
Scalable Design and Synthesis
of Reversible Circuits

Eleonora Schönborn

A dissertation submitted for the degree of

Doktor der Ingenieurwissenschaften

– Dr.-Ing. –

In the FB3 – Mathematik und Informatik

Universität Bremen

Primary supervisor: Prof. Dr. Rolf Drechsler
Secondary supervisor: Prof. Dr. Gerhard Dueck

Date of the doctoral colloquium: September 21, 2016

Acknowledgements

First and foremost I want to thank my supervisor Prof. Dr. Rolf Drechsler for giving
me the opportunity to research this topic, for always supporting my ideas, and giving
me the right amounts of guidance and freedom in my work. He saw my potential before
I did, and I greatly value the trust he put in me.

I am deeply grateful to Prof. Dr. Robert Wille, who greatly inspired me with his
enthusiasm. Without his expert knowledge on reversible logic, all our fruitful discussions,
and his support and encouragement, I could never have written this thesis.

My heartfelt appreciation goes to Dr. Mathias Soeken, who despite his high workload
always found time for me. His expert knowledge, valuable feedback, and constant sup-
port were an essential contribution to this dissertation. In particular, he showed a lot of
patience in mediating between RevKit and my computer.

Especially, I want to thank Professor Gerhard Dueck for his willingness to review my
thesis.

Another aspect that greatly added to this dissertation is the welcoming and productive
working environment I found in the Group of Computer Architecture at the University
of Bremen. I would like to thank everyone in this group, and in the Graduate School
System Design (SyDe), for their contribution. Particularly helpful for my work has been
the input from Dr. Michael Kirkedal Thomsen and Nils Przigoda.

For being outstandingly helpful, supportive, and awesome, I would like to thank Dr.
Julia Seiter, Dr. Melanie Diepenbeck, and Jannis Stoppe.

My special thanks go to Dr. Kamalika Datta, Professor Indranil Sengupta, and Pro-
fessor Hafizur Rahaman for the productive cooperation and great experiences.

Last but not least, I want to thank my family and my friends for everything, especially
their support during the recent years.

Contents

1. Introduction 1

2. Reversible Logic 7
2.1. Reversible Functions . 7
2.2. Reversible Circuits . 8

I. Exploiting the Conventional Design Flow 11

3. Using Conventional Data Structures 13
3.1. DD-based Synthesis . 14
3.2. Explicit Consideration of Negative Control Lines During Synthesis 17
3.3. Post-Synthesis Optimization . 18
3.4. Experimental Evaluation . 20
3.5. Conclusion . 22

4. Mapping Conventional Circuits 23
4.1. Mapping at the Gate Level . 23
4.2. Mapping at the Register Transfer Level 23
4.3. Discussion . 25
4.4. Preliminary Evaluation . 25
4.5. Conclusion . 26

II. Developing a Specific Design Flow 27

5. The SyReC Language 29
5.1. General Concepts . 29

5.1.1. Only Reversible Assignments . 29
5.1.2. Syntactical Expressiveness . 29
5.1.3. Reversible Control Flow . 30
5.1.4. Specific Hardware Description Properties 30

5.2. Module and Signal Declarations . 31
5.3. Statements . 33

5.3.1. Call and Uncall of Modules . 33
5.3.2. Loops . 33
5.3.3. Conditional Statements . 34
5.3.4. Assignment Statements . 35

v

Contents

5.4. Expressions . 36
5.5. Conclusion . 37

6. SyReC Synthesis 39
6.1. General Concept . 39
6.2. Synthesis of Assignment Statements . 39

6.2.1. Swap Statements . 40
6.2.2. Unary Statements . 40
6.2.3. Reversible Assignments . 40
6.2.4. Evaluation of Signals . 41

6.3. Synthesis of Expressions . 42
6.4. Synthesis of the Control Logic . 43

6.4.1. Loops and Calls . 43
6.4.2. Conditional Statements . 43

6.5. Conclusion . 45

7. SyReC Building Blocks 47
7.1. Unary Statements . 47

7.1.1. Bitwise Negation . 47
7.1.2. Increment and Decrement . 47

7.2. Reversible Assignments . 48
7.2.1. XOR Assignment . 49
7.2.2. Increase and Decrease . 49

7.3. Expression Operations . 50
7.3.1. Logical and Bitwise Operations . 51
7.3.2. Arithmetic Operations . 53
7.3.3. Shifting Operations . 58
7.3.4. Relational Operations . 59

7.4. Conclusion . 61

8. Optimization of SyReC Synthesis 63
8.1. Line-aware Synthesis . 63

8.1.1. General Concept . 63
8.1.2. Resulting Synthesis Scheme . 64
8.1.3. Discussion . 66

8.2. Cost-aware Synthesis of SyReC Specifications 68
8.3. Evaluation of the Resulting Circuits . 69

8.3.1. Comparison to Previous Work . 70
8.3.2. Effect of Line- and Cost-aware Synthesis 71

8.4. Conclusion . 73

vi

Contents

III. Applications 75

9. Designing a RISC CPU in Reversible Logic 77
9.1. Specification of the CPU . 77
9.2. Implementation of the CPU . 79

9.2.1. Overview . 79
9.2.2. Combinational Components . 81
9.2.3. Sequential Components . 81
9.2.4. Characteristics of the Resulting Circuit 83

9.3. Executing Programs on the CPU . 83
9.4. Conclusion . 84

10.Visualization of Structures and Properties of Reversible Circuits 87
10.1. The RevVis Tool . 89
10.2. Applying RevVis . 91

10.2.1. Considering Circuits Obtained by BDD-based Synthesis 91
10.2.2. Considering Circuits Obtained by ESOP-based Synthesis 93
10.2.3. Considering Circuits Obtained by HDL-based Synthesis 95

10.3. Conclusion . 97

11.Conclusion 101

Bibliography 103

vii

List of Figures

2.1. Example of a Reversible Circuit . 9

3.1. Reversible Cascades Representing the Different DD Decompositions . . . 15
3.2. Illustration of BDD-based Synthesis . 16
3.3. Reversible Cascades (with Negative Control Lines) Representing the Dif-

ferent DD Decompositions . 18
3.4. Optimization Rules (Taken from [DRW+13]) 20

4.1. Mapping a Conv. Circuit to a Rev. Circuit at the Gate Level 23
4.2. Mapping a Conv. Circuit to a Rev. Circuit at the Register Transfer Level 24

5.1. Syntax of the Hardware Description Language SyReC 31
5.2. Module Declarations in SyReC . 32
5.3. Calling a Module Identified by adder1 in SyReC 33
5.4. Loops in SyReC . 34
5.5. Conditional Statements in SyReC . 34
5.6. Assignment, Unary, and Swap Statements in SyReC 35
5.7. Application of Expressions in SyReC . 37

6.1. Synthesis of Assignment Statements . 40
6.2. Synthesizing a[i] ^= b . 41
6.3. Synthesis of Expressions . 42
6.4. Synthesis of Conditional Statements . 44
6.5. Circuit Structure Generated by SyReC Synthesis 45

7.1. Building Blocks for Unary Statements . 48
7.2. Building Block for a ^= b . 49
7.3. Building Block for a += b . 49
7.4. Building Block for a -= b . 50
7.5. Building Blocks for Logical and Bitwise Negation 51
7.6. Building Blocks for Logical and Bitwise Conjunction 52
7.7. Building Blocks for Logical and Bitwise Disjunction 52
7.8. Building Block for a ^ b . 53
7.9. Building Blocks for Addition and Subtraction 54
7.10. Building Block for a * b . 55
7.11. Building Block for a *> b . 56
7.12. Building Block for a += b with Carry Out 56
7.13. Building Blocks for Division and Modulo 57

ix

List of Figures

7.14. Building Blocks for Shifting Left and Right 59
7.15. Building Blocks for Equals and Not Equals 60
7.16. Building Blocks for Less/Greater and Less/Greater or Equal 61

8.1. Scheme for Line Reduction in SyReC Synthesis 64
8.2. Synthesizing c ^= (a+b) . 65
8.3. Synthesizing Conditional Statements . 66
8.4. Effect of Expression Size on Resulting Circuit 67
8.5. Scheme for Cost Reduction in SyReC Synthesis 69

9.1. Instruction Word Representing an ADD Instruction 79
9.2. Schematic Diagram of the CPU Implementation 79
9.3. Implementation of the Program Counter (Scaled down to a Bit Width of 2) 82
9.4. Assembler Program for Fibonacci Number Computation 83
9.5. Waveform Illustrating the Execution of the Program Given in Figure 9.4 . 84

10.1. Existing Netlist Visualization of Reversible Circuits 87
10.2. Visualization Technologies in Other Domains 88
10.3. Different Visualizations in RevVis . 90
10.4. BDD-based Synthesis . 92
10.5. Visualizing a Circuit Obtained by BDD-based Synthesis 93
10.6. ESOP-based Synthesis . 94
10.7. Visualizing a Circuit Obtained by ESOP-based Synthesis 95
10.8. HDL-based Synthesis . 96
10.9. Visualizing a Circuit Obtained by HDL-based Synthesis 98
10.10.Visualizing a Circuit Obtained by Improved HDL-based Synthesis 99

x

List of Tables

2.1. Embedding the Conjunction . 8
2.2. Cost Metrics for Toffoli and Fredkin Gates 10

3.1. Gate Count and Quantum Cost for all DD Decompositions 19
3.2. Experimental Results for DD-based Synthesis Optimization 21

4.1. First Results for RTL to Rev. Circuit vs. Rev. Code to Rev. Circuit . . . 26

5.1. SyReC’s Signal Access Modifiers and Implied Circuit Properties 32
5.2. Semantics of Assignment Statements in SyReC 35
5.3. Semantics of Expressions in SyReC . 36

8.1. Comparison of SyReC Synthesis to BDD-based Synthesis 70
8.2. Effect of Line- and Cost-aware SyReC Synthesis 72
8.3. Average Values of the Respective Metrics for all Schemes 73

9.1. Assembler Instructions for the CPU . 78

xi

1. Introduction

Computational components are being embedded in more and more objects of our every-
day lives. In smartphones, cars, medical equipment, etc. these components are linked
closely to their physical environment using sensors and actors. Connected via networks
they form cyber-physical systems. The expectations on these integrated circuits are ris-
ing with their number of applications. Especially low energy consumption has become a
crucial design goal. While established power management techniques are reaching their
limits, technologies alternative to CMOS are becoming more important day by day.

Many alternative technologies and applications currently investigated are based on
reversible computation, a computing paradigm which only allows reversible operations.
Examples include applications in the domain of

• Encoding and Decoding Devices, which always realize one-to-one mappings and,
thus, inherently follow a reversible computing paradigm (see e.g. [WDOGO12]),

• Quantum Computation, which enables to solve many relevant problems signifi-
cantly faster than conventional circuits and inherently is reversible (see e.g. [NC00]),

• Low Power Computation, where the fact that no information is lost in reversible
computation may be exploited in the future (see e.g. [Lan61, BAP+12]),

• Adiabatic Circuits, a special low power technology that reversible circuits are par-
ticularly suited for (see e.g. [PF96]), and

• Program Inversion (see e.g. [GK05]), as programs based on a reversible computa-
tion paradigm would allow an inherent and obvious program inversion.

While some of these applications are still in a prototypical stage, impressive improve-
ments have been made in the recent years, e.g. more scalable quantum circuits [VSB+01]
or an experimental validation of the low power properties of reversible computation
[BAP+12]. In contrast, the development of proper design methods for this kind of cir-
cuits seems to still be in its infancy.

For conventional circuits, an elaborated design flow emerged over the last 20-30 years.
A hierarchical flow composed of several abstraction levels (e.g. the formal specification
level, the electronic system level, the register transfer level, and the gate level) and
supported by a wide range of modeling languages, system description languages, and
hardware description languages (HDLs) has been developed and is in industrial use.
While mainly relying on this conventional way of computation, elaborated design flows
for alternative computing paradigms seem to remain in the distant future.

1

1. Introduction

Since reversible computation only allows reversible, i.e. bijective, operations, each
gate in a reversible circuit represents a bijection. Conventional gate libraries can not be
applied here, and new libraries of reversible gates have been introduced. Furthermore,
fanout and feedback are generally not allowed in reversible circuits. As a consequence,
design methods can not simply be transferred from conventional circuit design, but have
to be adapted or developed from scratch.

Essential features and approaches of modern design flows are not available to reversible
circuit design yet. Most existing approaches work on the gate level, i.e. almost no support
for reversible circuits and systems on the specification level, the electronic system level,
or the register transfer level exists yet. Moreover, most of the existing approaches for
synthesis only accept specifications provided in terms of Boolean function descriptions
like truth tables or Boolean decision diagrams (see e.g. [SM11]). Only very preliminary
hardware description languages are available thus far [WOD10, Tho12]. Hence, after
more than a decade of research in the design of reversible circuits, there is hardly an
answer for how to scale the design capabilities for reversible circuits.

In this thesis, we investigate scalable approaches to the design and synthesis of re-
versible circuits. Two complementary directions are discussed, namely (1) designing
reversible circuits by exploiting the conventional design flow first, and afterwards map-
ping the result to a reversible circuit, and (2) applying an entirely new design flow to be
developed, which considers reversibility right from the beginning through all abstraction
levels.

Exploiting the Conventional Design Flow

The design flow for conventional circuits has been continually improved over decades
and offers many powerful design tools and algorithms. Here, we consider using these
methods for the design of reversible circuits. To be precise, the first steps of the design
process follow the conventional design flow. The resulting conventional design will then
automatically be mapped to a reversible circuit description.

When following this direction, the most important questions are:

• At which abstraction level should the conventional design be mapped to a reversible
circuit description?

• How can the mapping be done efficiently with regards to runtime as well as the
resulting circuit design?

Mapping at a low abstraction level like the gate level can be realized straightforwardly.
Each conventional gate is substituted by a template of reversible gates realizing the same
function or, in the case of irreversible functions, embedding the function in a bijection
using additional circuit lines. However, since each gate is mapped individually without
regarding global information, the resulting circuits are usually far from optimal.

In Chapter 4 we consider an approach mapping from the register transfer level instead.
The mapping scheme is similar to the one described for the gate level, but instead of single
gates, complete modules have to be substituted. For this purpose, past accomplishments

2

in the design of reversible building blocks for various data flow operations like adders,
multipliers, etc. can be exploited. This way, circuit lines and/or gate cost can be saved
compared to the gate level mapping.

Mapping from a higher level of abstraction, like the HDL description, would enable
the use of even more global information and thus further reductions in the resulting
circuits. However, this would require a complex mapping scheme yet to be developed.

Developing a Specific Design Flow

The second direction aims for the development of an entirely new design flow which
considers reversibility from the specification and through all following abstraction levels.
Special characteristics of reversible functions could be exploited this way. Theoretically,
there would be no need for embedding. On the downside, the whole design flow has to
be redeveloped.

For the specification of large and/or complex reversible systems, HDLs supporting
the characteristics of reversible logic have to be developed. Thus far, only preliminary
versions of such HDLs are available (e.g. [WOD10, Tho12]).

However, it is already possible to synthesize a reversible circuit directly from the
HDL description, e.g. with an algorithm we review in Chapter 6. Here, a statement
like c^=a*b is realized by cascading building blocks for the operations (multiplication
and XOR-assignment). Since non-reversible parts of the overall reversible statement are
synthesized separately, additional circuit lines are required for embedding. Hence, this
synthesis scheme suffers from similar problems as the mapping methods discussed in
Chapter 4. But in contrast, the initial reversible description allows for un-computing
temporary results and thus for saving some of the additional lines, as we show in Chap-
ter 8.

There are some grave differences between these reversible HDLs and the conventional
ones. For example, direct assignments such as a=b are not allowed because of their
irreversibility. Despite these differences, those languages enable the design of complex
systems in reversible logic as we show in Chapter 9.

These conceptual differences also exist between reversible and conventional circuits.
While circuit designers have gained an intuitive knowledge about conventional circuits
and their properties, such an intuition has yet to be acquired in the reversible domain.
To this end, we developed RevVis, the first tool for visualizing structures and properties
of reversible circuits, as introduced in Chapter 10. This visualization might inspire new
ideas regarding synthesis, optimization, or debugging.

To efficiently design reversible logic, we need to investigate high abstraction levels like
HDL. In this work, two directions are considered: Exploiting the conventional design
flow and developing a new flow according to the properties of reversible circuits. Which
direction should be taken is not obvious and may depend on the application. Thus, we
discuss the possible assets and drawbacks of taking either direction. We present ideas
which can be exploited and outline open challenges which still have to be addressed.
Preliminary results obtained by initial implementations illustrate the way to go. By

3

1. Introduction

this we present and discuss two promising and complementary directions for the scalable
design and synthesis of reversible circuits.

The thesis is structured as follows.

Chapter 2 – Reversible Logic

To keep this document self-contained, preliminaries are provided in this chapter.
These include the basics of reversible circuits and the cost metrics used in this
work.

Chapter 3 – Using Conventional Data Structures

An algorithm is reviewed which is based on decision diagrams, a data structure
used to represent conventional circuits, and maps them to reversible circuits. We
propose and compare two different optimizations for this synthesis algorithm. Both
are employing negative control lines to reduce the gate count and gate cost.

Chapter 4 – Mapping Conventional Circuits

In this chapter, we discuss the direct mapping of conventional to reversible circuits.
A mapping from the register transfer level is developed to provide more scalability
and efficiency compared to a gate level mapping. This approach is compared to
the synthesis of reversible circuits from reversible specifications as described in
Chapter 6.

Chapter 5 – The SyReC Language

SyReC (first introduced in [WOD10]) is the reversible HDL we chose to use in
developing a specific design flow for reversible circuits. This chapter introduces
the general concepts, syntax and semantics of the language in its recent form.

Chapter 6 – SyReC Synthesis

Here, the synthesis algorithm is reviewed which maps a SyReC specification to a
reversible circuit.

Chapter 7 – SyReC Building Blocks

A building block in SyReC determines how an operation (e.g. assignment, addi-
tion) is mapped to reversible gates. This chapter is the first document to explain
each of these mappings in detail. Some of the building blocks have been improved
in the process of this work, yet minimality is not guaranteed.

Chapter 8 – Optimization of SyReC Synthesis

We propose an extended synthesis scheme for SyReC specifications to reduce the
number of resulting circuit signals. While the number of signals can be strikingly
decreased, this optimization comes at the cost of additional gates, resulting in
a trade-off the designer should decide on. Additionally, we employ an existing
method to reduce the gate cost, and evaluate the separate and combined effects of
both optimizations.

4

Chapter 9 – Designing a RISC CPU in Reversible Logic

In this chapter, the applicability of a reversible design flow is tested. Given a
textual specification of a conventional RISC CPU, we identify the components and
design the computational parts of the CPU in reversible logic, using the SyReC
language. The functionality is tested by simulating the execution of a software
program on the proposed CPU.

Chapter 10 – Visualization of Structures and Properties of Reversible Circuits

Reversible circuits are usually visualized by simple netlist representations. We
propose the first visualization to highlight structures and properties of reversible
circuits, which is especially useful for large circuits. With this, an intuition for this
kind of circuits might be acquired and help to develop and improve design, synthe-
sis, verification, testing methods etc. We compare the structures and properties of
circuits generated with different synthesis approaches.

Chapter 11 – Conclusion

In the final chapter, the contents of this work are summarized.

The main ideas in this thesis have already been or will be published in the following
articles.

• General Idea, Chapter 4:

E. Schönborn, R.Wille, and R. Drechsler. Quo Vadis, Reversible Circuit De-
sign? Towards Scaling Design and Synthesis of Reversible Circuits. In Reed-Muller
Workshop, 2015.

• Chapter 3:

E. Schönborn, K. Datta, R. Wille, I. Sengupta, H. Rahaman, and R. Drechsler. Op-
timizing DD-based Synthesis of Reversible Circuits using Negative Control Lines.
In IEEE Int’l Symposium on Design and Diagnostics of Electronic Circuits & Sys-
tems, pages 129–134, 2014.

• Chapter 5,6:

R. Wille, E. Schönborn, M. Soeken, and R. Drechsler. SyReC: A Hardware De-
scription Language for the Specification and Synthesis of Reversible Circuits. In-
tegration, the VLSI Journal. In press.

• Chapter 8:

R. Wille, M. Soeken, E. Schönborn, and R. Drechsler. Circuit Line Minimization
in the HDL-Based Synthesis of Reversible Logic. In IEEE Annual Symposium on
VLSI, pages 213–218, 2012.

5

1. Introduction

• Chapter 9:

R. Wille, M. Soeken, D. Große, E. Schönborn, and R. Drechsler. Designing a
RISC CPU in Reversible Logic. In Int’l Symposium on Multi-Valued Logic, pages
170–175, 2011.

• Chapter 10:

R. Wille, J. Stoppe, E. Schönborn, K. Datta, and R. Drechsler. RevVis: Visual-
ization of Structures and Properties in Reversible Circuits. In Reversible Logic,
pages 111–124, 2014.

6

2. Reversible Logic

To keep the thesis self-contained, the preliminaries are given in this chapter. Note that
only brief introductions of the concepts and notations are given. For further reading,
please consult the references given in the corresponding sections.

This chapter is divided into two parts. First, the definition of reversible functions is
given, and the concept of embedding is introduced. Next, reversible circuits as used in
this work are defined, and the metrics for measuring their cost are given.

2.1. Reversible Functions

A propositional or Boolean function f : Bn → B
n over the variables X = {x1, . . . , xn}

is called reversible if it is bijective. Clearly, many Boolean functions of practical interest
are not reversible. These include bitwise conjunction, disjunction, binary addition, and
multiplication of two bit strings. In order to realize such functionality in a reversible
circuit, the corresponding functions are embedded [MD04a, WKD11].

To embed a non-reversible function f , a reversible function f ′ is constructed, so that f ′

contains the function f . This is achieved by adding so-called garbage outputs to f which
are used to distinguish equal output patterns, thus making the function injective. If
necessary, constant inputs are added to equalize the number of input variables and output
variables of the function, thus making it bijective. These inputs are called constant as f ′

is only defined to behave like f if a certain value (i.e. 0 or 1) is constantly present at
those inputs.

Example 1 Table 2.1a shows the truth table for the conjunction. The value of f is 1,
iff both x1 and x2 are 1. It is easy to see that this function is not reversible: If f has
the value 0, the value of the inputs can not be concluded.

In Table 2.1b, garbage outputs were added to differentiate the identical output patterns
of f . Since f has the same output for three different input patterns, two garbage outputs
need to be added to distinguish all cases. To make the function bijective, the number of
inputs and outputs has to be identical, so a constant input is added.

Table 2.1c shows a reversible function embedding the conjunction. The original func-
tion f is highlighted in grey. The values outside the scope of f can be chosen freely, as
long as the whole truth table represents a bijection.

7

2. Reversible Logic

Table 2.1.: Embedding the Conjunction

(a) Conjunction

x1 x2 f

0 0 0
0 1 0
1 0 0
1 1 1

(b) Irreversible Function

x1 x2 f g1 g2
0 0 0 0 0
0 1 0 0 1
1 0 0 1 0
1 1 1 0 0

(c) Reversible Function

0 x1 x2 f ′ g1 g2
0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 1 0 0
1 0 0 0 1 1
1 0 1 1 0 1
1 1 0 1 1 0
1 1 1 1 1 1

2.2. Reversible Circuits

Reversible functions can be realized by reversible circuits in which each variable of the
function is represented by a circuit line. To maintain the bijectivity property of the re-
versible function, fan-out and feedback are not directly allowed in reversible circuits. As a
consequence, reversible circuits can be built as a cascade of reversible gates G = g1 . . . gd.
There exist different gate libraries that are being used to build reversible circuits. How-
ever, in the scope of this work we restrict ourselves to the most commonly used ones
containing the Toffoli gate [Tof80] and the Fredkin gate [FT82]. For this purpose each
gate gi in the circuit is denoted by t(C, T) with

• a gate type t ∈ {T,F},

• control lines C ⊂ X, and

• target lines T ⊆ X \ C.

Each gate gi realizes a reversible function fi : B
n → B

n. If t = T, i.e. the gate is a
Toffoli gate, we have T = {xt} and fi maps

(x1, . . . , xn) �→ (x1, . . . , xt−1, xt ⊕
∧
c∈C

c, xt+1, . . . , xn),

i.e. the value on line xt is inverted if and only if all control values are assigned 1. A Toffoli
gate is called a NOT gate if |C| = 0. For a Fredkin gate, i.e. t = F, we have T = {xs, xt}
and fi maps

(x1, . . . , xn) �→
(x1, . . . , xs−1, x

′
s, xs+1, . . . , xt−1, x

′
t, xt+1, . . . , xn),

with x′s = c̄′xs ⊕ c′xt, x
′
t = c̄′xt ⊕ c′xs, and c′ =

∧
c∈C c, i.e. the values of the target lines

are interchanged (swapped) if and only if all control values are assigned 1. A Fredkin
gate is also referred to as SWAP gate if |C| = 0. The function realized by the circuit is
the composition of the functions realized by the gates, i.e. f = f1 ◦ f2 ◦ · · · ◦ fd.

8

2.2. Reversible Circuits

a = 1 a′ = 0

b = 1 b′ = 1

c = 1 c′ = 10

1

1

0

1

0

0

1

0

Figure 2.1.: Example of a Reversible Circuit

Example 2 Fig. 2.1 shows a reversible circuit with three lines and four gates. The first,
second, and fourth gates are Toffoli gates with a different number of control lines. The
target line is denoted by ⊕ whereas the control lines are denoted as solid black dots. The
third gate is a Fredkin gate which target lines are denoted by ×.

In Chapter 3 and 10, we additionally consider Toffoli and Fredkin gates with negative
control lines. A gate can have both positive and negative control lines. In this case, the
respective functionality is applied to the target line(s) if and only if all values on positive
controls are assigned 1 and all values on negative controls are assigned 0. Negative control
lines are depicted as an empty dot.

In addition to the constant inputs and garbage outputs that are added to a function
in the process of embedding, for circuits we are also considering so-called ancilla lines.
Ancilla lines hold a constant input assigned some Boolean value v and are used in such
a way that their output is always v. Moreover, when considering circuits that realize
a complex functionality some lines may be semantically grouped as a signal, e.g. if the
circuit realizes the addition of two 32-bit values.

In order to measure the costs of a circuit, different metrics are being applied. Besides
the number of gates, so-called quantum costs and transistor costs approximate a better
cost considering the actual physical implementation based on quantum mechanics and
classical mechanics, respectively. Most of the cost metrics are applied to the gates and
are accumulated in order to calculate the costs for the overall circuit.

In this work, we are using the quantum cost metrics presented in [BBC+95] with the
optimizations from [MD04b] and [MYMD05]. Table 2.2 shows the quantum cost for a
selection of Toffoli and Fredkin gates. Free lines refer to lines that are present in the
circuit, but not connected to the respective gate, i.e. neither control nor target lines.
As can be seen, the quantum cost of a gate can grow exponentially with respect to the
number of control lines.

The transistor cost TC estimate the effort needed to realize a reversible gate in CMOS
according to [DV02]. A reversible gate with s control lines has a transistor cost of 8 · s,
which is shown for the various examples in Table 2.2.

9

2. Reversible Logic

Table 2.2.: Cost Metrics for Toffoli and Fredkin Gates

#Control Quantum Cost TC
Lines Toffoli Gate Fredkin Gate

0 1 3 0

1 1 7 8

2 5 15 16

3 13 28, if at least two lines are free 24
31, otherwise

4 26, if at least two lines are free 40, if at least three lines are free 32
29, otherwise 54, if one or two lines are free

63, otherwise

5 38, if at least three lines are free 52, if at least four lines are free 40
52, if one or two lines are free 82, if one to three lines are free
61, otherwise 127, otherwise

6 50, if at least four lines are free 64, if at least five lines are free 48
80, if one to three lines are free 102, if one to four lines are free
125, otherwise 255, otherwise

7 62, if at least five lines are free 76, if at least six lines are free 56
100, if one to four lines are free 130, if one to five lines are free
253, otherwise 511, otherwise

10

Part I.

Exploiting the Conventional Design
Flow

11

3. Using Conventional Data Structures

Reversible circuits are constructed by creating a cascade of basic reversible gates, like
NOT, controlled NOT [Fey85], or Toffoli gates [Tof80], with additional constraints like
no direct support of fanout and feedback. Because of these constraints as well as the
new gate library, synthesis of reversible circuits significantly differs from the design of
conventional circuits.

Consequently, new approaches for the synthesis of reversible circuits have been ex-
plored by researchers. These include

• exact methods [GWDD09] for obtaining optimal circuits, which, due to their com-
putational complexity, work for very small functions only,

• constructive approaches [MDM05, GAJ06] which are able to synthesize relatively
large functions (with up to 30 inputs), and

• methods based on Decision Diagrams (DDs, [WD09]) or Exclusive Sum of Products
(ESOPs, [FTR07]) which enable synthesis for very large functions.

In these methods, the given function to be synthesized is represented using different
function descriptions such as truth tables, DDs, or ESOPs. In the following, we focus
on DD-based synthesis. Here, a hierarchical approach is applied which uses a DD to
represent the function to be synthesized and transforms each node into a corresponding
sub-circuit (this approach is reviewed in more detail later in Section 3.1). Thus far,
all existing approaches following this scheme (such as [WD09, SWD10, WD10]) rely
on a gate library composed of Toffoli gates with positive control lines only. Recently,
an extension of these gates with mixed control lines, i.e. with both positive and nega-
tive control lines, received attention. It has been shown that additionally considering
negative control lines enables the synthesis of reversible circuits with significantly less
costs [WSPD12, DSR13, DRW+13, ST13]. However, these recent findings have not yet
been exploited for DD-based synthesis.

In this work, we investigate the potential of utilizing negative control lines for DD-
based synthesis. To this end, we consider

• how the application of an existing (post-synthesis) optimization approach utiliz-
ing negative control lines improves the circuit realizations obtained by DD-based
synthesis, and

• how negative control lines can explicitly be exploited during the synthesis.

Both schemes have been evaluated. The results clearly show that the utilization of
negative control lines significantly reduces the costs of the respective circuits. In the
best cases, up to 43% of the gates and 15% of the quantum costs can be saved.

13

3. Using Conventional Data Structures

The remainder of this chapter is organized as follows. Section 3.1 briefly reviews
DD-based synthesis and motivates this work. Afterwards, the explicit consideration of
negative control lines in DD-based synthesis and the post-synthesis optimization scheme
are discussed in Section 3.2 and Section 3.3, respectively. Finally, Section 3.4 summarizes
the experimental evaluation and Section 3.5 concludes the chapter.

3.1. DD-based Synthesis

DD-based synthesis is a hierarchical synthesis approach which enables the automatic
generation of a reversible circuit realizing a given function f . To this end, the func-
tion f to be synthesized is decomposed into smaller sub-functions. This decomposition
is repeatedly applied until the sub-functions evaluate to a constant 0 or 1. By this, the
(possibly very large) function f is represented by a logical combination of co-factors.
While the overall function f is usually hard to synthesize in one step, the respective
co-factors as well as logical combinations resulting from the decomposition are rather
small and, hence, can easily be realized as sub-circuits. Composing all these sub-circuits
eventually results in a circuit realizing the desired function f .

This scheme has originally been applied in [WD09] and further refined e.g. in [SWD10,
WD10]. The decompositions have been conducted by the use of data structures like
Binary Decision Diagrams (BDDs, [Bry86]) or Kronecker Functional Decision Dia-
grams (KFDDs, [DST+94, DB06]). Both are directed, acyclic graphs G = (V,E) with a
root that represents the function f . Each inner node v ∈ V has two child nodes low(v)
and high(v) representing the sub-functions obtained by the decomposition. Possible
decompositions are defined by:

f = xi · fxi=0 + xi · fxi=1 (Shannon)

f = fxi=0 ⊕ xi · (fxi=0 ⊕ fxi=1) (positive Davio)

f = fxi=1 ⊕ xi · (fxi=0 ⊕ fxi=1) (negative Davio)

Each inner node is labeled with a variable of f and each variable is assigned a decomposi-
tion type. For example, if a node representing the function f is labeled with the variable
xi which is assigned Shannon decomposition, its child nodes represent fxi=0 (low(v)) and
fxi=1 (high(v)), where fxi=0 (fxi=1) is the negative (positive) co-factor of f obtained by
assigning xi to 0 (1). Co-factors evaluating to the constant 0 or 1 are represented by
terminal nodes.

Note that BDDs only allow Shannon decomposition, while KFDDs support all de-
compositions mentioned above. In this sense, BDDs are a special case of KFDDs. Due
to the reduced diagram complexity, algorithms for BDDs are often more efficient than
those for KFDDs. On the other hand, KFDDs allow for a more compact representation
of certain types of Boolean functions [BDW95]. In the following, we generically denote
these data structures by Decision Diagrams (DDs).
For an even more compact representation of functions in a DD, complement edges have

been introduced. If a complement edge is pointing to a node v, the function fv rather
than the function fv is used. These edges are denoted by a • in the following figures.

14

3.1. DD-based Synthesis

1 xi

fv

high(v)low(v)

0 1

xi xi

flow(v) fv

fhigh(v) −

Shannon

xi xi

flow(v) fv

fhigh(v) fhigh(v)

positive Davio

xi xi

flow(v) −

fhigh(v) fv

negative Davio

2 xi

fv fv fv

high(v)low(v)

0 1

0 fv

xi xi

flow(v) flow(v)

fhigh(v) fhigh(v)

Shannon

0 fv

xi xi

flow(v) flow(v)

fhigh(v) fhigh(v)

positive Davio

0 fv

xi xi

flow(v) flow(v)

fhigh(v) fhigh(v)

negative Davio

3 xi

fv

high(v)low(v)

0 1

xi xi

flow(v) fv

fhigh(v) −

Shannon

xi xi

flow(v) fv

fhigh(v) −

positive Davio

xi xi

flow(v) −

fhigh(v) fv

negative Davio

4 xi

fv fv fv

high(v)low(v)

0 1

0 fv

xi xi

flow(v) flow(v)

fhigh(v) fhigh(v)

Shannon

0 fv

xi xi

flow(v) flow(v)

fhigh(v) fhigh(v)

positive Davio

1 fv

xi xi

flow(v) flow(v)

fhigh(v) fhigh(v)

negative Davio

5 xi

fv fv fv

v′

0 1

0 fv

xi xi

fv′ fv′

Shannon

0 fv

xi xi

fv′ fv′

positive Davio

1 fv

xi xi

fv′ fv′

negative Davio

Figure 3.1.: Reversible Cascades Representing the Different DD Decompositions

Taking all that into consideration, synthesis for a given function f represented by a
DD G = (V,E) can be performed by conducting the following steps:

1. Traverse the DD in a depth-first manner.

2. For each inner node v ∈ V , generate a cascade of reversible gates which computes
the (sub-)function represented by v. Output values of the previously traversed
child nodes of v are utilized for this purpose.

3. Cascade all generated sub-circuits which eventually leads to a circuit realizing f .

The sub-circuits generated in Step 2 vary depending on decomposition type, types of
child nodes, use of complement edges, etc. Fig. 3.1 provides a selection of cases that
may occur in a DD together with their corresponding circuit patterns.

Example 3 Fig. 3.2a shows a DD representing the function f = x1x2x3x4+x1x2x3x4+
x1x2x3x4 + x1x2x3x4 as well as the respective co-factors resulting from the application

15

3. Using Conventional Data Structures

x1

x2 x2

x3 x3

x4 x4

0 1

f

f6 = x2x3x4 + x2x3x4 f5 = x2x3x4 + x2x3x4

f4 = x3x4 f2 = x3x4

f3 = x4 f1 = x4

0 1

1

0 0

1

1

0

1
0

1

0 0

1

(a) BDD

f2 f3 f4 f5 f6 f

f2

f3

f4

f5

f6

f5 needs to preserve f2

0 −

0 −

1 −

0 f

x4, f1 −

x3 −

x2 −

x1 −

(b) Resulting Circuit

Figure 3.2.: Illustration of BDD-based Synthesis

of the Shannon decomposition. The co-factor f1 can easily be represented by the primary
input x4. Having the value of f1 available, the co-factor f2 can be realized by the first
two gates depicted in Fig. 3.2b1. In this fashion, respective sub-circuits can be added for
all remaining co-factors until a circuit representing the overall function f results. The
remaining steps are shown in Fig. 3.2b.

Thus far, only positive control lines have been considered in the DD-based synthesis.
But as shown in previous work such as [WSPD12, DSR13, DRW+13, ST13], additionally
utilizing negative control lines may significantly reduce the number of gates as well as
the resulting quantum costs of a reversible circuit. However, the utilization of negative
control lines during DD-based synthesis has not been investigated yet. Because of this,
significant potential for the improvement of DD-based synthesis has not been exploited.

1Note that an additional circuit line is added to preserve the values of x4 and x3 which are still needed
by the co-factors f3 and f4, respectively.

16

3.2. Explicit Consideration of Negative Control Lines During Synthesis

In particular, the realization of complement edges or negative Davio decomposition may
significantly profit from negative control lines.

In this work, these missing investigations and evaluations are performed. To this end,
two complementary schemes are considered. First, it is evaluated whether corresponding
post-synthesis approaches presented in the past can be applied in order to improve
circuits obtained by DD-based synthesis. Second, negative control lines are explicitly
considered during synthesis, i.e. an extended DD-based synthesis approach is proposed
which directly applies negative control lines when mapping from nodes to sub-circuits.
Experimental evaluations summarized in Section 3.4 confirm that both schemes lead to
significant improvements.

3.2. Explicit Consideration of Negative Control Lines During
Synthesis

In DD-based synthesis, negative control lines can explicitly be exploited for two purposes:

• Negative Davio decomposition can be realized in a similar fashion as positive Davio
decomposition. They only differ in the polarity of the respective xi-variable which,
thanks to a negative control line, can easily be considered. This may lead to
improvements since, as shown in Fig. 3.1, positive Davio can usually be realized
with less gates and/or costs than negative Davio.

• Complemented edges can inherently be realized by negative control lines. In fact,
complement edges are applied when the value of a sub-function to be considered
shall be applied inversely. Again, this can easily be realized by the simple appli-
cation of a negative control line, while, thus far, often additional logic has been
required.

These observations are also confirmed by the realizations of the respective sub-circuits.
More precisely, Fig. 3.3 shows the circuit realizations for all the cases previously discussed
in Fig. 3.1 which additionally make use of negative control lines (the respective circuits
have been obtained by the exact approach from [WSPD12] and represent minimal re-
alizations with respect to the number of gates). Note that not all cases which might
occur in DDs are enlisted in a pictorial fashion. Nevertheless, Table 3.1 lists the number
of gates and the quantum costs for all possible cases2 and, by this, allows a compre-
hensive comparison. Columns denoted by d provide the number of gates, while columns
denoted by QC provide the respective quantum costs. Both columns are additionally
distinguished between values obtained if positive control lines are considered only (pc)
and if negative control lines are considered additionally (mc). The last rows (Total) list
the sum of gates and quantum costs that could be saved considering negative control
lines.

As can be seen, most of the patterns could be improved with respect to gate count
and quantum costs. Especially the cases with complement edges (Table 3.1b) unveil

2Some node patterns are redundant and therefore not listed.

17

3. Using Conventional Data Structures

1 xi

fv

high(v)low(v)

0 1

xi xi

flow(v) fv

fhigh(v) −

Shannon

xi xi

flow(v) fv

fhigh(v) fhigh(v)

positive Davio

xi xi

flow(v) fv

fhigh(v) fhigh(v)

negative Davio

2 xi

fv fv fv

high(v)low(v)

0 1

0 fv

xi xi

flow(v) flow(v)

fhigh(v) fhigh(v)

Shannon

0 fv

xi xi

flow(v) flow(v)

fhigh(v) fhigh(v)

positive Davio

0 fv

xi xi

flow(v) flow(v)

fhigh(v) fhigh(v)

negative Davio

3 xi

fv

high(v)low(v)

0 1

xi xi

flow(v) −

fhigh(v) fv

Shannon

xi xi

flow(v) fv

fhigh(v) fhigh(v)

positive Davio

xi xi

flow(v) fv

fhigh(v) fhigh(v)

negative Davio

4 xi

fv fv fv

high(v)low(v)

0 1

0 fv

xi xi

flow(v) flow(v)

fhigh(v) fhigh(v)

Shannon

0 fv

xi xi

flow(v) flow(v)

fhigh(v) fhigh(v)

positive Davio

0 fv

xi xi

flow(v) flow(v)

fhigh(v) fhigh(v)

negative Davio

5 xi

fv fv fv

v′

0 1

0 fv

xi xi

fv′ fv′

Shannon

1 fv

xi xi

fv′ fv′

positive Davio

1 fv

xi xi

fv′ fv′

negative Davio

Figure 3.3.: Reversible Cascades (with Negative Control Lines) Representing the Differ-
ent DD Decompositions

significant improvements. Interestingly, even some smaller realizations for the Shannon
decomposition can be determined. In most of the cases, one gate – sometimes even two
gates – can be saved. Quantum costs are improved by up to 4 in the best case. Con-
sidering that relatively small sub-circuits are considered which, however, are repeatedly
applied during DD-based synthesis, this constitutes a significant improvement.

3.3. Post-Synthesis Optimization

Synthesis and optimization of reversible logic circuits have gained lots of attention in the
past. As circuits generated from certain synthesis approaches require a large number of
gates, there is a huge scope for post-synthesis optimization. In the literature, most of
the optimization techniques relied on a gate library composed of positive control Toffoli
gates only.

18

3.3. Post-Synthesis Optimization

Table 3.1.: Gate Count and Quantum Cost for all DD Decompositions

(a) Without Complement Edges

d QC
Case pc mc pc mc

LL pD 2 1 6 5

LL nD 1 1 5 5
LH S s 3 2 11 10

LH pD s 2 2 6 6
LH nD s 3 2 7 6

LH S 2 2 6 6
LH pD 1 1 5 5
LH nD 2 1 6 5

1H S 2 1 6 5

1H pD 1 1 5 5
1H nD 2 1 6 5

0H S 1 1 5 5
L1 S 3 1 7 6

L1 pD 2 2 2 2
L1 nD 2 2 2 2
L0 S 2 1 6 5

11 pD 1 1 1 1
10 S 1 1 1 1

Total 9 8

(b) With Complement Edges

d QC
Case pc mc pc mc

L-L S s 2 2 2 2
L-L S 1 1 1 1
-LL S s 2 2 2 2
-LL S 2 1 2 2
L-L pD 3 1 7 6

L-L nD 2 1 6 5

L-H S s 4 2 12 10

-LH S s 4 2 12 10

L-H pD s 3 2 7 6

L-H nD s 4 2 8 7

L-H S 3 3 11 7

-LH S 3 3 11 8

L-H pD 2 1 6 5

L-H nD 3 1 7 6

1-H S 1 1 5 5
1-H pD 2 1 6 5

1-H nD 3 1 7 6

-L1 S 2 1 6 5

-L0 S 3 1 7 6

Total 20 21

19

3. Using Conventional Data Structures

≡
≡

≡
≡

Figure 3.4.: Optimization Rules (Taken from [DRW+13])

However, in a recent work [DRW+13] it was shown that the power of negative control
lines in Toffoli gates can be used quite elegantly to frame a set of template matching
rules. Then, these rules can be applied in order to optimize a given reversible circuit.
Some of these rules that may be used are illustrated in Fig. 3.4. Detailed experimental
evaluations on circuits derived from various synthesis approaches demonstrated that
significant reductions in the gate count and the quantum costs are possible when applying
these rules.

Due to the nature of these rules, respective optimization methods usually perform
better for circuits which inherit a specific structure, e.g. a clear separation between
input lines and output lines. In previous work, this has successfully been shown on
circuits generated by ESOP-based synthesis approaches (see [FTR07] for a general de-
scription of ESOP-based synthesis and [DRW+13] for an evaluation on the corresponding
post-synthesis optimization). However, an evaluation on circuits obtained by DD-based
synthesis has not explicitly been conducted yet. Since also DD-based circuits inherit a
rather regular structure, similar improvements are very likely. This is evaluated in detail
later in Section 3.4.

3.4. Experimental Evaluation

The concepts and approaches discussed above have been evaluated. For this purpose,
the post-synthesis optimization scheme proposed in [DRW+13] has been applied. Ad-
ditionally, the RevKit-implementations (taken from [SFWD12]) of the BDD-based and
the KFDD-based synthesis approaches [WD09, SWD10] have been extended by the new
cascades which are partially sketched in Fig. 3.3. All these approaches have eventually
been evaluated using a set of benchmark functions taken from RevLib [WGT+08].
Table 3.3a and Table 3.3b summarize the results for BDD-based synthesis and KFDD-

based synthesis, respectively. The first two columns denote the name of the considered
function as well as the number n of circuit lines generated by the respective approaches.
Then, the remaining columns provide the number of gates (denoted by d) as well as
the quantum costs (denoted by QC) of the circuits obtained by the original approach
(i.e. the original BDD-based or KFDD-based synthesis) as well as the circuits obtained
by applying the post-synthesis scheme (as discussed in Section 3.3) and the extended

20

3.4. Experimental Evaluation

Table 3.2.: Experimental Results for DD-based Synthesis Optimization

(a) BDD-based Synthesis Optimization

Original Post-Synth. (Sec. 3.3) Explicit (Sec. 3.2)
[WD09] Impr. Impr.

Benchmark n d QC d QC d QC d QC d QC

alu2 96 105 452 1436 358 1346 21% 6% 323 1233 29% 14%
alu4 98 541 2186 7222 1746 6784 20% 6% 1554 6476 29% 10%
apex2 101 498 1746 5922 1358 5534 22% 7% 1238 5462 29% 8%
apex5 104 1025 2909 10349 2246 9686 23% 6% 2059 9461 29% 9%
ex5p 154 206 647 1843 462 1659 29% 10% 372 1612 43% 13%
frg2 161 1219 3724 12468 2753 11497 26% 8% 2611 11404 30% 9%
hwb8 64 112 449 1461 346 1360 23% 7% 319 1289 29% 12%
hwb9 65 170 699 2275 540 2117 23% 7% 488 2001 30% 12%
seq 201 1617 5990 19362 4561 17935 24% 7% 3950 17390 34% 10%
spla 202 489 1709 5925 1321 5537 23% 7% 1217 5420 29% 9%
urf1 72 374 1848 6080 1441 5673 22% 7% 1354 5199 27% 14%
urf2 73 209 983 3187 764 2968 22% 7% 703 2720 28% 15%
urf3 75 668 3413 11357 2674 10618 22% 7% 2533 9743 26% 14%
urf5 76 216 860 2796 679 2616 21% 6% 607 2432 29% 13%

Average 23% 7% 30% 11%

(b) KFDD-based Synthesis Optimization

Original Post-Synth. (Sec. 3.3) Explicit (Sec. 3.2)
[SWD10] Impr. Impr.

Benchmark n d QC d QC d QC d QC d QC

alu2 96 107 326 894 257 836 21% 6% 212 806 35% 10%
alu4 98 452 1252 5216 1239 5206 1% 1% 1238 5243 1% 0%
apex2 101 394 949 3621 870 3555 8% 2% 823 3661 13% -1%
apex5 104 1029 2088 9092 2011 9019 4% 1% 1984 9023 5% 1%
ex5p 154 202 419 1503 374 1459 11% 3% 367 1525 12% -1%
frg2 161 1252 3311 9023 2587 8361 22% 7% 1920 8308 42% 8%
hwb8 64 115 337 1297 310 1270 8% 2% 334 1300 1% 0%
hwb9 65 170 513 1993 472 1952 8% 2% 510 1996 1% 0%
seq 201 828 2041 6469 1699 6200 17% 4% 1403 6214 31% 4%
spla 202 458 1116 3760 984 3644 12% 3% 854 3728 23% 1%
urf1 72 379 1614 4202 1278 3866 21% 8% 1312 3954 19% 6%
urf2 73 203 736 2420 581 2266 21% 6% 571 2290 22% 5%
urf3 75 665 2625 9149 2307 8831 12% 3% 2465 9048 6% 1%
urf5 76 207 700 1876 508 1687 27% 10% 457 1679 35% 11%

Average 14% 4% 18% 3%

21

3. Using Conventional Data Structures

approach (presented in Section 3.2). The columns Impr. provide the improvements with
respect to the original realizations. All results have been generated in neglicable run-
time, i.e. just a fraction of a second in most of the cases; the post-synthesis optimization
scheme sometimes required slightly more time, but never more than 10 CPU seconds.

The results confirm the discussions from Section 3.1: The utilization of negative con-
trol lines significantly reduces the number of gates as well as the resulting quantum
costs and, hence, indeed improves DD-based synthesis. In the best cases, up to 43% of
the gates and 15% of the quantum costs can be saved. The improvements of circuits
obtained by KFDD-based synthesis are somewhat slight. This can be explained by the
fact that KFDD decomposition already leads to smaller circuits. Nevertheless, relevant
improvements can also be observed here. Considering that these improvements come
with no drawbacks, the application of negative control lines is a worthwhile addition to
DD-based synthesis schemes.

3.5. Conclusion

In this chapter, we investigated the potential of utilizing negative control lines for DD-
based synthesis. To this end, a post-synthesis scheme as well as an explicit consider-
ation during synthesis have been inspected and evaluated. Experiments confirmed the
expected improvements: Negative control lines indeed allow for the realization of re-
versible circuits with significantly less gate count and quantum costs. In the best cases,
up to 43% of the gates and 15% of the quantum costs can be saved.

22

4. Mapping Conventional Circuits

This part of the thesis considers the design of reversible circuits under the full ex-
ploitation of the powerful design methods which exist for conventional circuits. At the
beginning, the design of reversible circuits follows the design flow for conventional cir-
cuits. Afterwards, approaches to be developed will be applied which map the resulting
conventional netlist to a reversible circuit description. In particular this mapping of a
conventional circuit to a reversible circuit poses a serious challenge. Possible schemes
for a mapping at the gate level and a mapping at the register transfer level are outlined
next. Subsequently, the advantages and disadvantages of such a flow are discussed.

4.1. Mapping at the Gate Level

Mapping at the gate level is illustrated by the simple example in Fig. 4.1a showing a low
level circuit representation in conventional logic. A simple mapping scheme could follow
the procedure to substitute each conventional gate with their corresponding reversible
counterpart1. Reversible realizations of the AND function and the OR function are
provided in Fig. 4.1b and Fig. 4.1c, respectively. As they realize non-reversible functions,
additional circuit lines (with a constant input 0) are neccessary. Simply composing these
circuits leads to a functionally equivalent realization as shown in Fig. 4.1d.

4.2. Mapping at the Register Transfer Level

At the register transfer level, a circuit is described by a netlist of modules representing
the data and control flow operations. Fig. 4.2(a) shows a simple example of a circuit in
this abstraction level. In order to transform this circuit into a reversible equivalent, a
mapping scheme similar to the one illustrated above for the gate level can be applied. The
difference is just that complete modules rather than single gates have to be substituted.

1A similar scheme has been presented before in [ZRK07].

a
b f

g

(a) Conv. Circuit

0 f

a

b

(b) AND

0 g

a

b

(c) OR

0 g

0 f

a

b

(d) Composed

1

a f

b g

(e) Minimal

Figure 4.1.: Mapping a Conv. Circuit to a Rev. Circuit at the Gate Level

23

4. Mapping Conventional Circuits

*

1

c

b

a 0

sel

MUX f

(a) Conv. Circuit

0

0

0 +=

+=

+=

+=

+=

0 f0

0 f1

0 f2

sel

a0

a1

a2

b0

b1

b2

c0

c1

c2

Multiplier Multiplexer

(b) Composed Rev. Circuit

Figure 4.2.: Mapping a Conv. Circuit to a Rev. Circuit at the Register Transfer Level

For this purpose, past accomplishments in the design of reversible building blocks for
various important data flow operations like adders, multipliers, etc. can be exploited
(see e.g. [TG08]). For example, the multiplier depicted in Fig. 4.2a can be mapped to a
reversible partial product realization illustrated at the left-hand side of Fig. 4.2b. The
control flow, represented by modules like priority selectors or multiplexers, can similarly
be realized as illustrated in Fig. 4.2 for the multiplexer module. Here, the value of
the input labeled with 1 (0) is “copied” to the output signals iff the value of sel is 1
(0). These building blocks also require the availability of additional circuit lines with
constant inputs (as can be seen in Fig. 4.2b)

24

4.3. Discussion

4.3. Discussion

Following the scheme sketched above has the big advantage of allowing for an exploitation
of the full power of conventional design methods which have been developed and in
industrial use for several decades. But the resulting circuits suffer from the poor mapping
methods that often just solely consider the respective gates or modules to be mapped. For
example, the mapping sketched in Fig. 4.1 just solely maps two gates to corresponding
cascades leading to the circuit depicted in Fig. 4.1d. But, in fact, a smaller circuit
realizing the same functionality with fewer circuit lines and fewer gates can be found
(depicted in Fig. 4.1e).

This drawback is less significant if the mapping is performed at the register transfer
level. For the modules to be mapped here, dedicated designs are available. These save
circuit lines and/or gates by considering the whole function at once instead of locally
mapping single gates without acknowledging their relations to each other.

As the preliminary results summarized in Section 4.4 confirm, this scheme already
leads to quite satisfactory results. But still, a significant amount of additional circuit
lines with constant inputs is required.

Overall, exploiting the conventional design flow does not provide any support for
reversibility until the resulting conventional circuit is mapped to its reversible equivalent.
Therefore, the quality of the resulting circuit with respect to metrics relevant to reversible
logic (like number of circuit lines or corresponding gate costs) almost entirely relies on the
applied mapping and possibly applied post-synthesis optimization schemes. Improving
these schemes is the major research challenge for this design direction.

4.4. Preliminary Evaluation

In order to evaluate the applicability of either design direction discussed above, prelim-
inary implementations of the respective concepts have been created. More precisely, we
implemented

• a basic mapping scheme which transforms a given conventional circuit at the regis-
ter transfer level (synthesized from a Verilog description using RTLvision PRO
5.4.1 by Concept Engineering) to a corresponding reversible circuit (RTL to

rev. circuit)

as well as

• a basic synthesis scheme following the concepts proposed in [WOD10] and reviewed
in Chapter 6 which generates a reversible circuit from a description in a reversible
programming language (Rev. code to rev. circuit).

Results obtained by these implementations are provided in Table 4.1 for a selection of
designs such as arithmetic logic units, a counter, circuits with a nested control structure,
and others. Established cost metrics are considered for comparison, i.e. the number of
lines (denoted by n), the number of gates (denoted by d), the quantum costs (QC), as
well as the transistor costs (TC).

25

4. Mapping Conventional Circuits

Table 4.1.: First Results for RTL to Rev. Circuit vs. Rev. Code to Rev. Circuit

RTL to Rev. Circuit Rev. Code to Rev. Circuit

Benchmark n d QC TC n d QC TC

alu1 16 107 1079 7019 17776 117 1106 35463 39552
alu1 32 203 3935 27027 68208 229 3978 144791 154432
alu2 16 107 3632 147129 151376 117 3659 258872 234424
alu2 32 203 14416 1232073 1064464 229 14459 1704912 1402232
counter 57 106 494 1416 37 37 857 912
ite1 16 97 308 804 3424 34 210 1522 3816
ite1 32 193 628 1636 7008 66 434 3154 7912
ite2 16 194 680 1928 7872 37 422 6982 11000
ops1 16 128 1066 6122 16960 128 1066 6122 16960
ops1 32 256 3938 25282 66752 256 3938 25282 66752
ops2 16 128 764 6855 11824 112 633 1361 6512
ops2 32 256 1828 55007 56816 224 1305 2801 13424

These preliminary results unveil that, thus far, there is no clear indication whether
scalable synthesis of reversible circuits should be conducted by the design flow discussed
in Part I or the design flow discussed in Part II. For some designs (e.g. alu1 16), following
the conventional design flow leads to better circuits. Other designs (e.g. ops2 32) benefit
more from the reversible-specific design flow. Nevertheless, both are capable of scalable
synthesis of reversible circuits. In fact, all circuits have been realized in negligable run-
time (i.e. less than 1 CPU second). In contrast, previously proposed synthesis approaches
(see e.g. [SM11]) are restricted by their Boolean data-structures in terms of truth tables
or decision diagrams and, hence, are not scalable.

4.5. Conclusion

If a conventional circuit can be efficiently mapped to a reversible one, powerful methods
from the conventional design flow can be utilized in the design of reversible circuits. We
outlined a scheme for mapping at the gate level, which maps each gate individually and
thus potentially creates a significant amount of additional lines and gates. To reduce this
overhead, we then proposed a scheme for mapping at the register transfer level. This
method already leads to adequate results similar to those of a basic synthesis scheme
for reversible HDL. Its full potential, however, can only be learned by developing and
optimizing the mapping.

From the preliminary evaluation, we get no clear lead whether the scalable design and
synthesis of reversible circuits should follow the flow discussed in this chapter or the flow
discussed in Part II. Nevertheless, we showed that both directions already allow for the
design of large, complex reversible circuits.

26

Part II.

Developing a Specific Design Flow

27

5. The SyReC Language

In this chapter, the SyReC language is introduced. SyReC allows for the specification
and the synthesis of complex logic through common HDL description means. Since
every valid SyReC program is inherently reversible, the reversibility of the specification
is ensured at the same time. The general concepts to achieve this are summarized in the
first part of this chapter. Afterwards, the syntax and semantics of all SyReC description
means are explained in detail.

5.1. General Concepts

In order to ensure reversibility in its description, SyReC adapts established concepts
from the previously introduced reversible programming language Janus [YG07] and is
additionally enhanced by hardware-related language constructs as it is targeting the
description of reversible circuits. The general concepts of SyReC are summarized in the
following.

5.1.1. Only Reversible Assignments

Being one of the most elementary language constructs, variable assignments such as
used in the majority of the imperative languages are irreversible and can therefore not
be part of a reversible language. The concept of reversible assignments (or sometimes
also called reversible updates) is used as an alternative. Reversible assignments have
the form v ⊕ = e with ⊕ ∈ {^, +, -} such that the variable v does not appear in
the right-hand side expression e. Although SyReC is limited to this set of operators,
in general any operator f can be used for the reversible assignment, if there exists an
inverse operator f−1 such that

v = f−1(f(v, e), e) (5.1)

for all variables v and for all expressions e. Note that ‘+’ (addition) is inverse to ‘-’ (sub-
traction), and vice versa, and ‘^’ (bitwise exclusive OR) is inverse to itself. When
executing the program in reverse order, all reversible assignment operators are replaced
by their inverse operators.

5.1.2. Syntactical Expressiveness

Due to the construction of the reversible assignment, the right-hand side expression
can also be irreversible and compute any operation. The most common operations are
directly applicable using a wide variety of syntax including arithmetic (+, *, /, %, *>),

29

5. The SyReC Language

bitwise (&, |, ˆ), logical (&&, ||), and relational (<, >, =, !=, <=, >=) operations.
The reversibility is ensured, since the input values to the operation are also given to the
inverse operation when reverting the assignment (cf. (5.1)). In order to specify e.g. a
multiplication a*b, a new free signal c must be introduced which is used to store the
result (i.e. cˆ=(a*b) is applied).

5.1.3. Reversible Control Flow

A reversible data flow is ensured due to the above mentioned assignment operations,
and the control flow is made bijectively executable in a similar fashion. This becomes
particularly manifest in conditional statements. In contrast to non-reversible languages,
SyReC requires an additional fi -condition for each if -condition which is applied as an
assertion. This fi -condition is required, since a conditional statement may not be com-
puted in both directions using the same condition, i.e. it cannot be ensured that the
same block (then-block or else-block) is processed when computing an if -statement in
the reverse direction. As a solution, a fi -condition that is asserted when computing the
statement in the reverse direction is added ensuring a consistent execution semantic.
This language principle is illustrated in more detail in the next section.

5.1.4. Specific Hardware Description Properties

Since SyReC is used for the synthesis of reversible circuits, it obeys some HDL related
properties:

• The single data-type is a circuit signal with parameterized bit width.

• Access to single bits (x.N), a range of bits (x.N:N), as well as the size (#x) of a
signal is provided.

• Since loops must be completely unrolled during synthesis, the number of itera-
tions has to be available before compilation. That is, dynamic loops (defined by
expressions) are not allowed.

• Further operations as used in hardware design (e.g. shifts ‘<<’ and ‘>>’) are
provided.

Overall, the implementation of all these general concepts led to the SyReC syntax as
defined by means of the EBNF in Fig. 5.1. In the following, the syntax and the semantics
of all description means are explained and illustrated in detail.

30

5.2. Module and Signal Declarations

Program and Modules

1 〈program〉 ::= 〈module〉 {〈module〉}

2 〈module〉 ::= ‘module’ 〈identifier〉 ‘(’ [〈parameter-list〉] ‘)’ {〈signal-list〉} 〈statement-list〉

3 〈parameter-list〉 ::= 〈parameter〉 {‘,’ 〈parameter〉}

4 〈parameter〉 ::= (‘in’ | ‘out’ | ‘inout’) 〈signal-declaration〉

5 〈signal-list〉 ::= (‘wire’ | ‘state’) 〈signal-declaration〉 {‘,’ 〈signal-declaration〉}

6 〈signal-declaration〉 ::= 〈identifier〉 {‘[’〈int〉‘]’} [‘(’〈int〉‘)’]

Statements

7 〈statement-list〉 ::= 〈statement〉 {‘;’ 〈statement〉}

8 〈statement〉 ::= 〈call-statement〉 | 〈for-statement〉 | 〈if-statement〉 | 〈unary-statement〉 |
〈assign-statement〉 | 〈swap-statement〉 | 〈skip-statement〉

9 〈call-statement〉 ::= (‘call’ | ‘uncall’) 〈identifier〉 ‘(’ (〈identifier〉 {‘,’ 〈identifier〉}) ‘)’

10 〈for-statement〉 ::= ‘for’ [[‘$’ 〈identifier〉 ‘=’] 〈number〉 ‘to’] 〈number〉 [‘step’ [‘-’] 〈number〉]
〈statement-list〉 ‘rof’

11 〈if-statement〉 ::= ‘if ’ 〈expression〉 ‘then’ 〈statement-list〉 ‘else’ 〈statement-list〉 ‘fi’ 〈expression〉

12 〈assign-statement〉 ::= 〈signal〉 (‘ˆ’ | ‘+’ | ‘-’) ‘=’ 〈expression〉

13 〈unary-statement〉 ::= (‘˜’ | ‘++’ | ‘--’) ‘=’ 〈signal〉

14 〈swap-statement〉 ::= 〈signal〉 ‘<=>’ 〈signal〉

15 〈skip-statement〉 ::= ‘skip’

16 〈signal〉 ::= 〈identifier〉 {‘[’ 〈expression〉 ‘]’} [‘.’ 〈number〉 [‘:’ 〈number〉]]

Expressions

17 〈expression〉 ::= 〈number〉 | 〈signal〉 | 〈binary-expression〉 | 〈unary-expression〉 | 〈shift-expression〉

18 〈binary-expression〉 ::= ‘(’ 〈expression〉 (‘+’ | ‘-’ | ‘ˆ’ | ‘*’ | ‘/’ | ‘%’ | ‘*>’ | ‘&&’ | ‘||’ | ‘&’ |
‘|’ | ‘<’ | ‘>’ | ‘=’ | ‘!=’ | ‘<=’ | ‘>=’) 〈expression〉 ‘)’

19 〈unary-expression〉 ::= (‘!’ | ‘˜’) 〈expression〉

20 〈shift-expression〉 ::= ‘(’ 〈expression〉 (‘<<’ | ‘>>’) 〈number〉 ‘)’

Identifier and Constants

21 〈letter〉 ::= (‘A’ | . . . | ‘Z’ | ‘a’ | . . . | ‘z’)

22 〈digit〉 ::= (‘0’ | . . . | ‘9’)

23 〈identifier〉 ::= (‘ ’ | 〈letter〉) {(‘ ’ | 〈letter〉 | 〈digit〉)}

24 〈int〉 ::= 〈digit〉 {〈digit〉}

25 〈number〉 ::= 〈int〉 | ‘#’ 〈identifier〉 | ‘$’ 〈identifier〉 | (‘(’ 〈number〉 (‘+’ | ‘-’ | ‘*’ | ‘/’)
〈number〉 ‘)’)

Figure 5.1.: Syntax of the Hardware Description Language SyReC

5.2. Module and Signal Declarations

Each SyReC specification (denoted by 〈program〉 in Line 1 in Fig. 5.1) consists of one or
moremodules (denoted by 〈module〉 in Line 2). A module is introduced with the keyword
module and includes an identifier (represented by a string as defined in Line 23), a list
of parameters representing global signals (denoted by 〈parameter-list〉 in Line 3), local
signal declarations (denoted by 〈signal-list〉 in Line 5), and a sequence of statements

31

5. The SyReC Language

Table 5.1.: SyReC’s Signal Access Modifiers and Implied Circuit Properties

Modifier Constant Input Garbage Output State Initial Value
in – yes no given by primary input
out 0 no no 0
inout – no no given by primary input
wire 0 yes no 0
state – no yes given by pseudo-primary input

(denoted by 〈statement-list〉 in Line 7). The top-module of a program is defined by the
special identifier main. If no module with this name exists, the last module declared is
used as the top-module instead.

SyReC uses a signal representing a non-negative integer as its sole data type. The
bit width of signals can optionally be defined by round brackets after the signal name
(Line 6). If no bit width is specified, a default value is assumed. For each signal, an
access modifier has to be defined. For a parameter signal (used in a module declaration),
this can be either in, out, or inout (Line 4). Local signals can either work as internal
signals (denoted by wire) or in case of sequential circuits as state signals1 (denoted
by state; Line 5). The access modifier affects properties in the synthesized circuits as
summarized in Table 5.1. Besides that, signals can be grouped into multi-dimensional
arrays of constant length using square brackets after the signal name and before the
optional bit width declaration (Line 6).

Example 4 Fig. 5.2 shows several module declarations possible in SyReC including an
adder-module with two inputs and one output (adder1), an adder-module with fixed bit
widths for the inputs and outputs (adder2), an adder-module where four operands are
given by a 4-segment array composed of 16-bit signals (adder3), and an arbitrary module
with local and state signals (myCircuit).

module adder1(in a, in b, out c)

module adder2(in a(16), in b(16), out c(16))

module adder3(in inputs[4](16), out c(16))

module myCircuit(in input1, in input2, out output)

wire auxSignal(16)

state stateSignal

Figure 5.2.: Module Declarations in SyReC

1Note that, depending on the application, feedback and, hence, state signals might not be allowed
in reversible circuits. Nevertheless, SyReC supports this concept in principle. For a more detailed
discussion on reversible sequential circuits, we refer to [CW07, LP09].

32

5.3. Statements

wire a, b, c

call adder1(a, b, c)

Figure 5.3.: Calling a Module Identified by adder1 in SyReC

5.3. Statements

Statements include call and uncall of other modules, loops, conditional statements, and
various data operations (i.e. reversible assignment operations, unary operations, and
swap statements; Line 8). The empty statement can explicitly be modeled using the
skip keyword (Line 15). Statements are separated by semicolons (Line 7). Signals
within statements are denoted by 〈signal〉 allowing access to the whole signal (e.g. x), a
certain bit (e.g. x.4), or a range of bits (e.g. x.2:4, Line 16). The bit width of a signal
can also be accessed (e.g. #x; Line 25).

5.3.1. Call and Uncall of Modules

Hierarchic descriptions are realized in SyReC by means of modules which can be called
and uncalled. For this purpose, the keyword call (uncall) has to be applied together
with the identifier of the module to be called and its parameters (Line 9). Call executes
the selected module in forward direction, while uncall executes the selected module
backwards.

Example 5 If a SyReC description of an adder is available (as e.g. declared in Fig. 5.2),
it can be added to a design by the call command as shown in Fig. 5.3.

5.3.2. Loops

An iterative execution of a block is defined by means of loops (defined in Line 10). The
number of iterations has to be available prior to the compilation, i.e. dynamic loops are
not allowed. Therefore, e.g. fix integer values, the bit width of a signal, or internal
(local) $-variables can be applied. Furthermore, the current value of internal counter
variables can be accessed during the iterations. Using the optional keyword step, also
the iteration itself can be modified. A loop is terminated by rof.

Example 6 Fig. 5.4 shows several loop descriptions possible in SyReC including (a) a
simple loop with 10 iterations, (b) an iteration over all bits of an n-bit signal, and (c) a
loop with a step definition.

33

5. The SyReC Language

for 1 to 10 do

// statements

rof

(a) Simple Loop

wire x

for $i = 0 to #x do

// statements (possibly using $i)

// the ith bit of x can be accessed by x.$i

// a range of bits can be accessed e.g. by x.0:$i

rof

(b) Loop over Bits of a Signal

for $counter = 1 to 10 step 2 do

// statements

// the loops iterates 5 times

// (i.e., $counter is set to 1, 3, 5, 7, and 9 only)

rof

(c) Loop with step Keyword

Figure 5.4.: Loops in SyReC

5.3.3. Conditional Statements

Conditional statements (defined in Line 11) need an expression to be evaluated followed
by the respective then- and else-block. Each of these blocks is a sequence of statements.
In a forward computation, the then-block is executed if, and only if, the if -expression
evaluates to 1; otherwise, the else-block is executed. In order to ensure reversibility, a
conditional statement is terminated by a fi together with an adjusted expression. In a
backward computation, the fi -expressions decides whether the then- or the else-block is
reversibly executed. In case neither the then- nor the else-bock modifies an input value
of the conditional expression, the if - and the fi -expression are identical.

Example 7 Fig. 5.5 shows two different conditional statements in SyReC. The first
one does not modify any of the inputs of the conditional expressions (signal b in this
case). Hence, the if- and the fi-expression are identical. In contrast, the then-block of
the second conditional statement modifies the value of signal b. Hence, a suitable fi-
expression different from the if-expression has to be provided to ensure correct execution
semantics in both directions.

if (b = 5) then

x += y // executed if b = 5

else

x -= y // executed if b != 5

fi (b = 5);

if (b = 5) then

b += y // executed if b = 5 (fwd) or b = 5 + y (bwd)

else

x -= y // executed otherwise

fi (b = (5 + y))

Figure 5.5.: Conditional Statements in SyReC

34

5.3. Statements

Table 5.2.: Semantics of Assignment Statements in SyReC

Operation Semantic

x ^= e Bitwise XOR assignment of e to x, i.e. x := x⊕ e

x += e Increase by value of e to x, i.e. x := x+ e

x -= e Decrease by value of e to x, i.e. x := x− e

~= x Bitwise inversion of x
++= x Increment of x
--= x Decrement of x

x <=> y Swapping value of x with value of y

5.3.4. Assignment Statements

All further statements include the reversible assignment statements (denoted by 〈assign-
statement〉), unary statements (denoted by 〈unary-statement〉), and the swap statement
(denoted by 〈swap-statement〉) as defined in Line 12 to Line 14. The semantics of
these statements is summarized in Table 5.2, whereby signals are denoted by x, y and
expressions are denoted by e. Since these statements perform only reversible operations,
they may assign new values to signals. Therefore, the respective signal(s) to be modified
must not appear in the expression on the right-hand side.

Example 8 Fig. 5.6 shows some of these statements in action. It can easily be seen
that all these operations can be executed in both directions, i.e. forward and backward
computation always lead to unique results.

b += 5; // b := b+5

a ^= b; // a := a^b

~= a; // a := bitwise inversion of a

++= c; // c := c+1

a <=> c // a := c and c := a

Figure 5.6.: Assignment, Unary, and Swap Statements in SyReC

35

5. The SyReC Language

Table 5.3.: Semantics of Expressions in SyReC

Operation Semantic

e + f Addition of e and f

e - f Subtraction of e and f

e * f Lower bits of multiplication of e and f

e *> f Upper bits of multiplication of e and f

e / f Division of e and f

e % f Remainder of division of e and f

e ^ f Bitwise XOR of e and f

e & f Bitwise AND of e and f

e | f Bitwise OR of e and f

~e Bitwise inversion of e

e && f Logical AND of e and f

e || f Logical OR of e and f

!e Logical NOT of e

e < f True, if, and only if, e is less than f

e > f True, if, and only if, e is greater than f

e = f True, if, and only if, e equals f
e != f True, if, and only if, e not equals f
e <= f True, if, and only if, e is less or equal to f

e >= f True, if, and only if, e is greater or equal to f

e << N Logical left shift of e by N

e >> N Logical right shift of e by N

5.4. Expressions

Expressions as defined in Line 17 to Line 20 are applied e.g. in the right-hand side of
assignment statements or as branching condition in if /fi -statements. Since expressions
do not modify the values of any signal, also non-reversible operations can be applied
in expressions without jeopardizing the reversibility. By this, a wide range of different
description means is provided. Table 5.3 lists the semantic of all operations which can be
used in expressions, whereby sub-expressions are denoted by e, f and natural numbers
are denoted by N .

Example 9 Fig. 5.7 shows some statements including expressions that demonstrate the
range of description means available in SyReC. Although the language is restricted in or-
der to ensure reversibility (e.g. statements such as c=a*b are not allowed), common func-
tionality can easily be specified nevertheless (e.g. with a new free signal c and cˆ=a*b).
It can easily be seen that, despite of the usage of non-reversible operations in Fig. 5.7,
all statements still can be executed in both directions.

36

5.5. Conclusion

c ^= (a * b); // c := a*b if c is a new free signal

x.0 ^= ((a > 3) && (b != 0));

x.1:3 ^= (c.0:2 | 4);

if ((a + b) <= 10) then

c += (3 * b)

else

c -= (a % 2)

fi ((a + b) <= 10)

Figure 5.7.: Application of Expressions in SyReC

5.5. Conclusion

Using the language introduced in this chapter, it is possible to specify reversible circuits
on a higher level of abstraction. In particular for the design of complex functionality,
SyReC clearly outperforms currently applied description means such as truth tables,
permutations, and decision diagrams. Later in Chapter 9 this is further demonstrated
by means of a complete design of a processor in SyReC. Beforehand, the synthesis of a
reversible circuit based on a SyReC description is introduced.

37

6. SyReC Synthesis

Given a SyReC specification, a crucial question is how to obtain a reversible circuit
realization. We use a hierarchical synthesis approach to handle the expressive power
of the language. In this chapter, the synthesis of a SyReC program is explained. To
give all the details, Chapter 7 provides the realization of each language element that is
not discussed here. Due to the hierarchical approach, an overhead regarding gates and
circuit lines is generated in most circuit realizations. Chapter 8 describes methods and
possibilities for optimizing the synthesis result.

This chapter is structured as follows. After introducing the general concept, details
on the synthesis process are given. Section 6.2 describes the realization of assignment
statements, including unary statements and swap statements. The synthesis of expres-
sions, which occur in assign statements as well as in conditional statements, is covered
by Section 6.3. Finally, Section 6.4 describes the realization of the control logic, i.e.
call/uncall statements, loops, and conditional statements.

6.1. General Concept

In order to synthesize a given SyReC specification, we developed a hierarchical syn-
thesis method. Our approach traverses the whole program and adds a sub-circuit for
each statement realizing the respective functionality. These sub-circuits are composed
of existing realizations, so-called building blocks, of the individual statements and opera-
tions used in expressions. By adjusting the building blocks to the signals’ bit width and
applying them to the corresponding circuit lines, the desired realization is generated.

If a SyReC program consists of various modules, a main module is defined as the
starting point of the synthesis. Other modules are synthesized when they are called or
uncalled by the respective statements. All signals are realized by buses of joint reversible
circuit lines with the specified bit width.

In the following, the individual mappings of the statements to the respective reversible
cascades are described. We distinguish between the synthesis of (A) assignment state-
ments (including unary statements and swap statements), (B) expressions, as well as
(C) control logic including call/uncall, loops, and conditional statements.

6.2. Synthesis of Assignment Statements

To change the value of a signal, assignment statements are applied. These include assign-
ments of the form x ⊕= e with ⊕ ∈ {^,+,-}, unary statements of the form ⊗= x with

39

6. SyReC Synthesis

a a⊕b⊕=

b b

(a) General: a⊕=b

a aˆb

b b

(b) aˆ=b

Figure 6.1.: Synthesis of Assignment Statements

⊗ ∈ {~,++,--}, and swap statements of the form x <=> y. Since each SyReC state-
ment must be reversible, signal values are not overwritten but rather updated with a new
value. The old value can be recovered by applying the inverted assignment operation.

6.2.1. Swap Statements

A swap statement x <=> y is applied to exchange the values of two signals x and y.
To synthesize this statement, the signals are evaluated first, i.e. the corresponding
circuit lines for x and y are determined (see Section 6.2.4). Then, the signal values are
exchanged bit by bit. This is done by simply adding a SWAP gate to each pair of lines
(xi, yi) with 0 ≤ i ≤ n− 1.

6.2.2. Unary Statements

A unary statement ⊗= x is used to invert, increment or decrement the value of a single
signal. Again, the first step is to evaluate the signal x. To implement the operation
⊗ ∈ {~,++,--}, a building block is applied to the lines corresponding to x. These
building blocks are described in Section 7.1.

6.2.3. Reversible Assignments

A reversible assignment of the form x ⊕= e is used to increase or decrease the value of
x by the value of e, or to compute a bitwise XOR of the values of x and e. If the value
of x is 0, the XOR assignment x ˆ= e is equivalent to a regular assignment x = e.

For the implementation of this kind of statement, x and e have to be evaluated. Unlike
the signal x, the right hand side e is a general expression, i.e. it could be a term like
(a ∗ b) + c. In this case, a sub-circuit is generated to compute the resulting value of e,
as explained in Section 6.3. Having evaluated both x and e, a building block is applied
to the corresponding lines to implement the actual assignment.

In the following, we use the notation depicted in Fig. 6.1a to denote such an operation
in a circuit structure. Solid lines that cross the box represent the signals(s) on the right
hand side of the statement, i.e. the signal(s) whose values are preserved.

The simplest reversible assignment operation is the bitwise XOR (e.g. aˆ=b). For 1-bit
signals, this operation can be synthesized by a single Toffoli gate as shown in Fig. 6.1b.
If signals with a bit width greater than 1 are applied, for each bit a Toffoli gate is applied
analogously. Details on the implementation of all assignment operations can be found
in Section 7.2.

40

6.2. Synthesis of Assignment Statements

a[0] a[0]′

a[1] a[1]′

a[2] a[2]′

a[3] a[3]′

i0 i0

i1 i1

0 0

b b

get value of a[i] return new value to a[i]

Figure 6.2.: Synthesizing a[i] ^= b

6.2.4. Evaluation of Signals

In most cases, the evaluation of a SyReC signal is trivial. If a whole signal (e.g. x), a
single bit of a signal (e.g. x.1), or a range of bits of a signal (e.g. x.3:6) is accessed, the
corresponding circuit lines are simply looked up in a map.

The only exception is the dynamical access to an array element, e.g. in the statement
a[i] ^= b. Assuming i is a signal with a value depending on the primary inputs, the
lines corresponding to a[i] can not be determined during synthesis. In this case, a
sub-circuit as shown in Fig. 6.2 is applied. Here, the array a has four elements and the
signal i consists of two bits. An additional line is used for the computation.

In the first part of the circuit, the value of the additional line is swapped with the value
of a[i]. This is done by adding Fredkin gates which are controlled by the value of i. For
example, if i = 11, only the first gate is activated, and the value of the additional line
is swapped with the value of a[3]. If i = 10, only the second Fredkin gate is activated,
exchanging the values of the additional line and a[2], and so on. Note that the value of
the additional line is depicted as 0, but can actually be arbitrary, as it has no influence
on the computation.

In the middle part of the circuit, the line corresponding to a[i] is known to be the
additional line (or lines, depending on the bit width of a). Now, the assignment operation
can be executed. In this example, a single CNOT gate computes a[i] ^= b.

After the value of a[i] is updated according to the statement, it has to be returned
to its original place (i.e. circuit line). Thus, in the last part of the circuit, the values of
the additional line and a[i] are switched again. This is done by applying the inverse of
the first part of the circuit. As a result, the value of a[i] is updated and the values of
i and the additional line are restored.

41

6. SyReC Synthesis

0 a�b�

a a

b b

(a) General: a� b

a a

b b

0 a&b

(b) a & b

a a

b b

c cˆ(a&b)

(c) cˆ= a & b

a0 a0

a1 a1

b0 b0

b1 b1

c0 c′0

c1 c′1

0 −

0 −

(d) c ˆ= a + b

Figure 6.3.: Synthesis of Expressions

6.3. Synthesis of Expressions

Expressions include operations that are not necessarily reversible, like multiplication or
bitwise conjunction. To denote such binary operations in a circuit structure, the notation
depicted in Fig. 6.3a is used in the following. Again, solid lines represent the signals
whose values are preserved. In this case, all input signals’ values have to be kept to make
the computation reversible and to avoid errors in case the signals are used in further
statements.

Synthesis of irreversible functions in reversible logic is not a new issue, so reversible
circuit realizations already exist for most operations considered here. To make an ir-
reversible function reversible, additional lines with constant inputs are applied (see
e.g. [MD04a, WKD11]). As an example, Fig. 6.3b shows a reversible gate that real-
izes an AND operation. As can be seen, this requires one additional circuit line with a
constant input value 0. Similar mappings exist for all other operations (see Section 7.3).

Since expressions occur within statements, a more compact realization is possible in
some cases. For example, the statement c ^= (a & b) can be realized by a single gate
as shown in Fig. 6.3c. Compared to the standard approach of computing a & b first and
then assigning it to c, this realization requires half the gates and no additional circuit
line. However, such a simple combination is not possible for all statements. As an
example, Fig. 6.3d shows a two-bit addition whose result is applied to a bitwise XOR,
i.e. c ^= (a + b). Here, removing the constant lines and directly applying the XOR
operation on the lines representing c would lead to a wrong result. This is because
intermediate results are stored on the lines representing the sum. Since these values are

42

6.4. Synthesis of the Control Logic

used later, performing the XOR operation “in parallel” would destroy the result. Thus,
to have a combined realization of a bitwise XOR and an addition, a precise embedding
for this case must be generated. Since determining the embeddings and circuits for
arbitrary combinations of statements and expressions is a cumbersome task, constant
lines are applied to realize the respective functionality step by step.

6.4. Synthesis of the Control Logic

The control flow of a SyReC program can be defined by loops, call/uncall statements, and
conditional statements. While the implementation of loops and calls is quite straight-
forward, conditional statements can be realized in various ways. We propose two com-
plementary variants, one saving circuit lines and the other saving gate cost.

6.4.1. Loops and Calls

Loops are realized in a straightforward way, namely unrolling them. As elaborated
in Section 5.3.2, the number of iterations of a loop is fixed and known prior to the
synthesis. Thus for each iteration, the statements in the loop body are synthesized anew
– if applicable, current values of loop variables are inserted.

Call and uncall of modules are handled similarly. If a modulem is called, all statements
in m are synthesized using the given signal parameters. Local signals in m are realized
with additional lines. If a module m is uncalled, the desired function is to execute
m backwards, or apply the inverse of m. To realize this, the statements in m are
synthesized in reverse order, while each statement is reversed itself. For example, c +=

(a * b) would be converted to c -= (a * b) before synthesis.

6.4.2. Conditional Statements

To realize conditional statements (i.e. if -statements as introduced in Section 5.3.3), two
complementary variants are proposed. The first one is depicted in Fig. 6.4b. Here, the
statements in the then- and else-block are mapped to reversible cascades with an addi-
tional control line added to all gates. Thus, the respective operations of the statements
in the then-block (else-block) are computed if and only if the result of the expression
(stored in signal e) is 1 (0). A NOT gate is applied to flip the value of e so that the
gates of the else-block can be “controlled” as well.

43

6. SyReC Synthesis

if e

then

a ⊕= b

else

c ⊕= d

fi e

(a) Code

a a′⊕=

b b

e −

c c′⊕=

d d

(b) Without Additional Lines

a a′

0 −⊕=

b b

e e

c c′⊕=

d d

0 −

dupl. then else merging

(c) With Additional Lines

Figure 6.4.: Synthesis of Conditional Statements

Fig. 6.4c shows the second realization of a conditional statement, which is realized in
three steps:

1. All signals in the then- or else-block, which potentially are assigned a new value
(e.g. that are on the left-hand side of a reversible assignment operation), are du-
plicated. This requires an additional circuit line with constant input 0.

2. The statements within the blocks are mapped to reversible cascades. The duplica-
tions introduced in the previous step are applied to intermediately store the results
of the then-block and the original values of the signals in the else-block.

3. Depending on the result of the conditional expression e, the values of the duplicated
lines and the original lines are swapped. More precisely, in the example of Fig. 6.4a
the value of a is swapped with its (newly assigned) duplication if e evaluates to 1.
Analogously, if e evaluates to 0 the (newly assigned) value of c is passed through
unaltered.

Having both realizations, it is up to the designer which one should be applied during
synthesis. The second realization leads to additional circuit lines in contrast to the first
realization. However, due to the additional control lines both the quantum cost and the
transistor cost of the circuit significantly increase in the first realization. Besides other
aspects, this is further evaluated in Section 8.3.

44

6.5. Conclusion

a a⊕(b�c)⊕=

0 −Gb�c

b b

c c

d d⊕(e�f)⊕=

0 −Ge�f

e e

f f

Figure 6.5.: Circuit Structure Generated by SyReC Synthesis

6.5. Conclusion

With the procedure explained in this chapter, it is possible to automatically synthesize
reversible circuits specified in SyReC. In general, the following two steps are performed
for each statement:

1. Compose a sub-circuit G� realizing all the expressions in a statement using the
respective building blocks. The result of the expressions is buffered by means of
additional circuit lines.

2. Compose a sub-circuit G⊕ realizing the overall statement using the existing build-
ing blocks of the statement itself together with the buffered results of the expres-
sions.

Hence, the resulting circuits basically have a structure as shown in Fig. 6.5, i.e. cascades
of building blocks for the respective assignment statements and their expressions results.

Obviously, this leads to a significant number of additional circuit lines with constant
inputs which are used to buffer intermediate results of the expressions. The precise
number of additional circuit lines increases with respect to the complexity of the expres-
sion. Usually, a large number of circuit lines is seen as a disadvantage. However, later
in Section 8.1 an extended synthesis scheme is presented that removes many of these
additional lines.

45

7. SyReC Building Blocks

This chapter provides a detailled description of the building blocks used in the synthesis
of SyReC programs. For the circuit realization we chose to use the MCT library, i.e.
multiple control Toffoli gates with positive controls only. Since the building blocks
correspond to SyReC operations, they have to be automatically expandable to arbitrary
bit widths of their input variables. Minimal solutions can be found for small bit widths,
but practically not be generated for any bit width. Thus, some of the presented solutions
come with a large overhead in terms of gate count and gate cost. However, this allows for
the automatic synthesis of functions which can not be handled by most reversible circuit
synthesis methods. Moreover, due to the hierarchical synthesis scheme, each building
block can easily be replaced if a more efficient design is found.

First, the realizations of the unary statements are described in Sec. 7.1. Those include
the bitwise negation as well as the increment and decrement of a variable. Sec. 7.2
illustrates the building blocks used for the reversible assignments, i.e. XOR assignment,
increase, and decrease. Finally, the realizations for all unary and binary operations used
within SyReC expressions are given in Sec. 7.3.

7.1. Unary Statements

There are three unary statements in the SyReC language, namely bitwise negation,
increment, and decrement. As these statements change the value of a single input vari-
able, with no other variables involved, they can be realized by building blocks operating
directly on the variable’s lines. Details on these building blocks are given in this section.

7.1.1. Bitwise Negation

To realize the bitwise negation of a variable, e.g. ∼ = a, a NOT gate is added to each
bit as shown in Fig. 7.1a.

7.1.2. Increment and Decrement

The increment statement describes the increase of a variable by 1 (modulo 2n), i.e. ++=
a is the same as a += 1. If 1 is added to the variable a, the value of the least significant
bit a0 will be flipped. The value of all other bits ai (1 ≤ i ≤ n− 1) will be flipped if and
only if

• a0 has an initial value of 1, so a carry is generated, and

• all bits aj with 1 ≤ j < i have an initial value of 1, so the carry is propagated.

47

7. SyReC Building Blocks

a0 a0

a1 a1

a2 a2...
...

an−1 an−1

. . .

(a) ∼ = a

a0 a′
0

a1 a′
1

a2 a′
2...

...
an−1 a′

n−1

· · ·

...

(b) ++= a

a0 a′
0

a1 a′
1

a2 a′
2...

...
an−1 a′

n−1

· · ·

. . .

(c) --= a

Figure 7.1.: Building Blocks for Unary Statements

This function can be described by the following mapping.

a0 �→ a0 ⊕ 1

a1 �→ a1 ⊕ a0

a2 �→ a2 ⊕ a0 · a1
...

an−1 �→ an−1 ⊕ a0 · a1 · · · an−2

A straightforward realization of this mapping is shown in Fig. 7.1b. For each bit ai
(0 ≤ i ≤ n− 1), a Toffoli gate with target on ai and controls on all aj with 0 ≤ j < i is
added. The new value of the most significant bit an−1 has to be calculated first, since
the initial values of an−2, . . . , a0 are used as inputs here. For the following gates, an−2

is not used as a control input, so its new value can be calculated next, and so on.

The decrement statement describes the decrease of a variable by 1 (modulo 2n), i.e.
--= a is the same as a -= 1. Due to the modulo operation, a sequence of statements like
--= a; ++= a or ++= a; --= a will always result in a having its original value. In other
words, decrement is the inverse function of increment. Let INC = g1g2 . . . gd−1gd be
the cascade of gates used to realize the increment statement. With this, the decrement
statement can be realized as DEC = INC−1 = g−1

d g−1
d−1 . . . g

−1
2 g−1

1 = gdgd−1 . . . g2g1,
since Toffoli gates are self-inverse. Fig. 7.1c shows this realization.

7.2. Reversible Assignments

All assignments in SyReC have the form a ⊕ = b, where ⊕ can be ˆ (XOR), + (in-
crease), or − (decrease). The right hand side b can be an arbitrary expression, possibly
containing various binary operations. Sec. 7.3 describes the building blocks used to real-
ize these expressions. Assuming the result of b is already available on given lines in the
circuit, the reversible assignment of b to the left hand side a is realized by the building
blocks described in this section. In all cases, the value of a is changed while the value of
b needs to be preserved.

48

7.2. Reversible Assignments

a0 a0 ⊕ b0

a1 a1 ⊕ b1...
...

an−1 an−1 ⊕ bn−1

b0 b0

b1 b1...
...

bn−1 bn−1

. . .

. . .

Figure 7.2.: Building Block for a ^= b

...

...

a0 a′
0

a1 a′
1

a2 a′
2...

...
an−1 a′

n−1

b0 b0

b1 b1

b2 b2...
...

bn−1 bn−1

. . .

. . .
bn−2

... b3 b′3

. . .

. . .
b′n−2

a′
n−2

. . .

. . .

. . .

calculate ci ai ⊕ ci−1 ai ⊕ bi ⊕ ci−1

Figure 7.3.: Building Block for a += b

7.2.1. XOR Assignment

The XOR assignment is specified as a bitwise XOR of the left hand side and the right
hand side. For example, the statement a ^= b describes the mapping (ai, bi) �→ (ai ⊕
bi, bi) for all bits ai in a and all bits bi in b.

A circuit realization of this function is easily found. The CNOT gate flips the value
on its target line if and only if the value on its control line is 1, which is equal to an XOR
of the target and control line values. Thus, the desired function is realized by adding a
CNOT gate for each bit of the input variables, as shown in Fig. 7.2. The value of b is
passed unaltered through the controls, while the value of a is changed according to the
function.

7.2.2. Increase and Decrease

The increase assignment is an addition of the right hand side to the left hand side
(modulo 2n). In the statement a += b, the value of b is added to the value of a. This
means that the new value of each bit ai in a can be calculated by ai⊕bi⊕ci−1, where ci−1

is the carry generated by adding ai−1 . . . a0 and bi−1 . . . b0. If the concepts of conventional
adder circuits were applied here, additional lines would have to be added for calculating
and processing intermediate values like the carry for each bit. To keep the number of
lines as small as possible, the values are calculated directly from the inputs, which leads

49

7. SyReC Building Blocks

a0 a′
0

a1 a′
1

a2 a′
2...

...
an−1 a′

n−1

b0 b0

b1 b1

b2 b2...
...

bn−1 bn−1

. . .

. . .

...

...
. . .

...

...
...

...

...

Figure 7.4.: Building Block for a -= b

to the following mapping.

a0 �→ a0 ⊕ b0

a1 �→ a1 ⊕ b1 ⊕ a0 · b0︸ ︷︷ ︸
c0

a2 �→ a2 ⊕ b2 ⊕ a1 · b1 ⊕ a0 · b0 · a1 ⊕ a0 · b0 · b1︸ ︷︷ ︸
c1

...

These expressions could directly be translated to a cascade of Toffoli gates: In the
expression calculating ai ⊕ bi ⊕ ci−1, each term except ai is represented by a Toffoli gate
with target on ai and controls on all variables in the term. This representation would,
however, lead to an exponentially growing number of gates needed for each bit.

Fig. 7.3 shows the proposed realization, which is much more efficient in terms of gate
count and gate cost. The first part of the circuit calculates the carry for each bit. Next,
the carry values are XOR-assigned to the corresponding lines of a, which are thereby set
to the value a′i = ai ⊕ ci−1. The lines of b are simultaneously restored to their original
values (highlighted in grey). Finally, the value of b is XOR-assigned to the lines of a′,
resulting in the required value of ai ⊕ bi ⊕ ci−1.

The decrease assignment, e.g. a -= b, is a substraction of the right hand side from
the left hand side (modulo 2n). Analogous to increment and decrement (Sec. 7.1.2), the
decrease assignment is the inverse function of the increase assignment. Consequently, it
can be realized by using the increase building block in reverse gate order, as shown in
Fig. 7.4.

7.3. Expression Operations

In SyReC, expressions can be used for calculating values to be assigned to variables, like
in the statement c ^= (a * b). These expressions mostly consist of bitwise, arithmetic,
and shifting operations. Another use of expressions is the specification of conditions

50

7.3. Expression Operations

a a

0 a

(a) !a

a0 a0

a1 a1...
...

an−1 an−1

0 a0

0 a1...
...

0 an−1

. . .

. . .
. . .

(b) ∼
a

Figure 7.5.: Building Blocks for Logical and Bitwise Negation

for if-statements, like if (a < b), where mostly relational and logical operations are
employed. The building blocks used to synthesize expressions of any kind are described
in this section. In all cases, the values of the input variables must be preserved, so new
lines (with constant input value 0) are added to the circuit to calculate the output of
each operation.

7.3.1. Logical and Bitwise Operations

Logical operations are designed for single bit inputs, where 1 is interpreted as true
and 0 is interpreted as false. Bitwise operations are an extension of logical operations
to variables with arbitrary bit widths. Here, the respective operation is performed
independently on each bit, which makes the building blocks easy to expand.

Negation

The negation of a single bit is easily accomplished by adding a NOT gate. However,
since the input values need to be preserved, the original values are “copied” on new
lines via CNOT gates before the actual negation is done. Fig. 7.5 shows the logical and
bitwise negation.

Conjunction

The conjunction of two bits ai and bi can be computed with a single Toffoli gate. Its
control lines are ai and bi, and its target line is a new line with constant input value 0.
The output on the target line is ai · bi ⊕ 0, which is equal to ai · bi. Fig. 7.6 shows the
logical and bitwise conjunction.

Disjunction

To realize the disjunction of two bits ai and bi, three gates are necessary. Since ai + bi
can not be directly translated to Toffoli gates, the equivalent function ai ⊕ bi ⊕ ai · bi is
implemented. Fig. 7.7 shows the logical and bitwise disjunction.

51

7. SyReC Building Blocks

a a

b b

0 a · b

(a) a && b

a0 a0

a1 a1...
...

an−1 an−1

b0 b0

b1 b1...
...

bn−1 bn−1

0 a0 · b0

0 a1 · b1...
...

0 an−1 · bn−1

. . .

. . .

. . .

(b) a & b

Figure 7.6.: Building Blocks for Logical and Bitwise Conjunction

a a

b b

0 a+ b

(a) a || b

a0 a0

a1 a1...
...

an−1 an−1

b0 b0

b1 b1...
...

bn−1 bn−1

0 a0 + b0

0 a1 + b1...
...

0 an−1 + bn−1

. . .

. . .

. . .

(b) a | b

Figure 7.7.: Building Blocks for Logical and Bitwise Disjunction

52

7.3. Expression Operations

a0 a0

a1 a1...
...

an−1 an−1

b0 b0

b1 b1...
...

bn−1 bn−1

0 a0 ⊕ b0

0 a1 ⊕ b1...
...

0 an−1 ⊕ bn−1

. . .

. . .

. . .

. . .

Figure 7.8.: Building Block for a ^ b

Exclusive Or

To compute the exclusive or of two bits ai and bi, the value of ai is first “copied” to
a new line using a CNOT gate, so the input value of ai can be preserved. Then, the
exclusive or is realized by adding another CNOT gate with control on bi and target on
the new line, resulting in the output ai ⊕ bi. Fig. 7.8 shows the bitwise exclusive or.

7.3.2. Arithmetic Operations

Arithmetic operations tend to be the most complicated operations, especially regarding
the extension to arbitrary bit widths of the input variables. Many realizations of adders,
multipliers, etc. in reversible logic have been proposed, but most of them are limited to
certain bit widths (see e.g. [GW15, ME13, GK14]). The building blocks proposed here
are far from optimal regarding gate cost, but automatically expandable to any bit width.

Addition and Subtraction

To calculate the expression a + b, a set of new lines z with constant input value 0 is
added to the circuit. Then, the addition can be done by “copying” the value of a to the
new lines and increasing it by b, which is equivalent to executing the statements z ^=

a; z += b. To realize this statements, the building blocks for the assignments described
in Sec. 7.2 can be used. As a result, the building block for the addition is composed of
the building blocks for XOR assignment and increase, as shown in Fig. 7.9a.

The subtraction is implemented in a similar fashion, as shown in Fig. 7.9b. For a -

b, the value of a is first “copied” and then decreased by b.

53

7. SyReC Building Blocks

a0 a0

a1 a1...
...

an−1 an−1

0 (a + b)0

0 (a + b)1...
...

0 (a + b)n−1

...

+=

+=...
+=

b0 b0

b1 b1...
...

bn−1 bn−1

. . .

. . .

(a) a + b

a0 a0

a1 a1...
...

an−1 an−1

0 (a - b)0

0 (a - b)1...
...

0 (a - b)n−1

...

-=

-=
...

-=

b0 b0

b1 b1...
...

bn−1 bn−1

. . .

. . .

(b) a - b

Figure 7.9.: Building Blocks for Addition and Subtraction

Multiplication

The multiplication is realized using partial products. For example, the expression a *

b, with a and b having a bit width of three, is calculated as follows.

(b2 b1 b0) · a0
+ (b2 b1 b0) · a1
+ (b2 b1 b0) · a2

z2 z1 z0

Note that the bit width of the result is the same as the inputs’, so only the lower bits of
the arithmetic result are provided. For calculating the upper bits of the multiplication,
the expression a *> b is used, as described in the next section.
The building block implementing the multiplication is shown in Fig. 7.10. The first

block is a controlled XOR assignment, i.e. b is assigned to z iff a0 = 1. Corresponding
to the first line in the example calculation, this is equal to z = a0 · b. The next block
implements the next step by calculating zn−1zn−2 . . . z1 += a1 · bn−2 . . . b1b0, which is
equal to z += a1 · (b << 1). Continuing this scheme, all partial products are added up
to the final multiplication result.

54

7.3. Expression Operations

a0 a0

a1 a1...
...

an−2 an−2

an−1 an−1

z0 = 0 (a * b)0

z1 = 0 (a * b)1...
...

zn−2 = 0 (a * b)n−2

zn−1 = 0 (a * b)n−1

ˆ=

ˆ=...
ˆ=

ˆ=

...

+=...
+=

+=

...

. . .

. . .

...

+=

+= +=

b0 b0

b1 b1...
...

bn−2 bn−2

bn−1 bn−1

Figure 7.10.: Building Block for a * b

Upper Bits of Multiplication

To compute the upper bits of a multiplication, the whole product is calculated, i.e. if
both input variables have a bit width of n, a set of 2n new lines is used to compute
the result. Like in the previous section, partial products are applied, as shown in the
following for a bit width of three.

(b2 b1 b0) · a0
+ (b2 b1 b0) · a1
+ (b2 b1 b0) · a2

z5 z4 z3 z2 z1 z0

Although the complete set z ist needed for the calculation, the actual result of a *>

b is found on the “upper half” z5z4z3.
Fig. 7.11 shows the implementation of the full multiplication. Again, each block

calculates one partial product and adds it to the result. But since no bits are cut off
here, all blocks (except the first) have the same size. For example, when computing only
the lower bits of the multiplication, z += a1 · (b << 1) is equal to zn−1zn−2 . . . z1 +=
a1 · bn−2 . . . b1b0, where bn−1 is cut off. When computing the full multiplication, z +=
a1 · (b << 1) is equal to zn+1znzn−1 . . . z1 += a1 · bn−1bn−2 . . . b1b0. As can be seen, one
more bit of b and two more bits of z are involved. The bit zn+1 needs to be included in
the increase block in case a carry is produced by adding the respective partial product.
An increase block as described in Sec. 7.2.2 does not compute this carry value, so a
slightly modified version is applied. Fig. 7.12 shows this building block, where a line and
two gates (highlighted in gray) are added to calculate cn−1.

55

7. SyReC Building Blocks

a0 a0

a1 a1...
...

an−2 an−2

an−1 an−1

z0 = 0 (a * b)0

z1 = 0 (a * b)1...
...

zn−1 = 0 (a * b)n−1

zn = 0 (a *> b)0

zn+1 = 0 (a *> b)1...
...

z2n−2 = 0 (a *> b)n−2

z2n−1 = 0 (a *> b)n−1

ˆ=

...

ˆ=

ˆ=

...

...

+=

+=

+=

...

+=

.. .

. . .

. . .

. . .

...

...
+=

+=

+=

+=

...

+=

+=

...

+=

+=

b0 b0

b1 b1...
...

bn−2 bn−2

bn−1 bn−1

Figure 7.11.: Building Block for a *> b

...

...

a0 a′
0

a1 a′
1

a2 a′
2...

...
an−1 a′

n−1

b0 b0

b1 b1

b2 b2...
...

bn−1 bn−1

0 cn−1

. . .

. . .
bn−2

... b3 b′3

. . .

. . .
b′n−2

a′
n−2

. . .

. . .

. . .

calculate ci

Figure 7.12.: Building Block for a += b with Carry Out

56

7.3. Expression Operations

q0 = 0 (a / b)0...
...

qn−2 = 0 (a / b)n−2

qn−1 = 0 (a / b)n−1>=

>=

>=

...

...

a0 (a % b)0...
...

an−2 (a % b)n−2

an−1 (a % b)n−1− = − =

− =

...

...

− =

− =

− =

b0 b0

b1 b1

b2 b2...
...

bn−1 bn−1

. . .
. . .

...

...

(a) Calculating Quotient and Remainder

q0 = 0 (a / b)0...
...

qn−2 = 0 (a / b)n−2

qn−1 = 0 (a / b)n−1

a0 a0...
...

an−2 an−2

an−1 an−1

...

...

...

%

%

%

/

/

/

...

...

+ =

+ =

+ =
.. .

...

. . .

+ =

+ =

+ =

b0 b0

b1 b1

b2 b2...
...

bn−1 bn−1

(b) a / b

0 a % b

0 a / b

ˆ= %

/

a a

b b

(c) a % b

Figure 7.13.: Building Blocks for Division and Modulo

Division and Modulo

The result of a division (a / b) is the quotient, while the result of a modulo operation
(a % b) is the remainder of the division. Naturally, both operations can be realized
with the same building block. The underlying idea is the standard algorithm for long
division, as shown in the following example for a = 111 and b = 010.

1 1 1 / 010 = 011
− 1 0
0 1 1

− 0 1 0
0 0 1

First, a2 is compared to b. Obviously, a2 = 1 is smaller than b = 10, so b does not “go
into” a2. As a result, the first bit of the quotient is 0. Next, a2a1 is compared to b. Since
a2a1 = 11 is not smaller than b, the second bit of the quotient is 1, and b is subtracted
from a2a1, resulting in a′2a

′
1. In the last step, a′2a

′
1a0 is compared to b. As b goes into

57

7. SyReC Building Blocks

011, the third bit of the quotient is 1, and b is subtracted from a′2a
′
1a0, resulting in the

remainder 001.
Fig. 7.13a shows the building block implementing this algorithm. A set of new lines

q with constant input value 0 is used to calculate the quotient, while the remainder is
computed on the lines of a. The first step is comparing an−1 to b. Naturally, an−1 can
only be greater than or equal to b, if bn−1bn−2 . . . b2b1 = 0. For this reason, NOT gates
are added to the lines of bn−1bn−2 . . . b2b1 and used as control lines for the comparison
of an−1 and b0. So iff bn−1bn−2 . . . b2b1 = 0 and an−1 >= b0, i.e. b goes into an−1, the
value of qn−1 is set to 1 and b0 is subtracted from an−1 (which is equal to subtracting
b). Otherwise, qn−1 remains 0. A NOT gate is added to restore the original value of b1
for the next step. Then, iff bn−1bn−2 . . . b2 = 0 and a′n−1an−2 >= b1b0, the value of qn−2

is set to 1 and b1b0 (equal to b) is subtracted from a′n−1an−2. This scheme is continued
until b is compared to and possibly subtracted from a′n−1a

′
n−2 . . . a

′
1a0, which completes

the calculation.
While this building block computes both the quotient and the remainder, it does

not preserve the input value of a. Thus, additional effort is necessary for the desired
implementation of the division and modulo operations. Fig. 7.13b shows the building
block used to compute a / b. Here, the original value of a is restored by adding b to
the remainder where it was subtracted before, i.e. reversing the subtractions.

The implementation of a % b is shown in Fig. 7.13c. Since the new value of a is the
result here, the original value is preserved by “copying” it to another set of new lines
before the calculation is done.

7.3.3. Shifting Operations

The shifting operations in SyReC allow a logical shift of a variable by a constant number
of bit positions, either to the left or to the right. Vacant bit positions are filled up with
0. Since the shift amount is a constant value known during synthesis, the realization is
straightforward.

For example, the expression a << x describes the following mapping.

an−1 . . . an−xan−x−1 . . . a1a0 �→ an−x−1 . . . a1a00 . . . 0

To calculate the result, a set of new lines z with constant input value 0 is added to the
circuit. The values of ai are “copied” to the corresponding lines of z via CNOT gates, as
illustrated in Fig. 7.14a. For instance, a0 is connected to zx, a1 to zx+1, and an−x−1 to
zn−1. As an−x to an−1 are cut off by the shifting, they are not connected to any result
lines. The vacant positions z0 to zx keep their constant input value 0.

The right shift a >> x describes the mapping

an−1 . . . ax+1ax . . . a1a0 �→ 0 . . . 0an−1 . . . ax+1ax.

Analogous to the left shift, this operation is realized with CNOT gates as shown in
Fig. 7.14b.

58

7.3. Expression Operations

a0 a0

a1 a1...
...

an−x−1 an−x−1
...

...
an−1 an−1

z0 = 0 0...
...

zx = 0 a0

zx+1 = 0 a1...
...

zn−1 = 0 an−x−1

. . .

. . .

(a) a << x

a0 a0...
...

ax ax

ax+1 ax+1
...

...
an−1 an−1

z0 = 0 ax

z1 = 0 ax+1
...

...
zn−x−1 = 0 an−1

...
...

zn−1 = 0 0

. . .

. . .

(b) a >> x

Figure 7.14.: Building Blocks for Shifting Left and Right

7.3.4. Relational Operations

Relational operations are used to find out e.g. if two variables have the same value
or if the value of one variable is greater than the other. The input variables can be of
arbitrary bit width, while the result is always just one bit (1 meaning true and 0 meaning
false). Since most relations can be defined in terms of each other, like a > b := b < a,
we decided to implement a building block for each the equals and less than operation
and reduce all other relational operations to these two.

Equals and Not Equals

To determine whether two variables are equal, a bitwise comparison is implemented.
The expression a = b should evaluate to true iff for all bits ai in a and all bits bi in b :
ai = bi. First, each pair of bits ai, bi is compared using a CNOT and a NOT gate as
shown in Fig. 7.15a, calculating ai ⊕ bi, which is equal to ai = bi. Next, a Toffoli gate
with controls on all these values is applied to realize the conjunction. Its target line, the
result line with constant input value 0, will only be flipped to 1, if ai ⊕ bi is true for all
i. Finally, the original value of a is restored.

For determining whether two variables are not equal to each other, the equals building
block is used in combination with a NOT gate to negate its result. This realization is
sketched in Fig. 7.15b.

59

7. SyReC Building Blocks

a0 a0

a1 a1...
...

an−1 an−1

b0 b0

b1 b1...
...

bn−1 bn−1

0 a = b

. . .

. . .

. . .

. . .

ai ⊕ bi restore values of ai

(a) a = b

0 (a = b)=

a a

b b

(b) a != b

Figure 7.15.: Building Blocks for Equals and Not Equals

Less/Greater and Less/Greater or Equal

Since all variables in SyReC are interpreted as unsigned integers, the value of a variable
a is less than the value of a variable b, iff

• an−1 < bn−1, i.e. the MSB of a is 0 and the MSB of b is 1, or

• an−1 = bn−1 and an−2 < bn−2, or

...

• an−1an−2 . . . a2 = bn−1bn−2 . . . b2 and a1 < b1, or

• an−1an−2 . . . a1 = bn−1bn−2 . . . b1 and a0 < b0.

This comparison is implemented as shown in Fig. 7.16a. First, a CNOT gate for each
bit of the variables computes ai⊕ bi. Then, a Toffoli gate is applied which flips the value
0 on the result line iff (an−1 ⊕ bn−1) · bn−1. This condition is fulfilled only if bn−1 = 1
and an−1 = 0, i.e. an−1 < bn−1, so the Toffoli gate computes the first listed case for a
< b. For the next case, a NOT gate is added to the line containing an−1 ⊕ bn−1, thus
changing its value to an−1 = bn−1. Since this is a condition for all following cases of a
< b, the respective line is used as a control line for all following Toffoli gates. The next
case, i.e. an−1 = bn−1 and an−2 < bn−2, is represented by a Toffoli gate with controls on
an−1 = bn−1, an−2 ⊕ bn−2, and bn−2. After that, another NOT gate is used to introduce
the condition an−2 = bn−2 for all following cases. This scheme is continued until each
case for a < b is represented by a Toffoli gate. Since all cases are exclusive, the value
on the result line will be flipped to 1 by exactly one Toffoli gate if a < b is true, and
remain 0 otherwise.

After the computation of a < b, the lines of a are restored to their original values.

To compute a > b, which is equal to b < a, the less than building block is applied
with switched inputs, as sketched in Fig. 7.16b.

60

7.4. Conclusion

a0 a0

a1 a1...
...

an−1 an−1

b0 b0

b1 b1...
...

bn−1 bn−1

0 a < b

. . .

. . .

...

...

. . .
...

...

ai ⊕ bi restore values of ai

(a) a < b

0 b < a<

b

ba

a

(b) a > b

0 (a < b)<

a a

b b

(c) a >= b

0 (b < a)<

b

ba

a

(d) a <= b

Figure 7.16.: Building Blocks for Less/Greater and Less/Greater or Equal

The operation a >= b can be defined as (a < b). Consequently, it is implemented
using the less than block in combination with a NOT gate, as shown in Fig. 7.16c.

In a similar way, a <= b can be defined as (b < a). Fig. 7.16d shows the implementa-
tion using the less than building block with switched inputs and negating its result.

7.4. Conclusion

In this chapter, we gave a detailed description of the building blocks used in SyReC
synthesis. Since these circuit patterns have to be expandable to arbitrary bit widths
of their input variables, their realizations are handmade, some with a large overhead
in terms of gate count and cost. While not all additional expenses can be avoided,
there surely is potential for optimization in some building blocks. When a more efficient
pattern is found to realize an operation, the corresponding building block can easily be
replaced.

61

8. Optimization of SyReC Synthesis

In this chapter, we present two approaches to optimize the synthesis of SyReC specifi-
cations. First, an extended synthesis scheme is presented, which can reduce the number
of circuit lines using additional gates. Second, a scheme is presented which can reduce
the gate cost of resulting circuits, using one additional circuit line. This method can be
applied to both the original and the extended synthesis scheme. After presenting the
optimization methods, Section 8.3 provides an experimental evaluation. Here, the initial
synthesis scheme is compared to a BDD-based synthesis scheme first before investigating
the effects of the line- and cost-aware synthesis.

8.1. Line-aware Synthesis

In order to realize SyReC specifications with a smaller number of additional circuit lines,
an extended synthesis scheme is presented in this section (based on [WSSD12]). The
idea is to use the same building blocks as introduced in the previous chapters, but to
undo intermediate results of the expressions as soon as they are not needed anymore. A
similar idea (for reversible software programs) has previously been proposed in [Axe11].
This enables that circuit lines which have been occupied by expressions before can be
re-used.

In the following, the general concept of this scheme is illustrated before the extended
synthesis is described in detail for all possible SyReC statements. Afterwards, the nec-
essary amount of additional circuit lines is discussed.

8.1.1. General Concept

The extended synthesis approach follows the scheme as introduced in Chapter 6, but is
extended by an additional third step:

3) Add the inverse circuit from Step 1, i.e. G−1
� , to the circuit in order to reset the

circuit lines buffering the result of the expressions to the constant 0.

Example 10 Consider the two following generic HDL statements:

a ⊕= (b � c);

d ⊕= (e � f);

Fig. 8.1 sketches the resulting circuit after applying the extended synthesis scheme. The
first two sub-circuits Gb�c and Ga⊕=b�c ensure that the first statement is realized. This
is equal to the scheme proposed in Chapter 6 and leads to additional lines with constant
inputs (highlighted thick). Afterwards, a further sub-circuit G−1

b�c is applied. Since G−1
b�c

63

8. Optimization of SyReC Synthesis

a a⊕(b�c)⊕=

0 Gb�c G−1
b�c

b b

c c

d d⊕(e�f)⊕=

0 0Ge�f G−1
e�f

e e

f f

Figure 8.1.: Scheme for Line Reduction in SyReC Synthesis

is the inverse of Gb�c, this sets the circuit lines buffering the result of b� c back to the
constant 0. As a result, these circuit lines can be reused in order to realize the following
statements as illustrated for d⊕=e� f in Fig. 8.1.

8.1.2. Resulting Synthesis Scheme

Following the proposed concept, each statement can be realized with zero garbage out-
puts. In the following, the precise realization of this scheme is detailed for each possi-
bly affected statement. The unary statements, the swap-statement (<=>) and the skip-
statement are not considered here as they are realized without additional circuit lines.

Assignment Statements

In order to realize statements of the form a⊕=e with e being an arbitrary expression,
basically the respective building blocks are orchestrated as already illustrated in Fig. 8.1.
First, a sub-circuit realizing the expression e, i.e. the right-hand side of the statement,
is created. This requires additional lines to store the result of e. Next, a sub-circuit
realizing the assignment operation is created as well as a sub-circuit reversing the result
of e into a constant value. The latter is done by reversing the order of gates of the first
sub-circuit. Finally, all three sub-circuits are composed leading to the desired realization
of the statement.

Example 11 Fig. 8.2 shows the circuit obtained by synthesizing cˆ=(a + b) using the
extended synthesis scheme. The respective sub-circuits Ga+b, Gcˆ=a+b, and G−1

a+b are
highlighted by dashed rectangles. Since all gates considered in this work are self-inverse,
G−1

a+b is obtained by reversing the order of the gates of Ga+b.

Applying this procedure, any arbitrary combination of assignment statements and
expressions can be realized in a garbage-free manner. That is, required additional circuit
lines are ancilla lines and can be reused for other statements and operations.

64

8.1. Line-aware Synthesis

c0 c′0
c1 c′1
0 0
0 0
a0 a0

a1 a1

b0 b0
b1 b1

Ga+b G−1
a+b

Gcˆ=a+b

Figure 8.2.: Synthesizing c ^= (a+b)

Conditional Statements

As described in Section 6.4.2, there are two proposed realizations for conditional state-
ments (cf. Fig. 6.4).

Fig. 8.3b illustrates the adjusted procedure for the synthesis of a conditional statement
according to the first realization (i.e. according to the scheme illustrated in Fig. 6.4b).
The gates needed to realize the then-block (else-block) are highlighted in dark gray
(light gray). Also here, a sub-circuit Gif evaluating the respective if -expres-sion is cre-
ated. The intermediate results of that expression are handled analogously to assignment
statements as described above. An additional circuit line is applied to store the Boolean
result of the if -expression and control the execution of the then- and else-block as de-
scribed in Section 6.4.2. The flip on the additional line, which is done to control the
gates of the else-block, is then restored by another NOT gate. Afterwards, the original
(constant) value of that line is restored by applying a sub-circuit Gfi which evaluates
the fi -expression of the statement analogous to Gif . As defined in Section 5.3.3, SyReC
requires the definition of a fi -expression that evaluates to the same Boolean value as the
if -expression did in Gif .

Besides that, Fig. 8.3c illustrates the adjusted procedure for the synthesis of a con-
ditional statement according to the second realization (i.e. according to the scheme
illustrated in Fig. 6.4c). The gates highlighted in dark gray (light gray) correspond to
the then-block (else-block). Also here, a sub-circuit Gif is created as in the first re-
alization, and the result of the if -expression is stored in an additional line e (the top
line in Fig. 8.3c). The conditional statement is then realized by applying the procedure
described in Section 6.4.2. Afterwards, the values of the additional lines that were used
to duplicate signals are reset to the constant value 0. This is done by applying the
gates used in the then- and else-block again with e as an additional control line. The
additional lines are set to the values of the corresponding signal lines, which are then
used to undo the duplication and set the additional lines back to 0. The value of e is
reset to 0 by creating a sub-circuit Gfi as in the first realization.
The original advantage of the second realization was lower quantum cost and transistor

cost, since the realization of the then- and else-block does not have an extra control line
on each gate. This advantage is lost here. Since the values of the additional lines depend

65

8. Optimization of SyReC Synthesis

if (a = b)
then

a ⊕= c

else

b ⊕= c

fi (a = (b⊕ c))

(a) Code

0 0Gif Gfi

a a′⊕=

b b′⊕=

c c

(b) Without Additional Lines

0 0Gif Gfi

a a′

b b′

0 0⊕= ⊕=

0 0⊕=

⊕=

⊕=

−1

⊕=

−1

c c

(c) With Additional Lines

Figure 8.3.: Synthesizing Conditional Statements

on the value of e (e.g. a if e = 1 and a′ if e = 0) and the realizations of the then- and
else-block are needed to set the additional line to the same value as the signal line
(e.g. a′ if e = 1 and a if e = 0), both the realization of the then- and else-block have to
be added to the circuit with an extra control line on each gate. As a consequence, the
second realization of conditional statements in the line-aware synthesis leads to both,
additional circuit lines as well as higher costs, and is therefore not considered any further.

Loops and Calls

The realization of loops and module calls is treated in a straight forward manner ex-
ploiting the procedures proposed above. More precisely, calls are substituted by the
corresponding statements inside the body of the call. Loops are realized by explicitly
cascading (i.e. unrolling) the respective statements within a loop block according to the
fixed and finite number of iterations.

8.1.3. Discussion

Applying the extended synthesis scheme, every statement is synthesized with zero garbage
outputs and only additional ancilla lines. Consequently, the total number of additional
lines which are required to realize a SyReC specification with the proposed solution can
be determined by the statement that requires the largest number of additional lines in
order to buffer intermediate results.

Example 12 Consider a sequence of three assignment statements to be synthesized.
Additionally, assume that 1, 3, and 2 circuit lines are needed to buffer the intermediate
results of the respective expressions. Then, in total max{1, 3, 2} = 3 additional circuit
lines are needed to realize the statements. Fig. 8.4 illustrates how these circuit lines

66

8.1. Line-aware Synthesis

0 0

⊕= ⊕= ⊕=

� � � � � �

3 2
1 1 3 3 2 2

1 3

Figure 8.4.: Effect of Expression Size on Resulting Circuit

are applied. For comparison, the synthesis scheme from Chapter 6 needs 1 + 3 + 2 = 6
additional circuit lines.

The number of additional circuit lines can further be reduced in many cases by restruc-
turing the SyReC code. In general, larger expressions lead to more intermediate results
to be buffered. Thus, if the same functionality can be represented by more but smaller
statements, a further reduction in the number of lines is possible.

Example 13 Consider the following statement:

a += ((b & c) + ((d * e) - f))

In order to execute the outer expression (i.e. the addition operation), the intermediate
results of the inner expressions (b & c), (d * e), and ((d * e) - f) are buffered at the
same time. Considering 32-bit signals, this requires 96 circuit lines (in addition to 32
circuit lines needed to buffer the result of the outer expression itself, i.e. 128 in total).

In contrast, the same functionality can also be specified by the following statements.

a += (b & c);

a += (d * e);

a -= f;

Here, the respective binary operations are applied separately with an assignment opera-
tion. Hence, no more than 32 ancilla lines are needed to buffer the intermediate results.

Overall, a price for the smaller number of circuit lines is an expected increase in the
number of gates, and thus in the gate costs. However, the increase in the gate costs is
bounded. For example, in comparison to the synthesis scheme from Chapter 6 where
the building blocks G� and G⊕ are applied for each assignment statement, the extended
scheme uses just one more building block G−1

� . Since G−1
� is the inverse of G�, the

circuit can at most double its gate cost.
Overall, the resulting circuits still include additional circuit lines with constant inputs.

But considering that, until today, the synthesis of complex functionality as a reversible
circuit with the minimal number of lines is a cumbersome task (e.g. [WKD11]), the
proposed solution enables to keep this number relatively small.

67

8. Optimization of SyReC Synthesis

8.2. Cost-aware Synthesis of SyReC Specifications

Finally, all synthesis approaches proposed in the previous sections can further be refined
in order to reduce the costs of the resulting circuits. An observation made in [MWD10]
is exploited for this purpose. Here, it has been observed that many reversible circuits
are composed of cascades of gates with several common control lines. As reviewed in
Section X, the costs of single gates mainly depend on their respective number of control
lines. Hence, buffering the results of common control conditions of a cascade of gates
enables to reduce the number of required control lines in each gate. As a result, the
costs of each gate and, hence, the costs of the entire circuit are decreased significantly.

Example 14 Consider an 8-bit realization of the increment statement (++=a) as shown
in Fig. 8.5a. The gates in this cascade have several common control lines, e.g. C ′ =
{a0, a1, a2}. By adding two Toffoli gates T(C ′, {h}), the result of the common control
conditions C ′ can be buffered in an ancilla line h as shown in Fig. 8.5b (the new gates
are emphasized with a gray box and the line h is on the top). This enables that all gates
with control lines C ⊇ C ′ can be simplified, i.e. instead of C a smaller set of control
lines (C \ C ′) ∪ {h} is sufficient (in Fig. 8.5b, the saved control lines are indicated with
dashed circles). As a result, the costs of the gates and, hence, the costs of the overall
circuit are significantly reduced. In fact, quantum costs can be improved from 431 to 116
(73%) and transistor costs can be improved from 224 to 192 (14%).

Similar observations can be made for many other building blocks as well. Particularly
(nested) conditional statements frequently lead to large cascades of gates with common
control lines. This is because the circuit lines representing the conditional expressions
control whole cascades realizing the respective then- and else-blocks. Hence, it is worth
to exploit these observations.

Note that an improvement is obviously only possible if the total costs of the two added
gates are less than the costs saved by buffering the common control lines. Furthermore, a
free ancilla line has to be available. This is either already the case (e.g. when a constant
circuit line is required anyway for the realization of another expression) or can explicitly
be added by the designer to enable this reduction.

Following these concepts, synthesis of SyReC specifications can be refined as follows:

1. Synthesize a statement as described in the previous sections.

2. Determine cascades of gates t1(C1, T1) . . . tk(Ck, Tk) which satisfy the following
criteria:

a) The gates in the cascade have a common set C ′ of control lines, i.e. Ci ⊇ C ′

for 1 ≤ i ≤ k.

b) The value of the common control lines is not modified within this cascade,
i.e. C ′ ∩ Ti = ∅ for 1 ≤ i ≤ k.

3. Create a new cascade T(C ′, {h})t1((C1 \ C
′) ∪ {h}, T1) . . .

tk((Ck+1 \ C
′) ∪ {h}, Tk)T(C

′, {h}).

68

8.3. Evaluation of the Resulting Circuits

a0 a′
0

a1 a′
1

a2 a′
2

a3 a′
3

a4 a′
4

a5 a′
5

a6 a′
6

a7 a′
7

(a) Original Realization

0 0

a0 a′
0

a1 a′
1

a2 a′
2

a3 a′
3

a4 a′
4

a5 a′
5

a6 a′
6

a7 a′
7

(b) Revised Realization

Figure 8.5.: Scheme for Cost Reduction in SyReC Synthesis

4. If a free circuit line h is available and the new cascade is cheaper than the original
cascade, replace the original cascade with the new one.

This procedure is applicable to both synthesis approaches, i.e. to the scheme proposed in
Chapter 6 as well as to the extended scheme proposed in Section 8.1. Determining the
best possible cascades for replacement is a complex task as the order in which common
control lines are exploited typically has an effect. Hence, we apply this procedure only
for single statements leading to local optima. As confirmed by the experiments in the
next section, this leads to significant improvements in short run-time.

8.3. Evaluation of the Resulting Circuits

Besides the case study on the applicability of the hardware description language in
Chapter 9, we also conducted a thorough study on the quality of the resulting circuits.
For this purpose, we implemented all synthesis schemes as described above in C++
on top of RevKit [SFWD12]. As benchmarks for the evaluation, we used the SyReC
specifications from the respective CPU components discussed in the previous section
as well as further designs which have been made available at RevLib [WGT+08]. All
experiments have been performed on a 2.8 GHz Intel Core i7 processor with 7.8 GB of
main memory. In the following, the results are summarized and discussed.

69

8. Optimization of SyReC Synthesis

Table 8.1.: Comparison of SyReC Synthesis to BDD-based Synthesis
BDD-based Synth. SyReC Synth. SyReC Synth.

PI/ [WD09] if w/o add. Lines if with add. Lines
Benchmark bw PO a.L. QC TC run-time a.L. QC TC a.L. QC TC
CPU from Chapter 9
cpu alu 16 55 1 852 20 660 77 704 165.99 349 662 531 568 328 2 085 31 244 67 896
cpu alu 32 103 – – – >500 653 2 235 491 1 917 448 6 101 112 396 218 680
cpu control unit 16 233 618 7 119 27 264 0.12 158 40 433 43 888 413 22 343 31 432
cpu pc 11 24 39 392 1 456 0.00 13 857 912 68 797 1 336
cpu register 16 149 512 7 040 25 600 0.05 18 9 833 8 472 162 7 560 8 472
cpu register 32 293 1 024 14 080 51 200 0.21 34 19 641 16 792 322 15 096 16 920
Benchmarks from RevLib [WGT+08]
alu 16 50 – – – >500 67 258 872 234 424 115 146 385 151 168
alu 32 98 – – – >500 131 1 704 912 1 402 232 227 1 230 577 1 064 000
alu flat 16 50 – – – >500 68 181 662 179 464 132 146 496 151 472
alu flat 32 98 – – – >500 132 1 380 526 1 177 928 260 1 230 784 1 064 560
simple alu 16 50 – – – >500 67 35 463 39 552 115 6 275 17 568
simple alu 32 98 – – – >500 131 144 791 154 432 227 25 531 67 744
bubblesort 16 64 – – – >500 254 29 327 44 248 748 21 149 43 272
bubblesort 32 128 – – – >500 494 58 739 88 840 1 468 42 281 87 096
callif 16 33 499 7 031 26 128 3.80 1 1 522 3 816 33 641 2 664
callif 32 65 – – – >500 1 3 154 7 912 65 1 313 5 480
mult stmts 16 96 – – – >500 32 6 122 16 960 32 6 122 16 960
mult stmts 32 192 – – – >500 64 25 282 66 752 64 25 282 66 752
nestedif 16 34 752 10 534 39 128 11.04 3 6 982 11 000 99 1 475 5 848
nestedif 32 66 – – – >500 3 14 470 22 776 195 3 011 11 992
nestedif2 16 34 257 3 348 12 312 1.72 4 8 423 8 856 100 6 034 6 824
nestedif2 32 66 – – – >500 4 31 703 27 736 196 26 674 23 784
varops 16 48 – – – >500 64 1 361 6 512 64 1 361 6 512
varops 32 96 – – – >500 128 2 801 13 424 128 2 801 13 424

8.3.1. Comparison to Previous Work

In a first evaluation, we compared the quality of the circuits obtained using the initial
synthesis scheme (as introduced in Chapter 6) to previously proposed solutions. As
discussed in Chapter 1, most of the existing synthesis approaches for reversible circuits
rely on non-compacted Boolean descriptions and are therefore often not scalable. In
fact, the complex circuitry considered here cannot be realized by most of them. The
BDD-based synthesis approach presented in [WD09] represents an exception as it relies
on a compacted Boolean representation. Hence, we compared the circuits generated by
SyReC with the equivalent realizations generated by the approach from [WD09].

The results are summarized in Table 8.1. The first columns give the name of the
benchmark, the bit width of the realization as well as the number of primary inputs and
outputs (denoted by Benchmark, bw, and PI/PO, respectively). The following columns
give the number of additional circuit lines (a.L.), the quantum cost (QC), and the
transistor cost (TC) of the circuits obtained using the BDD-based approach (denoted
by BBD-based synth.) and the SyReC synthesizer. For the latter, we distinguish between
the realization of if-statements according to Fig. 6.4b (denoted by if w/o add. Lines)
and according to Fig. 6.4c (denoted by if with add. Lines). For the BDD-based approach
the run-time is additionally listed. This is omitted for the SyReC solution as all circuits
have been realized in less than one CPU second.

70

8.3. Evaluation of the Resulting Circuits

As can be clearly seen, the proposed approach outperforms the BDD-based synthesis
with respect to scalability. In particular for the benchmarks including arithmetic (e.g. the
alu realizations), BDD-based synthesis requires a significant amount of time to generate
a result; often the results cannot be achieved within the applied timeout of 500 CPU
seconds. This can be explained by the fact, that in particular for the multiplication
no efficient representation as BDD exists. Thus, for these components the BDD-based
approach suffers from memory explosion.

Besides that, these results also confirm the discussion from Section 6.4.2 concerning
the different realizations of the if -statements. If additional circuit lines are applied, the
respective costs can significantly be reduced. In comparison to the realization without
additional circuit lines for if -statements, approx. 40% (95% in the best cases) of the
quantum costs and more than 20% (90% in the best cases) of the transistor costs can be
saved. In contrast, this leads to a significant increase in the number of additional lines.

8.3.2. Effect of Line- and Cost-aware Synthesis

In a second evaluation, the effect of the optimized synthesis schemes presented in Sec-
tion 8.1 (for line-aware synthesis) and Section 8.2 (for cost-aware synthesis) has been
evaluated. Here, Table 8.2 presents the results generated with the following schemes:

• The synthesis scheme as described in Section 8.1 using the realization of if -
statements according to Fig. 6.4b (denoted by Line-aware synth.)1,

• the synthesis scheme as described in Section 8.2 using the realization of if -statements
according to Fig. 6.4b (denoted by Cost-aware synth.; if w/o add. Lines),

• the synthesis scheme as described in Section 8.2 using the realization of if -statements
according to Fig. 6.4c (denoted by Cost-aware synth.; if with add. Lines), and

• the synthesis scheme as described in Section 8.1 and Section 8.2 combined together
with the realization of if-statements according to Fig. 6.4b (denoted by Cost-aware
+ Line-aware synth.).

Beyond that, Table 8.2 uses the same denotation as Table 8.1. To further ease the inter-
pretation of the numbers, we additionally provide the average values of the respective
metrics for all considered synthesis schemes in Table 8.3.

The observations from above are confirmed. In fact, it becomes clearly evident that the
selection of the respective scheme is crucial to the resulting circuit sizes. Differences of
several orders of magnitude can be observed for all objectives. On average, the number
of additional lines varies from 48.8 (if the line-aware scheme is applied) to 559.7 (if
schemes are applied realizing if -statements according to Fig. 6.4c). Similarly, the worst
case quantum costs (transistor costs) of 558,967.7 (490,699.7) can be reduced to 27,271.7
(58,410.7) if cost-aware synthesis and the realization of if-statements with additional lines

1Note that a realization of if-statements according to Fig. 6.4c has not been considered for this scheme
since, as discussed in Section 8.1.2, line-aware synthesis would always lead to an increase in both,
additional lines and costs, in this case.

71

8. Optimization of SyReC Synthesis

Table 8.2.: Effect of Line- and Cost-aware SyReC Synthesis
Line-aware Synth. Cost-aware Synth. (Sec. 8.2) Cost-aware

(Sec. 8.1) if w/o Add. Lines if with Add. Lines + Line-aware Synth.
Benchmark bw a.l. QC TC a.l. QC TC a.l. QC TC a.l. QC TC
CPU from Chapter 9
cpu alu 16 87 1 281 717 1 103 200 350 63 025 112 048 2 086 30 208 67 144 88 118 751 215 568
cpu alu 32 151 4 381 653 3 766 496 654 178 783 337 000 6 102 107 136 215 112 152 331 151 648 208
cpu control unit 16 57 80 142 87 176 159 10 513 23 808 414 7 463 21 448 58 20 756 47 304
cpu pc 11 13 865 944 14 505 672 69 609 1 224 14 513 704
cpu register 16 17 9 848 8 512 19 2 217 3 352 163 2 600 5 144 18 2 232 3 392
cpu register 32 33 19 656 16 832 35 3 577 5 528 323 4 760 9 496 34 3 592 5 568
Benchmarks from RevLib [WGT+08]
alu 16 19 516 628 467 184 68 44 782 81 888 116 35 152 72 008 20 88 566 162 208
alu 32 35 3 407 588 2 801 136 132 174 594 319 888 228 150 928 297 224 36 347 198 636 672
alu flat 16 17 363 012 357 904 69 38 657 76 872 133 35 263 72 312 18 77 002 152 720
alu flat 32 33 2 760 420 2 353 808 133 158 241 307 208 261 151 135 297 784 34 315 850 612 368
simple alu 16 19 69 810 77 440 68 8 975 21 088 115 6 275 17 568 20 17 262 40 816
simple alu 32 35 287 346 305 536 132 30 775 74 592 227 25 531 67 744 36 60 206 146 544
bubblesort 16 153 34 374 53 512 255 11 615 31 960 749 12 653 36 360 154 13 830 38 920
bubblesort 32 297 68 766 107 320 495 21 827 61 192 1 469 24 569 70 968 298 25 950 74 296
callif 16 1 1 524 3 824 1 1 522 3 816 33 641 2 664 1 1 524 3 824
callif 32 1 3 156 7 920 1 3 154 7 912 65 1 313 5 480 1 3 156 7 920
mult stmts 16 16 11 572 30 704 32 6 122 16 960 32 6 122 16 960 16 11 572 30 704
mult stmts 32 32 49 172 126 832 64 25 282 66 752 64 25 282 66 752 32 49 172 126 832
nestedif 16 2 6 996 11 056 4 3 094 7 800 99 1 475 5 848 3 3 108 7 856
nestedif 32 2 14 484 22 832 4 6 358 15 992 195 3 011 11 992 3 6 372 16 048
nestedif2 16 3 8 504 9 072 5 5 243 6 568 101 3 809 5 224 4 5 324 6 784
nestedif2 32 3 31 784 27 952 5 17 269 17 960 197 14 424 15 464 4 17 350 18 176
varops 16 48 2 032 9 680 64 1 361 6 512 64 1 361 6 512 48 2 032 9 680
varops 32 96 4 176 19 920 128 2 801 13 424 128 2 801 13 424 96 4 176 19 920

72

8.4. Conclusion

Table 8.3.: Average Values of the Respective Metrics for all Schemes

add.lines QC TC

Initial Approach (Chap. 6)
if-stm. w/o additional lines 120.0 286037.4 252612.7
if-stm. w/ additional lines 559.1 129734.5 131327.3

Line-aware Scheme (Sec. 8.1)
48.8 558967.7 490699.7

Cost-aware Scheme (Sec. 8.2)
if-stm. w/o additional lines 120.0 34178.8 67533.0
if-stm. w/ additional lines 559.7 27271.7 58410.7

Cost- & Line-aware Scheme
49.5 63610.2 126376.0

is applied. However, both metrics behave complementary. That is, if a designer picks
the circuit with the best number of additional lines, he also gets the circuit with the
worst circuit costs. This is in line with observations previously made e.g. in [WSMD14].

Nevertheless, combining the line- and cost-aware schemes provides a good trade-off.
In doing so, circuits with 49.5 additional lines (just a bit more than the best result) and
quantum costs (transistor costs) of 63,610.2 (126,376.0) (less than twice than the best
result) are achieved on average.

8.4. Conclusion

To optimize the synthesis of SyReC specifications, we presented two different approaches.
First, we proposed an extended synthesis method, which uses additional gates to un-

compute temporary results, allowing former garbage outputs to be re-used as constant
inputs. Using this method, each SyReC statement is synthesized without any garbage
outputs, but only additional outputs with known constant values. As a consequence, the
total number of additional lines can be drastically reduced (e.g. from 653 to 151 for the
32 bit cpu alu). However, this comes at the cost of additional gates (at most doubled
gate cost).

The second approach combines common control lines of multiple gates to reduce gate
cost. An additional line is needed to temporarily keep the combined value of these
control lines. If there is a line with a constant value already present in the respective
parts of the circuit, no further line needs to be added. Using this approach, the gate
cost can be significantly reduced (e.g. quantum cost from 2,235,491 to 178,783 for the
32 bit cpu alu).
It is up to the designer to decide which metric is most important. Nevertheless, a good

compromise between the number of lines and gate cost can be made when combining
the two approaches, as shown in the experimental evaluation.

73

Part III.

Applications

75

9. Designing a RISC CPU in Reversible
Logic

In this chapter, the applicability of a reversible design flow is tested by designing a
RISC CPU in reversible logic. Starting from a textual specification, first the core com-
ponents of the CPU are identified. Previously introduced approaches are applied next to
realize the respective combinational and sequential elements. More precisely, the com-
binational components are designed using the reversible hardware description language
SyReC [WOD10], whereas for the realization of the sequential elements an external
controller (as suggested in [LP09]) is utilized.

Plugging the respective components together, a CPU design results which can process
software programs written in an assembler language. This is demonstrated in a case
study, where the execution of a program determining Fibonacci numbers is simulated.

The chapter is structured as follows. The specification of the CPU is provided in
Section 9.1, while Section 9.2 discusses the implementation details. Section 9.3 demon-
strates the execution of a software program on the proposed CPU. Finally, conclusions
are given in Section 9.4.

9.1. Specification of the CPU

In this section, the basic data of the proposed RISC CPU is provided. The specification
is inspired by the design of a conventional CPU (see [GKD06]). The CPU was created in
order to execute software programs provided in terms of the assembler language shown
in Table 9.1. This includes

• 8 arithmetic instructions,

• 8 logic instructions,

• 5 jump instructions, and

• 4 load/store instructions.

The respective assembler programs are transformed into sequences of binary instruction
words, which are processed by the CPU. A single instruction word is specified as shown
in Figure 9.1 by means of the ADD operation. Since in total 25 different instructions are
supported, the opcode consists of the five most significant bits of the instruction word
(00111 in case of the ADD instruction). The remaining bits give the encoding of the
natural numbers i, j, and k, which address the registers used by the instruction.

77

9. Designing a RISC CPU in Reversible Logic

Table 9.1.: Assembler Instructions for the CPU

Command Semantic

Arithmetic and Logic Instructions

ADC R[i], R[j], R[k] Addition with carry into R[i]
SBC R[i], R[j], R[k] Substraction with carry into R[i]
ADD R[i], R[j], R[k] Addition without carry into R[i]
SUB R[i], R[j], R[k] Substraction without carry into R[i]
ROR R[i], R[j] Bitrotation right of R[j]
ROL R[i], R[j] Bitrotation left of R[j]
SHR R[i], R[j] Bitshift right of R[j]
SHL R[i], R[j] Bitshift left of R[j]

NOT R[i], R[j] Bitwise negation
XOR R[i], R[j], R[k] Bitwise exor
OR R[i], R[j], R[k] Bitwise or
AND R[i], R[j], R[k] Bitwise and
MKB R[i], R[j], b Masking of bit b
INB R[i], R[j], b Inverting of bit b
SEB R[i], R[j], b Set bit b
CLB R[i], R[j], b Clear bit b

Jump Instructions

JMP d Jump to address d
JC d Jump to address d, if carry is set
JZ d Jump to address d, if zero-flag is set
JNC d Jump to address d, if carry is not set
JNZ d Jump to address d, if zero-flag is not set

Load/Store Instructions

LDD R[i], R[j] Load memory content of address R[j] into R[i]
STO R[j], R[k] Store R[k] into memory at address R[j]
LDL R[i], d Load constant d into low-byte of R[i]
LDH R[i], d Load constant d into high-byte of R[i]

The CPU has been designed as a Harvard architecture, where the bit width of both,
the program memory and the data memory, is 16 bit. The size of the program memory
is 4 kByte, while the size of the data memory is 128 kByte. Finally, the CPU has
8 registers, where R[0] always holds the constant 0 and R[1] always holds the constant 1,
respectively. All remaining registers are initially assigned to logic 0. As mentioned
above, the length of an instruction is 16 bit. Each instruction is executed within one
cylce.

78

9.2. Implementation of the CPU

Assembler Instruction: ADD R[i],R[j],R[k]

Instruction format:

15 . . . 11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 1 1 bin(i) - - bin(j) bin(k)

Figure 9.1.: Instruction Word Representing an ADD Instruction

Program
Con-
troller

Program
Memory

Control
Unit

Data
Memory

ALU

Register
File

Program
Counter

reset

instr
oprt
op1
op2

data

inc
jmp

write
dest

register

pc pc’

register’

0
0

0
0
0

0

0

0

0

−

−

−

−

−

−

−

−

−

−

FF

FF

Figure 9.2.: Schematic Diagram of the CPU Implementation

9.2. Implementation of the CPU

The implementation of the above specified CPU is described in this section. Besides
an overview, this includes a discussion of the realization of the respective combinational
and sequential components. Finally, the characteristics of the resulting circuit are sum-
marized.

9.2.1. Overview

Figure 9.2 provides a schematic overview showing the implementation of the proposed
CPU. In the following, the respective components are briefly described from the left-hand
side to the right-hand side.

In each cycle, first the current instruction is fetched from the program memory. That
is, depending on the current value of the program counter pc, the respective instruction
word is stored in the signal instr. Using this signal, the control unit decodes the
instruction distinguishing between three cases:

1. If an arithmetic or logical operation is performed, the respective operands are
extracted from the instruction word and assigned to the signals op1 and op2,
respectively. These two signals together with oprt, which defines the respective

79

9. Designing a RISC CPU in Reversible Logic

operation, are passed to the ALU. Besides that, the signal write is assigned a
logic value 1 indicating that the result of the operation should be stored in a
target register addressed by dest. Finally, the signal inc is set to 1, indicating
that the program counter has to be increased by 1.

2. If instead a control operation (e.g. a JMP) is performed, the signals op1, op2, oprt,
write, and dest are not required for further operation in the current cycle, whereas
the signal inc is assigned a logic value 0. Further, jmp is set to the new address
of the program memory depending on the instruction word.

3. A memory access using load and store instructions can be conducted directly by the
control unit. In case of an LDD instruction, the data is fetched from the memory and
stored in the respective register by adjusting the corresponding signal register.
In contrast, in case of an STO instruction, the value of the source register is read
and stored in the respective memory address. All other signals are assigned, such
that the results of the components are not used (in case of the ALU) or remain
unchanged (in case of register file). Also here, signal inc is assigned to logic 1.

Afterwards, as defined in the instruction, the respective operation is performed in the
ALU. Depending on the value of oprt as well as the operands op1 and op2, a result
is determined and assigned to data. This value is then stored in a register addressed
by dest.

Finally, the program counter is updated. If no control operation has been performed
(i.e. if inc = 1), the value of signal pc is simply increased by one. Otherwise, pc is
assigned the value given by jmp. An exception occurs, if the primary input reset is set
to 1. Then, the whole execution of the program is reset, i.e. the program counter is set
to 0. The updated value of the program counter is used in the next cycle.

Given this CPU architecture, in the following we distinguish between two types of
components. Namely:

• Combinational components, i.e. the circuit elements needed to perform the actual
computation. This includes the control unit, the ALU, the program counter, and
the register file, respectively. That is, all shaded components in Figure 9.2 fall in
this category.

• Sequential and memory components, i.e. a clock and flip-flops which are needed
e.g. to pass the value of the program counter from one cycle to the next cycle.
Also the registers and the memory for both, the program (i.e. the sequence of
instructions to be performed) and the data, fall into this category.

In the following, we discuss the state-of-the-art techniques applied in order to realize
these components.

80

9.2. Implementation of the CPU

9.2.2. Combinational Components

In order to realize combinational reversible circuits, a wide range of synthesis approaches
have been introduced in the recent years (see e.g. [MMD03, Ker04, GWDD09, WD09]).
Most of them rely on Boolean descriptions such as truth tables or Binary Decision Dia-
grams (BDDs). But since the CPU includes complex operations (e.g. large control paths
and arithmetic operations), we used the SyReC programming language as well as its re-
spective synthesis engine to realize the combinational components of the CPU [WOD10].

Thus, the control unit, the ALU, and the program counter can be implemented on a
higher level of abstraction. This avoids scalability problems, which would occur if truth-
table-based or BDD-based approaches were applied. In contrast, hierarchical synthesis
approaches (such as the SyReC engine) tend to generate circuits with a large number
of constant inputs. This can partially be improved by post-synthesis optimization ap-
proaches (e.g. [WSD10]), but still remains an open problem, which is left for future work.
Besides that, new design paradigms have to be considered.

As an example, the SyReC code of the program counter is given in Figure 9.3a.
One new design paradigm becomes already evident in this example. According to the
specification, the program counter should be assigned 0, if the primary input reset is
assigned 1. Due to a lack of conventional assignment operations which would destroy the
reversibility, this is realized by a new additional signal (denoted by zero and set to 0) as
well as a SWAP operation (see Line 6 of Figure 9.3a). Similar design decisions have to be
made e.g. to realize the desired control path or to implement the respective functionality
of the ALU. In contrast, the increase of the program counter is a reversible operation
and, thus, can easily be implemented by the respective ++= instruction (Line 9).

The resulting circuit generated by the SyReC synthesizer is shown in Figure 9.3b.
Note that the bit widths of the signals are scaled down to 2 in order to improve the
readability. The first two lines give the current value of the program counter (pc 1,
pc 0), while the same lines on the right-hand side hold the next state values (pc 1′,
pc 0′) used as inputs for the flip-flops as depicted in Figure 9.2.
The remaining combinational components are realized similarly. However, due to

readability, the complete SyReC code as well as the resulting circuits of all combinational
components are not provided in this work. The sources are completely available on
RevLib [WGT+08].

9.2.3. Sequential Components

While for the synthesis of combinational reversible circuits, a significant number of ap-
proaches has been introduced, research on design solutions for sequential components is
just at the beginning. Two different paradigms are currently under detailed considera-
tion.

The first paradigm (suggested e.g. in [LP09]) arguments that a reversible circuit re-
tains in its state as long as its signal values remain unchanged. Thus, a combinational
circuit can be treated as a core component of a sequential device. More precisely, using
e.g. a classical (non-reversible) controller, output values from one cycle are applied to

81

9. Designing a RISC CPU in Reversible Logic

1 module pc(inout pc(2), in reset(1), in inc(1), in jmp(2))
2

3 wire zero (2)
4

5 if (reset) then
6 pc <=> zero
7 else

8 if (inc) then
9 ++= pc

10 else

11 pc <=> jmp
12 fi (inc)
13 fi (reset)

(a) SyReC Code

pc0 pc′0
pc1 pc′1

reset −

inc −

jmp0 −

jmp1 −

zero0 −

zero1 −

0 −

0 −

(b) Resulting Circuit

Figure 9.3.: Implementation of the Program Counter (Scaled down to a Bit Width of 2)

the respective input signals of the next cycle. Therefore, the clocking as well as the
feedback is handled by the controller, while the actual computation is performed on a
combinational reversible circuit.

The second paradigm considers the realization of the sequential elements directly in
reversible logic. For this purpose, several suggestions on how to realize the respective
memory elements as flip-flops, latches, or registers have been made (see e.g. [TS05,
CW07, NHJ+09]). Using these basic sequential elements, more complex sequential com-
ponents can easily be constructed.

In the actual implementation of the proposed CPU, we decided to realize all sequential
components by means of an external controller. Nevertheless, both concepts reviewed
above can be applied in principle.

82

9.3. Executing Programs on the CPU

9.2.4. Characteristics of the Resulting Circuit

Using the schematic diagram described in Figure 9.2 and by plugging the synthesized
combinational parts together, a reversible circuit results, composed of 1,139 circuit
lines (including 867 lines with constant inputs), 5,047 Toffoli gates, and 1,692 Fredkin
gates. Considering established cost metrics, this circuit has transistor costs of 504,904
(see [TG08] for more details on transistor costs) and quantum costs of 501,119 (see
[BBC+95] for more details on quantum costs)1. Together with the external controller
for the sequential components, this reversible circuit represents a CPU ready for running
programs.

9.3. Executing Programs on the CPU

With the CPU implemented as described in the previous sections, arbitrary software
programs composed of the assembler instructions given in Table 9.1 can be executed.
Therefore, first an assembler program is translated into a sequence of respective in-
struction words by applying techniques proposed in [GKD06]. Afterwards, the resulting
instruction words are loaded into the program memory, while the data memory is initial-
ized with desired values. Both, the program memory and the data memory, are realized
by an external controller implemented in terms of a Python script. Overall, this allows
to run translated object code, i.e. a sequence of instruction words.

The execution of a program on the proposed CPU is illustrated using the assem-
bler program depicted in Figure 9.4. Here, the sequence of Fibonacci numbers defined
by f(n) = f(n− 1) + f(n− 2) with f(0) = f(1) = 1 is computed. More precisely, the
program generates the Fibonacci number f(n+ 1), whereby n > 1 is given in the regis-
ter R[7]. The result is stored in R[4].
The waveform obtained by simulating this program (with n = 4) on the CPU is given

in Figure 9.5. The identifiers clk, pc’, and instr[15:11] denote the values of the clock
signal, the program counter, and the operation code extracted from the instr signal,

1Note that these costs probably can be significantly reduced by applying technology depend post-
synthesis approaches.

0 LDL R[7] , 4
1 LDL R[2] , 1
2 LDL R[3] , 1

loop :
3 ADD R[4] , R[3] , R[2]
4 OR R[2] , R[3] , R[0]
5 OR R[3] , R[4] , R[0]
6 SUB R[7] , R[7] , R[1]
7 JNZ loop

Figure 9.4.: Assembler Program for Fibonacci Number Computation

83

9. Designing a RISC CPU in Reversible Logic

clk

t=0 t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=9 t=10t=11t=12t=13t=14t=15t=16t=17t=18t=19t=20t=21t=22

pc’ 1 2 3 4 5 6 7 3 4 5 6 7 3 4 5 6 7 3 4 5 6 7 8

instr[15:11] LDL ADD OR SUB JNZ ADD OR SUB JNZ ADD OR SUB JNZ ADD OR SUB JNZ

R[2] 0 1 2 3 5

R[3] 0 1 2 3 5 8

R[4] 0 2 3 5 8

R[7] 4 3 2 1 0

Figure 9.5.: Waveform Illustrating the Execution of the Program Given in Figure 9.4

respectively. The rows R[2], R[3], R[4], and R[7] list the values of the respective registers.
For the sake of clarity, all other signal values are omitted. Note that the value of the
program counter always corresponds to the respective line number of the code given in
Figure 9.4. In each time frame always the updated values of the signals obtained after
the execution are listed.

At the beginning of the execution, the registers are loaded with the given values,
i.e. R[7] is assigned 4, while R[2] and R[3] are assigned the first two Fibonacci numbers,
respectively (t = 0 until t = 2). Next, the third Fibonacci number is determined by
adding the values of R[3] and R[2]. The result is assigned to R[4] (t = 3). The following
OR operations update the auxiliary values of the registers R[2] and R[3] (t = 4 and t = 5).
Recall that according to the specification provided in Section 9.1, the register R[0] always
holds the constant 0, i.e. register R[2] is assigned the value of R[3], while the register
R[3] is assigned the value of R[4]. Now the values for the next iteration are available. But
before starting the next iteration, the loop bound stored in R[7] needs to be decreased
by one. For this task, the register R[1] – which always holds the constant 1 – is used.
Afterwards, the jump instruction is processed modifying the program counter so that
the previous steps are repeated with the current values (t = 7). This execution continues
as long as the value in register R[7] is not 0. Finally, the result of the computation can
be obtained from the value assigned to R[4]. For the given example program we get
f(4 + 1) = f(5) = 8.

9.4. Conclusion

In this chapter, we proposed a design of a RISC CPU realized using reversible logic.
Therefore, recent achievements in the domain of reversible circuit design have been em-
ployed. In particular, this includes the hardware description language SyReC, which
has been used to design the combinational components of the CPU. In contrast, the se-
quential components have been realized using an external controller. With the proposed
CPU, it is possible to execute software programs using an assembler language. Besides
that, the circuit can be used as benchmark for other areas such as the verification or
the test of reversible circuits. Therefore, the CPU has been made public available at
RevLib [WGT+08].

84

9.4. Conclusion

Future work is focused on the optimization of the resulting circuit. As discussed in
Section 9.2.2, in particular reducing the number of lines is important. For this purpose,
one could consider the approach presented in [WSD10]. Furthermore, having the CPU
design available, a physical realization of a complex application is possible. So far, only
simple circuits have been physically realized. Finally, the design of a CPU processing
reversible software languages (as e.g. Janus [YG07]) may provide an interesting case
study.

85

10. Visualization of Structures and
Properties of Reversible Circuits

For the design, synthesis, debugging etc. of reversible circuits, a lot of ideas have been
taken from the conventional design flow. But besides the apparent way of proceeding,
human intuition often led to ideas for new strategies to be exploited or enabled further
improvements which could not be detected by a machine.

However, getting a good intuition of a considered circuit requires a deep technical un-
derstanding of how design approaches actually realize the respective circuits. Moreover,
these approaches may generate circuits with certain structures and properties that are
often neither obvious to the developer nor to the user of the design method. Conse-
quently, possible potential in terms of better synthesis or optimization may often not
fully be exploited.

In fact, relevant instances of any kind are often equipped with some internal (some-
times hidden) structures or properties that are unknown to the developer and/or de-
signer [Wal99]. One way to unveil these information is to provide a different intuition
about a circuit. This can be accomplished by visualization technologies. However, ex-
isting visualization schemes for reversible circuits are basically limited to simple netlist
representations in which all gates are only arranged in a cascade where black circles
and ⊕ respectively represent control and target lines of the gates. In particular for
larger circuits, these netlists do not provide a proper intuition of the structure and pos-
sible properties of reversible circuits. As an example, consider the netlist visualization of
a circuit realizing a division and shown in Fig. 10.1 (realized by the HDL-based synthesis
approach proposed in Chapter 6). Although this circuit is composed of less than 100
gates, it is almost impossible to recognize certain structures and/or properties from this
netlist visualization.

As a consequence, advanced visualization techniques are required that go beyond the
straight-forward representation of a circuit as a netlist. They should mask irrelevant
details as deemed necessary and, in turn, explicitly focus on highlighting the desired
structures and properties. In other domains, such visualization techniques have already

Figure 10.1.: Existing Netlist Visualization of Reversible Circuits

87

10.1. The RevVis Tool

like this intuitively unveils connected sub-functions, important and less important
literals, etc. This provides a better understanding about how instances could be
solved in a more efficient fashion.

Motivated by these success stories, the application of visualization technologies in the
domain of reversible circuit design is investigated in this work. For this purpose, we
present the tool RevVis, a graphical interface that intuitively visualizes the structure
and properties of reversible circuits. For a selected set of metrics and objectives which
are relevant in the design of reversible circuits, corresponding data is collected and, af-
terwards, visualized in a simple fashion. The application of RevVis has been evaluated
in a thorough case study involving several synthesis approaches that have been pro-
posed in the past. From the different visualizations some already known structures and
properties could be confirmed. Beyond that also new characteristics could be unveiled.
They may be exploited in the future to further finetune these approaches and to develop
corresponding new optimization schemes for the resulting circuits.

The remainder of this chapter is structured as follows. Section 10.1 introduces RevVis
and, in particular, the visualizations of the selected metrics and objectives. Afterwards,
these visualizations are applied for circuits generated by several synthesis approaches.
Possible conclusions drawn from that are discussed in Section 10.2. The chapter is
eventually concluded in Section 10.3.

10.1. The RevVis Tool

This section introduces the main features of the proposed visualization schemes which
have been implemented in the tool RevVis1. For a selected set of metrics and objectives,
the tool first collects information on the structure and properties of a given reversible
circuit, which are then visualized. The visualizations are kept as simple and abstract
as possible so that, even for larger designs, an intuitive and easy understanding is pos-
sible. In the following, the considered metrics and objectives are introduced. Here,
all visualization schemes are illustrated by means of the reversible circuit depicted in
Fig. 10.3a.

Constant Inputs and Garbage Outputs. Constant inputs and garbage outputs are
not only essential in order to embed irreversible functions into reversible ones (see
e.g. [MD04a, WKD11]), but are also heavily applied in synthesis approaches e.g. based
on ESOPs (e.g. [FTR07]) or decision diagrams (e.g. [WD09]). Optimization approaches
such as introduced in [WSD10] rely on the fact how long circuit lines with constants or
garbage are unused or not needed anymore, respectively. This is emphasized by the first
visualization scheme shown in Fig. 10.3b. All lines inheriting a constant or garbage line
are highlighted by black rows. The width of the rows depends on the number of gates in
the cascade in which the respective constant (garbage) is unused (not needed anymore).

1RevVis is available at http://www.informatik.uni-bremen.de/agra/eng/revvis.php.

89

10. Visualization of Structures and Properties of Reversible Circuits

x0 f0
0 f1
0 f2

x1 –
x2 –
x3 f3

(a) Circuit (b) Const./Garb. (c) Structure

(d) Line Usage (e) Line Types (f) Target Blocks (g) Movability

Figure 10.3.: Different Visualizations in RevVis

Structure of the Circuit. Reversible circuits are composed as a cascade of reversible
gates which, in turn, are composed of control lines and target lines. Due to this cascade
structure, the structural usage of each line in a circuit may significantly differ. This is
visualized in the scheme shown in Fig. 10.3c. Each control and target line connection is
highlighted in black. Grey denotes the usage of each circuit line, i.e. the cascade from
the first gate in which this circuit line is involved until the last gate of the cascade.
White represents parts of the circuit which are not needed for the actual computation.
For example, the bottom line of the considered circuit is only needed at the end of
the cascade while all remaining lines are needed almost throughout the whole cascade.
Although similar to the netlist visualization, this simplified view enables a more intuitive
view on the structure of a circuit and can pinpoint to “holes” in the circuit (which can
be used e.g. as ancilliae).

Line Usage. The usage of circuit lines is additionally visualized by the scheme shown in
Fig. 10.3d. Here, the visualization is enriched by a color code representing the numerical
usage of a circuit line. Lines highlighted red (green) represent the circuit lines with the
largest (smallest) number of control and target line connections. Yellow patterns denote
the circuit lines which lie between these extremes. White represents parts of the circuit
which are not needed for the actual computation. Information like that could e.g. be
applied for nearest neighbor optimization (see e.g. [SWD11, AAAH13, SSP13, WLD14]).
Here, control and target line connections always have to be adjacent, i.e. lines which are
heavily used should preferably be put next to each other.

Line Types. The distribution of control and target line connections is an objective of
the scheme shown in Fig. 10.3e. Here, red lines (green lines) denote circuit lines which
are entirely composed of target lines (control lines) only; yellow lines denote circuit lines
which have both control and target line connections. All actual connections are again

90

10.2. Applying RevVis

highlighted in black. This could provide some inspiration for optimization as e.g. huge
parts of the circuit composed entirely of control lines may provide some potential for
reduction by factorization (see e.g. [MWD10]).

Target Blocks. Fig. 10.3f shows another scheme which focuses on the target line con-
nections. More precisely, sub-circuits in which all gates have the same target line are
highlighted by means of grey blocks (with the target lines additionally highlighted in
black). Also this view could provide some inspiration for optimization (in particular, if
the possibly different control connections could be merged so that such a cascade can be
reduced to some few or even a single gate(s)).

Movability. Finally, the “movability” of gates is visualized in Fig. 10.3g, i.e. the appli-
cability of the moving rule as reviewed in Chapter 2 is represented for each gate. Gates
highlighted red have a low movability (i.e. can hardly be moved through the cascade),
while gates highlighted green can be moved rather flexibly through the cascade. Obvi-
ously this view is particularly helpful to investigate optimization approaches relying on
the moving rule.

10.2. Applying RevVis

The visualizations proposed in the last section are supposed to provide a representation
which allows to grasp a good intuition of the structure and the properties of a given
circuit. In order to illustrate that RevVis satisfies this purpose, an intense case study
has been conducted, in which circuits generated with different synthesis approaches
(namely BDD-based synthesis [WD09], ESOP-based synthesis [FTR07], and HDL-based
synthesis [WOD10, WSSD12]) have been investigated using RevVis. In this section,
results of these investigations are exemplarily shown and discussed. For this purpose,
first the respective synthesis approach is briefly reviewed. Afterwards, a representative
circuit (taken from RevLib [WGT+08]) is visualized and corresponding observations are
discussed.

10.2.1. Considering Circuits Obtained by BDD-based Synthesis

The Synthesis Approach (see also Chapter 3)

BDD-based synthesis as introduced in [WD09] makes use of Binary Decision Diagrams
(BDDs) [Bry86]. A BDD is a directed graph G = (V,E) where each terminal node
represents the constant 0 or 1 and each non-terminal node represents a (sub-)function.
Each non-terminal node v ∈ V has two succeeding nodes low(v) and high(v). If v is
representing the function f and labeled with the variable xi, then the corresponding sub-
functions represented by the succeeding nodes are the co-factors fxi=0 (low(v)) and fxi=1

(high(v)). Thus, a BDD naturally exposes the Shannon decomposition. Having a BDD
representing a function f as well as its sub-functions derived by Shannon decomposition,

91

10. Visualization of Structures and Properties of Reversible Circuits

x1

x2 x2

x3 x3

x4 x4

0 1

f

f6 = x2x3x4

+x2x3x4

f5 = x2x3x4

+x2x3x4

f4 = x3x4 f2 = x3x4

f3 = x4 f1 = x4

0 1

1

0 0

1

1

0

1
0

1

0 0

1

(a) BDD

f2 f3 f4 f5 f6 f

f2

f3

f4

f5

f6

f5 needs to preserve f2

0 −

0 −

1 −

0 f

x4, f1 −

x3 −

x2 −

x1 −

(b) Resulting Circuit

Figure 10.4.: BDD-based Synthesis

a reversible circuit for f can be obtained as shown by the following example (taken from
Chapter 3).

Example 15 Fig. 10.4a shows a BDD representing the function f = x1x2x3x4+x1x2x3x4+
x1x2x3x4 + x1x2x3x4 as well as the respective co-factors resulting from the application
of the Shannon decomposition. The co-factor f1 can easily be represented by the pri-
mary input x4. Having the value of f1 available, the co-factor f2 can be realized by the
first two gates depicted in Fig. 10.4b2. By this, respective sub-circuits can be added for
all remaining co-factors until a circuit representing the overall function f results. The
remaining steps are shown in Fig. 10.4b.

Observations Using RevVis

Fig. 10.5 shows the visualizations for the circuit mod5adder 66 which has been ob-
tained using BDD-based synthesis and works as a proper representative for this synthesis
scheme. Compared to the simple netlist (see Fig. 10.5a), these visualizations unveil the
clear structure of these circuits. In fact, BDD-based synthesis heavily relies on constant
inputs (see Fig. 10.5b) and subsequently builds up the sub-functions (i.e. the co-factors)
of the BDD. This can clearly be seen in Figs. 10.5c and 10.5f: New functionality is
costantly build up towards the top-right of the circuit. The primary inputs (located at
the bottom of the circuit) are frequently used for this purpose. This explains the intense
usage of these circuit lines (see Fig. 10.5d). It also shows very nicely that the usage of
the primary inputs depends on the BDD-level, e.g. the primary input represented by the
root node of the BDD has a very low usage while primary inputs represented in lower
levels of the BDD are accessed more often. As shown in Fig. 10.5e, all primary input
lines are accessed in a read-only fashion (i.e. just control connections are applied in those

2Note that an additional circuit line is added to preserve the values of x4 and x3 which are still needed
by the co-factors f3 and f4, respectively.

92

10.2. Applying RevVis

a a

b b

c c

d g

e g

f g

1 g

1 g

0 g

0 g

1 g

0 g

0 g

0 g

0 d

1 g

0 g

0 g

1 g

1 g

1 g

0 g

0 g

0 e

1 g

1 g

1 g

0 g

1 g

1 g

1 g

1 f

(a) Circuit

(b) Constants and Garbage (c) Structure

(d) Line Usage (e) Line Types

(f) Target Blocks (g) Movability

Figure 10.5.: Visualizing a Circuit Obtained by BDD-based Synthesis

circuit lines). Finally, Fig. 10.5g unveils that movability is usually rather bad in circuits
generated by BDD-based synthesis.

By this, several properties of BDD-based circuits which are already known (e.g. the
huge number of constant/garbage) are confirmed. Besides that, a clearer intuition of
the actual structure and properties is provided. For example, Fig. 10.5b may offer more
precise hints where to merge constants and garbage (similar to the approach presented
in [WSD10]). Fig. 10.5g clearly shows that e.g. optimization approaches like template
matching [MMD03] (relying on the moving rule) are not really suitable for BDD-based
circuits. Besides that, the clear stepped structure of the overall circuit might be ex-
ploitable for further optimizations.

10.2.2. Considering Circuits Obtained by ESOP-based Synthesis

The Synthesis Approach

ESOP-based synthesis as introduced in [FTR07] generates a reversible circuit from a
Boolean function provided as Exclusive Sum of Products (ESOPs). ESOPs are two-

93

10. Visualization of Structures and Properties of Reversible Circuits

x1 x2 x3 f1 f2 f3
1st 1 - 1 1 1 0
2nd 1 1 - 0 1 1
3rd 1 - 0 1 0 1
4th - 1 1 0 1 1
5th 1 - - 0 1 0

(a) ESOP

x1

x2

x3

0 f1

0 f2

0 f3

1st 2nd 3rd 4th 5th

(b) Resulting Circuit

Figure 10.6.: ESOP-based Synthesis

level descriptions of Boolean functions that are represented as the exclusive disjunc-
tion (EXOR) of conjunctions of literals (called products). A literal is either a Boolean
variable or its negation. That is, an ESOP is the most general form of two-level AND-
EXOR expressions.

Having an ESOP representing a function f : Bn → B
m, the ESOP-based synthesis

approach generates a circuit with n +m lines, where the first n lines work as primary
inputs, while the last m circuit lines are initialized to constant 0 and work as primary
outputs. Having that, Toffoli gates are selected such that the desired function is realized.
This selection exploits the fact that a single product xi1 . . . xik of an ESOP description
directly corresponds to a Toffoli gate with control lines C = {xi1 , . . . , xik}. In case of
negative literals, NOT gates or negative control lines are applied accordingly. Based on
these ideas, a circuit realizing a function given as ESOP can be derived as illustrated in
the following example.

Example 16 Consider the function f to be synthesized as depicted in Fig. 10.6a3. The
first product x1x3 affects f1 and f2. Hence, two Toffoli gates which have target lines f1
and f2 and control lines C = {x1, x3} are added (see Fig. 10.6b). The third product x1x3
includes a negative literal. Thus, the Toffoli gates added for this product have a negative
control line on x3. This procedure is continued until all products have been considered.
The resulting circuit is shown in Fig. 10.6b.

Observations Using RevVis

Fig. 10.7 shows the visualizations for the circuit rd73 252 which has been obtained
using ESOP-based synthesis and works as a proper representative for this synthesis
scheme. Compared to the simple netlist (see Fig. 10.7a), the characteristic structure
is clearly unveiled thanks to the visualizations. In particular, the distinction between

3The column on the left-hand side gives the products, where a “1” on the ith position denotes a positive
literal (i.e. xi) and a “0” denotes a negative literal (i.e. xi), respectively. A “–” denotes that the
respective variable is not included in the product. The right-hand side gives the primary output
patterns.

94

10.2. Applying RevVis

x1 x1

x2 x2

x3 x3

x4 x4

x5 x5

x6 x6

x7 x7

0 s0

0 s1

0 s2

(a) Circuit

(b) Constants and Garbage (c) Structure

(d) Line Usage (e) Line Types

(f) Target Blocks (g) Movability

Figure 10.7.: Visualizing a Circuit Obtained by ESOP-based Synthesis

input lines (which have control connections only) and output lines (which have tar-
get connections only) becomes evident (see Fig. 10.7e) and also leads to a very regu-
lar structure with respect to target blocks (see e.g. Fig. 10.7f). This provides poten-
tial as it may allow to merge gates with equal control lines but different target lines
(as discussed e.g. in [WSOD13]). Furthermore, approaches relying on the moving rule
(e.g. [MMD03]) significantly benefit from this structure as it leads to a very high mov-
ability (see Fig. 10.7g). It may also be observed that, due to the high movability of
gates, many target blocks can be merged leading to more potential for optimization. In
contrast, constant inputs are used very early in the cascade (see Fig. 10.7b), i.e. there
is no potential to reduce the number of constant/garbage lines using e.g. the method
proposed in [WSD10]. Besides that, ESOP-based circuits seem to have a rather irregu-
lar structure, i.e. the respective gate connections are distributed rather arbitrarily (see
Fig. 10.7c). However, it can be observed that inputs lines are used more often than out-
put lines (see Fig. 10.7d). This can be explained by the fact that some factors may have
to be applied to several functions and, hence, identical control connections are frequently
applied.

10.2.3. Considering Circuits Obtained by HDL-based Synthesis

The Synthesis Approach (see also Chapter 5 to 8)

The strive for more scalable synthesis approaches also led to the definition and consid-
eration of a Hardware Description Language (HDL) for reversible circuits in [WOD10].
In order to ensure reversibility in the description, this HDL distinguishes between re-
versible assignments (denoted by ⊕=) and not necessarily reversible binary operations

95

10. Visualization of Structures and Properties of Reversible Circuits

c c⊕ (a� b)⊕

0 ←add. line�

a a

b b

a� b

(a) Straight-forward

a a⊕ (b� c)⊕

0 Gb�c G−1
b�c

b b

c c

d d⊕ (e� f)⊕

0 0Ge�f G−1
e�f

e e

f f

(b) Improved

Figure 10.8.: HDL-based Synthesis

(denoted by �). The former class of operations assigns values to a signal on the left-
hand side. Therefore, the left-hand side signal must not appear in the expression on
the right-hand side. Furthermore, only a restricted set of assignment operations exists,
namely increase (+=), decrease (-=), and bitwise XOR (^=). These operations preserve
the reversibility (i.e. it is possible to compute these operations in both directions). In
contrast, binary operations, e.g. arithmetic, bitwise, logical, or relational operations,
may not be reversible and, hence, can only be used in right-hand expressions which
preserve the values of the inputs. In doing so, all computations remain reversible since
the input values can be applied to reverse any operation. For example, to describe a
multiplication (i.e. a*b), a new free signal c must be introduced which is used to store the
product (i.e. c^=a*b is applied). In comparison to common (non-reversible) languages,
this forbids statements like a=a*b.

Having such an HDL description, synthesis approaches like introduced in [WOD10]
generate corresponding circuits following a hierarchical scheme. That is, existing realiza-
tions of the individual operations (i.e. building blocks) are combined so that the desired
circuit is realized. This is illustrated in Fig. 10.8a for the generic operation c⊕ = (a�b).
First, the binary operation � is realized (using additional circuit lines with constant
inputs). Afterwards, the intermediate result is utilized to realize the complete statement
including its reversible assignment ⊕=.

This scheme has further been improved in [WSSD12]. Here, the values of intermediate
results are reversed once they are not needed any longer (leading back to the original
constant value). Then, no new additional lines might be required to buffer upcoming
intermediate results. The general idea is briefly illustrated in Fig. 10.8b by means of the
generic HDL statements a⊕ = (b � c) and d⊕ = (e � f). First, two sub-circuits Gb�c

and Ga⊕=b�c are added ensuring that the first statement is realized. This is equal to
the procedure from Fig. 10.8a and leads to additional lines with constant inputs. But
then, a further sub-circuit G−1

b�c is applied. Since G−1
b�c is the inverse of Gb�c, this sets

the circuit lines buffering the result of b � c back to the constant 0. As a result, these
circuit lines can be reused in order to realize the following statements as illustrated for
d⊕=e� f in Fig. 10.8b.

96

10.3. Conclusion

Observations Using RevVis

Fig. 10.9 (Fig. 10.10) shows the visualizations for the circuit mult stmts 3bit which has
been obtained using the straight-forward HDL-based synthesis as illustrated in Fig. 10.8a
(the improved HDL-based synthesis as illustrated in Fig. 10.8b) and works as a proper
representative for this synthesis scheme. More precisely, these circuits realize three
HDL-statements over 3-bit variables. The respective cascades for each statement are
separated by vertical lines in Fig. 10.9 and Fig. 10.10. Compared to the simple netlist
(see Fig. 10.9a and Fig. 10.10a), these visualizations do not only unveil the structure and
characteristics of the respective circuits, but also the differences between the straight-
forward and optimized synthesis scheme.

First of all, the structures sketched in Fig. 10.8, i.e. the building blocks for binary oper-
ations, reversible assignments, and reversing, can also be recognized in the visualizations
(see e.g. Fig. 10.9c and Fig. 10.10c). In particular for the improved scheme, the symme-
try resulting from reversing intermediate results is rather obvious. Here, it can also be
observed that just one set of constant circuit lines is needed, while the straight-forward
approach uses several constant circuit lines only for a short time (compare Fig. 10.9b
and Fig. 10.10b). The frequent re-use of these lines in the improved approach is also
reflected in the line usage visualization (see Fig. 10.10d).

Besides that, many circuit lines only have control connections in this example (see
Figs. 10.9e and 10.10e). This is caused by the fact that the three HDL-statements are of
the form a⊕ = (b�c), i.e. b and c never occur on the left-hand side of a statement. Finally,
the visualization clearly unveils that HDL-based circuits have a rather poor movability
and, hence, do not seem very suitable for optimization schemes such as [MMD03] (see
Figs. 10.9g and 10.10g).

10.3. Conclusion

In this chapter, we considered the visualization of reversible circuits. This is motivated
by the fact that certain structures and properties of circuits are often not obvious to the
developer or to the user. Furthermore, simple netlist representations do not provide a
proper intuition and, hence, are not suitable – particularly for circuits of larger size. In
order to address this, we introduced the tool RevVis which provides visualization layers
for several metrics as well as objectives and, by this, intuitively highlights structures
and properties of reversible circuits. The application of RevVis has been evaluated in
a thorough case study involving several synthesis approaches. This enabled a deeper
discussion about both known as well as new characteristics of the obtained circuits and,
hence, the considered synthesis schemes. In the future, visualizations as proposed in
this work will be beneficial to draw conclusions from newly developed design approaches
right from the beginning as well as to gain inspiration for new synthesis and optimization
methods.

97

10. Visualization of Structures and Properties of Reversible Circuits

0 g

0 g

0 g

0 g

0 g

0 g

a.0 a.0

a.1 a.1

a.2 a.2

b.0 b.0

b.1 b.1

b.2 b.2

c.0 c.0

c.1 c.1

c.2 c.2

d.0 d.0

d.1 d.1

d.2 d.2

e.0 e.0

e.1 e.1

e.2 e.2

f.0 f.0

f.1 f.1

f.2 f.2

(a) Circuit

(b) Constants and Garbage (c) Structure

(d) Line Usage (e) Line Types

(f) Target Blocks (g) Movability

Figure 10.9.: Visualizing a Circuit Obtained by HDL-based Synthesis

98

10.3. Conclusion

0 0

0 0

0 0

a.0 a.0

a.1 a.1

a.2 a.2

b.0 b.0

b.1 b.1

b.2 b.2

c.0 c.0

c.1 c.1

c.2 c.2

d.0 d.0

d.1 d.1

d.2 d.2

e.0 e.0

e.1 e.1

e.2 e.2

f.0 f.0

f.1 f.1

f.2 f.2

(a) Circuit

(b) Constants and Garbage (c) Structure

(d) Line Usage (e) Line Types

(f) Target Blocks (g) Movability

Figure 10.10.: Visualizing a Circuit Obtained by Improved HDL-based Synthesis

99

11. Conclusion

In the last decades, computer technology has advanced extremely fast, and the demands
are constantly increasing. Conventional technologies will sooner or later reach their
limits regarding miniaturization, energy consumption, etc. Reversible computation finds
application in many promising alternatives such as quantum computation or adiabatic
circuits. While there has been a lot of research on reversible logic especially in the last
decade, most of it considered the design and synthesis of circuits on a rather small scale.
There has been very few work on the design and implementation of complex systems in
reversible logic. To actually create an alternative to conventional CMOS technology, a
design flow for reversible circuits has to be developed.

In this thesis, we investigated two different approaches to designing and synthesizing
complex systems in reversible logic.

The first approach is to exploit the conventional design flow, and eventually map
a regular circuit design to a reversible one. Here we optimized a synthesis algorithm
which creates reversible circuits from decision diagrams, a data structure used in the
conventional design flow. The negative controls that were introduced to the method
match especially well with the function representation of KFDDs, so the number of
gates could be significantly reduced. Furthermore, we created a direct mapping from the
register transfer level of a conventional circuit to a reversible circuit. A first evaluation
indicates that this algorithm gives results similar to the SyReC synthesis [WOD10] and
might be a promising alternative.

With this approach, the existing elaborated design flow including languages, data
structures and tools can be utilized to develop reversible logic. For example, a design
engineer could write a Verilog or VHDL description which is automatically translated
to the register transfer level (using an existing tool) and then automatically translated
to a reversible circuit (using our proposed mapping). This would include the advantage
of design engineers not having to adapt to the new technology. Additionally, future
developments in conventional design could directly be exploited.

The drawback of this approach is that reversibility is not considered throughout the
design process. Mappings from conventional designs to reversible circuits usually include
embedding of non-reversible functionality. This and the hierarchical approach in general
make it hard to find efficient mappings. The resulting circuits will be of high costs and
have to be optimized, which is also a difficult task.

The second approach we considered is to develop a specific design flow for reversible
logic. We revised SyReC, an HDL for reversible circuits, and its synthesis algorithm.
While it enables the design and synthesis of complex systems in reversible logic, the

101

11. Conclusion

circuits generated usually have a high amount of additional circuit signals and gate cost.
Therefore, we proposed an extended synthesis algorithm, which can save a significant
number of additional signals at the cost of generating more gates. Depending on the
application, this can be a lucrative trade-off.

In this approach, reversibility is considered at all stages of the design process, so theo-
retically there is no need for embedding. Synthesis methods can exploit the reversibility
to directly obtain efficient realizations.

On the other hand, the design and synthesis methods need to be developed first,
especially at higher abstraction levels. Also, languages for all abstraction levels need to
be defined. The new computing paradigm would require the training of design engineers.

We tested the specific design flow by designing a RISC CPU in reversible logic. In
this case study, we could efficiently represent the computational components of the CPU
in SyReC, and thus generate the respective reversible netlists. The meaning of “new
computation paradigm” came to light when we needed to handle direct assignments in
the functionality and memory components in the CPU.

Last but not least, we created a tool to visualize structures and properties of reversible
circuits. To get a first intuition, we investigated circuits created by different synthesis
methods. These kind of visualizations can surely be an inspiration for new synthesis
methods and optimizations.

With this work, we present possible solutions for the scalable design and synthesis of
reversible ciruits. Although the preliminary evaluation of them just provides a rough
estimate of the resulting quality, it clearly shows that both directions have potential. To
fully exploit this potential, the challenges discussed in the paragraphs (and corresponding
chapters) above have to be addressed.

Furthermore, an interesting task is to create a mapping from a conventional HDL
to a HDL for reversible computation. Accordingly, it should be investigated further
which step in the conventional design flow would be the best step to map to a reversible
description, and if it should be mapped to the same level (like HDL to HDL) or not (like
RTL to netlist). The SyReC synthesis would benefit a lot from creating an intermediate
language (between HDL and netlist) and the use of compiler optimization techniques. To
compare both design flow directions, more case studies or benchmarks in the dimension
of the RISC CPU are needed. Thus far, the design flow for reversible circuits is far
behind the conventional one. The solutions proposed in this thesis are the first step to
close this gap.

102

Bibliography

[AAAH13] M. Alfailakawi, L. Alterkawi, I. Ahmad, and S. Hamdan. Line ordering of
reversible circuits for linear nearest neighbor realization. Quantum Infor-
mation Processing, 12(10):3319–3339, October 2013.

[Axe11] H. B. Axelsen. Clean translation of an imperative reversible programming
language. In Int’l Conf. on Compiler Construction, pages 144–163, 2011.

[BAP+12] A. Berut, A. Arakelyan, A. Petrosyan, S. Ciliberto, R. Dillenschneider,
and E. Lutz. Experimental verification of Landauer’s principle linking
information and thermodynamics. Nature, 483:187–189, 2012.

[BBC+95] A. Barenco, C. H. Bennett, R. Cleve, D. DiVinchenzo, N. Margolus,
P. Shor, T. Sleator, J. Smolin, and H. Weinfurter. Elementary Gates for
Quantum Computation. The American Physical Society, 52:3457–3467,
1995.

[BDW95] B. Becker, R. Drechsler, and R. Werchner. On the Relation Between BDDs
and FDDs. In Information and Computation, pages 72–83, 1995.

[Bry86] R. E. Bryant. Graph-Based Algorithms for Boolean Function Manipula-
tion. IEEE Trans. on Comp., 35(8):677–691, 1986.

[CW07] M. Chuang and C. Wang. Synthesis of Reversible Sequential Elements. In
ASP Design Automation Conf., pages 420–425, 2007.

[DB06] R. Drechsler and B. Becker. Ordered Kronecker Functional Decision
Diagrams-a Data Structure for Representation and Manipulation of
Boolean Functions. IEEE Trans. on CAD, 17(10):965–973, 2006.

[DRW+13] K. Datta, G. Rathi, R. Wille, I. Sengupta, H. Rahaman, and R. Drech-
sler. Exploiting Negative Control Lines in the Optimization of Reversible
Circuits. In Int’l Conf. on Reversible Computation, pages 209–220, 2013.

[DSR13] K. Datta, I. Sengupta, and H. Rahaman. Particle Swarm Optimization
Based Reversible Circuit Synthesis Using Mixed Control Toffoli Gates.
Journal of Low Power Electronics, 9(3):363–372, 2013.

[DST+94] R. Drechsler, A. Sarabi, M. Theobald, B. Becker, and M. A. Perkowski.
Efficient Representation and Manipulation of Switching Functions Based
on Ordered Kronecker Functional Decision Diagrams. In Design Automa-
tion Conf., pages 415–419, 1994.

103

Bibliography

[DV02] B. Desoete and A. D. Vos. A reversible carry-look-ahead adder using
control gates. INTEGRATION, the VLSI Jour., 33(1-2):89–104, 2002.

[ES04] N. Eén and N. Sörensson. An extensible sat-solver. In E. Giunchiglia
and A. Tacchella, editors, Theory and Applications of Satisfiability Test-
ing, volume 2919 of Lecture Notes in Computer Science, pages 502–518.
Springer Berlin Heidelberg, 2004.

[Fey85] R. Feynman. Quantum mechanical computers. Optic News, 11:11–20,
1985.

[FT82] E. F. Fredkin and T. Toffoli. Conservative Logic. International Journal
of Theoretical Physics, 21(3/4):219–253, 1982.

[FTR07] K. Fazel, M. A. Thornton, and J. E. Rice. ESOP-based Toffoli Gate Cas-
cade Generation. In IEEE Pacific Rim Conference on Communications,
Computers and Signal Processing, pages 206–209, 2007.

[GAJ06] P. Gupta, A. Agrawal, and N. K. Jha. An algorithm for synthesis of
reversible logic circuits. IEEE Trans. on CAD, 25(11):2317–2329, 2006.

[GK05] R. Glück and M. Kawabe. A method for automatic program inversion
based on LR(0) parsing. Fundamenta Informaticae, 66(4):367–395, 2005.

[GK14] S. G. and N. S. Kumar. Design of high speed low power reversible vedic
multiplier and reversible divider. International Journal of Engineering
Research and Applications, 4(9):70–74, 2014.

[GKD06] D. Große, U. Kühne, and R. Drechsler. HW/SW Co-Verification of Em-
bedded Systems using Bounded Model Checking. In ACM Great Lakes
Symposium on VLSI, pages 43–48, 2006.

[GW15] R. D. Gatfane and M. Waje. Design and implementation of low power
32 bit reversible carry skip adder. International Journal of Science and
Research, 4(7):67–70, 2015.

[GWDD09] D. Große, R. Wille, G. W. Dueck, and R. Drechsler. Exact Multiple-
Control Toffoli Network Synthesis With SAT Techniques. IEEE Trans.
on CAD, 28(5):703–715, 2009.

[Ker04] P. Kerntopf. A New Heuristic Algorithm for Reversible Logic Synthesis.
In Design Automation Conf., pages 834–837, 2004.

[Lan61] R. Landauer. Irreversibility and heat generation in the computing process.
IBM J. Res. and Develop., 5(3):183–191, 1961.

[LP09] M. Lukac and M. Perkowski. Quantum Finite State Machines as Sequential
Quantum Circuits. In Int’l Symp. on Multi-Valued Logic, pages 92–97,
2009.

104

Bibliography

[MD04a] D. Maslov and G. W. Dueck. Reversible cascades with minimal garbage.
IEEE Trans. on CAD, 23(11):1497–1509, 2004.

[MD04b] D. Maslov and G. W. Dueck. Improved Quantum Cost for n-bit Toffoli
Gates. Electronic Letters, 39(25):1790–1791, 2004.

[MDM05] D. Maslov, G. W. Dueck, and D. M. Miller. Toffoli network synthesis with
templates. IEEE Trans. on CAD, 24(6):807–817, 2005.

[ME13] P. Moallem and M. Ehsanpour. A novel design of reversible multiplier
circuit. International Journal of Engineering, Transactions C: Aspects,
26(6):577–586, 2013.

[MMD03] D. M. Miller, D. Maslov, and G. W. Dueck. A transformation based
algorithm for reversible logic synthesis. In Design Automation Conf., pages
318–323, 2003.

[MWD10] D. M. Miller, R. Wille, and R. Drechsler. Reducing reversible circuit cost
by adding lines. In Int’l Symp. on Multi-Valued Logic, pages 217–222,
2010.

[MYMD05] D. Maslov, C. Young, D. M. Miller, and G. W. Dueck. Quantum circuit
simplification using templates. In Design, Automation and Test in Europe,
pages 1208–1213, 2005.

[NC00] M. Nielsen and I. Chuang. Quantum Computation and Quantum Infor-
mation. Cambridge Univ. Press, 2000.

[NHJ+09] N. M. Nayeem, M. A. Hossain, L. Jamal, , and H. Babu. Efficient Design of
Shift Registers Using Reversible Logic. In Int’l Conf. on Signal Processing
Systems, pages 474–478, 2009.

[PF96] P. Patra and D. Fussell. On Efficient Adiabatic Design of MOS Circuits.
In Workshop on Physics and Computation, pages 260–269, Boston, 1996.

[SFWD12] M. Soeken, S. Frehse, R. Wille, and R. Drechsler. RevKit: An Open Source
Toolkit for the Design of Reversible Circuits. In Reversible Computation
2011, volume 7165 of Lecture Notes in Computer Science, pages 64–76,
2012. RevKit is available at www.revkit.org.

[Sin07] C. Sinz. Visualizing sat instances and runs of the dpll algorithm. Journal
of Automated Reasoning, 39(2):219–243, 2007.

[SM11] M. Saeedi and I. L. Markov. Synthesis and optimization of reversible
circuits - a survey. ACM Computing Surveys, 2011.

[SSP13] A. Shafaei, M. Saeedi, and M. Pedram. Optimization of quantum cir-
cuits for interaction distance in linear nearest neighbor architectures. In

105

Bibliography

Proceedings of the 50th Annual Design Automation Conference, DAC ’13,
pages 41:1–41:6, New York, NY, USA, 2013. ACM.

[ST13] M. Soeken and M. K. Thomsen. White Dots Do Matter: Rewriting Re-
versible Logic Circuits. In Int’l Conf. on Reversible Computation, pages
196–208, 2013.

[SWD10] M. Soeken, R. Wille, and R. Drechsler. Hierarchical Synthesis of Reversible
Circuits Using Positive and Negative Davio Decomposition. In Int’l Design
and Test Workshop, pages 143–148, 2010.

[SWD11] M. Saeedi, R. Wille, and R. Drechsler. Synthesis of quantum circuits for
linear nearest neighbor architectures. Quantum Information Processing,
10(3):355–377, June 2011.

[SWG+09] A. Sülflow, R. Wille, C. Genz, G. Fey, and R. Drechsler. FormED: A
formal environment for debugging. In University Booth at the Design,
Automation and Test in Europe, 2009.

[TG08] M. K. Thomson and R. Glück. Optimized Reversible Binary-coded Deci-
mal Adders. J. of Systems Architecture, 54:697–706, 2008.

[Tho12] M. K. Thomsen. A functional language for describing reversible logic. In
Forum on Specification and Design Languages, pages 135–142, 2012.

[Tof80] T. Toffoli. Reversible Computing. In ICALP, pages 632–644, 1980.

[TS05] H. Thapliyal and M. B. Srinivas. A Beginning in the Reversible Logic
Synthesis of Sequential Circuits. In MAPLD Int’l Conf., 2005.

[VSB+01] L. M. K. Vandersypen, M. Steffen, G. Breyta, C. S. Yannoni, M. H. Sher-
wood, and I. L. Chuang. Experimental realization of Shor’s quantum
factoring algorithm using nuclear magnetic resonance. Nature, 414:883,
2001.

[Wal99] T. Walsh. Search in a small world. In Proceedings of the Sixteenth In-
ternational Joint Conference on Artificial Intelligence, IJCAI ’99, pages
1172–1177, San Francisco, CA, USA, 1999. Morgan Kaufmann Publishers
Inc.

[WD09] R. Wille and R. Drechsler. BDD-based Synthesis of Reversible Logic for
Large Functions. In Design Automation Conf., pages 270–275, 2009.

[WD10] R. Wille and R. Drechsler. Effect of BDD Optimization on Synthesis of
Reversible and Quantum Logic. Electronic Notes in Theoretical Computer
Science, 253(6):57–70, 2010.

106

Bibliography

[WDOGO12] R. Wille, R. Drechsler, C. Oswald, and A. Garcia-Ortiz. Automatic Design
of Low-Power Encoders Using Reversible Circuit Synthesis. In Design,
Automation and Test in Europe, pages 1036–1041, 2012.

[WGT+08] R. Wille, D. Große, L. Teuber, G. W. Dueck, and R. Drechsler. RevLib:
An Online Resource for Reversible Functions and Reversible Circuits. In
Int’l Symp. on Multi-Valued Logic, pages 220–225, 2008. RevLib is avail-
able at www.revlib.org.

[WKD11] R. Wille, O. Keszöcze, and R. Drechsler. Determining the Minimal Num-
ber of Lines for Large Reversible Circuits. In Design, Automation and
Test in Europe, pages 1204–1207, 2011.

[WLD14] R. Wille, A. Lye, and R. Drechsler. Optimal swap gate insertion for
nearest neighbor quantum circuits. In ASP Design Automation Conf.,
pages 489–494, 2014.

[WLR11] R. Wettel, M. Lanza, and R. Robbes. Software systems as cities: A con-
trolled experiment. In Proceedings of the 33rd International Conference
on Software Engineering, ICSE ’11, pages 551–560, New York, NY, USA,
2011. ACM.

[WOD10] R. Wille, S. Offermann, and R. Drechsler. SyReC: A Programming Lan-
guage for Synthesis of Reversible Circuits. In Forum on Specification and
Design Languages, pages 184–189, 2010.

[WSD10] R. Wille, M. Soeken, and R. Drechsler. Reducing the Number of Lines in
Reversible Circuits. In Design Automation Conf., 2010.

[WSMD14] R. Wille, M. Soeken, D. M. Miller, and R. Drechsler. Trading off circuit
lines and gate costs in the synthesis of reversible logic. INTEGRATION,
the VLSI Jour., 47(2):284–294, 2014.

[WSOD13] R. Wille, M. Soeken, C. Otterstedt, and R. Drechsler. Improving the
mapping of reversible circuits to quantum circuits using multiple target
lines. In 18th Asia and South Pacific Design Automation Conference,
pages 145–150, 2013.

[WSPD12] R. Wille, M. Soeken, N. Przigoda, and R. Drechsler. Exact Synthesis
of Toffoli Gate Circuits with Negative Control Lines. In Int’l Symp. on
Multi-Valued Logic, pages 69–74, 2012.

[WSSD12] R. Wille, M. Soeken, E. Schönborn, and R. Drechsler. Circuit Line Mini-
mization in the HDL-Based Synthesis of Reversible Logic. In IEEE Annual
Symposium on VLSI, pages 213–218, 2012.

[YG07] T. Yokoyama and R. Glück. A reversible programming language and its
invertible self-interpreter. In Symp. on Partial evaluation and semantics-
based program manipulation, pages 144–153, 2007.

107

Bibliography

[ZRK07] Z. Zilic, K. Radecka, and A. Kazamiphur. Reversible circuit technology
mapping from non-reversible specifications. In Design, Automation and
Test in Europe, pages 558–563, 2007.

108

