90 research outputs found

    Automated Synthesis of Quantum Subcircuits

    Full text link
    The quantum computer has become contemporary reality, with the first two-qubit machine of mere decades ago transforming into cloud-accessible devices with tens, hundreds, or--in a few cases--even thousands of qubits. While such hardware is noisy and still relatively small, the increasing number of operable qubits raises another challenge: how to develop the now-sizeable quantum circuits executable on these machines. Preparing circuits manually for specifications of any meaningful size is at best tedious and at worst impossible, creating a need for automation. This article describes an automated quantum-software toolkit for synthesis, compilation, and optimization, which transforms classically-specified, irreversible functions to both technology-independent and technology-dependent quantum circuits. We also describe and analyze the toolkit's application to three situations--quantum read-only memories, quantum random number generators, and quantum oracles--and illustrate the toolkit's start-to-finish features from the input of classical functions to the output of quantum circuits ready-to-run on commercial hardware. Furthermore, we illustrate how the toolkit enables research beyond circuit synthesis, including comparison of synthesis and optimization methods and deeper understanding of even well-studied quantum algorithms. As quantum hardware continues to develop, such quantum circuit toolkits will play a critical role in realizing its potential.Comment: 49 pages, 25 figures, 20 table

    Logic Synthesis for Established and Emerging Computing

    Get PDF
    Logic synthesis is an enabling technology to realize integrated computing systems, and it entails solving computationally intractable problems through a plurality of heuristic techniques. A recent push toward further formalization of synthesis problems has shown to be very useful toward both attempting to solve some logic problems exactly--which is computationally possible for instances of limited size today--as well as creating new and more powerful heuristics based on problem decomposition. Moreover, technological advances including nanodevices, optical computing, and quantum and quantum cellular computing require new and specific synthesis flows to assess feasibility and scalability. This review highlights recent progress in logic synthesis and optimization, describing models, data structures, and algorithms, with specific emphasis on both design quality and emerging technologies. Example applications and results of novel techniques to established and emerging technologies are reported

    Scalable Design and Synthesis of Reversible Circuits

    Get PDF
    The expectations on circuits are rising with their number of applications, and technologies alternative to CMOS are becoming more important day by day. A promising alternative is reversible computation, a computing paradigm with applications in quantum computation, adiabatic circuits, program inversion, etc. An elaborated design flow is not available to reversible circuit design yet. In this work, two directions are considered: Exploiting the conventional design flow and developing a new flow according to the properties of reversible circuits. Which direction should be taken is not obvious, so we discuss the possible assets and drawbacks of taking either direction. We present ideas which can be exploited and outline open challenges which still have to be addressed. Preliminary results obtained by initial implementations illustrate the way to go. By this we present and discuss two promising and complementary directions for the scalable design and synthesis of reversible circuits

    Programming Languages and Systems

    Get PDF
    This open access book constitutes the proceedings of the 29th European Symposium on Programming, ESOP 2020, which was planned to take place in Dublin, Ireland, in April 2020, as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2020. The actual ETAPS 2020 meeting was postponed due to the Corona pandemic. The papers deal with fundamental issues in the specification, design, analysis, and implementation of programming languages and systems

    SoK: Computer-Aided Cryptography

    Get PDF
    Computer-aided cryptography is an active area of research that develops and applies formal, machine-checkable approaches to the design, analysis, and implementation of cryptography. We present a cross-cutting systematization of the computer-aided cryptography literature, focusing on three main areas: (i) design-level security (both symbolic security and computational security), (ii) functional correctness and efficiency,and (iii) implementation-level security (with a focus on digital side-channel resistance). In each area, we first clarify the role of computer-aided cryptography—how it can help and what the caveats are—in addressing current challenges. We next present a taxonomy of state-of-the-art tools, comparing their accuracy,scope, trustworthiness, and usability. Then, we highlight their main achievements, trade-offs, and research challenges. After covering the three main areas, we present two case studies. First, we study efforts in combining tools focused on different areas to consolidate the guarantees they can provide. Second, we distill the lessons learned from the computer-aided cryptography community’s involvement in the TLS 1.3 standardization effort.Finally, we conclude with recommendations to paper authors,tool developers, and standardization bodies moving forward

    Programming Languages and Systems

    Get PDF
    This open access book constitutes the proceedings of the 30th European Symposium on Programming, ESOP 2021, which was held during March 27 until April 1, 2021, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2021. The conference was planned to take place in Luxembourg and changed to an online format due to the COVID-19 pandemic. The 24 papers included in this volume were carefully reviewed and selected from 79 submissions. They deal with fundamental issues in the specification, design, analysis, and implementation of programming languages and systems

    Methods for parallel quantum circuit synthesis, fault-tolerant quantum RAM, and quantum state tomography

    Get PDF
    The pace of innovation in quantum information science has recently exploded due to the hope that a quantum computer will be able to solve a multitude of problems that are intractable using classical hardware. Current quantum devices are in what has been termed the ``noisy intermediate-scale quantum'', or NISQ stage. Quantum hardware available today with 50-100 physical qubits may be among the first to demonstrate a quantum advantage. However, there are many challenges to overcome, such as dealing with noise, lowering error rates, improving coherence times, and scalability. We are at a time in the field where minimization of resources is critical so that we can run our algorithms sooner rather than later. Running quantum algorithms ``at scale'' incurs a massive amount of resources, from the number of qubits required to the circuit depth. A large amount of this is due to the need to implement operations fault-tolerantly using error-correcting codes. For one, to run an algorithm we must be able to efficiently read in and output data. Fault-tolerantly implementing quantum memories may become an input bottleneck for quantum algorithms, including many which would otherwise yield massive improvements in algorithm complexity. We will also need efficient methods for tomography to characterize and verify our processes and outputs. Researchers will require tools to automate the design of large quantum algorithms, to compile, optimize, and verify their circuits, and to do so in a way that minimizes operations that are expensive in a fault-tolerant setting. Finally, we will also need overarching frameworks to characterize the resource requirements themselves. Such tools must be easily adaptable to new developments in the field, and allow users to explore tradeoffs between their parameters of interest. This thesis contains three contributions to this effort: improving circuit synthesis using large-scale parallelization; designing circuits for quantum random-access memories and analyzing various time/space tradeoffs; using the mathematical structure of discrete phase space to select subsets of tomographic measurements. For each topic the theoretical work is supplemented by a software package intended to allow others researchers to easily verify, use, and expand upon the techniques herein
    • …
    corecore