09 0.07± 0.07
(650, 50, 0) 0.36± 0.23 0.77± 0.15 0.51± 0.41 0.47± 0.28
(750, 170, 0) 0.12± 0.12 0.19± 0.24 0.18± 0.12 0.15± 0.15
(560, 120, 90) 0.45± 0.05 0.42± 0.06 0.49± 0.05 0.42± 0.06
(785, 135, 0) 0.04± 0.13 0.07± 0.22 0.17± 0.30 0.15± 0.19
(390, 170, 0) 0.07± 0.10 0.00± 0.01 0.06± 0.05 0.07± 0.07
(100, 100, 0) 0.05± 0.04 0.01± 0.02 0.03± 0.04 0.11± 0.10

800x275=220,000 cells, equivalent to a 689.92m2 area representation. Table 4.4 refers
to the positioning error when the robot is located in different locations on the real
map. This error is in every case tested among the interval [0.02, 5.88]cm and the
orientation error shown in Table 4.5 is in the interval [0.00, 0.77]◦. The magnitude
of these results is very similar in both simulated and real maps. We must notice
that the resolution, in this case, is higher, with cells of 5.6 cm against the previous
12.1cm, which means that the same error in terms of cells results in almost half the
error in centimeters. The percentage of localization success can be seen in Table 4.6
and again is over 90 % for every localization considered.

Finally, the accuracy has also been tested over the Intel Laboratory real map,
which has been widely used in localization research and will be very helpful in
comparing results with other GL methods proposed. This map is composed of
600x600=360,000 cells of 5 cm side each which represents an area of 900 m2. The
positioning error varies between 0.15 and 2.45 cm, while the orientation is between
0.01 and 0.21◦. The percentage of success, in this case, is over 95% for each one of
the four locations tested. Again, the accuracy results derived for the experiments on



80 CHAPTER 4. EXPERIMENTAL RESULTS AND DISCUSSION

Table 4.6: Percentage of localization success when the robot is located in the real
map of Figure 4.2.

Pose KL DP IS JS
(500, 120, 0) 100 100 100 100
(650, 50, 0) 95 100 90 100
(750, 170, 0) 100 100 100 100
(560, 120, 90) 90 100 95 100
(785, 135, 0) 100 100 100 100
(390, 170, 0) 100 100 95 100
(100, 100, 0) 100 100 100 100

Figure 4.3: GL in Intel Lab real map. All units in cells.

real maps do not help us conclude if one of the metrics is more suitable for GL than
the others. In addition, we may not even say that KL divergence tends to present
lower error among them in real environments. The values are very similar both for
position and orientation error, and the performance is accurate independently of the
cost function chosen.

Figure 4.4: GL in a medium-size simulated map. All units in cells.

Other research groups have proposed different localization methods that can be
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Table 4.7: Translation GL error when the robot is located in the real map of Figure
4.3. Errors in mean ± standard deviation (cm).

Robot’s Pose KL DP IS JS
(380, 125, 0) 0.15± 0.19 0.68± 0.61 0.73± 0.58 1.04± 0.61
(320, 120, 10) 1.02± 1.46 0.83± 1.60 1.11± 1.51 0.93± 1.01
(440, 258, 21) 1.96± 4.12 2.05± 1.09 1.37± 2.02 2.45± 0.69
(75, 520, 3) 0.53± 0.35 2.01± 1.05 0.85± 1.04 0.72± 0.65
(80, 50, 90) 7.97± 7.36 13.38± 9.73 13.5± 9.15 12.10± 12.01
(122, 120, 15) 11.93± 9.77 7.22± 6.10 9.39± 7.67 10.20± 6.91
(180, 60, 0) 0.23± 0.15 0.52± 0.24 0.25± 0.17 0.30± 0.22

Table 4.8: Orientation GL error when the robot is located in the real map of Figure
4.3. Errors in mean ± standard deviation (◦).

Pose KL DP IS JS
(380, 125, 0) 0.01± 0.03 0.08± 0.08 0.02± 0.02 0.12± 0.08
(320, 120, 10) 0.18± 0.28 0.08± 0.05 0.16± 0.21 0.12± 0.13
(440, 258, 21) 0.11± 0.04 0.11± 0.09 0.21± 0.16 0.07± 0.05
(75, 520, 3) 0.02± 0.01 0.09± 0.04 0.06± 0.06 0.04± 0.02
(80, 50, 90) 0.98± 1.2 0.45.38± 0.73 0.5± 0.15 0.810± 1.01
(122, 120, 15) 0.93± 0.77 0.22± 0.10 0.39± 0.67 0.20± 0.91
(180, 60, 0) 0.23± 0.15 0.52± 0.24 0.25± 0.17 0.30± 0.22

Table 4.9: Percentage of localization success when the robot is located in the real
map of Figure 4.3.

Robot’s Pose Np KL DP IS JS
(380, 125, 0) 300 100 100 100 100
(320, 120, 10) 300 95 100 100 100
(440, 258, 21) 300 100 95 100 100
(75, 520, 3) 300 100 100 100 100
(80, 50, 90) 300 74 84 62 74
(122, 120, 15) 300 98 100 100 100
(180, 60, 0) 300 100 100 100 100

compared to our technique. The position error published in [116] by the research
group of Donoso is [8, 15]cm. The average translation error of the technique proposed
by Se et al. [146] is 7cm. Their average angular error is one degree. Similar errors have
been found when investigating the results of other research groups in the same type
of environment. Since these algorithms rely on different concepts and assumptions, it
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is necessary to study the other techniques’ configuration parameters and experiment
conditions to present a more exhaustive comparison.

Another important aspect that must be taken into account when testing the
method’s accuracy is its reaction to different amounts of noise in the sensor. As
it is known, every existing sensor’s measurement comes with an inherent noise that
deviates the measurement from the correct value.

Figure 4.5: Sensor noise influence. Left: position error vs. sensor noise. Right:
success vs. sensor noise.

In this case, we will model the laser’s noise as a Gaussian with deviation σ from
the real value. This Gaussian noise was set to a typical value of 2% in the previous
experiments, but in the next experiment, the performance reaction to increasing
this level will be tested. A smaller part of the building map was considered in this
experiment just to reduce the computational cost. Figure 4.4 shows the simulated
partial map considered, and the results are shown in the chart of Figure 4.5. The
left of the figure shows the positioning error when the laser noise increases from 0 up
to 10%. The error grows almost linearly for every divergence, and acceptable error
levels are obtained even with high noise. Again there is a slight advantage when
using KL divergence over the rest, especially with higher noise levels. Interestingly,
JS divergence error experiments a higher growth from a 7% noise rising for 4 to 14
cm. The right figure shows the percentage of success. It can be observed that the
algorithm finds an acceptable solution in more than 95% of the cases even with a 10%
noise level. In addition, it is not affected by noise, at least at these levels, applying
the DP cost function.
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4.1.2 Occlusions: Uniform Noise

This section explains the performance of the DE-based Gl filter and the different
divergences before occlusions caused by the presence of people or small mobile ob-
stacles. As described in section 3.4, this type of occlusion is modeled as a uniform
distribution noise that shortens the distance measured by each laser beam. In this
work, the behavior of the algorithm when using KL, DP, IS, and JS-based cost func-
tions has been tested.

The objective is to study the algorithm’s performance when the true location is
in a distinguishable place of the map shown in Figure 4.4. A uniform distribution
has selected to model the random measurements that represent the occlusion of the
sensor measurement. The minimum value is the 25% of the sensor distance, and the
maximum value is the 75% of the laser measurement. In this way, the contaminated
laser reading can be expressed by

zk,c = (1− ϵ)N(zk, σ) + ϵU(0.25zk, 0.75zk), (4.1)

where the laser measurement (zk,c) can be given by the real sensor distance
((N(zk), σ)) or the uniform distribution U(0.25zk, 0.75zk) depending on the contami-
nation level, expressed as a value from 0 to 1 representing the percentage of contam-
inated measurements, ϵ ∈ [0, 1]. The mean of the normal distribution N is the laser
distance (zk), and the sensor noise is represented by the standard deviation (σ = 2%
in this experiment). The range of the uniform distribution is [0.25zk, 0.75zk]. Occlu-
sions considered in this experiment are not present in the known map. The considered
pose is (x, y, θ) = (60, 50, 0). An example with a 50% of contamination is shown in
Figure 4.6. It can be appreciated that the uniform noise causes significant changes in
the laser scan.

Figure 4.6: Laser scan with 50% level of contamination by uniform noise. Units in
cells.

The study of the influence of the contamination level is presented in Figure 4.7.
The horizontal axis corresponds to the percentage of contaminated measurements
(contamination level). The vertical axis is used for the position error (left). The
percentage of success is in the right part.
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Figure 4.7: Left: GL error vs. uniform noise (percentage of contaminated measure-
ments) in the simulated map of Figure 4.4. Right: success vs. uniform noise.

The results are outstanding in all cases if the localization error is considered.
Therefore, the probability profiles that are defined to model the different metrics
cause a great improvement in the method behavior when uniform noise is included.
The errors are lower than 5 cm even with a 50% of contamination. This means that
the 50% of the laser readings are wrong measurements originated by the uniform noise.
The same error is obtained with 5% of contamination when the quadratic error cost
function is used. Besides, when using the quadratic error, it is not possible to obtain
the solution when the contaminated noise is greater or equal to 28%. Analyzing
the positioning error, the results for every cost function tested are very similar and
robust, with a maximum of 10 cm error up to a 60% of contaminated or obstructed
laser measurements. From this 60%, the behavior differs depending on the divergence
tested, highlighting the more lineal behavior of the IS divergence, which maintains an
almost linear growth from the beginning while the rest experiment a sudden increase
of slope, being the DP the one with the worst results with high levels of noise. Worth
noting that, despite a worse response with a higher amount of obstructions (> 60%),
KL and DP show a better behavior, and lower error, until that point, especially
around a 40-60% noise.

Regarding the success rate, similar conclusions are obtained. The DE-GL method
obtains optimum results independently of the divergence used with a 100% success up
to a 60% level of occlusions. From this point, the percentage decreases. IS divergence
is the metric with the best results reducing its success only to 90% with an 80% noise
level. The results of the rest of the divergences are quite similar, decreasing with
certain linearity from a 100% to around 60% success from a 60-65% to an 80% noise.

To reinforce this idea, an equivalent test has been performed on the Intel Real
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map of Figure 4.3. In this case the robot is located in (x, y, θ) = (380, 125, 0) and
sensor noise σ is again 2% an the same uniform noise distribution has been introduced
(Equation 4.1). The results show a great performance with less than 12 cm error up to
an 80% occluded measures (higher resolution of the map must be taken into account)
for every single divergence with optimum outcomes in terms of success rates until 65-
70%. It is interesting to mention the remarkable difference in the influence between
sensor noise (Gaussian) and occlusions (Uniform), with a much lower influence of the
latter. We must remember that similar behaviors can be found with an 8% (Figure
4.5) sensor noise and with a 70% uniform noise.

Wang et al. [147] have published a particle-based localization filter for high-
occluded and dynamic environments. They have tested their technique in a 0.1 m
resolution map. Their lower errors are 5 cm and 1.1 degrees with 2 moving people
and 10 cm and 1.5 degrees with 8 moving people. The authors have defined a variable
called occlusion ratio, which is similar to the percentage of uniform noise presented
here. Although they do not present exact values depending on the occlusion ratio,
they obtain an error of several meters when the occlusion ratio is approximately 30%.
Their experiments are focused on the tracking problem in a real scenario.

According to the results presented in this section, it can be concluded that the
probability profiles that are defined to deal with occlusions produce a great improve-
ment of the method capabilities in this type of situation.

4.1.3 Occlusions: Unmodeled Obstacles

In this section, the GL filter is examined when obstacles not modeled in the available
floor plant are added. Measuring the performance before these type of occlusions is
quite difficult, as it is not easy to determine which approach is more suitable due to
the variety of possible dispositions and influential factors. Two different experiments
have been implemented when the robot is in the map of Figure 4.4. First, a single
remarkable obstacle is situated in front of the robot, and the percentage of success
is computed when the robot is approaching the obstacle. Figure 4.8 registers the
results. The scan on the right side of this figure corresponds to a 57 cell (6.9m)
distance between the robot and the obstacle.

The occlusion caused by the unmodeled obstacle complicates the localization pro-
cess. In the right side of Figure 4.8, it can be observed that the laser perception is
drastically modified regarding the known map. The key conclusions are derived from
the analysis of the percentage of success, where it can be seen that all the different
divergences present optimum results for at least 36 cells (4.3m) distance, being KL
the more robust with a 100% success when the obstacle is 31 cells from the robot.
The minimum distance with optimum results when using the quadratic fitness func-
tion was 87 cells (10.5m). This distance is now in the interval [31,37] cells depending
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Figure 4.8: Occlusions originated by a remarkable obstacle. Left: percentage of
success vs. distance to obstacle. Right: Example os the scan from 57 cell distance.

on the divergence. Since all metrics result in a similar performance, the probability
profile is also excellent for this situation. Although no significant differences are found
between cost function implementations, the best results are obtained with the KL di-
vergence. In the worst scenario, all the options achieve the true location of the robot
at least in half of the tests when the obstacle is at 2.6m (22 cells). This means that
with this GL approach if the robot is at this distance from an unpredicted obstacle
that creates a major occlusion in its sensor, it will be able to locate itself even a 50%
of the time.

Tsou and Wu [148] have published a localization method where feature matching
is used to deal with dynamic obstacles. They have performed a similar experiment
where a dynamic obstacle is added to the scanning area. Two different distances
to the obstacle are tested: 434 cm with 2% dynamic information and 62 cm with
22% dynamic information. The average errors are 18.6 cm for the first case (2%)
and 24.8 cm for the second one (22%). The success rate is approximately equal to
90% in both cases. Their algorithm is tested in a squared map (18.5m side) where
possible locations are generated using different resolutions. The results with the
highest resolution, which is 49 cm, are reported here.

In a second test, a singular pose when the robot is located in the map of Figure
4.4 was selected. Different small unmodeled objects are added. This process is shown
in Figure 4.9 where the real laser scans are presented in the top row of the image
and the estimation scan on the bottom row. The number of obstacles grows from left
to right (5,15, and 45 for each column). Quantitative results are presented in Table
4.10. The number of occlusions (0−45) is equal to the number of laser measurements
affected by the unmodeled obstacles. The GL errors and percentages of success are
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shown in the table, comparing the different divergences implemented. The limit to
consider successful cases has been increased to 70cm in this experiment.

Figure 4.9: Occlusions originated by multiple obstacles (increasing amount from left
to right). Top Row: real laser scan from the true pose. Bottom Row: real laser from
the estimated pose.

When 37 laser readings out of 61 are wrong measurements caused by occlusions,
the correct location is obtained in all cases, and the worst error is 7.55 cm. The error
that was reported with the quadratic cost function in the same circumstances (with
occlusions) was in the interval [10.57, 11.76] cm. The errors of the current metrics
are significantly lower in all cases. When the number of occluded measurements was
greater or equal to 17, the quadratic-based method failed to reach the solution, and
the success rate was 0%. After this analysis, it is clear that the probability profiles
technique is the optimum option in situations with unmodeled obstacles. Comparing
the results when using different metrics, the error with and without obstacles up to
37 occluded measurements is similar. The accuracy is maintained when there are
occlusions.

Although the error with the DP divergence is slightly higher when there are 17
occluded readings, it still presents an acceptable value. No significant differences are
observed between metrics. For higher levels of occlusion(43 and 45 measurements),
the error is higher, and the success rate decreases. The IS and the JS divergences
show better results ([12.22, 13.54] cm). If the success rate is examined, the worst
performance is obtained with the DP divergence. The other three fitness functions
present similar values.
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Table 4.10: GL performance with multiple unmodeled obstacles. True location:(55,
55, 0). Number of occlusions in the left column. Type of divergence in the upper left
corner. Errors in mean±standard deviation (cm). Sensor noise: 2%.

KL DP IS JS
Occlusions Error Success Error Success Error Success Error Success

0 3.50± 1.54 100 4.32± 1.98 100 4.35± 1.41 100 4.19± 2.08 100
5 4.43± 1.42 100 2.61± 1.25 100 2.09± 1.59 100 3.55± 1.92 100
8 0.69± 0.34 100 2.25± 1.58 100 1.90± 1.36 100 1.89± 1.34 100
17 2.40± 2.85 100 6.33± 2.60 100 2.08± 1.12 100 2.66± 1.26 100
37 7.55± 2.92 100 3.68± 2.10 100 4.13± 4.13 100 2.45± 1.45 100
43 11.74± 3.38 90 36.94± 13.01 26 13.49± 2.40 92 12.41± 3.26 92
45 50.87± 1.22 18 60.75± 13.11 22 13.54± 2.81 18 12.22± 3.23 22

4.1.4 Tracking performance

The last experiment shows the robot’s capabilities when it is executing a path. The
typical scenario of a mobile robot involves the continuous reception of laser scans.
The robot is navigating, and, at the same time, the information provided by sensors
is received. The previous experiments have to be considered a more difficult problem
to solve because a single laser scan is the only source of information. In addition,
when a single scan is used, it is possible to find places where the laser readings are
very similar. For example, this situation happens in environments with symmetric
offices. In order to be successful in these cases, motion and more laser scans from
different locations are required.

An advantage of the current approach is that some parameters can be relaxed
after convergence if the robot’s pose has been correctly estimated. The objective of
this operation is to improve the computational cost. The population is limited to 20
candidates, and the number of iterations is 100 in this experiment after convergence.
These parameters are not reduced in the first execution. The computational cost in
these conditions is in the interval [1.21, 1.32] s. In tracking, the algorithm can be
focused on the obtention of a faster response because the GL problem has already been
solved. However, the population size and the number of iterations can be modified if
the objective is to increase the accuracy.

The path that is followed is displayed in Figure 4.10. The histograms of the
position and orientation errors while the robot is navigating are plotted in Figure
4.11. The mobile robot begins situated in location (100, 500, 0). The first part of
the path covers the hallway that can be seen in the lower part of the image. Then,
the aisle on the right side is traversed. The final location, with coordinates (402, 206,
185), and the laser scan that is received from this point are shown in the figure.

In Figure4.11, it can be appreciated that the filter obtains the correct location
even after the first laser reading (all errors lower than 10 cm). This result must be
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Figure 4.10: Robot’s path and laser scan from the final location. Starting point:
bottom left corner. Units in cells.

considered an advantage when compared to other techniques. For example, the MC-
based approaches need more motion-perception cycles to return an accurate solution
because the sensor information has to be integrated into the motion model. If the
position error is checked, it remains lower than 10 cm for all divergences. This error
depends on different factors. Since the sensor noise is dependent on the distance to
the obstacles, the error is larger when the robot is situated in larger rooms. The
variation of the laser measurements is more significant when the robot is turning.
Therefore, the error could be worse in sharp turns. As previously commented, a
simple adjustment that can be applied to improve the accuracy (if necessary) is to
increase the population size and the maximum number of iterations. The orientation
errors are lower than 0.7◦ for all divergences. If the cost functions are compared,
satisfactory results are obtained with all of them, and all the errors are in the same
interval. Most errors are lower than 6 cm and 0.5 degrees. No significant differences
are found between them.

If other methods are analyzed, a similar experiment is presented by Zhang et
al. [149]. The authors have implemented an algorithm called SAMCL. One of the
objectives of their tests is to establish a comparison between their technique and MC.
The idea is to measure the pose tracking error in an indoor corridor. The authors
have reported that their errors improve those of the MC basic version in pose tracking
and GL. If their method is compared to the filter presented in the current paper, the
main difference can be found when the error of the first motion-perception cycle is
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Figure 4.11: Histograms of the errors for the path displayed in Figure 4.10. Top:
position error. Bottom: orientation error. Number of points of the path with an
error in the interval defined by each bin in the vertical axis.

analyzed. First, their error is around 80 cm, and, after that, it decreases to 20 cm
when more scans are received. As can be observed, the performance is worse in the
first execution.

4.1.5 Population requirements and computational cost

The study of the population requirements of the GL method is relevant because this
parameter has an important influence on the computational cost. The population
size that is required has been examined for different locations in the simulated map
(Figure 3). The experiment consists of measuring the minimum set that is needed
to obtain the maximum percentage of success. Only cases with 100% of success are
shown. The aim is to check if any divergence needs lower particles than the other
ones. The position errors and the required number of particles are displayed in Table
4.11. The orientation error is omitted for simplicity.

Table 4.11: Optimum position error and population size when the robot is in the
simulated map of Figure 4.1. Errors in mean ± standard deviation (cm).

KL DP IS JS
Robot’s Pose Error Pop Error Pop Error Pop Error Pop
(50, 60, 0)0 4.64± 0, 84 50 4.48± 1.08 35 4.84± 0.62 55 4.62± 0.88 40
(790, 40, 90) 4.63± 0.85 200 3.45± 1.05 205 4.30± 1.75 195 3.42± 2.07 201
(700, 80, 180) 8.66± 10.82 140 9.65± 4.96 165 12.23± 2.60 145 10.50± 5.61 170
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Although some differences can be appreciated, there is no evidence to choose
one metric among the others. In addition, this parameter is highly dependent on
different variables such as the location (larger rooms need fewer particles because it is
easier to reach the minimum) or the perceptual ambiguities (symmetries). Therefore,
more experiments are needed to present a more exhaustive study of the population
requirements, which is challenging work to be accomplished in the future. This section
is intended to introduce the study of this parameter.

The time complexity of the filter is O(DEGL) = Niter ∗ NP ∗ Ns, where Niter is
the number of iterations. This parameter depends on the number of iterations, the
population size, and the number of laser scan measurements. The computational
complexity is dependent on the number of iterations when the algorithm is executed
for a fixed number of particles and a laser scan with a constant resolution (Np ∗ Ns

is constant). The time complexity of other evolutionary-based methods is similar.
The MC technique has to be viewed from a different perspective because it integrates
the motion information to compute the robot’s pose. Many motion-perception cycles
are needed to converge. Anyway, the time complexity of the MC-based algorithms is
highly dependent on the number of particles. The whole search space (in GL without
motion) must be covered to assure the convergence to the true solution. Therefore,
the population size that is required is larger. Several comparisons between DE and
variants of MC are presented in [150] and [151]. In both papers, the MC-based method
needs more particles to succeed.

An experiment has been conducted to study the parameters that influence the
computational cost. The objective is to compare the times per iteration depending
on the population size for different locations and maps. The number of iterations that
are needed to converge is also presented. Table 9 illustrates the results. The success
rate is 100% in all cases. The algorithm is implemented in MATLAB in a computer
with a 2.7 GHz Intel Core i5 processor. Different conclusions can be drawn from the
table. No significant differences are found when comparing metrics. The cost highly
depends on the number of particles. For 50 particles, the time per iteration is in the
interval [26, 27] ms. For 100 candidates, the time is [47, 66] ms. For 200 members, the
cost is [88, 112] ms. The iterations to converge depend on the map. In general, larger
maps require more iterations. The method needs [362.4, 405.5] iterations for the map
of Figure 3 (288,000 cells). When the robot is in the map of Figure 6 (120,000 cells),
it needs [188.9, 216.3] iterations. In Figure 4 (360,000 cells), [350.1, 438.3] iterations
are required. All metrics show similar numbers. However, a more exhaustive study
is necessary to compare the convergence properties.
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Table 4.12: Times per iteration for different locations and maps. Results in
mean±standard deviation.
Map/Pose Np KL DP IS JS

Figure 4.1 200 time (ms) 91± 3 88± 2 95± 4 98± 5
(860,60,0) Niter 382.6± 50.2 387.6± 42.9 362.4± 61.6 418.1± 40.6
Figure 4.1 100 time (ms) 51± 3 50± 4 53± 5 63± 9
(860,60,0) Niter 397.6± 61.0 376.1± 59.5 405.5± 74.6 378.9± 70.5
Figure 4.4 100 time (ms) 50± 4 48± 4 47± 3 50± 4
(60,60,0) Niter 189.9± 42.9 212.0± 57.1 200.3± 37.5 188.9± 20.1
Figure 4.4 50 time (ms) 26± 3 26± 3 27± 2 26± 2
(60,60,0) Niter 209.3± 42.5 216.3± 41.9 193.1± 32.05 192.0± 25.6
Figure 4.3 200 time (ms) 112± 6 111± 5 110± 2 111± 2
(350,120,0) Niter 371.9± 63.1 438.3± 45.7 424.5± 55.96 435.6± 40.37
Figure 4.3 100 time (ms) 61± 3 66± 5 65± 5 63± 3
(350,120,0) Niter 377.5± 74.5 388.3± 69.24 350.1± 59.0 433.5± 50.2

4.2 3D Simulated Environments

This section presents the experiments performed over 3D occupancy grid maps. The
algorithm tested in this experiment is the DE-based GL filter presented in section
3.3.1. The performance regarding the described divergence-based fitness functions is
analyzed. The different situations evaluated are an extension of those presented in
section 4.1 for 2D maps. The different tests show the performance of the developed
method in terms of localization accuracy, response to different amounts of sensor noise,
and to several types of occlusions: uniformly distributed and unmodeled obstacles. In
all these tests, the sensor considered is composed of a 7x72 beam laser scan, covering
a 360◦ view with 5◦ resolution over 7 vertical planes separated 5◦. Two map examples
are tested in this section, a 3D representation of the blueprint of the DISA department
on Carlos III University of Madrid (4.1), which is represented in Figure 4.12. This
could be considered a simulated map, as no real data has been utilized. The second
representation is a 3D elevation of the before-mentioned Intel Laboratory map, built
using real 2D laser data. This can be considered a semi-simulated environment. The
extension on dimension z is a simulation. The configuration parameters for the DE-
filter are: F = 0.9, and CR = 0.75. The variable factor of DP-divergence is set
to α = 1. Each laser beam is modeled as a Gaussian distribution with standard
deviation σ = 2% except when a different value is specified.
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Figure 4.12: 3D simulated map. All units in cells. Red dots indicate locations
considered in Table 4.13.

4.2.1 Performance and Accuracy

In the first experiment, GL results over different positions of the map represented in
Figure 4.12 are registered in Tables 4.13,4.14 and 4.15. Each cell is a cube of 12.1
cm side, and the total environment represented is formed by 960x300x25=7,200,000
cells covering a 12600m3 volume. The population required for each tested location
is only shown in Table 4.13 for simplicity. The robot’s location is represented by
(x, y, z, α, β, γ) covering the possible 6DOF of a 3D space. The same threshold dis-
tance between optimum estimation and real position is considered a successful local-
ization, 50cm.

Table 4.13 shows the percentage of successful localizations for each position for
each metric utilized. These positions are represented as red dots in Figure 4.12.
Divergence-based functions yield better solutions than L2-norm for almost every po-
sition considered, except position 4. Among the rest of the options, the results are
quite similar. It could be mentioned that JS-divergence provides the worst result of
all situations tested for position 4.

Regarding the positioning error in Table 4.14 a clear behavior pattern can not be
extracted among divergences. Although KL divergence obtains the lowest error in 50%
of the locations, the difference with the rest of the divergences is not remarkable. The
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positioning error is in the interval [0.90-9.58]cm for all metrics, and the GL problem is
solved for all metrics. A comparison with the L2-norm shows a very different result.
The positioning error of this metric is higher for all positions evaluated with errors
in an interval between [3.04-12.93] cm, which is also accurate enough.

Table 4.13: Percentage of GL success when the robot is located in the simulated map
of Figure 4.12.

Robot’s Pose Np L2 KL IS JS DP
1 (150,750,15,0,0,0) 300 100 100 100 100 100
2 (135,555,15,-0.4,0.5,270) 350 100 100 100 100 100
3 (220,250,8,4,-2,10) 450 91 100 100 100 100
4 (90,840,4,1,0,0) 450 82 42 60 31 36
5 (275,550,18,-1,2,200) 400 39 100 100 94 100
6 (50,400,5,0,0,0) 250 100 94 100 100 100
7 (130,600,10,0,0,180) 450 39 67 70 78 83
8 (60,860,15,-2,3,0) 300 100 100 100 100 100
9 (84,568,12,0,4,3) 300 100 100 100 100 100
10 (245,805,8,2,-1,0) 250 100 100 100 100 100

The orientation error can be observed in Table 4.15. This orientation represents
the average value of the three Euler rotation angles (α, β, γ) for simplicity. None
of the different angles show a distinctive tendency even though it can be highlighted
that, in case of failure to localize the robot, the biggest error appears in the yaw angle
γ (rotation around z axis). Referring to the observed orientation error, its value is
proximal to zero for all metrics and stays among the interval [0.08, 0.99]deg for all
positions except number 4. Therefore, it can be concluded that all cost functions show
optimum performance in orientation accuracy. Position number 4, (90, 840, 4, 1, 0, 0),
was selected to test the performance in a small corner inside a non-singular room of
the map, therefore it is a challenging position due to the many symmetries that this
environment presents.

The accuracy of the GL method has been tested over the Intel Laboratory occu-
pancy grid extension to 3D. This map is composed of 600x600x25 =9,000,000 cells
covering a volume of 1125 m3, the side of each cubic cell is 5cm in this case, so again,
a positioning error of the same amount of cells compared to the previous map will
result in a lower error in cms. Observing Tables 4.16 and 4.17 it can be determined
that the performance is equivalent to our simulated environment. A difference be-
tween the L2-norm and the divergences is clearly noticeable regarding the positioning
error. While divergence-based function provides an error in the range from 0.79 to
9.92 cm, less-squared difference’s error raises up to 27cm. In terms of success rate,
Table 4.16 shows equivalent results with its homologous. The achieved localizations
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Table 4.14: Translation GL error when the robot is located in the real map of Figure
4.12. Errors in mean ± standard deviation (cm).
Robot’s Pose L2 KL IS JS DP
1 3.20± 3.30 1.09± 0.61 1.66± 1.14 1.21± 0.67 1.27± 0.69
2 9.97± 3.03 1.71± 0.64 3.56± 2.67 1.96± 0.94 3.19± 1.62
3 9.62± 4.60 9.58± 5.30 6.32± 1.65 4.62± 2.64 3.89± 2.74
4 12.93± 4.78 9.52± 6.50 7.02± 7.89 8.27± 7.99 8.24± 5.19
5 13.56± 8.50 4.38± 2.20 5.91± 3.74 6.97± 5.31 4.81± 3.11
6 6.93± 8.11 1.36± 0.55 1.14± 0.54 0.90± 0.55 1.45± 0.94
7 9.56± 5.56 6.24± 3.88 9.34± 1.25 6.69± 1.28 7.97± 4.26
8 5.85± 3.07 1.17± 0.91 1.61± 1.16 1.41± 1.00 1.34± 0.97
9 3.04± 4.03 4.70± 0.75 4.45± 0.57 4.86± 2.21 4.53± 0.80
10 7.56± 3.28 1.29± 0.65 2.69± 2.04 0.92± 0.47 1.40± 1.05

Table 4.15: Average orientation error when the robot is located in the real map of
Figure 4.12. Errors in mean ± standard deviation (◦).
Robot’s Pose L2 KL IS JS DP

1 0.14± 0.11 0.13± 0.06 0.16± 0.09 0.14± 0.07 0.13± 0.06
2 0.42± 0.26 0.13± 0.05 0.37± 0.17 0.11± 0.06 0.16± 0.11
3 0.99± 1.03 0.81± 0.33 0.58± 0.21 0.50± 0.38 0.39± 0.22
4 1.92± 0.77 2.09± 0.67 2.49± 0.82 2.21± 0.88 1.64± 0.78
5 0.75± 0.70 0.20± 0.13 0.36± 0.25 0.53± 0.50 0.53± 0.37
6 0.47± 0.32 0.28± 0.52 0.12± 0.07 0.14± 0.09 0.26± 0.13
7 0.70± 0.72 0.49± 0.46 0.62± 0.13 0.41± 0.12 0.49± 0.17
8 0.25± 0.20 0.11± 0.06 0.12± 0.09 0.15± 0.08 0.12± 0.08
9 0.33± 0.47 0.23± 0.09 0.7± 0.08 0.38± 0.48 0.17± 0.11
10 0.23± 0.17 0.08± 0.04 0.19± 0.15 0.07± 0.06 0.15± 0.11

are over 65% for all cases, with no remarkable distinctions between metrics although
the L2-norm presents slightly lower values. In terms of average orientation, the esti-
mation is optimal, with very low values of angular error for all cost functions (Table
4.18).

These experiments were performed with a default 2% sensor noise. Another im-
portant aspect, as tested in the previous section for 2D environments, is the response
of the GL filter to the increase in sensor noise. This is an important quality, as
different possible laser range finders utilized for this task may not present a reliable
indication in this matter, or the amount of possible noise is highly dependent on the
sensor chosen. Following the scheme of section 4.1 this noise is modeled as a Gaus-
sian with deviation σ from the real value. This deviation is increased in the next
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Figure 4.13: GL in semi-simulated 3D map. Laser measures in red. Sensor noise:2%.

Table 4.16: Percentage of GL success when the robot is located in the semi-simulated
map of Figure 4.13.

Robot’s Pose L2 KL IS JS DP
1 (100,333,15,0,0,0) 100 100 100 100 100
2 (250,525,10,-4,2,45) 65 93 89 92 85
3 (500,125,20,4,4,90) 85 84 79 87 91
4 (150,500,5,0,3,270) 98 100 100 100 100
5 (95,308,9,-4,-5,0) 100 100 100 100 100
6 (125,380,5,-4,-1,0) 100 100 100 100 100
7 (120,320,8,-3,-2,10) 83 100 100 100 100
8 (520,75,13,-1,3,3) 100 94 100 95 91
9 (122,132,20,1,1,15) 65 88 70 99 100
10 (60,180,23,2,0,0) 100 97 95 100 76

experiment to test the reaction of the different metrics in the DE implementation.

A smaller section of the building map in Figure 4.12 is considered to reduce the
computational cost. The location selected is chosen from Table 4.13. The robot is
at location (50, 400, 5, 0, 0, 0), a favorable position to reduce the computational cost
of this experiment. Figure 4.14 shows the simulated partial map considered and a
resulting localization performed with a 15% Gaussian noise level. The influence of this
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Table 4.17: Translation GL error when the robot is located in the semi-simulated
map of Figure 4.13. Errors in mean ± standard deviation (cm).
Robot’s Pose L2 KL IS JS DP
1 9.38± 3.22 0.90± 0.77 0.79± 0.35 1.44± 0.87 1.23± 1.04
2 16.89± 8.23 5.33± 3.76 1.68± 1.34 3.00± 0.00 1.42± 1.33
3 26.67± 2.91 1.14± 1.04 1.98± 1.38 1.88± 1.46 1.63± 1.25
4 24.72± 4.28 1.01± 0.69 0.82± 0.46 1.07± 0.75 1.11± 0.88
5 1.50± 1.98 0.97± 0.95 0.72± 0.64 0.83± 0.80 1.60± 1.12
6 17.10± 9.99 0.71± 0.44 0.74± 0.46 0.73± 0.43 0.68± 0.31
7 7.79± 5.81 0.75± 0.54 1.18± 0.71 0.88± 0.68 0.71± 0.46
8 6.61± 4.31 7.43± 3.72 8.26± 4.74 7.40± 5.06 9.92± 9.26
9 23.68± 5.42 8.91± 8.99 9.55± 5.74 9.43± 8.04 9.83± 8.58
10 0.76± 0.39 4.69± 3.41 6.36± 4.61 4.98± 3.77 5.30± 3.49

Table 4.18: Average orientation error when the robot is located in the semi-simulated
map of Figure 4.13. Errors in mean ± standard deviation ((◦).
Robot’s Pose L2 KL IS JS DP

1 0.40± 0.28 0.05± 0.04 0.07± 0.02 0.10± 0.05 0.09± 0.07
2 1.68± 0.76 0.38± 0.27 0.12± 0.06 0.11± 0.00 0.11± 0.09
3 1.50± 0.81 1.21± 1.77 2.79± 1.85 1.97± 1.80 2.47± 0.95
4 1.06± 0.47 0.11± 0.07 0.10± 0.06 0.11± 0.05 0.11± 0.07
5 0.09± 0.09 0.06± 0.05 0.05± 0.03 0.05± 0.03 0.07± 0.05
6 0.20± 0.17 0.03± 0.01 0.03± 0.03 0.04± 0.01 0.04± 0.02
7 0.50± 0.26 0.07± 0.05 0.09± 0.04 0.07± 0.04 0.07± 0.05
8 0.46± 0.17 0.69± 0.37 0.96± 0.62 0.62± 0.36 1.16± 0.91
9 2.74± 0.72 2.37± 0.87 2.41± 0.83 2.05± 0.62 2.17± 0.72
10 0.13± 0.08 0.59± 0.29 0.48± 0.21 0.68± 0.25 0.52± 0.19

noise can be observed in the deviation from laser perception shown in the expected
measures over the surrounding map. The results of the positioning error and success
rate with the increase of this noise from 0-20% are shown in the chart of Figure 4.15.
The top of the figure shows the mean positioning error with the deviation for each
increase of 1% in Gaussian perception noise, from 0-20%. The different performance
between the L2-norm and the rest of the divergences is remarkable. The positioning
error rises from close to 0 cm to an approximate value of 9cm for all KL, DP, IS,
and JS metrics when a 20% noise level is induced. JS and DP present an almost
linear behavior while KL and IS form peaks where the positioning mean error rises
up to 10cm. None of the metrics stand out, but it is interesting to remark on the
lineal behavior of DP. In contrast, the L2-norm presents a fast impoverishment for
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Figure 4.14: GL example in partial map. Sensor noise:15%.

relatively low levels of noise( 3-4%) and reaches a maximum of 33 cm. The bottom
chart presents the percentage of success where it can be observed that the algorithm
finds an acceptable solution in more than 95% of the cases up to 20% level of noise
for all divergences. The success rate of RMSE fluctuates between 74-100% in this
interval.

Figure 4.15: Sensor noise influence. Top: position error. Bottom: Success rate.

Comparing the accuracy results obtained with other 3D GL methods the results
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show that similar if not more accurate results can be obtained with DE-GL filter if con-
sidering the divergence-based fitness function. The accuracy achieved by Kümmerle et
al. is about a few centimeters [18]. Ho et al. [41] report a 9 cm and 0.49 ◦ error in the
best case. In [24] a combination of HS and DE algorithms is used for re-localization,
the experiments report a minimum error of between [1-5]cm, an experiment showing
the response to Gaussian sensor noise where the error rises up to 16 cm for a 30%
not considering GL but only pose tracking.

4.2.2 Occlusions: Uniform Noise

Following the casuistry presented in section 4.1 for 2D environments, the performance
of the algorithm before uniformly distributed noise is evaluated. These occlusions, as
stated, represent the presence of small mobile objects or people in the sight of the laser
scan from the real position and are modeled following Equation 4.1. A contamination
level (ϵ) is modified to perturb a percentage of the actual measures of the sensor. This
reduction is within the range of 25-75% of the actual distance through a uniformly
distributed random number U(0.25zk, 0.75zk), where zk is the actual perception of
beam k. The considered pose for this test is (x, y, z, α, β, γ) = (50, 400, 5, 0, 0, 0) in
Figure 4.14 and the sensor noise σ is 2%. An example illustrating a comparison be-
tween the ideal perception and another with a 25% level of contamination for the
considered pose is shown in Figure 4.16. It can be appreciated that the uniform noise
causes significant changes in the laser scan.

Figure 4.16: Effect of uniform noise over simulated laser scan. Contaminated mea-
sures: 25%. All units in cells.
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The study of the influence of the percentage of contamination level (ϵ) is pre-
sented in Figure 4.17. The horizontal axis corresponds to the increasing percentage
of contaminated measurements. The top chart presents the positioning error for all
the different fitness functions. In the bottom chart the success rate can be analyzed.

Figure 4.17: Top: Position error vs. uniform noise (percentage of contaminated
measurements) in the simulated map of Figure 4.16. Bottom: Success rate.

A remarkable performance of the divergence-based fitness functions in contrast
with the L2-norm has been noticed. L2 commences to be affected from a 20% of
occluded measurements, and the error increases from a range of [1-3]cm to [10-17]cm.
The percentage of accurate locations within our specified threshold is slightly affected
in the interval from 20-30% of contamination levels and falls into a 20% localization
rate from 40% contamination. On the other hand, this type of occlusion does not
affect probability-based fitness functions. The percentage of success in a favorable
position (a singular location on the map) remains optimum, and the positioning
error remains constant in an interval of [0.9-2.5]cm. When considering the same
experiment on the semi-simulated environment of Figure 4.13 equivalent response is
obtained. The position selected is (x, y, z, α, β, γ) = (150, 500, 5, 0, 3, 270) and the
chart is omitted for simplification. Again, divergence-based evaluation stands out
before the L2-norm in terms of GL error and percentage of success. Contamination
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levels of ϵ > 40% significantly decrease success rate when applying the L2-norm.

4.2.3 Occlusions: Unmodeled Obstacles

Analogous situations to those presented for 2D environments are considered regarding
unmodeled obstacle presence in 3D occupancy grid maps. Two different experiments
are implemented to provoke laser beam occlusions. A single remarkable obstacle
and multiple obstacles. The objective is to test if a distinguishable behavior can be
extracted from the source of occlusions. In the first consideration, a single obstacle
presence is tested at different distances from the robot’s location. The percentage
of occluded measures increases proportionally as the distance from the obstacle is
reduced. In a second experiment, multiple obstacles are placed around the robot, and
the percentage of occluded laser beams increases with the quantity of these obstacles.
Both situations are presented in Figure 4.18.

Figure 4.18: Unmodeled obstacle possibilities. Left: Single. Right: Multiple. Loca-
tion of the robot: (50,400,5,0,0,0) in the map of Figure 4.14.

The results of these two experiments are presented in Figures 4.19 and 4.20. Sim-
ilar conclusions can be extracted depending on the metric implemented when com-
paring both situations. In both cases, the success rate of the L2-norm moves away
from the optimum 100% when any unmodeled occlusion is introduced. This behavior
can be extended to any type of perturbation analyzed in this section. For 4-6% of
occlusions, RMSE performance falls under the 50% of success, and the influence of
a single obstacle is greater than multiple occlusions. The DE-based method using
RMSE is unable to localize the robot when more than 6% of the measurements are
occluded by a single obstacle or more than 10% by multiple intrusions. Regarding
the divergence-based metrics, the performance is considerably better, but it can be
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Figure 4.19: Unmodeled obstacle response. Top: Position error vs. % of occluded
measurements in the simulated map of Figure 4.14. Bottom: Success rate.

extracted that this type of occlusions affects the performance in a more significant
manner than the sensor and uniform noise. In contrast with the L2-norm, diver-
gences’ performance is more affected by multiple obstacles. In terms of success rate,
only KL is slightly affected by single-source occlusions. The rest remain at a 100%
success rate until 16% of occluded measures. Analyzing the top chart of Figure 4.19,
the positioning error for a single unmodeled obstacle increases from values close to 0
until 10cm using KL, while the rest of the divergences remain in a [0-5]cm range and
a 100% localization rate.

For multiple unmodeled sources (Figure 4.20), the behavior of DP and JS in this
experiment was remarkably better. The success rate is maintained until a 30% of
occlusions, and the positioning error stays within an interval of [0-10]cm. The worst
results among divergences correspond to the KL-divergence, with a fast increase of
the positioning error up to 40cm with a 30% of occlusions. IS in an intermediate
position maintains a relatively low positioning error, comparable to DP and JS, but
instead fails to localize the robot at a 30% occlusion rate.

It must be considered that these kinds of tests are not simple to perform as there
are many variable aspects that can modify the outcome. The location of the robot
within the map but, more important, the location and orientation of the obstacle(s).
Occluding distinctive sections of the map may be more transcendent than the % of
occlusion.
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Figure 4.20: Unmodeled multi-obstacle response. Top: Position error vs. % of oc-
cluded measurements in the simulated map of Figure 4.14. Bottom: Success rate.

4.2.4 Population requirements and computational cost

A simple study of the population requirements and the consequent computational
cost has been carried out over the map representation in Figure 4.12. The objective
of this test is to clarify if for a certain set of considered positions the positioning error
and the success rate are directly related to the population number.

The resulting comparison is shown in Figure 4.21. In this experiment, the num-
ber of candidates considered in the DE-GL filter developed is increased from 10 to
450 members. The top chart represents the mean positioning error considering only
successful localizations. As it can be extracted from the results, this error is not de-
pendent on the population number. Once the algorithm has converged into the global
minimum, the accuracy obtained does not depend on the number of candidates. On
the other hand, the bottom chart shows the success rate for each number of particles.
Extracted from this experiment, the maximum localization rate tends to saturate
at a given number, and increasing the population does not lead to a more reliable
outcome. In this particular case, a population size of over 300-350 candidates does
not improve the percentage of success significantly. The computational cost and the
time needed to obtain an optimum solution increase proportionally with the amount
of population. The middle chart of Figure 4.21 shows this situation. It is interest-
ing to highlight that this computational cost remains approximately constant in the
interval between 300-450 candidates. This is due to the fact that the convergence
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Figure 4.21: Performance and computational time response to increasing population.

conditions described in section 3.3 terminate the stochastic search at a lower number
of iterations with a higher population number.

4.3 3D Point Cloud Environments

This third and last section presents the experimental results for Evolutionary-based
GL filters. In this last case, Point Cloud-based maps are considered. As described
in Chapter 3, these environments were built from 3D LiDAR real data using the
ADAM platform (1.1) developed in the Robotics Lab at Universidad Carlos III de
Madrid. The slam technique implemented is described in [72] and [152]. Different
Meta-heuristics were applied for PC Scan Matching in this work to correct the odom-
etry information provided by the encoders during the SLAM process. In this section,
the resulting map from a Harmony-Search-ICP method [152] is considered as the
global known map in which the mobile robot is localized. This map represents the
DISA department and covers an approximate volume of 40x20x4=3200m3. The en-
vironment representation is shown in Figure 4.22. It should be highlighted that this
representation is a horizontal cut parallel to the xy plane for a clearer interpretation.
The complete map includes the ceiling and floor.

Three different Metaheuristic approaches have been tested in this environment,
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Figure 4.22: PC-based map. Blue triangles indicate the location of the mobile robot
during the mapping process.

DE, PSO, and IWO optimization. A comparative of the performance of these GL-
filters when considering the different metrics (L2, KL, IS, JS) is presented following
homologous scenarios to previous sections 4.1 and 4.2, regarding the accuracy, the
influence of sensor and environmental uniform noise and unmodeled obstacles. The
objective is to estimate the correct position and orientation of the robot covering the
possible 6DOF of the three-dimensional space (x, y, z, α, β, γ). As in previous sections,
a successful outcome is considered when the difference between the estimated and real
position is less than 50cm. The sensor noise is modeled as a Gaussian distribution
over the real distance measured with standard deviation σ = 2% when another value
is not specified.

Configuration parameters for all stages presented in sections 3.2.2 and 3.3 are:

� Pre-processing: Global cloud and local scan are reduced to a 0.5% and 1% of
original points respectively. Random downsampling is applied

� DE parameters: F = 0.9, CR = 0.75. Discarding: worst 5% substituted by best
20%. Thresholding: new members must reduce the cost value below 98% of its
competitors.

� PSO parameters: w = 1, wdamp = 0.99, c1 = 1.25, c2 = 1.75, V elMaxi = 0.1Di

where Di is each dimension of the global map.
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Figure 4.23: Selected poses for accuracy test.

� IWO parameters: Smax = 6, Smin = 2, σini = 0.8, σfin = 0.1, exp = 2, NPini =
NPfin/2

� Convergence conditions:

– Maximum iterations: 500.

– Total convergence: Best cost= Avg.Cost=Worst Cost. Minumum itera-
tions:50.

– Normal convergence: Avg.Cost/Best Cost < 1.05 and Worst Cost/Best
cost < 1.05

– Invariant: No changes in best, average or worst cost for 10 consecutive
iterations.

4.3.1 Performance and Accuracy

The first set of experiments is addressed to test the accuracy of the implemented
methods in solving the GL task over sparse PC-based maps. The results for ten
different positions are presented as an extract of the evaluated localization tests.
These selected locations can be appreciated in Figure 4.23. These positions have
been tested for every combination of Meta-heuristic (DE, PSO, and IWO) and fitness
function implementation (L2, KL, IS, JS) presented in Chapter 3. The data extracted
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from the SLAM solution in [152] contains the global map, the individual scans that
are used to build that map, and the absolute positions of each scan in reference to
the initial position of the followed path (Figure 4.22). Therefore the actual position
of the robot within that map is known for each individual scan considered and will
serve as a reference to evaluate a successful localization. As in previous sections, GL
is achieved if the distance between actual and estimated positions is lower than 50cm.

Table 4.19: Percentage of GL success when the robot is located in the real map of
Figure 4.23.

DE-GL PSO-GL
Robot’s Pose Iter. L2 KL IS JS Iter. L2 KL IS JS

1 71 100 100 100 100 95 100 100 100 100
2 62 100 77 85 100 110 100 100 100 100
3 87 96 100 100 100 86 88 93 94 91
4 64 74 69 86 84 92 95 100 100 100
5 73 76 86 78 97 91 100 100 100 100
6 52 73 98 61 100 98 100 100 99 100
7 56 95 100 100 100 93 82 87 92 82
8 50 61 59 54 63 109 79 100 100 85
9 59 49 47 62 45 132 85 80 88 74
10 73 63 65 63 61 129 66 79 95 100

IWO-GL
Robot’s Pose Iter L2 KL IS JS

1 380 100 100 100 100
2 388 100 100 100 100
3 390 100 100 100 100
4 373 94 100 96 100
5 401 83 100 92 100
6 350 94 100 87 100
7 391 82 86 100 100
8 260 56 98 39 90
9 304 63 55 52 55
10 410 55 67 59 59

Qualitative results are shown in Table 4.19 for the different poses. These locations
are indexed from 1-10 in the table, referring to the positions (blue triangles) from left
to right in Figure 4.23. The performance of each EA for all the different metrics is
shown in this table, DE-Gl on the top left corner, PSO on the top right corner, and
IWO on the bottom left side. The number of iterations represented in this table (Iter.)
specifies the average number of iterations necessary for each algorithm to converge
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into an optimal solution for each location. Unsuccessful localizations are excluded,
and the average is calculated for all tests for all cost functions. No metric shows any
remarkable difference in this aspect.

Several conclusions can be extracted from Table 4.19. Regarding the convergence
velocity, DE shows the fastest results with a minimum number of iterations for every
position considered, a 30% faster than PSO and 80% faster than IWO (in terms of
No. of iterations). On the contrary, it shows a weak performance in terms of success
rate, with acceptable values over 70% of successful estimations for the majority of
positions evaluated. The parameters selected to tune the DE implementation are
set to improve the inherent global search qualities of this algorithm. A variable
mutation factor F has been implemented, decreasing from 0.9-to 0.3 depending on
the best/worst and best/average cost ratio of the population. This implementation
may have caused premature convergence in some situations. The success rate using
PSO and IWO GL-filters is higher and considerably better in the case of PSO, with
a localization ratio over 75% for all cases considered. The iterations needed for IWO-
based localization are remarkably higher in contrast with DE and PSO. This outcome
was expected as IWO exploits the local search by spreading a localized amount of
seeds within a distance of each plant. Further analysis of population requirements
and computational costs is presented later in this section.

Comparing the different fitness functions implemented, in general terms, KL and
IS present a higher success rate for the three different algorithms.

An important consideration regarding the locations chosen on the map of Figure
4.23 must be made. The final positions of the chosen set present worse results for
every cost function and every algorithm. By observing this figure, these locations
correspond to non-singular positions in open spaces, the sensor noise can affect the
laser measurements to a greater extent, and the basin of attraction of the global
minimum in that region is low. A tracking experiment was performed in that region
to explore this situation. Results are presented later in this section.

Regarding the positioning error, the results of Table 4.20 were obtained with the
different implementations. In a first general conclusion, regardless of the optimization
algorithm or the fitness function utilized, the average positioning error is in an interval
between [0.5-11.82]cm for all positions considered. This range is accurate enough to
consider that Evolutionary-based GL filters solve the GL issue in sparse PC-based
map representations. In a deeper analysis, the most accurate results are obtained
using the IWO implementation, with the lowest error in 5 out of 10 positions, although
the difference is not outstanding. This could be expected as if converged, IWO exploits
the local search around the minimum deeper than the competitors. In contrast,
computational costs are elevated. All different metrics present similar results, and no
behavior pattern can be established. L2 tends to present minimum errors, but the
difference is not conclusive.
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Table 4.20: Translation GL error when the robot is located in the real map of Figure
4.23. Errors in mean ± standard deviation (cm).

DE-GL
Robot’s Pose L2 KL IS JS

1 8.40± 9.45 11.82± 7.24 11.77± 5.59 3.48± 4.95
2 1.12± 0.42 9.24± 6.66 5.69± 4.91 2.51± 3.66
3 7.62± 6.35 1.87± 1.79 4.17± 2.12 5.52± 3.04
4 4.51± 6.65 5.96± 4.77 4.30± 2.06 6.14± 11.75
5 4.05± 4.53 5.73± 1.16 6.48± 5.72 6.01± 1.45
6 2.17± 1.04 3.90± 6.58 3.16± 2.21 1.38± 0.69
7 4.91± 3.25 8.78± 2.19 7.77± 3.46 7.45± 8.93
8 0.88± 0.61 5.51± 1.47 5.59± 1.79 3.64± 6.38
9 2.28± 0.78 3.83± 1.22 15.54± 15.16 5.08± 8.72
10 1.16± 0.54 11.67± 14.95 10.19± 1.86 2.55± 3.83

PSO-GL
Robot’s Pose L2 KL IS JS

1 1.93± 0.86 2.55± 0.82 2.08± 1.07 3.64± 2.11
2 1.21± 0.57 6.26± 2.81 3.94± 1.77 2.47± 1.36
3 3.7± 4.21 3.35± 2.02 3.45± 2.76 5.76± 1.59
4 8.63± 15.14 5.78± 1.64 4.58± 2.34 5.46± 2.97
5 6.11± 0.9 5.16± 1.42 4.62± 2.53 5.54± 2.12
6 1.41± 0.52 3.36± 1.89 4.47± 1.88 3.93± 2.32
7 8.65± 8.47 8.87± 1.86 9.97± 3.7 9.23± 1.41
8 0.67± 0.22 5.14± 0.61 4.18± 0.65 2.72± 1.15
9 0.95± 0.63 3.21± 1.14 3.27± 0.74 3.23± 1.43
10 2.06± 3.57 5.12± 3.98 5.3± 3.22 4.13± 3.29

IWO-GL
Robot’s Pose L2 KL IS JS

1 2.34± 1.22 5.25± 2.98 7.12± 2.17 9.11± 4.63
2 1.73± 0.73 5.31± 1.90 3.86± 1.97 6.01± 2.03
3 4.76± 3.30 1.90± 1.47 3.91± 1.26 3.62± 1.59
4 2.16± 1.23 4.25± 1.92 4.83± 2.15 7.30± 3.33
5 6.55± 0.95 4.94± 1.03 6.79± 3.34 5.99± 2.36
6 1.78± 0.89 1.85± 0.86 3.34± 2.44 3.34± 1.84
7 6.63± 10.42 4.24± 2.32 8.80± 3.49 6.50± 3.19
8 0.96± 0.21 3.73± 0.77 5.00± 1.22 6.12± 3.37
9 4.56± 3.99 3.13± 0.88 6.12± 0.62 5.99± 3.29
10 0.85± 0.36 7.34± 1.51 7.30± 3.11 8.13± 3.94
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Table 4.21: DE-GL. Average orientation error when the robot is located in the real
map of Figure 4.23. Errors in mean ± standard deviation (◦).

Robot’s Pose L2 KL IS JS
1 0.84± 0.67 0.31± 0.25 0.34± 0.28 0.93± 0.39
2 0.80± 0.25 1.83± 0.47 1.37± 0.72 1.36± 0.42
3 1.41± 1.04 1.10± 0.29 0.98± 0.36 1.02± 0.27
4 0.82± 0.55 1.13± 0.65 0.87± 0.31 1.13± 1.12
5 1.40± 0.55 1.10± 0.90 1.26± 0.83 1.04± 0.51
6 1.69± 1.32 1.10± 0.69 1.46± 0.47 0.72± 0.42
7 1.06± 0.54 1.08± 0.47 1.00± 0.36 0.99± 0.18
8 0.35± 0.19 1.75± 1.57 1.09± 1.05 0.95± 1.27
9 0.95± 0.93 1.43± 1.06 1.64± 1.87 1.28± 1.13
10 0.40± 0.30 1.28± 1.14 1.09± 1.61 0.43± 0.28

The average orientation error is summarized in Table 4.21 showing the average
error of the three different Euler angles. As no singular behavior was denoted by any
specific algorithm or metric implemented and no remarkable differences are encoun-
tered between different angles α, β or γ, no further analysis is presented to simplify the
results. Equivalent results are shown by PSO and IWO. The orientation error is close
to zero for all positions and fluctuates in an optimum interval between [0.27-1.87]◦.

The systems’ response to the presence of sensor noise is also evaluated using
the same Gaussian model as in previous sections. An increasing level of noise is
considered, rising from 0-20% in the laser beam direction, modifying the local scan
PC. Position number 4 on the map of Figure 4.23 was selected to perform these tests
for all algorithms.

Figure 4.24 shows the results when the DE-GL implementation is utilized. The
position error is evaluated in the top chart. As expected, the average error increases in
an approximate linear behavior with the level of Gaussian noise. In terms of error, the
divergences’ behavior is similar. The error interval is between [0-16]cm. Regarding
orientation, on the middle chart, the same conclusion is extracted. The difference of
angular error between metrics for any given noise level is no more than 1-2◦. The
orientation error is the interval between [0-4]◦. Important conclusions are drawn as
the behavior of the different metrics diverges from occupancy grid representations.
The success rate of divergence-based evaluation functions is much more dependent
on sensor noise than the L2-norm, which maintains more than a 50% percentage of
success at high levels of noise (18%) while divergence-based functions fail at 12-14%.
JS divergence presents the worst performance regarding success rate, failing at an 8%
level and higher. Comparing these results with those in Figure 4.15, the performance
of the L2-norm maintains similar values compared to 3D occupancy grid maps. The
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Figure 4.24: DE-GL filter response to increasing sensor noise.

divergences, in contrast, depend on the spatial relation between individual laser beams
and this quality is not exploited in sparse scan-matching based approach.

The next implementation considered is PSO-GL. The results of the influence of
increasing senor noise are shown in Figure 4.25. The outcome of this experiment in
terms of positioning error is similar to the one obtained using DE-GL. The average
error increases linearly in a [0-18]cm. The same behavior is observed in the orientation
error but with a smaller maximum deviation of 2.8 ◦ from the actual orientation. In
both values, the response of the L2 norm presents a more constant result compared
with divergences, with a maximum error of 5cm and 1.9◦ for a 20% sensor noise.

From a qualitative point of view, the success rate presented by the L2 norm
outstands the rest of the metrics, and, as occurred with DE-GL, divergences success
rate falls under a 50% from a 12% noise level while L2 maintains an almost optimal
performance up to 17% noise, with a minimum ratio of 60%.

Finally, results when applying the IWO-GL filter are shown in Figure 4.26. The
same conclusions extracted for the PSO method could be applied in this case. The
position error on top of the figure shows a linear response on the interval from [0-
20]cm and an orientation error between [0-3.7]◦. The L2 again implies a lower error
in position and orientation in most noise intervals, although the difference with the
rest of the metrics is lower than in the case of PSO. The success rate shows the same
behavior. The L2-norm locates the robot 90% of the time with 17% noise, while the
rest of the divergences fail completely from a 14%.

These results show accurate location for all GL-filters considered, with better
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Figure 4.25: PSO-GL filter response to increasing sensor noise.

Figure 4.26: IWO-GL filter response to increasing sensor noise.
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Figure 4.27: DE-GL filter response to increasing uniform noise.

qualitative results using PSO and IWO. In a comparison with other researches it can
be concluded that our method shows similar translation and orientation errors as
ICP-based Scan Matching techniques, which is meritorious since these techniques use
a smaller search space. In [152], Gonzalez-Prieto et al. report an error between [0-
6]cm for a HS-based Scan Matching. Vision based techniques like [17] also fluctuate
in a 0-10cm accuracy. A similar size PC environment is considered in [153], a feature-
based ICP algorithm is proposed as the global/local pair matching. Results show and
average error around 12cm.

4.3.2 Occlusions: Uniform Noise

This section presents the experiments regarding the inclusion of environment noise,
representing small mobile obstacles or people. These unmodeled occlusions are con-
sidered small enough to model them as random contamination of measures between
25-75% of the actual measure. This was explained in sections 4.1 and 4.2, but as a
reminder, the response against the increase of a contamination level ϵ is evaluated.
This parameter represents the percentage of actual measures that are reduced to a
lower distance from the reference location. This reduction is performed through a ran-
dom number over the uniform distribution U(0.25zk, 0.75zk), where zk is the actual
distance of point k in the local PC.

Results of this effect when considering the DE-based GL filter are shown in Figure
4.27 including position error, orientation error, and success rate from top to bottom
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Figure 4.28: PSO-GL filter response to increasing uniform noise.

charts. The abscissa axis represents the percentage of points of the local scan affected
by this noise. In this case, all metrics present a similar behavior in terms of positioning
and orientation error. JS divergence presents a worse performance at low levels (5-
20%) while L2 provides the highest error at high levels (30-50%). The position error is
among the interval between [0-18]cm for the rest of the metrics. The orientation error
fluctuates between [1-4]◦. When considering the successful localization ratio, the L2
norm presents optimum values for almost the entire interval. KL and IS divergences
decrease to a 50% rate at 40% of contamination level while JS at a 25%.

Figure 4.28 introduces the results when applying PSO-based localization. This
method presents the best response in this situation with a constant optimum value
in position, orientation, and success rate for all fitness functions up to 30% of con-
taminated measurements. The error in that interval is below 5cm and 2◦ with more
than a 90% success in all cases. From 30-50% of occluded measurements, the L2-norm
shows a steady 100% localization rate while the divergences decrease to a 50% around
35-40%.

Finally, IWO-GL shows a similar reaction to uniformly distributed noise when
compared with DE. The response is almost optimal for all metrics until a 15% noise,
with low positioning (0-6cm) and orientation (0-3◦) errors. The success rate stays be-
tween 90-100% except when applying IS divergence, which shows a poor performance
at 10%. The evolution for higher contamination levels evolves differently depending
on the chosen function. JS and IS fall into a 50% of successful localizations with a
25% of contamination level, together with L2. KL maintains a good ratio until 35%.
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Figure 4.29: IWO-GL filter response to increasing uniform noise.

In terms of error, except for JS, all metrics show similar behavior.
Regarding the implementation of probability-based fitness functions for PC-based

environments, the results show that if this problem is approached as a Scan Matching
solution, probability profiles do not suppose a drastic improvement as in occupancy
maps. The difficulty in establishing a spatial relation for each point of the local laser
scan with a point in the global map prevents the weighted divergence-based fitness
function from exploiting its capabilities. A quadratic consideration addresses the
optimization problem in a more accurate manner.

4.3.3 Occlusions: Unmodeled Obstacles

This section presents the results for the implemented methods regarding GL before
the presence of unmodeled obstacles. These occlusions are simulated by reducing the
distance of a percentage of contiguous points of the local scan considered, forming
groups in various directions surrounding the laser sensor. Figure 4.30 illustrates this
concept. On the left side of the figure, an example of successful localization of the se-
lected position is shown. The red dots indicate the local point cloud. On the middle
and right part of the image, localization before the presence of unmodeled obsta-
cles is presented. Notice the grouping of red points surrounding the robot forming
unmodeled occlusions.

Figure 4.32 shows the results when applying DE-based GL. The position error
(top chart of the figure) increases proportionally with the number of points occluded
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Figure 4.30: Multiple obstacle occlusions. From left to right: 0%, 15% and 20%
points occluded.

by the obstacles. In this case, the L2-norm presents the best qualitative results, with
a 100% success rate regardless of the occlusions. In contrast, the positioning error
is higher compared with divergence-based functions, especially in the interval from
25-35% occlusions. Probability-based fitness functions are more affected in terms of
localization rate, but the resulting error is lower.

Figure 4.32: DE-GL response to multiple unmodeled occlusions.

Observing Figure 4.31, similar behavior can be concluded when the PSO algorithm
is applied. In this case, the difference between L2 and KL, IS, and JS is most notable.
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Figure 4.31: PSO-GL response to multiple unmodeled occlusions.

The positioning error is between 5-10 cm higher in regard to divergences. The success
rate is similar for all metrics, and no conclusions can be extracted. Using PSO, the
GL percentage remains over 75% for all the intervals of occlusions considered.

Figure 4.33: IWO-GL response to multiple unmodeled occlusion.
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The last test was performed using the IWO-based filter. In this case, translation
error remains in similar intervals as previous methods, within 0-18cm, except when the
L2-norm is applied to the fitness function. The positioning error using this metric
increases exponentially up to 35 cm. In contrast, a 100% success rate is obtained
when divergence-based functions start to fail with a percentage of occlusion of 25-
30% except for IS, which stays at the maximum level for all the tests performed.

4.3.4 Tracking

Figure 4.34: DE-GL tracking experiment. Red dots indicate the followed path.

The last experiment is conducted to test the tracking performance when the mobile
robot is following a path in the map of Figure 4.34. In this experiment, the last
part of the complete path shown in Figure 4.22 is performed as accuracy tests have
shown that the wide corridor on the right side of the map presented the greater
challenge in terms of GL. Red dots in Figure 4.34 indicate the considered trajectory
extracted from the SLAM results. In this test, a sensor noise of 2% and uniform noise
of 5% are introduced to emulate a possible real situation. The algorithm selected
for this task is the DE-GL implementation due to its convergence speed and the
simplicity of parameter tuning. After the first iteration, once the GL is performed,
the mutation factor F is reduced to 0.8 and the CR to 0.75. The initial population
considered is NPini = 160 while in tracking is reduced to NPini = 25. Better accuracy
results can be obtained if the population size is increased but with the consequent
rise of computational costs. The search space has been reduced into a volume of ±1
meter in directions x, y from the previously estimated position and ±0.5 in z. In
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Figure 4.35: Tracking results for the bot path in Figure 4.34. Top chart: translation
error. Bottom chart: computational time.

terms of rotation, the possible variation considered between consecutive positions is
(±5,±5,±90) for roll, pitch, and yaw, respectively.

The results of the experiment are shown in Figure 4.35, where positioning error
(cm) and computational time (seg) are displayed for each position. The localization
is successful all along the performed path, with a translation error between 0-5cm.
Computational time follows a stable curve around 20seg for every metric evaluated
except for the initial GL task, which takes 125 segs. In contrast with occupancy
grid representations, no distinctive behavior can be concluded between quadratic
and divergence-based approach. Regarding the positioning error, all fitness functions
perform in similar behavior. It could be worth mentioning that L2-norm presents the
most significant error in the initial GL but not as conclusive as occupancy models.

4.3.5 Population Requirements

A homologous study regarding population requirements and computational cost to
the one explained in section 4.2 is presented in this section. In this experiment,
all available known positions shown in Figure 4.22 were considered, increasing the
population number from 20 to 200 members. In the case of the IWO algorithm,
as explained in section 3.3.3, the population size increases in each iteration to a
maximum number. The maximum population is indicated in this experiment. The
objective is to empirically test the necessary population for each algorithm by testing
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Figure 4.36: DE-GL Population requirements.

the evolution of success rate and position error in all known locations, where ground
truth is obtained from the SLAM process.

Figures 4.36, 4.37 and 4.38 show the results in terms of position error, time to
convergence, and success rate depending on the population number for each algorithm
implemented, DE, PSO, and IWO respectively. Several interesting conclusions can
be drawn from this experiment. The initial objective was to empirically select an
optimum population number to perform the tests in the environment of Figure 4.22.
As a general reflection, applicable to the three different methods, it can be determined
that position error is not influenced by the population number. However, this is not
totally true. IWO requires a determined minimal maximum population NPmax to
be able to increase the size of the colony and perform a local search that optimizes
the error. But, from a very low population number considering the search volume,
the resulting average error for all possible positions in the map remains practically
invariant even if Np is increased. Comparing the average errors between algorithms,
IWO presents the best results with a minimum average error of 4.5cm with Np = 200,
in comparison with 5.7cm for PSO and 7.1 for DE. All metrics obtain similar errors
applied to the same algorithm.
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Figure 4.37: PSO-GL Population requirements.

In terms of computational cost, the increase in processing time is linear with
the size of the population evaluated. The bottleneck in terms of efficiency for these
implementations is the NN-search to establish each homologous point in the global
map for each point in the local scan of each candidate, as explained in section 3.2.2.
If a higher amount of candidates is evaluated, the computational cost is consequently
increased. Comparing the processing times for each algorithm, it is remarkable that
DE is 10 times faster than IWO. The parameter settings of the DEMetaheuristic allow
to perform an exploratory search by amplifying the mutation factor F , and conversion
is achieved in fewer iterations. In contrast, the possibility of premature convergence
augments. IWO is slower by definition when performing global searches, with multiple
local minimums like this case. For each plant, 2-6 new seeds are generated in this
implementation, increasing the number of evaluations while in DE and PSO, only Np

evaluations are performed in each iteration. This fact is reflected in the middle chart
of Figure 4.38, with almost 1200segs needed to converge when the colony size is set to
200 members. No metric shows any remarkable behavior in terms of computational
cost.

Finally, regarding the comparison between success rate and population number, it
can be concluded that the success rate follows an approximation to a sigmoid function
when the population is increased. From a certain number of members, the localization
rate does not improve. This can be noticed by observing the bottom charts of Figures
4.36, 4.37 and 4.38. Optimal population sizes for this map and each implementation
are extracted from this experiment. The population was set to 160 members for all
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Figure 4.38: IWO-GL Population requirements.

implementations, observing that from that point, the success rate did not improve
significantly to compensate for the computational cost.

The optimum population depends on numerous factors such as symmetries in the
environment, size of the search space, or the basin of attraction of the global optimum
for each position of the map; therefore, a more thorough study is necessary to extract
general conclusions that are applicable to different environments, augmenting the
flexibility of these methods.



Chapter 5

Conclusions and Future Works

This chapter describes the contributions and extracted conclusions from this disserta-
tion, describing the main achievements, solved and unsolved objectives, and presents
the future improvements and considered work.

In this thesis, various solutions have been studied, developed, implemented, and
tested to solve the Global Localization issue through evolutionary techniques, in con-
trast with probabilistic or sensor fusion approaches. Two types of maps have been
considered, covering the most common format of environment geometric representa-
tion: occupancy grid maps and Point Cloud representations. These algorithms were
selected among the population-based algorithms for the simplicity and low level of
specific parameters required to be tuned. The main objective of this work was to
solve the GL problem in large volume maps and different types of representations
with only laser-based information, a remarkable quality considering indoor and un-
derground spaces.

In addition, a novel approach for fitness function implementation for laser per-
ception comparison is the main contribution of this thesis. Probability-based cost
functions introduce an asymmetry into the evaluation, favoring a biased compari-
son on ”how” the scans differ, in contrast with symmetric L1 and L2 norms. These
probability-based functions enable a different perspective when comparing laser scans
by punishing or favoring different situations through a weighted comparison. The nec-
essary probability model of the laser sensor and the weighted comparison designed and
implemented as a fitness function were presented. This implementation has proven
to manage modeled and unmodeled types of perturbations in the perception phase
from the actual position.

The different Meta-heuristics have been tested in various situations. The accuracy
of the algorithms is enough to consider the Global Localization solved in both types
of environments and 2D and 3D spaces. The stochastic nature of the search can deal
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with the non-linearity and arbitrariness of the dynamics and the introduction of non-
Gaussian perturbations without the constraints of posterior density approximations.
Population-based Meta-heuristics have proven to cope with the expected quantity of
local minimums caused by the symmetries and non-singular positions in indoor maps.

A full 6DOF DE-based GL filter has been developed. This implementation is an
easy-to-tune tool for localization tasks. Its mutation and cross-over characteristics
encompass an inherent exploratory nature very suitable for large search domains.
Thresholding and discarding mechanisms are implemented to adjust premature con-
vergence to local minimums and computational costs. DE-GL filter was tested over
simulated and real 3D occupancy grid maps with an average error of around 5cm
obtained in a search space encompassing thousands of cubic meters. The orienta-
tion error is insignificant, and the successful localization rate is over 75% in most
cases. Several experiments have been conducted to test the DE-GL filter before
perception perturbations, including Gaussian noise, uniform noise, and unmodeled
obstacles. A comparison between divergence-based functions and L2-norm shows
outstanding results in favor of the probabilistic approach. The robustness of the
weighted divergence-based fitness function can deal with up to 60% occluded laser
measures.

Four different statistical distances have been implemented, KL, IS, DP and JS.
Further analysis of their behavior as a fitness function has been accomplished in this
work. We can conclude that no remarkable differences are found before the different
situations addressed in the experimental tests. To conclude, the outstanding over-
come of statistical distances compared with quadratic functions enforces the idea that
a probabilistic approach bears a significant advantage compared to symmetric func-
tions regardless of the divergences chosen. This approach can deal with higher levels
and different sources of unexpected information from the laser scan.

The bio-inspired optimization solutions have been extended to Point Cloud maps,
the current state-of-the-art 3D space representation technique. Sparse laser infor-
mation presents a more challenging issue as more information is obtained with an
increase in computational costs. In addition, no spatial relation can be ensured be-
tween the points that represent a global map and a local scan. Hence, this sparsity
is addressed by solving the optimization as a Scan Matching procedure. Two more
Meta-heuristics are presented based on PSO and IWO algorithms that present dif-
ferent qualities but the same simplicity regarding DE. These are population-based
algorithms that introduce a more local-focused search of the domain. Higher accu-
racy is expected if the convergence of the algorithm is achieved. The implementation,
the considered parameters, and its particularization for the GL task are presented and
tested. In a general conclusion, the GL issue has been solved for sparse metric maps
and all Meta-heuristic implementations. Differences can be observed that lead us to
select PSO-GL for the trade-off between precision and computational time. The local
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search nature of IWO provides high accuracy. However, the exponential increase in
population in each iteration leads to a high computational cost, the main drawback
of this implementation. The exploratory nature of DE leads to satisfactory results
but even reducing it close to converging still leads to a lower success rate. PSO shows
a more stable performance in terms of accuracy and localization rate. The parameter
adjustment to establish a trade-off between local and global search is more intuitive,
and accurate localization is obtained in fewer iterations when compared to IWO.

Regarding the implementation of probability-based fitness functions, the results
show that if this problem is approached as a Scan Matching solution, probability
profiles do not suppose a drastic improvement as in occupancy maps. The difficulty in
establishing a spatial relation for each point of the local laser scan with a point in the
global map prevents the weighted divergence-based fitness function from exploiting its
capabilities. Based on the experiments in Point Cloud environments, the probabilistic
approach still shows some advantages over the L2-norm in positioning accuracy before
unmodeled obstacles. However, in a general conclusion, the quadratic function is more
suitable in this type of representation if no spatial relation is achieved, showing a more
robust performance with a higher success rate.

The main drawback of these methods is the computational cost and initialization
parameters. The high amount of time elapsed is motivated by the large size of the
search space, with a significant population required, which leads to a high number
of evaluations to converge to an optimum solution. As shown in the experimental
tests, posterior tracking performance alleviates this situation. The search space and
the necessary population number can be significantly reduced, and accurate localiza-
tion can be obtained at reasonable times. However, stochastic algorithms are still
challenging to apply online. Population initialization and adjustment are important
factors in the computational efficiency of these methods. Empirical tests performed
prove that an increase in population does not necessarily improve the performance of
the different solutions.

The different objectives proposed in this thesis have been satisfactorily resolved.
Furthermore, the several tools developed in this work provide a benchmark for Li-
DAR only Global Localization using evolutionary optimization, providing a set of
algorithms and function implementations that can be easily scaled and flexible to
apply in other mapping examples for different indoor or outdoor environments.

5.1 Future Developments

Although the experimental section has validated the proposed methods, contributions
and developments clarify that there are still many pending works and still room for
improvement. In addition, this dissertation sets out several research areas for further
development:
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� An immediate consideration is to convert PC-based maps into occupancy grid
maps and explore the possibilities of a divergence-based approach for our map-
ping results.

� Experiments can be expanded to several other environments, including under-
ground and mining situations or outdoor localization, where external sources
of information can be very helpful in improving accuracy and computational
costs.

� Although several tests have been performed regarding the introduction of sim-
ulated non-modeled obstacles, GL using laser scan information, including real
obstacle perception, would be an interesting consideration to validate the meth-
ods. In addition, further study must be carried out to parameterize these sit-
uations, considering the many particular possibilities: distance to the obstacle,
orientation, and specific map features occluded.

� Further study is necessary regarding convergence conditions of the algorithms,
considering different factors depending on the cost function and characteristics
of the map.

� The improvement of population requirements analysis is needed.

� Development of an optimization method to select the different parameters that
control each Meta-heuristic.

� The main drawback of the implemented methods is their computational cost.
Although GL is a particular task that does not need to be performed recur-
sively and can be relaxed by tracking, this factor must be reduced for real-time
applications. Considering parallel computing would be an interesting starting
point.

� Inclusion of geometric feature detection of singular points in the global map.
This could lead to increase accuracy by implementing a multi-objective cost
function or reducing the amount of information processed.

� Application of the probabilistic fitness function approach to dynamically chal-
lenging SLAM situations. The robustness before unexpected perceptions proven
in the experiments could be utilized to address dynamically changing or noisy
environment mapping.

� Implementation of other stochastic optimization possibilities among the many
existing. An ambitious consideration is to design a specific algorithm for lo-
calization and mapping tasks that can improve the results of the methods pre-
sented.
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