141 research outputs found

    Lifted graphical models: a survey

    Get PDF
    Lifted graphical models provide a language for expressing dependencies between different types of entities, their attributes, and their diverse relations, as well as techniques for probabilistic reasoning in such multi-relational domains. In this survey, we review a general form for a lifted graphical model, a par-factor graph, and show how a number of existing statistical relational representations map to this formalism. We discuss inference algorithms, including lifted inference algorithms, that efficiently compute the answers to probabilistic queries over such models. We also review work in learning lifted graphical models from data. There is a growing need for statistical relational models (whether they go by that name or another), as we are inundated with data which is a mix of structured and unstructured, with entities and relations extracted in a noisy manner from text, and with the need to reason effectively with this data. We hope that this synthesis of ideas from many different research groups will provide an accessible starting point for new researchers in this expanding field

    Hinge-Loss Markov Random Fields and Probabilistic Soft Logic: A Scalable Approach to Structured Prediction

    Get PDF
    A fundamental challenge in developing impactful artificial intelligence technologies is balancing the ability to model rich, structured domains with the ability to scale to big data. Many important problem areas are both richly structured and large scale, from social and biological networks, to knowledge graphs and the Web, to images, video, and natural language. In this thesis I introduce two new formalisms for modeling structured data, distinguished from previous approaches by their ability to both capture rich structure and scale to big data. The first, hinge-loss Markov random fields (HL-MRFs), is a new kind of probabilistic graphical model that generalizes different approaches to convex inference. I unite three views of inference from the randomized algorithms, probabilistic graphical models, and fuzzy logic communities, showing that all three views lead to the same inference objective. I then derive HL-MRFs by generalizing this unified objective. The second new formalism, probabilistic soft logic (PSL), is a probabilistic programming language that makes HL-MRFs easy to define, refine, and reuse for relational data. PSL uses a syntax based on first-order logic to compactly specify complex models. I next introduce an algorithm for inferring most-probable variable assignments (MAP inference) for HL-MRFs that is extremely scalable, much more so than commercially available software, because it uses message passing to leverage the sparse dependency structures common in inference tasks. I then show how to learn the parameters of HL-MRFs using a number of learning objectives. The learned HL-MRFs are as accurate as traditional, discrete models, but much more scalable. To enable HL-MRFs and PSL to capture even richer dependencies, I then extend learning to support latent variables, i.e., variables without training labels. To overcome the bottleneck of repeated inferences required during learning, I introduce paired-dual learning, which interleaves inference and parameter updates. Paired-dual learning learns accurate models and is also scalable, often completing before traditional methods make even one parameter update. Together, these algorithms enable HL-MRFs and PSL to model rich, structured data at scales not previously possible

    Discovering evolving political vocabulary in social media

    Full text link
    Abstract—As a surrogate data source for many real-world phenomena, social media such as Twitter can yield key in-sight into people’s behavior and their group affiliations and memberships. As an event unfolds on Twitter, the language, hashtags, and vocabulary used to describe it evolves over time, so that it is difficult to a priori capture the composition of a social group of interest using static keywords. Capturing such dynamic compositions is crucial to both understanding the true membership of social groups and in providing high-quality data for downstream applications such as trend forecasting. We propose a novel unsupervised learning algorithm that builds dynamic vocabularies using probabilistic soft logic (PSL), a framework for probabilistic reasoning over relational domains. Using 10 presidential elections from eight countries of Lati

    Leveraging Structure in Activity Recognition: Context and Spatiotemporal Dynamics

    Get PDF
    Activity recognition is one of the fundamental problems of computer vision. An activity recognition system aims to identify the actions of humans from an image or a video. This problem has been historically approached in isolation, and typically as part of a multi-stage system, where tracking for instance is another part. However, recent work sheds light on how activity recognition is in fact entangled with other fundamental problems in the field. Tracking is one such instance, where the identity of each person is maintained across a video sequence. Scene classification is another example, where scene properties are identified from image data. Affordance reasoning is yet another, where the objects in the scene are assigned labels representing what types of actions can be performed upon them. In this thesis we build a joint formulation for activity recognition, modeling the aforementioned coupled problems as latent variables. Optimizing the objective function for this formulation allows us to recover a more accurate solution to activity recognition and simultaneously solutions to problems like tracking or scene classification. We first introduce a model that jointly solves tracking and activity recognition from videos. Instead of establishing tracks in a preprocessing step, the model solves a joint optimization problem, recovering actions and identities for every person in a video sequence. We then extend this model to include frame-level cues, where activity labels assigned to people in the same scene are inter-compatible through a scene-level label. In the second half of the thesis we look at an alternative formulation of the same problem, based on probabilistic logic. This new model leverages the same cues, temporal and spatial, through soft logic rules. This joint formulation can be efficiently solved, recovering both action labels and tracks. We finally introduce another model that reformulates action recognition in the multi-label setting, where each person can be performing more than one action at the same time. In this setting, a joint formulation can solve for all the likely actions of a person through explicit modeling of action label correlations. Finally, we conclude with a discussion of several challenges and how they can motivate viable future extensions

    Probabilistic Models for Scalable Knowledge Graph Construction

    Get PDF
    In the past decade, systems that extract information from millions of Internet documents have become commonplace. Knowledge graphs -- structured knowledge bases that describe entities, their attributes and the relationships between them -- are a powerful tool for understanding and organizing this vast amount of information. However, a significant obstacle to knowledge graph construction is the unreliability of the extracted information, due to noise and ambiguity in the underlying data or errors made by the extraction system and the complexity of reasoning about the dependencies between these noisy extractions. My dissertation addresses these challenges by exploiting the interdependencies between facts to improve the quality of the knowledge graph in a scalable framework. I introduce a new approach called knowledge graph identification (KGI), which resolves the entities, attributes and relationships in the knowledge graph by incorporating uncertain extractions from multiple sources, entity co-references, and ontological constraints. I define a probability distribution over possible knowledge graphs and infer the most probable knowledge graph using a combination of probabilistic and logical reasoning. Such probabilistic models are frequently dismissed due to scalability concerns, but my implementation of KGI maintains tractable performance on large problems through the use of hinge-loss Markov random fields, which have a convex inference objective. This allows the inference of large knowledge graphs using 4M facts and 20M ground constraints in 2 hours. To further scale the solution, I develop a distributed approach to the KGI problem which runs in parallel across multiple machines, reducing inference time by 90%. Finally, I extend my model to the streaming setting, where a knowledge graph is continuously updated by incorporating newly extracted facts. I devise a general approach for approximately updating inference in convex probabilistic models, and quantify the approximation error by defining and bounding inference regret for online models. Together, my work retains the attractive features of probabilistic models while providing the scalability necessary for large-scale knowledge graph construction. These models have been applied on a number of real-world knowledge graph projects, including the NELL project at Carnegie Mellon and the Google Knowledge Graph

    Regularized model learning in EDAs for continuous and multi-objective optimization

    Get PDF
    Probabilistic modeling is the de�ning characteristic of estimation of distribution algorithms (EDAs) which determines their behavior and performance in optimization. Regularization is a well-known statistical technique used for obtaining an improved model by reducing the generalization error of estimation, especially in high-dimensional problems. `1-regularization is a type of this technique with the appealing variable selection property which results in sparse model estimations. In this thesis, we study the use of regularization techniques for model learning in EDAs. Several methods for regularized model estimation in continuous domains based on a Gaussian distribution assumption are presented, and analyzed from di�erent aspects when used for optimization in a high-dimensional setting, where the population size of EDA has a logarithmic scale with respect to the number of variables. The optimization results obtained for a number of continuous problems with an increasing number of variables show that the proposed EDA based on regularized model estimation performs a more robust optimization, and is able to achieve signi�cantly better results for larger dimensions than other Gaussian-based EDAs. We also propose a method for learning a marginally factorized Gaussian Markov random �eld model using regularization techniques and a clustering algorithm. The experimental results show notable optimization performance on continuous additively decomposable problems when using this model estimation method. Our study also covers multi-objective optimization and we propose joint probabilistic modeling of variables and objectives in EDAs based on Bayesian networks, speci�cally models inspired from multi-dimensional Bayesian network classi�ers. It is shown that with this approach to modeling, two new types of relationships are encoded in the estimated models in addition to the variable relationships captured in other EDAs: objectivevariable and objective-objective relationships. An extensive experimental study shows the e�ectiveness of this approach for multi- and many-objective optimization. With the proposed joint variable-objective modeling, in addition to the Pareto set approximation, the algorithm is also able to obtain an estimation of the multi-objective problem structure. Finally, the study of multi-objective optimization based on joint probabilistic modeling is extended to noisy domains, where the noise in objective values is represented by intervals. A new version of the Pareto dominance relation for ordering the solutions in these problems, namely �-degree Pareto dominance, is introduced and its properties are analyzed. We show that the ranking methods based on this dominance relation can result in competitive performance of EDAs with respect to the quality of the approximated Pareto sets. This dominance relation is then used together with a method for joint probabilistic modeling based on `1-regularization for multi-objective feature subset selection in classi�cation, where six di�erent measures of accuracy are considered as objectives with interval values. The individual assessment of the proposed joint probabilistic modeling and solution ranking methods on datasets with small-medium dimensionality, when using two di�erent Bayesian classi�ers, shows that comparable or better Pareto sets of feature subsets are approximated in comparison to standard methods
    corecore