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Activity recognition is one of the fundamental problems of computer vision.

An activity recognition system aims to identify the actions of humans from an image

or a video. This problem has been historically approached in isolation, and typically

as part of a multi-stage system, where tracking for instance is another part. How-

ever, recent work sheds light on how activity recognition is in fact entangled with

other fundamental problems in the field. Tracking is one such instance, where the

identity of each person is maintained across a video sequence. Scene classification

is another example, where scene properties are identified from image data. Affor-

dance reasoning is yet another, where the objects in the scene are assigned labels

representing what types of actions can be performed upon them.

In this thesis we build a joint formulation for activity recognition, modeling

the aforementioned coupled problems as latent variables. Optimizing the objective

function for this formulation allows us to recover a more accurate solution to ac-

tivity recognition and simultaneously solutions to problems like tracking or scene



classification. We first introduce a model that jointly solves tracking and activity

recognition from videos. Instead of establishing tracks in a preprocessing step, the

model solves a joint optimization problem, recovering actions and identities for ev-

ery person in a video sequence. We then extend this model to include frame-level

cues, where activity labels assigned to people in the same scene are inter-compatible

through a scene-level label.

In the second half of the thesis we look at an alternative formulation of the

same problem, based on probabilistic logic. This new model leverages the same

cues, temporal and spatial, through soft logic rules. This joint formulation can be

efficiently solved, recovering both action labels and tracks. We finally introduce

another model that reformulates action recognition in the multi-label setting, where

each person can be performing more than one action at the same time. In this

setting, a joint formulation can solve for all the likely actions of a person through

explicit modeling of action label correlations.

Finally, we conclude with a discussion of several challenges and how they can

motivate viable future extensions.
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Chapter 1: Introduction

1.1 Motivation

Activity recognition is a fundamental problem in computer vision. The main

aim of an activity recognition system is to identify the actions of one or more persons

from an image or a video. In many settings this problem is essentially intertwined

with other fundamental problems in the field. Tracking is one such instance, where

the identity of each person is maintained across a video sequence. Scene classifi-

cation is another example, where scene properties are identified from image data.

Affordance reasoning is yet another, where the objects in the scene are assigned

labels representing what types of actions can be performed upon them.

Consider the scene in Figure 1.1. The goal of an activity recognition system

is to label every person in a video of frames like this one. Attempting this task by

analyzing the bounding boxes of the people in the scene discards useful information.

Not only is the action a person is performing at a specific frame a cue for her action

in future frames, but it is also a cue for the actions of people in her vicinity in

the current frame. A person who is waiting to cross the street will likely cross the

street in a succeeding frame, and people in her vicinity will likely be also crossing

the street. Knowing what the scene represents, whether it is a street scene, a school

1
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Figure 1.1: Leveraging structure in activity recognition. An action recognition

model that integrates all the available spatiotemporal and contextual cues will likely

outperform one that does not.
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yard, a hallway, or a studio, is another strong cue for what each person might be

doing. Additionally, the location of the person in the scene is another cue, e.g .

people tend to cross roads on crosswalks.

This thesis tackles this problem from a modeling perspective, integrating all

these cues into a joint formulation. Activity recognition from realistic videos can

benefit from leveraging the structure of the scene. This structure is presented

through temporal constraints, where tracking can be utilized, and it can also be

presented through spatial constraints, where the actions of multiple people in the

same frame are recognized jointly.

1.2 Background

Action recognition research has recently made tremendous strides. In the

past few years research has gone beyond the classic single person short video [4, 5]

to model action parts, context, object interactions, group activities, and spatio-

temporal connections between actors [6–8]. Motivated by the rich spatiotemporal

structure of human activity, researchers have explicitly modeled interactions among

actions under observation, jointly solving multiple previously independent vision

problems. Such interactions include those between scenes and actions (e.g., road and

driving) [9], objects and actions [8,10] (e.g., spray bottle and spraying, tennis raquet

and swinging) or actions performed by two or more people [2, 3, 11, 12] (e.g., two

people standing versus two people queueing). More complex high level interactions

have also been modeled, e.g., by dynamic Bayesian networks (DBNs) [13], CASE

3



natural language representations [14], Context-Free Grammars (CFGs) [7], AND-

OR graphs [6], and probabilistic first-order logic [15,16].

This work presented in this thesis is closely related to previous work on mod-

eling collective behavior [2, 3, 12]. Choi et al . [2] initially introduced this problem,

proposing a spatio-temporal local (STL) descriptor that relies on an initial 2.5D

tracking step which is used to construct histograms of poses (facing left, right, for-

ward, or backward) at binned locations around an anchor person. These descriptors

are aggregated over time, used as features for a linear SVM classifier with a pyramid-

like kernel, and combined with velocity-based features to infer the activity of each

person. Collective activity is modeled through the construction of the STL feature.

In later work, Choi et al . [3] extend the STL descriptor by using random forests to

bin the attribute space and spatio-temporal volume adaptively, in order to better

discriminate between collective activities. An MRF applied over the random forest

output regularizes collective activities in both time and space.

Lan et al . [12] propose a slightly modified descriptor, the Action Context

(AC) descriptor, which, unlike the STL descriptor, encodes the actions instead of

the poses of people at nearby locations. The AC descriptor stores for each region

around a person a k-dimensional response vector obtained from the output of k

action classifiers. Instead of relying on local descriptors alone, Lan et al . [11] explic-

itly model group activity by simultaneously modeling the individual actions, their

relation to an overall group activity, and their relation to each other. The structure

of the person-person interaction graph is inferred as part of the overall inference

task. While this successfully models group activities, it does not directly model the

4



temporal progression of individual actions or group activities.

1.3 Contributions

This thesis contributes several models to exploit the rich structural cues sur-

rounding human activity recognition in the multi-person setting. These cues are

explicitly modeled throughout the thesis and the performance gain is evaluated em-

pirically.

• Chapter 2 introduces a model that jointly solves tracking and activity recog-

nition. Instead of establishing tracks in a preprocessing step, where errors can

only propagate forward, the model solves a single objective function, recover-

ing actions and identities for every person in a video sequence.

• Chapter 3 exploits not only the tracking cues but also the frame level cues.

The introduced joint model assigns people in the same scene activities that

are inter-compatible through a scene-level label. The model employs the for-

mulation from Chapter 2 in the same objective function to add the track-level

cues as well.

• Chapter 4 explores a different model based on probabilistic logic. The new

model combines the same cues, temporal and spatial, through soft logic rules

in a single formulation. Jointly solved, it recovers both actions labels and

tracks.

• Chapter 5 looks at a new formulation of action recognition, where each person

5



can be performing more than one action at the same time. In this setting,

a joint formulation can solve for all the likely actions for a person in a given

frame by explicitly modeling the correlations of action labels.

Each chapter will introduce the background and related work that is associated

with the problem it is solving. Chapter 6 concludes the dissertation and proposes

viable future extensions.
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Chapter 2: Action Recognition and Identity Maintenance

2.1 Introduction

In this chapter we introduce a novel model for human action recognition from

videos. We are motivated by the fact that actions in a video sequence typically

follow a natural order. Consider the illustration in Figure 2.1. The person outlined

in the left image is queueing, while the person outlined in the right image is waiting

to cross. Given the appearance and stance resemblance, a classifier might return

similar scores for both actions. However, we can take advantage of their actions at

a later time, when the person on the right will be crossing while the person on the

left will still be queueing; their actions then become more distinguishable.

One issue that remains with this idea is identity maintenance. A simple ap-

proach would be to build the tracks of people detections using appearance models,

and then construct an action recognition model that makes use of the identities

established from the tracking step. This approach assumes that such tracks are

accurate and disregards the advantage of jointly solving both problems under one

model. This is most evident with similar appearances and overlapping bounding

boxes, where the likelihood of a transition between compatible actions can improve

the inference of the identities.
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We develop a novel representation of the joint problem. We initially train a

linear SVM on the Action Context (AC) descriptor [12], which explicitly accounts for

group actions to recognize an individual’s action. We use the normalized classifier

scores for the action likelihood potentials. We then train an appearance model for

identity association. Our association potentials incorporate both appearance cues

and action consistency cues. Our problem is then represented by a constrained

multi-criteria objective function. Casting this problem in a network flow model

allows us to perform inference efficiently and exactly. Finally, we report results that

outperform state-of-the-art methods on two group action datasets.

Our contribution in this work is three-fold:

• We propose jointly solving action recognition and identity maintenance under

one model.

• We formulate inference as a flow problem and solve it exactly and efficiently.

• Our action recognition performance improves on the state-of-the-art results

for two datasets.

The rest of this chapter is structured as follows. In Section 2.2 we survey

the related literature and discuss our contribution in its light. We introduce our

approach and focus on the problem formulation in Section 2.3. We then discuss the

system in details in Section 2.4. We present the datasets in Section 2.5, and report

our results quantitatively and qualitatively. And last, we conclude in Section 2.6.

8



Figure 2.1: How tracking can improve action recognition. Tracking can improve

action recognition in the multi-person setting, and we present a model to solve both

problems jointly and efficiently.

2.2 Related Work

We survey the action recognition literature and the tremendous breakthroughs

that recent research has established in Section 1.2.

To reason about actions over time, most of the surveyed approaches require

that people or objects are already detected and tracked [2,3,6,7,10,12,15,16]. These

9



tracks can be obtained by first detecting people and objects using detectors such as

Felzenszwalb et al . [17] and then linking the resulting detections to form tracks. For

example, the detection based tracking approach of Zhang et al . [18] links detections

into tracklets using a global data association framework based on network flows.

Pirsiavash et al . [19] extend this approach while maintaining global-optimality by

performing shortest path computations on a flow network. Berclaz et al . divide

the scene into a network flow problem on a spatio-temporal node grid [20], which

they solve using the k-shortest path algorithm. This approach, while not requiring

the detection of bounding boxes before tracking, results in a significantly larger

state-space than [18]. Ben Shitrit et al . extend this work by introducing a global

appearance model, reducing the number of track switches for overlapping tracks [21].

While performing tracking and activity recognition sequentially simplifies ac-

tion recognition, since the problem of identity maintenance can be ignored during

the recognition step, mistakes performed during the tracking step cannot be over-

come during recognition. Motivated by the improved results of explicitly modeling

the interactions of multiple vision problems jointly (person-object, person-person,

etc.), the work presented in this thesis tackles solving both problems, identity main-

tenance and activity recognition, in a joint formulation.

10



2.3 Approach

2.3.1 Overview

Our focus in this work is to improve human action recognition. We assume

that humans have already been localized, e.g ., with a state-of-the-art multi-part

model [17], or with background subtraction if the camera is stationary. Our repre-

sentation for a detected human figure is based on Histogram of Oriented Gradients

(HOG) [22], for which we use the popular implementation from Felzenszwalb et

al . [17]. We then run a two-stage classification process by computing the Action

Context (AC) descriptor [12]. We adopt the AC descriptor to model human actions

in the context of actions performed by nearby people; however, to reason about these

actions over time, we integrate this representation into our joint model, instead of

pre-computing track associations. We use this representation to train the action

likelihoods in our model. Figure 2.2 illustrates the overall flow of analysis. and the

details are presented in Section 2.4

Finally, to reason about appearance across time, we augment our represen-

tation with the blurred and subsampled bounding boxes (detections) in Lab color

space. We use this representation to train the association likelihoods used in our

model.
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2.3.2 Formulation

Similar to [18, 19], given human detections, we pose the problem of identity

maintenance as a network flow problem, which allows us to obtain the solution

exactly and efficiently, while focusing on our final goal of activity recognition.

We use i, j, and k to denote the indices of human detections in a video

sequence, while a, b, and c are used to denote actions. We also define P(i) to

be the set of candidate predecessors for detection i from prior frames, and similarly

S(i) to be the set of candidate successors of detection i from subsequent frames. We

indicate the action and the identity of a detected person i by yi and zi, respectively.

We can then formulate our model as a cost function over actions and identities

represented as

F (y, z) =
∑
i

∑
a

[
ua(i) + v′a(i)

]
1(yi = a), (2.1)

where ua(i) is the classification cost associated with assigning action a to person i,

and v′a(i) is the associated tracking cost. Commonly, 1(.) is defined as the indicator

function.

We define the classification cost ua(i) to be the normalized negative classifi-

cation score of person i performing action a. The details of the classifier training

procedure is in Section 2.4.2.

Since a detection could designate a new person entering the scene, we define

our tracking cost as

13



v′a(i) =


vab(i, j) if ∃j ∈ P(i) s.t. zi = zj, yj = b,

λ0 otherwise,

(2.2)

where vab(i, j) is the transition cost that links “person i performing action a”

to a previously tracked “person j performing action b”. If the newly detected person

i does not sufficiently match any of the people previously tracked, the model incurs

a penalty represented by the tuning parameter λ0, and a new track is established.

We define the transition cost vab(i, j) as

vab(i, j) = λd d(i, j)− λc log(pab), (2.3)

which is a mixture of an appearance term and an action consistency term. The

appearance term measures the similarity between person i and person j with a dis-

tance metric d(i, j), and the action consistency term measures the prior probability

pab of a person performing action a followed by action b. The tuning parameters

λd and λc weigh the importance of those two terms. The models for calculating

both the appearance distance metric d(i, j) and the action co-occurrences pab are

provided in Section 2.4.3.

Maximum-a-posteriori (MAP) estimation in our model can be formulated as

the minimum of an integer linear program (ILP). We define the following program

14



min
{e,t,x}

∑
i

∑
a

[
(ua(i) + λ0)ea(i) + (2.4)

∑
j∈P(i)

∑
b

(ua(i) + vab(i, j))tab(i, j)
]
,

s.t. ea(i) +
∑
j∈P(i)

∑
b

tab(i, j) =

xa(i) +
∑
k∈S(i)

∑
c

tca(k, i) ∀i, a

∑
a

[
ea(i) +

∑
j∈P(i)

∑
b

tab(i, j)
]

= 1 ∀i

{e, t,x} ∈ Bn,

where variable ea(i) denotes the entrance of person i into the scene performing action

a, while variable tab(i, j) denotes the transition link of person i performing action

a to person j performing action b. Finally, variable xa(i) denotes person i exiting

the scene after performing action a. The entrance, transition, and exit variables

are defined to be binary indicators. The costs ua(i) and vab(i, j) are as previously

defined.

Minimizing the program in Equation 2.4 is equivalent to inference in the model

from Equation 2.1. A detected human figure would always encounter a classification

cost, whether it is linked to a previously tracked detection, or is entering the scene

for the first time. Consequently, it will either incur the transition cost to link it to

the previously tracked detection, or incur the penalty of not having a sufficiently

matching predecessor. The two constraints enforce a valid assignment according to

Equations 2.1 and 2.2.
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The variables e, t, and x always recover a unique assignment for y and z.

Specifically, if detection i just entered the scene, it will be assigned action yi = a

for which ea(i) = 1 and its identity zi will be assigned to an unused track number.

Otherwise, detection i will be instead linked to a previous detection; in that case, it

will be assigned action yi = a for which tca(k, i) = 1 and the identity will propagate

from that previous detection: zi = zk.

The ILP in Equation 2.4 represents a network flow problem. In fact, the first

constraint of the ILP is the “flow conservation constraint” (or Kirchoff’s Laws).

However, the second constraint, which we refer to as the “explanation constraint”,

is not typically encountered in the minimum cost flow problem. In our case, it

enforces that an action and an identity be assigned to every person detected in the

video.

Figure 2.3 illustrates the flow graph of an example with 3 frames, 5 detections,

and 3 possible actions per person. Every grouped subset of nodes represents a

detection, and the nodes in the subset are potential actions for that detection. Every

detection forms a complete bipartite graph with its predecessors (previous frames)

and successors (following frames). Here people in every frame are connected to those

in the previous frame, but that can be generalized to any subset of people in any

number of frames. The flow goes from the source node to the sink node assigning

actions and identities that minimize our integer linear program in Equation 2.4. By

enforcing the “explanation constraint”, we are guaranteed an action and an identity

for every person in the graph. The flow of the minimum cost in the network uniquely

assigns actions and identities to every detected person in the video sequence. The

16



colored arcs in the diagram represent an example of a valid complete assignment

(corresponding to a flow of minimum cost) for the frame sequence at the bottom.

The person outlined in green enters in the first frame, performs the first action for

the entire sequence, and exits in the final frame, while the person outlined in red

enters in the second frame, performs the second action, before exiting at the final

frame.

2.3.3 Inference

While minimim cost flow problems with side constraints can generally be

solved by Lagrangian Relaxation (also known as Dual Decomposition) [23], the form

of our constraints allows us to provide fast alternative solutions. As shown in Equa-

tion 2.4 and Figure 2.3, our formulation uses constraints on sets of nodes. We relax

the binary constraint in Equation 2.4 to an interval constraint and directly solve the

linear program using a fast interior-point solver. To improve the inference speed, we

only connect people with overlapping bounding boxes in consecutive frames. Solving

the cost function exactly takes an average of 1.2 seconds for an average sequence

length of 520 frames, where each sequence is subsampled every ten frames during

model construction.
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2.4 Learning the Potentials

2.4.1 Piecewise Training

Since inference in our model is exact and latent variables are absent, global

training approaches become not only possible, but deterministic. However, for prac-

tical reasons, we chose to use piecewise training [24]. Piecewise training involves

dividing the model into several components, each of which is trained independently.

We are motivated by recent theoretical and practical results. Theoretically speaking,

piecewise training minimizes an upper bound on the log partition function of the

model, which corresponds to maximizing a lower bound on the exact likelihood. In

practice, the experiments of [24,25] show that piecewise training sometimes outper-

forms global training, even when joint full inference is used. We choose to divide our

model training across potentials, i.e., we train the three groups of potentials–unary

action, binary action consistency, and binary appearance consistency–independently

from each other. The tuning parameters that weigh the importance of the individual

terms were set manually through visual inspection.

2.4.2 Action Potentials

We now describe how we train our action likelihood potentials. We use the

AC descriptor from Lan et al . [12]. We utilize HOG features as the underlying

representation. We then train a multi-class linear SVM using LibLinear [26]. Next,

a bag-of-words style representation for the action descriptor of each person is built.
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Each person is represented by the associated classifier scores, and the strongest

classifier response for every action in a set of defined neighborhood regions in their

context.

The descriptor of the i-th person becomes the concatenation of their action

scores and context scores. The action scores for person i, given A possible actions,

become Fi = [s1(i), s2(i), . . . , sA(i)], where sa(i) is the score of classifying person i

to action a. The context score, defined over M neighborhood regions, is

Ci =

[
max
j∈N1(i)

s1(j), . . . , max
j∈N1(i)

sA(j), . . . ,

max
j∈NM (i)

s1(j), . . . , max
j∈NM (i)

sA(j)

]
, (2.5)

where Nm(i) is a list of people in the m-th region in the neighborhood of the i-th

person. We use the same “sub-context regions” as [12]. We then run a second-

stage classifer on the extracted AC descriptor using the same multi-class linear

SVM implementation of LibLinear [26]. The classifier scores are negated and then

normalized using a softmax function, and finally incorporated as the unary action

likelihood potentials ua(i), which assign action a to person i.

2.4.3 Association Potentials

To track the identities of the targets in our video sequences, we train identity

association potentials and incorporate them in our model. Our association potentials

use both appearance and action consistency cues. The appearance cues are trained

using the subsampled color channels as features. We train for a Mahalanobis distance

20



matrix M to estimate the similarity between detections across frames. The distance

matrix is learned so as to bring detections from the same track closer, and those

from different tracks apart [27]. This is formulated as

M∗ = arg min
M

∑
Tk

[∑
i,j∈Tk

(fi − fj)
TM(fi − fj)

−
∑

i′∈Tk,j′ /∈Tk

(fi′ − fj′)
TM(fi′ − fj′)

]
, (2.6)

where Tk is the k-th track and fi is the feature vector of the i-th person. We solve for

M using the fast Large Margin Nearest Neighbor (LMNN) implementation of [28].

The distance between two people i and j can then be defined as

d(i, j) = (fi − fj)
TM(fi − fj). (2.7)

The action consistency cues are estimated using the groundtruth action labels

from the training set. We count pairwise co-occurrences of actions on the same track

plus a small additive smoothing parameter α. The counts are normalized into the

pairwise co-occurrence probabilities pab of action pairs a and b.

2.5 Experiments

2.5.1 Datasets

We use the group actions dataset from [2] and its augmentation from [3] to

evaluate our model. The datasets are appropriate since they have multiple targets

21



in a natural setting, while most action datasets, like KTH [5] or Weizmann [4],

have a single person performing a specific action. The original dataset includes 5

action classes: crossing, standing, queueing, walking, and talking. The augmented

dataset includes 6 action classes: crossing, standing, queueing, talking, dancing, and

jogging. The walking action was removed from the augmented dataset because it

is ill-defined [2]. We only use the bounding boxes, the associated actions, and the

identities. We did not use any of the 3-D trajectory information.

Our main focus here is action recognition, and tracking is used only to improve

the performance in the full model. While we show that joint optimization improves

action recognition through tracking, it is intuitive that tracking performance will

also improve through action recognition. However, such an evaluation is outside

the scope of our work. We evaluate our results similar to [2, 3]. For each dataset,

we perform a leave-one-video-out cross-validation scheme. This means that when

we classify the actions in one video, we use all the other videos in the dataset for

training and validation. Our action potentials are based on [12], which we also

compare against to analyze the efficacy of our approach.

2.5.2 Results

Our confusion matrices for the 5-class and the 6-class datasets using the full

model are shown in Figure 2.4. It is clear that removing the walking activity im-

proves the classification performance, possibly due to the apparent ambiguity be-

tween walking and crossing. Our average classification accuracy is 70.9% on the
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Figure 2.4: Quantitative results of our model. Our confusion matrices for the 5-

class [2] and the 6-class [3] datasets.
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former dataset and 83.7% on the latter.

We outperform the state-of-the-art methods on the two datasets, as shown

in Table 2.1. Classification using the AC descriptor that we employ was reported

in [12], which we improve upon. The model from [3] yields the same performance

as our model for the first dataset. However, it employs additional trajectory infor-

mation, including the 3D location and the pose of every person [3].

We also report qualitative results on the 6-activity dataset in Figure 2.5. The

first two columns are the results of two consecutive frames from the same video

sequence using only the action potentials, and the next two columns are the results

of the same two frames, but using our full model. Each row represents a different

video sequence. The first 3 sequences are successful cases where the full model

improves the action classification results in an adjacent frame. The first row shows

a video sequence where the misclassification of crossing as queueing is fixed with

correct tracking. The second shows the same case for talking being misclassified as

crossing, and the third for jogging being misclassified as dancing. The fourth row is

a case where the full model actually decreases the classification accuracy due to the

high confidence of the action classifier in the wrong label, causing the full model to

misclassify the action in the consecutive frame.

2.6 Conclusion

We evaluated how tracking identities helps recover consistent actions across

frames, and we unified action classification and identity maintenance in a single
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Approach/Dataset 5 Activities 6 Activities

AC [12] 68.2% -

STV+MC [2] 65.9% -

RSTV [3] 67.2% 71.7%

RSTV+MRF [3] 70.9% 82.0%

AC 68.8% 81.5%

AC+Flow 70.9% 83.7%

Table 2.1: A comparison of classification accuracies of the state-of-the-art methods

on the two datasets. Our full model outperforms previous approaches and improves

upon the results of the classifier output.

model. We proposed an efficient flow model to jointly solve both problems, which

could be solved by a myriad of polynomial-time algorithms. In practice, we can as-

sign actions and identities to every person in one video sequence in roughly one sec-

ond. We reported our action recognition results on two datasets, and outperformed

the state-of-the-art approaches using the same leave-one-out validation scheme. Our

model generalizes minimum cost flow with additional constraints, and the resulting

linear program is fast to optimize using off-the-shelf interior-point solvers.
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Chapter 3: Combining Per-Frame and Per-Track Cues

3.1 Introduction

In this chapter we expand our temporally consistent model for human action

recognition to introduce also a scene level consistency. Consider the illustration in

Figure 3.1. The person outlined in the left image is queueing, while the person

outlined in the right image is waiting to cross the road. Given the appearance

and pose resemblance, a classifier might return similar scores for both actions for

both people. However, the actions performed by the two people at a later time and

the actions of people surrounding them can also provide information for the action

inference task. This becomes evident when the person on the right starts crossing

and nearby pedestrians start doing the same, while the person on the left stays in

the queue and is surrounded by other people waiting in line; at this point, their

actions become distinguishable.

Tackling this problem reveals three main challenges; action recognition, iden-

tity maintenance, and contextual harmony. We propose a representation that solves

all three problems simultaneously and efficiently. A joint solution avoids the inco-

herences that arise from solving each problem separately. We initially train a linear

SVM on the Action Context (AC) descriptor [12], which explicitly accounts for group
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actions to recognize an individual’s action. We use the normalized classifier scores

for the action likelihood potentials. We then train an appearance model for identity

association. Our association potentials incorporate both appearance cues and action

consistency cues. We also train a scene-action harmony potential, which accounts

for how an action fits into the general setting of the current scene. Our problem

can then be naturally represented as a constrained multi-criteria objective function.

To obtain a tractable solution, we optimize this function using Dual Decomposition

(or Lagrangian Relaxation) by splitting it into two subproblems, both of which are

tractable and can be solved exactly and efficiently. Applied to two group action

datasets, our approach outperforms state-of-the-art methods.

Our contribution in this work is three-fold:

• We propose a unified model combining per-frame and per-track cues for action

recognition, solving identity maintenance in the process.

• We formulate inference as an optimization problem and solve its decomposi-

tions exactly and efficiently to recover the joint solution.

• Our action recognition performance improves upon the state-of-the-art results

for two publicly available datasets.

The rest of this chapter is structured as follows. In Section 3.2 we survey the

action recognition literature and discuss our contribution in its light. We introduce

our approach and focus on the problem formulation in Section 3.3. We then discuss

the system in details in Section 3.4. In Section 3.5, we report our quantitative and

qualitative results on public datasets. And last, we conclude in Section 3.6.
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3.2 Related Work

We refer the reader to the action recognition literature survey in Section 1.2,

covering the recent advances in the field.

While most of these approaches require tracked to be established prior to

action recognition [2, 3, 6, 7, 10, 12, 15, 16], we follow the motivation in our recent

work [29], where improved results were obtained by performing identity maintenance

and action recognition simultaneously and efficiently.

We also adopt the Action Context (AC) descriptor [12] and perform joint

action recognition and identity maintenance, as in our prior work [29]. Additionally,

we explicitly model the collective activity in a scene, its effect on individual actions,

and its progression over time. Lan et al. [11] model group activities but not the

temporal progression of individual actions or group activities. Also unlike [11], we

do not manually specify a semantically meaningful group activity label, but instead

obtain it automatically and use it only to ensure that the activities of people in the

same frame are in harmony with each other. While our joint model is complex, we

are still able to provide optimality and convergence guarantees without resorting

to approximate inference (e.g ., sampling). Our approach relies on decomposing the

problem into two sub-tasks, a network flow problem and a tree-structured graphical

model, both of which can be solved efficiently.
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3.3 Approach

3.3.1 Overview

Our focus in this work is to improve human action recognition. We assume

that humans have already been localized, e.g ., with a state-of-the-art multi-part

model [17], or with background subtraction if the camera is stationary. Our repre-

sentation for a detected human figure is based on Histogram of Oriented Gradients

(HOG) [22], for which we use the popular implementation from Felzenszwalb et

al . [17]. We augment our representation with an appearance model for tracking by

blurring and subsampling the three color channels of the bounding box in Lab color

space. We use this representation to train the action and association likelihoods

used in our model. We cluster the histograms of actions per-scene for our training

data into a set of canonical scene types, which are then used to determine if an

action is harmonious with the general setting of the current frame. We present the

details of our system in the following sections.

3.3.2 Formulation

We use i, j, and k to denote the indices of human detections in a video

sequence, while a, b, and c are used to denote actions. We also use f to denote frames

and s to denote scenes. We define P(i) to be the set of candidate predecessors for

human detection i from prior frames, and similarly S(i) to be the set of candidate

successors of human detection i from subsequent frames. We also define F(i) to be
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the frame where human detection i appears. We indicate the action and the identity

of a person i by yi and zi, respectively, and we indicate the scene type of a frame

f by qf . We can then formulate our model as a cost function over actions, scenes,

and identities represented as

F (y,q, z) =
∑
f

∑
s

[
gs(f) + hs(f) + (3.1)

∑
i∈f

∑
a

[
ua(i) + v′a(i) + wsa(f, i)

]
1(yi = a)

]
1(qf = s),

where ua(i) is the classification cost associated with assigning action a to person i,

v′a(i) is the associated tracking cost, and wsa(f, i) is the scene-action harmony cost.

gs(f) denotes the scene prior cost, and hs(f) denotes the scene consistency cost.

Commonly, 1(.) is defined as the indicator function.

We define the classification cost ua(i) to be the normalized negative classifi-

cation score of person i performing action a. The details of the classifier training

procedure is in Section 3.4.2.

Since a detection could designate a new person entering the scene, we define

our tracking cost as

v′a(i) =


vab(i, j) if ∃j ∈ P(i) s.t. zi = zj, yj = b,

λ0 otherwise,

(3.2)

where vab(i, j) is the transition cost that links “person i performing action a” to a

previously tracked “person j performing action b”. If the newly detected person i
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does not sufficiently match any of the people previously tracked, the model incurs

a penalty represented by the tuning parameter λ0, and a new track is established.

We define the transition cost vab(i, j) as

vab(i, j) = λd d(i, j)− λc log(pab), (3.3)

which is a mixture of an appearance term and an action consistency term. The

appearance term measures the similarity between person i and person j with a dis-

tance metric d(i, j), and the action consistency term measures the prior probability

pab of a person performing action a followed by action b. The tuning parameters

λd and λc weigh the importance of those two terms. The models for calculating

both the appearance distance metric and the action co-occurrences are provided in

Section 3.4.3.

We incorporate scene harmony by modeling a scene using the histogram of

the individual actions in that scene. The scene prior cost gs(f) is calculated as the

negative log prior probability ps of the histogram of actions of scene label s. The

scene consistency cost hs(f) is defined as

hs(f) = λs1(qf 6= qf+), (3.4)

where f+ is the next frame. The scene consistency cost is in effect a smoothness prior

over scenes in consecutive frames, while the scene-action harmony term wsa(f, i) is

defined as
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wsa(f, i) = −λh log(psa), (3.5)

which models the likelihood psa of an individual performing action a in a scene

labeled s. The tuning parameters λs and λh weigh the importance of those two

terms.

We illustrate our full model in factor graph notation in Figure 3.2. The blue

nodes represent human detections, the green nodes represent scenes, and the grey

nodes represent the identity matching between frames. Pairwise cliques tie the scene

nodes to all the detections in a specific frame, enforcing a harmonious labeling for

the frame, while high-order cliques connect detections across frames to enforce both

a valid identity assignment and a valid action-action transition across the tracks.

Scene nodes are connected to neighboring scene nodes to discourage abrupt scene

label changes.

3.3.3 Inference

Inference in our model can be formulated as a relaxed integer linear program,

but it is more advantageous to leverage the underlying structure of the model.

Maximum-a-posteriori (MAP) estimation in our model can be obtained using a

Dual Decomposition optimization scheme [30,31].

From Equation 3.1, our model is a function of actions, identities, and scenes.

We observe that we can represent the problem via decomposition as
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min
y,q,z

F (y,q, z) = min
y,q,z

[
F1(y,q) + F2(y, z)

]
(3.6)

where F1(.) is a function of the actions and scenes in each frame, while F2(.) is

a function of the actions and identities across the tracks. To break the objective

function into two parts, we introduce a copy of the complicating variable y for each

subproblem and add a consistency (or consensus) constraint to force the two copies

to match:

min
y1,y2,q,z

[
F1(y1,q) + F2(y2, z)

]
, (3.7)

s.t. y1 = y2, (3.8)

We now introduce the the dual variables ν and form the Lagrangian

L(y1,y2,q, z,ν) = F1(y1,q) + F2(y2, z) + νy1 − νy2, (3.9)

which can be separated into two subproblems and yields a lower bound on the

optimal solution to the original problem [30]. We then form the dual problem

max
ν

L(y1,y2,q, z,ν) = (3.10)

max
ν

[
min
y1,q

[
F1(y1,q) + νy1

]
︸ ︷︷ ︸

Subproblem 1

+ min
y2,z

[
F2(y2, z)− νy2

]
︸ ︷︷ ︸

Subproblem 2

]
,

so that solving the original problem reduces to an iterative process involving the

following primal-dual steps:
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1. Optimize the two subproblems to obtain the primal variables y1,y2,q, z

2. Optimize the dual variables using a subgradient step ν = ν + ηt (y1 − y2)

where ηt is the step size for iteration t [30]. The complicating potentials in our

model are the classification cost potentials ua(i) (see Figure 3.2) and therefore are

distributed evenly across the two subproblems, where each subproblem is then a

function of ua(i)/2, for all u and i.

This approach is illustrated in Figure 3.2. This is a factor graph representation

of our joint model. The blue nodes denote the human detections, the green nodes

denote the scenes, and the grey nodes denote the identity matching across frames.

The potentials presented in Section 3.3.2 are represented by their associated factor

nodes. The decomposition described in this section is shown at the bottom, along

with how the potentials (including the complicating factors) are distributed across

the subproblems.

3.3.3.1 Subproblem 1.

The first subproblem is a function of the actions y and the scenes q as il-

lustrated on the bottom left of Figure 3.2. The modified classification cost ǔa(i) is

defined as ua(i)/2+νa(i), while the costs gs(f), hs(f), and wsa(f, i) are as previously

defined. The problem is a tree-structured pairwise graphical model, and hence MAP

inference is tractable. We optimize the subproblem exactly and efficiently by maxi-

mizing its negative objective function using Max-Product Belief Propagation [32].
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3.3.3.2 Subproblem 2.

The second subproblem is a function of the actions y and the identities z as

illustrated on the bottom right of Figure 3.2. The high-order cliques in this problem

have a special structure; they ensure the validity of the identity assignment between

detections, and the consistency of actions across linked detections. While a Belief

Propagation algorithm can be formulated for this problems [33], we opted to instead

we use the following integer linear program (ILP) [29]

min
e,t,x

∑
i

∑
a

[
(ûa(i) + λ0)ea(i) +

∑
j∈P(i)

∑
b

(ûa(i) + vab(i, j))tab(i, j)
]
, (3.11)

s.t. ea(i) +
∑
j∈P(i)

∑
b

tab(i, j) = xa(i) +
∑
k∈S(i)

∑
c

tca(k, i) ∀i, a

∑
a

[
ea(i) +

∑
j∈P(i)

∑
b

tab(i, j)
]

= 1 ∀i

{e, t,x} ∈ Bn,

where variable ea(i) denotes the entrance of person i into the scene performing action

a, while variable tab(i, j) denotes the transition link of person i performing action

a to person j performing action b. Finally, variable xa(i) denotes person i exiting

the scene after performing action a. The entrance, transition, and exit variables

are binary indicators. The cost vab(i, j) is as previously defined, while the modified

classification cost ûa(i) is defined as ua(i)/2− νa(i).

Minimizing the program in Equation 3.11 is equivalent to inference in the

second subproblem from Equation 3.10. The form of the high-order clique potential
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between detections of adjacent frames is very sparse. It does not tie the actions of

everyone detected in the corresponding frame. It, however, enforces a valid match

and thus a valid action transition. The variables e, t, and x always recover a unique

assignment for y and z. Specifically, if detection i just entered the scene, it will be

assigned action yi = a for which ea(i) = 1 and its identity zi will be assigned to an

unused track number. Otherwise, detection i will be instead linked to a previous

detection; in that case, it will be assigned action yi = a for which tca(k, i) = 1 and

the identity will propagate from that previous detection: zi = zk.

The ILP in Equation 3.11 represents a network flow problem [29]. In fact, the

first constraint of the ILP is the “flow conservation constraint” (or Kirchoff’s Laws).

However, the second constraint, which is refered to as the “explanation constraint”,

is not typically encountered in the minimum cost flow problem. In this case, it

enforces that an action and an identity be assigned to every person detected in the

video. The flow of the minimum cost in the network uniquely assigns actions and

identities to every detected person in a video sequence.

Similar to Khamis et al . [29], we relax the binary constraint to an interval

constraint and directly solve the linear program using a fast interior-point solver.

To improve the inference speed, we only connect people with overlapping bounding

boxes in consecutive frames.
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3.3.3.3 Solution Recovery.

On convergence, the primal variables y1,y2,q, z and the dual variables ν are

obtained. In the case of an agreement between the two copies y1 and y2, the

original complicating variable y is trivially recovered. Otherwise, we recover the

best assignment for y by examining the associated dual variables ν, similar to [31].

The solution is typically attained in 3 iterations, and in several cases the global

solution is attained in 6-10 iterations.

3.4 Learning

3.4.1 Piecewise Training

Since inference in our model is exact and latent variables are absent, global

training approaches become not only possible, but deterministic. However, for prac-

tical reasons, we chose to use piecewise training [24]. Piecewise training involves

dividing the model into several components, each of which is trained independently.

We are motivated by recent theoretical and practical results. Theoretically speaking,

piecewise training minimizes an upper bound on the log partition function of the

model, which corresponds to maximizing a lower bound on the exact likelihood. In

practice, the experiments of [24,25] show that piecewise training sometimes outper-

forms global training, even when joint full inference is used. We choose to divide our

model training across potentials, and train the groups of potentials independently

from each other. The parameters λ0, λc, λd, λs, and λh were manually tuned and
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ultimately set to 0.25, 0.25, 0.5, 0.1, and 0.25 resepectively for all the experiments.

3.4.2 Action Potentials

We now describe how we train our action likelihood potentials. We use the

AC descriptor from Lan et al . [12]. We employ HOG features as the underlying

representation. We then train a multi-class linear SVM using LibLinear [26]. Next,

a bag-of-words style representation for the action descriptor of each person is built.

Each person is represented by the associated classifier scores, and the strongest

classifier response for every action in a set of defined neighborhood regions in their

context.

The descriptor of the i-th person becomes the concatenation of their action

scores and context scores. The action scores for person i, given A possible actions,

become Fi = [s1(i), s2(i), . . . , sA(i)], where sa(i) is the score of classifying person i

to action a. The context score, defined over M neighborhood regions, is

Ci =

[
max
j∈N1(i)

s1(j), . . . , max
j∈N1(i)

sA(j), . . . , max
j∈NM (i)

s1(j), . . . , max
j∈NM (i)

sA(j)

]
, (3.12)

where Nm(i) is a list of people in the m-th region in the neighborhood of the i-th

person. We use the same “sub-context regions” as [12]. We then run a second-

stage classifer on the extracted AC descriptor using the same multi-class linear

SVM implementation of LibLinear [26]. The classifier scores are negated and then

normalized using a softmax function, and finally incorporated as the unary action

likelihood potentials ua(i), which assign action a to person i.
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3.4.3 Association Potentials

To track the identities of the targets in our video sequences, we train identity

association potentials and incorporate them in our model. Our association potentials

use both appearance and action consistency cues. The appearance cues are trained

using the subsampled color channels as features. We train for a Mahalanobis distance

matrix M to estimate the similarity between detections across frames. The distance

matrix is learned so as to bring detections from the same track closer, and those

from different tracks apart [27]. This is formulated as

M∗ = arg min
M

∑
Tk

[∑
i,j∈Tk

(fi − fj)
TM(fi − fj) −

∑
i′∈Tk
j′ /∈Tk

(fi′ − fj′)
TM(fi′ − fj′)

]
, (3.13)

where Tk is the k-th track and fi is the feature vector of the i-th person. We solve for

M using the fast Large Margin Nearest Neighbor (LMNN) implementation of [28].

The distance between the features of two detected people i and j can then be defined

as

d(i, j) = (fi − fj)
TM(fi − fj). (3.14)

The action consistency cues are estimated using the groundtruth action labels

from the training set. We count pairwise co-occurrences of actions on the same track

plus a small additive smoothing parameter α. The counts are normalized into the

pairwise co-occurrence probabilities pab of action pairs a and b.
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3.4.4 Scene Potentials

We cluster the histograms of actions in all the frames of our training set using

k-means, where we set k = 8 in all of our experiments. The k-means cluster centroids

are good representatives of the most likely scenes, and so the centroid histograms are

an appropriate approximation for the likelihood of an action given a scene canonical

scene types, while the number of points in each cluster is used to approximate the

scene prior probability. The form of our scene potentials is similar to the harmony

potentials introduced in [34], but our training approach is different.

3.5 Experiments

3.5.1 Datasets

We use the group actions dataset from [2] and its augmentation from [3] to

evaluate our model. The datasets are appropriate since they have multiple targets

in a natural setting, while most action datasets, like KTH [5] or Weizmann [4],

have a single person performing a specific action. The original dataset includes 5

action classes: crossing, standing, queueing, walking, and talking. The augmented

dataset includes 6 action classes: crossing, standing, queueing, talking, dancing, and

jogging. The walking action was removed from the augmented dataset because it

is ill-defined [2]. We only use the bounding boxes, the associated actions, and the

identities. We did not use any of the 3-D trajectory information.

Our main focus here is action recognition, and tracking is used only to improve
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the performance in the full model. We evaluate our results similar to [2, 3]. For

each dataset, we perform a leave-one-video-out cross-validation scheme. This means

that when we classify the actions in one video, we use all the other videos in the

dataset for training and validation. Our action potentials are based on [12], which

we also compare against to analyze the efficacy of our approach.

3.5.2 Results

Our confusion matrices for the 5-class and the 6-class datasets using the full

model are shown in Figure 3.3. It is clear that removing the walking activity im-

proves the classification performance, possibly due to the apparent ambiguity be-

tween walking and crossing. Our average classification accuracy is 72.0% on the

former dataset and 85.8% on the latter.

We outperform the state-of-the-art methods on the two datasets, as shown

in Table 3.1. Classification using the AC descriptor that we employ was reported

in [12], which we improve upon. Our full model outperforms previous approaches

and can be solved deterministically with some global optimality guarantees. It is

worth noting that the model from [3] employs additional trajectory information,

including the 3D location and the pose of every person [3].

We also report qualitative results on the 6-activity dataset in Figure 3.4. The

four columns represent the results using our unary potentials only, the track cues,

the frame cues, and the full model respectively. The first row is a case where the

full model, combining both cues, outperforms using either the frame cues or the
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Approach/Dataset 5 Activities 6 Activities

AC [12] 68.2% -

STV+MC [2] 65.9% -

RSTV [3] 67.2% 71.7%

RSTV+MRF [3] 70.9% 82.0%

Unary (AC) [29] 68.8% 81.5%

AC+Track Cues [29] 70.9% 83.7%

AC+Frame Cues 70.7% 84.8%

AC+Full Model 72.0% 85.8%

Table 3.1: A comparison of classification accuracies of the state-of-the-art methods

on the two datasets. Our full model outperforms previous approaches and can be

solved deterministically with some global optimality guarantees.

track cues in isolation. In the second row the track cues degraded the results of

the unary potentials due to identity matching inaccuracies in the busy scene, but

the full model still yielded a perfect classification result. The frame cues were not

able to fix classifier errors in the third row, but the full model leveraged tracking

and reported accurate results. Finally, the final row is a failure case where, through

the high classifier confidence in the wrong label, the full model reinforced the wrong

result, classifying everyone incorrectly, even though the frame cues were successful.
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Figure 3.3: Quantitative results of our model. Our confusion matrices for the 5-

class [2] and the 6-class [3] datasets.

46



cr
o

ss
in

g 
w

ai
ti

n
g 

q
u

eu
ei

n
g 

ta
lk

in
g 

d
an

ci
n

g 
jo

gg
in

g 

A
C

+F
ra

m
e

 C
u

e
s 

U
n

ar
y 

(A
C

) 
A

C
+T

ra
ck

 C
u

e
s 

A
C

+F
u

ll 
M

o
d

e
l 

F
ig

u
re

3.
4:

Q
u
al

it
at

iv
e

re
su

lt
s

of
ou

r
m

o
d
el

.
E

ac
h

ro
w

in
th

e
fi
gu

re
re

p
re

se
n
ts

a
d
iff

er
en

t
v
id

eo
se

q
u
en

ce
.

E
ac

h
ro

w
re

p
re

se
n
ts

th
e

re
su

lt
on

a
p
ar

ti
cu

la
r

v
id

eo
se

q
u
en

ce
.

T
h
e

fi
rs

t
3

ro
w

s
ar

e
ex

am
p
le

s
w

h
er

e
th

e
m

o
d
el

im
p
ro

ve
s

th
e

re
su

lt
,

w
h
il
e

th
e

la
st

ro
w

is
a

fa
il
u
re

ca
se

.

47



3.6 Conclusion

We introduced a model that combines tracking cues and scene cues to improve

action classification results. The intractability of our model is overcome by a de-

composition that leverages its underlying structure. The decomposition yields two

subproblems, which we solve exactly and efficiently. We recover the solution to the

original problem, which is optimal in several cases. Finally, by combining both cues,

we reported action recognition results that outperform the state-of-the-art on two

publicly available datasets using the same validation scheme.
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Chapter 4: Probabilistic Logic for Collective Activity Recognition

4.1 Introduction

In many computer vision tasks, it is useful to combine structured, high-level

reasoning with low-level predictions. Collective reasoning at a high-level can take ad-

vantage of accurate low-level detectors, while improving the accuracy of predictions

based on less accurate detectors. To fully leverage the power of high-level reason-

ing, we require a tool that is both powerful enough to model complex, structured

problems and expressive enough to easily encode high-level ideas. In this chapter

we apply hinge-loss Markov random fields (HL-MRFs) [35, 36] to our task of in-

terest, human activity recognition from videos. HL-MRFs are powerful, templated

graphical models that admit efficient, exact inference over continuous variables.

We demonstrate that, when combined with the modeling language probabilistic soft

logic (PSL) [37,38], HL-MRFs allow us to design high-level, structured models that

improve the performance of low-level detectors.

We focus on the task of collective activity recognition of humans in video

scenes. Since human activities are often interactive or social in nature, collective

reasoning over activities can provide more accurate detections than independent,

local predictions. For instance, one can use aggregate predictions within the scene
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or frame to reason about the local actions of each actor. Further, collective models

let us reason across video frames, to allow predictions in adjacent frames to inform

each other, and thus implement the intuition that actions are temporally continuous.

We demonstrate the effectiveness of HL-MRFs and PSL on two group activity

datasets. Using a simple, interpretable model, we are able to achieve significant lift

in accuracy from low-level predictors. We thus show HL-MRFs to be a powerful,

expressive tool for high-level computer vision.

4.1.1 Related Work

Section 1.2 provides a survey of the recent developments of action recognition

research in recent years.

We formulate a powerful approach to model the complex and rich structure

in action recognition, going beyond the independent classifications resulting from

low level detectors. Recent work in multi-person action recognition carried a similar

motivation. We presented a network flow model to perform simultaneous action

recognition and identity maintenance [29]. We then augmented that model to jointly

reason about scene types [39]. Similarly, Choi et al . proposed a unified model to

perform action recognition at the individual and group levels simultaneously with

tracking [40]. We build upon this work using a probabilistic relational approach.

PSL is one of many existing systems for probabilistic relational modeling,

including Markov logic networks [41], relational dependency networks [42], and re-

lational Markov networks [43], among others. One distinguishing feature of PSL is
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that its continuous representation of logical truth makes its underlying probabilis-

tic model an HL-MRF [36], which allows inference of the most-probable explana-

tion (MPE) to be solved as a convex optimization. Our work benefits from recent

advances on fast HL-MRF inference based on the alternating direction method of

multipliers [35,44], which significantly increases the scalability of HL-MRF inference

over off-the-shelf convex optimization tools.

4.2 Hinge-loss Markov Random Fields

In this section we formally introduce hinge-loss Markov random fields (HL-

MRFs), a general class of conditional, continuous-valued probabilistic models. HL-

MRFs are log-linear probabilistic models whose features are hinge-loss functions

of the variable states. Through constructions based on soft logic (explained in

Section 4.3), hinge-loss potentials can be used to model generalizations of logical

conjunction and implication, making these powerful models interpretable, flexible,

and expressive.

HL-MRFs are parameterized by constrained hinge-loss energy functions.

Definition 1. Let Y = (Y1, . . . , Yn) be a vector of n variables and X = (X1, . . . , Xn′)

a vector of n′ variables with joint domain D = [0, 1]n+n′
. Let φ = (φ1, . . . , φm) be m

continuous potentials of the form

φj(Y,X) = [max {`j(Y,X), 0}]pj

where `j is a linear function of Y and X and pj ∈ {1, 2}. Let C = (C1, . . . , Cr) be

linear constraint functions associated with index sets denoting equality constraints E
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and inequality constraints I, which define the feasible set

D̃ =

Y,X ∈ D

∣∣∣∣∣∣∣∣
Ck(Y,X) = 0, ∀k ∈ E

Ck(Y,X) ≥ 0,∀k ∈ I

 .

For Y,X ∈ D̃, given a vector of nonnegative free parameters, i.e., weights, λ =

(λ1, . . . , λm), a constrained hinge-loss energy function fλ is defined as

fλ(Y,X) =
m∑
j=1

λjφj(Y,X) .

Definition 2. A hinge-loss Markov random field P over random variables Y and

conditioned on random variables X is a probability density defined as follows: if

Y,X /∈ D̃, then P (Y|X) = 0; if Y,X ∈ D̃, then

P (Y|X) =
1

Z(λ)
exp [−fλ(Y,X)] , (4.1)

where Z(λ) =
∫
Y

exp [−fλ(Y,X)].

The potential functions and weights can be grouped together into templates,

which are used to define general classes of HL-MRFs that are parameterized by

the structure of input data. Let T = (t1, . . . , ts) denote a vector of templates with

associated weights Λ = (Λ1, . . . ,Λs). We partition the potentials by their associated

templates and let

Φq(Y,X) =
∑
j∈tq

φj(Y,X)

for all tq ∈ T . In the ground HL-MRF, the weight of the j’th hinge-loss potential is

set to the weight of the template from which it was derived, i.e., λj = Λq, for each

j ∈ tq.
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MPE inference in HL-MRFs is equivalent to finding the feasible minimizer

of the convex energy fλ. Here, HL-MRFs have a distinct advantage over general

discrete models, since minimizing fλ is a convex optimization, rather than a combi-

natorial one.

Bach et al . showed how to minimize fλ using a consensus-optimization algo-

rithm [35], based on the alternating direction method of multipliers (ADMM) [44].

Consensus-optimization works by creating local copies of the variables in each po-

tential and constraint, constraining them to be equal to the original variables, and

relaxing those equality constraints to make independent subproblems. By iteratively

solving the subproblems and averaging the results, the algorithm reaches a consen-

sus on the best values of the original variables, also called the complicating variables

or the consensus variables. This procedure is guaranteed to converge to the global

minimizer of fλ [44].

The inference algorithm has since been generalized and improved [36]. Exper-

imental results suggest that the running time of this algorithm scales linearly with

the size of the problem. On modern hardware, the algorithm can perform exact

MPE inference with hundreds of thousands of variables in just a few seconds.

4.2.1 Weight Learning

To learn the parameters Λ of an HL-MRF given a set of training examples,

we perform maximum-likelihood estimation (MLE), using the voted perceptron al-

gorithm [45]. The partial derivative of the log of Equation 4.1 with respect to a
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parameter Λq is

∂ logP (Y|X)

∂Λq

= EΛ [Φq(Y,X)]− Φq(Y,X) , (4.2)

where EΛ is the expectation under the distribution defined by Λ. Note that the

expectation in Equation 4.2 is intractable to compute. To circumvent this, we use a

common approximation: the values of the potential functions at the most probable

setting of Y with the current parameters [37]. The MPE approximation of the

expectation is fast, due to the speed of the inference algorithm; however, there are

no guarantees about its quality.

The voted perceptron algorithm optimizes Λ by taking steps of fixed length

in the direction of the negative gradient, then averaging the points after all steps.

To preserve the non-negativity of the weights, any step that is outside the feasible

region is projected back before continuing. For a smoother ascent, it is often helpful

to divide the q-th component of the gradient by the number of groundings |tq| of

the q’th template [46], which we do in our experiments.

4.3 Probabilistic Soft Logic

In this section, we review probabilistic soft logic (PSL) [37, 38], a declarative

language for probabilistic reasoning. While PSL borrows the syntax of first-order

logic, semantically, all variables take soft truth values in the interval [0, 1], instead

of only the extremes, 0 (false) and 1 (true). Continuous variables are useful both

for modeling continuous domains as well as for expressing confidences in discrete

predictions, which are desirable for the same reason that practitioners often prefer
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marginal probabilities to discrete MPE predictions. PSL provides a natural interface

to design hinge-loss potential templates using familiar concepts from first-order logic.

A PSL program consists of a set of first-order logic rules with conjunctive

bodies and disjunctive heads. Rules are constructed using the logical operators for

conjunction (∧), negation (¬) and implication (⇒).

Rules are assigned weights, which can be learned from observed data. Consider

the following rule for collective image segmentation.

0.8 : Close(P1, P2) ∧ Label(P1, C)⇒ Label(P2, C)

In this example, P1, P2 and C are variables representing two pixels and a category;

the predicate Close(P1, P2) measures the degree to which P1, P2 are “close” in

the image; Label(P1, C) indicates the degree to which P1 belongs to class C, and

similarly for Label(P2, C). This rule has weight 0.8.

PSL uses the Lukasiewicz t-norm, and its corresponding co-norm, to relax

the logical operators for continuous variables. These relaxations are exact at the

extremes, but provide a consistent mapping for values in between. For exam-

ple, given variables X and Y , the relaxation of the conjunction X ∧ Y would be

max{0, X + Y − 1}.

We say that a rule r is satisfied when the truth value of the head rhead is at

least as great as that of the body rbody.

The rule’s distance from satisfaction dr measures the degree to which this

condition is violated:

dr = max{0, rbody − rhead}. (4.3)
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This corresponds to one minus the truth value of rbody ⇒ rhead when the variables

are {0, 1}-valued. In the process known as grounding, each rule is instantiated for

all possible substitutions of the variables as given by the data. For example, the

above rule would be grounded for all pairs of pixels and categories.1

Notice that Equation 4.3 corresponds to a convex hinge function. In fact, each

rule corresponds to a particular template t ∈ T , and each grounded rule corresponds

to a potential in the ground HL-MRF. If we let Xi,j denote the closeness of pixels

pi, pj, and Yi,c denote the degree to which pi has label c (likewise for pj), then the

example rule above would correspond to the potential function

φ(Y,X) = [max{0, Xi,j + Yi,c − Yj,c − 1}]p,

where p ∈ {1, 2} is the exponent parameter (see Definition 1). Thus, PSL, via HL-

MRFs, defines a log-linear distribution over possible interpretations of the first-order

rules.

Because it is backed by HL-MRFs, PSL has some additional features that are

useful for modeling. The constraints in Definition 1 allow the encoding of functional

modeling requirements, which can be used to enforce mutually exclusion constraints

(i.e., that the soft-truth values should sum to one). Further, the exponent parameter

p allows flexibility in the shape of the hinge, affecting the sharpness of the penalty for

violating the logical implication. Setting p to 1 penalizes violation linearly with the

amount the implication is unsatisfied, while setting p to 2 penalizes small violations

1Though this could possibly lead to an explosion of groundings, PSL uses lazy activation to only

create groundings for substitutions when the truth value of the body exceeds a certain margin.
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much less. In effect, some linear potentials overrule others, while the influences of

squared potentials are averaged together.

4.4 Collective Activity Recognition

In this section, we apply HL-MRFs to the task of collective activity recognition.

We treat this as a high-level vision task, using the output of primitive, local models

as input to a collective model for joint reasoning. We begin by describing the

datasets and objective. We then describe our model. We conclude with a discussion

of our experimental results.

4.4.1 Datasets

We use the collective activity dataset from [2] and its augmentation from [3]

to evaluate our model. The first dataset contains 44 video sequences, each contain-

ing multiple actors performing activities in the set: crossing, standing, queueing,

walking, and talking. The second dataset contains 63 sequences, with actions in:

crossing, standing, queueing, talking, dancing, and jogging.2 From each dataset, we

use the bounding boxes (with position, width and height), pixel data, actions and

identity annotations; we do not use the 3-D trajectories. Activity recognition in

these datasets is challenging, since the scenes involve multiple actors in a natural

setting; other action datasets, like KTH [5] or Weizmann [4], have a single person

performing a specific action. In addition, there is considerable ambiguity in the ac-

2The walking action was removed from the augmented dataset by [3] because it was deemed

ill-defined.
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tions being considered; for example, the actions standing and queueing are difficult

to distinguish, even for a human. Figure 4.1 illustrates some sample frames from

the two datasets. The original dataset and its augmentation include multiple actors

in a natural setting performing specific actions. The colors of the bounding boxes

in the figure specify the groundtruth action of the corresponding person.

Similar to our prior work [29, 39], we represent the detected human figures

using histogram of oriented gradients (HOG) [22] features and action context (AC)

descriptors [12]. The AC descriptor is a feature representation that combines the

local beliefs about an actor’s activities with those of actors in surrounding spa-

tiotemporal neighborhoods. To create the AC descriptors, we use HOG features as

the underlying feature representation; we then train a first-level SVM classifier on

these features and combine the outputs per [12]. Finally, we train a second-stage

SVM classifier on the AC descriptors to obtain the activity beliefs used in our high-

level model. All classifiers are trained using a leave-one-out methodology, such that

the predictions for the i’th sequence are obtained by training on all other sequences.

4.4.2 Model

Our primary objective is to enhance the low-level activity detectors with high-

level, global reasoning. To do so, we augment the local features (described below)

using relational information within and across adjacent frames.

By modeling the relationships of bounding boxes, we can leverage certain

intuitions about human activity. For instance, it is natural to assume that one’s
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activity is temporally continuous; that is, it is not likely to change between points

close in time. Further, there are certain activities that involve interaction with

others, such as talking or queueing. Therefore, if we believe that one or more actors

are talking, then actors nearby are also likely to be talking. Using PSL, modeling

these intuitions is a simple matter of expressing them in first-order logic. We can

then use HL-MRFs to reason jointly over these rules.

Our PSL model is given below.

Local(B, a)⇒ Doing(B, a) (R1)

Frame(B,F ) ∧ FrameLabel(F, a)⇒ Doing(B, a) (R2)

Close(B1, B2) ∧Doing(B1, a)⇒ Doing(B2, a) (R3)

Seq(B1, B2) ∧Close(B1, B2)⇒ Same(B1, B2) (R4)

Same(B1, B2) ∧Doing(B1, a)⇒ Doing(B2, a) (R5)

Rule R1 corresponds to beliefs about local predictions (on either the HOG features

or AC descriptors). R2 expresses the belief that if many actors in the current

frame are doing a particular action, then perhaps everyone is doing that action.

To implement this, we derive a FrameLabel predicate for each frame; this is

computed by accumulating and normalizing the Local activity beliefs for all actors

in the frame. Similarly, R3 enforces our intuition about the effect of proximity on

activity, where actors that are close3 in the same frame are likely to perform the

same action. This can be considered a fine-grained version of the second rule. R4 is

used for identity maintenance and tracking. It essentially says that if two bounding

3To measure closeness, we use an RBF kernel.
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boxes occur in adjacent frames and their positions have not changed significantly,

then they are likely the same actor. We then reason, in R5, that if two bounding

boxes (in adjacent frames) refer to the same actor, then they are likely to be doing

the same activity. Note that rules involving lowercase a are defined for each action

a, such that we can learn different weights for different actions. We define priors

over the predicates Same and Doing, which we omit for space. We also define

(partial) functional constraints (not shown), such that the truth-values over all

actions (respectively, over all adjacent bounding boxes), sum to (at most) one. We

train the weights for these rules using 50 iterations of voted perceptron, with a step

size of 0.1.

Note that we perform identity maintenance only to improve our activity pre-

dictions. During prediction, we do not observe the Same predicate, so we have to

predict it. We then use these predictions to inform the rules pertaining to activities.

4.4.3 Experiments

To illustrate the lift one can achieve on low-level predictors, we evaluate two

versions of our model: the first uses activity beliefs from predictions on the HOG fea-

tures; the second uses activity beliefs predicted on the AC descriptors. Essentially,

this determines which low-level predictions are used in the predicates Local and

FrameLabel. We denote these models by HL-MRF + HOG and HL-MRF + AC

respectively. We compare these to the predictions made by the first-stage predictor

(HOG) and the second-stage predictor (AC).
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5 Activities 6 Activities

Method Acc. F1 Acc. F1

HOG .474 .481 .596 .582

HL-MRF + HOG .598 .603 .793 .789

AC .675 .678 .835 .835

HL-MRF + AC .692 .693 .860 .860

Table 4.1: Results of experiments with the 5- and 6-activity datasets, using leave-

one-out cross-validation. Scores are reported as the cumulative accuracy/F1, to

account for size and label skew across folds.

The results of these experiments are listed in Table 4.1. We also provide recall

matrices (row-normalized confusion matrices) for HL-MRF + AC in Figure 4.2. For

each dataset, we use leave-one-out cross-validation, where we train our model on all

except one sequence, then evaluate our predictions on the hold-out sequence. We

report cumulative accuracy and F1 to compensate for skew in the size and label

distribution across sequences; this involves accumulating the confusion matrices

across folds.

Our results illustrate that our models are able to achieve significant lift in accu-

racy and F1 over the low-level detectors. Specifically, we see that HL-MRF + HOG

achieves a 12 to 20 point lift over the baseline HOG model, and HL-MRF + AC

obtains a 1.5 to 2.5 point lift over the AC descriptor.
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4.5 Conclusion

We have shown that HL-MRFs are a powerful class of models for high-level

computer vision tasks. When combined with PSL, designing probabilistic models is

easy and intuitive. We applied these models to the task of collective activity recogni-

tion, building on local, low-level detectors to create a global, relational model. Using

simple, interpretable first-order logic rules, we were able to improve the accuracy of

low-level detectors.
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Figure 4.2: Quantitative results on the two datasets. We show the recall matrices

(i.e., row-normalized confusion matrices) for the 5- and 6-activity datasets, using

the HL-MRF + AC model.
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Chapter 5: Multi-Label Action Recognition

5.1 Introduction

As previously mentioned, recent work in action recognition research has gone

beyond the classic isolated action short video [4,5] to incorporate hierarchical, con-

textual, interactional, and spatio-temporal cues [6–8, 39, 40]. However, what all

these approaches have in common is that they assume that action recognition is a

multi-class problem, where only the most probable label for each actor is predicted.

Multi-class classification is a fundamental problem in machine learning. For

many approaches, training is performed in a one-vs-all fashion, where instances from

one class are set as positive and the rest negative. Test instances are evaluated and

assigned to the class with the highest score. This is appropriate for many problems

where labels are mutually exclusive. In semantic segmentation, for instance, each

pixel is assigned the name of the class it belongs to. Given that each pixel maps to

a single object, and assuming the list of classes do not overlap, multi-class classifi-

cations is a natural formulation for the problem [25]. However, if the question we

are interested in is “What are they doing?” [2], assigning each actor a single label

seems unnecessarily limiting.

Consider the sample frame from the Collective Activity dataset [2] in Fig-
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ure 5.1. The two actors in the frame are talking while standing in line, two naturally

co-occurring actions. The groundtruth labels for both, however, is the single label

queueing. In the multi-class setting where a classifier is accordingly only allowed

a single label to choose, assigning the label talking or waiting to either actor is an

error and a False Positive for the talking or the waiting classifier. On the other

hand, knowing that the labels talking, queueing, and waiting strongly correlate, a

multi-label approach would likely assign the three correct labels to both actors. On

the other hand, inversely correlated actions like queueing and crossing are unlikely

to be assigned at the same time to an actor. While the dataset strongly motivated

our work, it was not a suitable candidate for our experiments because the actors in

most videos were performing the same action.

We propose to treat action recognition as a multi-label classification problem.

Each actor can be assigned a subset of the power set of action labels. One can pose

multi-label classification as multi-class classification with an exponential number

of classes, where each subset of the power set is a separate class. This formula-

tion, however, is computationally infeasible. Equally difficult to solve is formulating

multi-label classification as structured prediction for a densely connected Markov

Random Field (MRF) of labels, where inference is generally intractable, and typi-

cally approaches resort to restricting the structure of the MRF to a tree or at least

to small tree width. Instead, we extend recent work on multi-label classification

with densely correlated labels [1]. However, instead of assuming an apriori known

correlation matrix, we formulate both problems - multi-label training and label cor-

relation estimation - as a joint max-margin bilinear optimization problem. This has
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the advantage that both problems are optimized to jointly minimize an appropriate

loss on the training set. Additionally, discriminatively learning both the classifiers

and the label correlations is empirically shown to yield classifiers with better per-

formance accuracy. Finally, given the lack of datasets for our task, we relabeled the

UCLA Courtyard dataset [47] using the same set of labels, but instead each actor

is assigned a subset of labels instead of a single label.

Our main contribution here is three-fold:

• We recast action recognition to the multi-label setting. While attributes, in-

herently multi-label, have been leveraged before in action recognition to de-

scribe the action, the human body configuration, or the manipulated objects,

the action recognition problem in itself has always been treated as a multi-class

problem.

• We introduce a bilinear classification approach where we jointly and discrimi-

natively learn both the classifiers and the label correlations, generalizing pre-

vious work where the label correlations were considered prior knowledge or

estimated offline.

• Finally, we relabeled the UCLA Courtyard dataset to be the first multi-label

action recognition benchmark.

The rest of this chapter is organized as follows. The action and activity recog-

nition literature is surveyed in Section 5.2. We introduce our joint formulation for

multi-label training and correlation estimation in Section 5.3, and we propose an

algorithm to efficiently optimize it. We then present the relabeled UCLA Courtyard
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dataset and our experimental setup, followed by the evaluation of our approach in

Section 5.4. Finally, we conclude and summarize our work in Section 5.5.

5.2 Related Work

Early work in action recognition was mostly concerned with single actors in

isolated scenes [4,5]. However, recently a lot of interest was directed towards model-

ing the complex interactions among observations explicitly. These interactions could

be between scenes and actions [9], objects and actions [8, 10], or actions performed

by two or more people [2, 11]. High-level and behavioral interactions were mod-

eled using context-free grammars [7], AND-OR graphs [6, 47], dynamic Bayesian

networks [13], network flow [39, 40], and probabilistic first-order logic [15, 16, 48].

However, one common assumption remained: action recognition was formulated as

a multi-class problem. To the best of our knowledge, we are the first to formulate

action recognition in a multi-label setting.

Recent work that uses attributes for action classification is conceptually re-

lated to our work. While attribute and multi-label classification share some of the

techniques, semantically speaking they are very different problems. Liu et al . recog-

nizes actions from videos by describing them with attributes (indoors, torso-twist,

etc.) [49]. Yao et al . use a mixture of parts and attributes to classify actions in

still images [50]. These attributes can represent a description of the action itself

(indoors, two-handed), the pose needed (twisted torso, bent elbow, crossed legs), or

a manipulated object part (bike seat, golf club). Both approaches classify multiple
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binary attributes, whether in a pre-processing step or as latent variables, to even-

tually classify a single action performed by one person in the video or image. In

contrast, we are concerned with busy scenes where actors can be performing mul-

tiple actions simultaneously, and we are interested in automatically understanding

these actions and how they correlate. We accordingly represent the actions as a set

of binary inter-dependent labels. Additionally, attributes can still be leveraged and

have the potential to benefit multi-label action classification, but we leave this to

future work.

Early approaches for multi-label classification reduced the problem to more

common forms. McCallum proposed to view the problem as a multi-class classifi-

cation problem with 2L classes, representing the power set for L labels [51]. While

extremely competitive, this approach is very computationally limiting. It also re-

lies on the 0/1 loss and does not model the multi-label loss [1]. Boutell et al . also

similarily proposed a power set classifier for multi-label scene classification [52],

while Hsu et al . proposed a regression-based approach to map the label space to a

lower dimensional vector space [53]. Elisseeff and Weston modeled the multi-label

loss through a ranking solution [54], where more relevant labels are ranked higher

than less relevant ones, and Cai and Hofmann used the same framework to model

multi-label loss hierarchically on a tree [55].

Taskar proposed a max-margin structured prediction approach that can be

applied to multi-label classification [56]. Structured prediction relies on inference

during training, and generally exact inference in MRFs is intractable. Rousu et al .

extended this to modeling hierarchical loss in a structured prediction setting using
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a tree-structured model [57]. Restricting the model structure to a tree gives rise

to many efficient inference approahes. More recently Petterson and Caetano lever-

aged MRFs with submodular pairwise interactions [58]. Submodularity also makes

efficient inference possible through graph cut algorithms. Hariharan et al . took a

middle approach by assuming a densely populated pairwise correlation matrix is

fixed apriori [1]. Their approach generalizes one-vs-all classifiers in a principled

way, and they propose efficient specialized optimization algorithms for it. While an

apriori fixed correlation matrix can be expected to be given in a one-shot learning

setting [59], it does not readily exist in a general multi-label setting. In our work

we extend this approach and jointly optimize the multi-label training and discrim-

inatively estimate the label correlations through a bilinear optimization problem,

effectively learning the classifiers and the correlation matrix that together minimize

the classification loss on the training set.

5.3 Approach

5.3.1 Formulation

We formulate multi-label classification in a max-margin framework. We are

given N training samples and a set of L labels. Sample i is represented by xi ∈ RD

and yi ∈ {±1}L, which are respectively its associated feature vector of dimension-

ality D and label vector of dimensionality L. Each label yil is +1 if sample i is a

positive sample for label l and −1 otherwise. We aim to optimize the classification

loss function by jointly learning the classifier weight vectors and the label correlation
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matrix. To this end, we optimize the following objective function 1

F ≡ min
W,P

1

2
‖W‖2

F + λ
1

2
‖P− IL‖2

F+

C
∑
i

max
y

[
∆(yi,y)− (yi − y)TPTWTxi

]
, (5.1)

where the bilinear classification function is represented by y = PTWTx. The hinge

loss in Equation 5.1 penalizes the maximum margin violation for each sample un-

der the loss function of interest. In our case, the loss function ∆ represents the

misclassification cost if one were to predict label y for xi when the true label is yi.

Hariharan et al . introduced a special case of this formulation where they as-

sumed that P was a known correlation matrix, apriori given or calculated [1]. Their

resulting objective is only a function of W. In contrast, we discriminatively learn P

jointly with W so as to minimize the classification error on the training set. This,

in turn, yields stronger bilinear classifiers but complicates the optimization. Our

objective function is biconvex (as we will show), and we therefore approach it with

an alternating optimization approach.

The formulation in Equation 5.1 has several advantages. A similar formulation

that explicitly models the power set of labels, where the number of classes is 2L,

would equivalently requireN2L constraints, regardless of the loss function used. This

proves to be very limiting even for small values of L. On the other hand, Equation 5.1

under a decomposable loss function has only NL margin constraints. On a different

1Our hinge loss is defined similarly to the form commonly used in structured prediction [60,61]

and is therefore slightly different from that in [1].
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note, modeling the dense pairwise correlations between the labels in a structured

prediction framework renders inference, a required step in the optimization process,

intractable. A common workaround is to restrict the graph to a tree structure or

to impose constraints on the form of correlation (submodularity). In our case the

label correlation matrix can be densely specified without negatively affecting the

optimization problem.

5.3.2 Optimization

We approach the problem in Equation 5.1 using an alternating optimization

algorithm. Given a fixed P, we transform F to an SVM-like formulation by substi-

tuting Z = WP and R = PTP � 0 (Positive Semi-Definite) to get the equivalent

problem

G ≡ min
Z

1

2
tr(R−1ZTZ)+

C
∑
i

max
y

[
∆(yi,y)− (yi − y)TZTxi

]
. (5.2)

The regularization term for P becomes constant and is dropped. We next assume

a decomposable loss function ∆(yi,y) =
∑

l δl(yil,y), and then we set the loss

function δl to the commonly used Hamming loss, inversely weighted by the class

frequency for label l to account for class imbalance. For yil ∈ {±1}, this simplifies

to δl(yil,−yil) which we denote by δil for convenience. Putting everything together,

we formulate the objective function equivalently in constrained form
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G ≡ min
Z,ξ

1

2
tr(R−1ZTZ) + C

∑
i

∑
l

ξil

s.t. 2yilz
T
l xi ≥ δil − ξil ∀i, l

ξil ≥ 0 ∀i, l (5.3)

This is a quadratic matrix programming problem. It can be shown using a Schur

complement argument that Equation 5.3 is convex in Z if and only if R � 0, which

is satisfied by definition.

An interesting case arises if we set P = IL, where IL is the identity matrix of

size L. This corresponds to decorrelating the classifiers and recovers the following

problem

G0 ≡ min
Z,ξ

1

2
‖Z‖2

F + C
∑
i

∑
l

ξil

s.t. 2yilz
T
l xi ≥ δil − ξil ∀i, l

ξil ≥ 0 ∀i, l (5.4)

with in turn is equivalent to L completely independent linear classification subprob-

lems
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G0 ≡
∑
l

Sl

with Sl ≡ min
zl,ξ

1

2
zTz + C

∑
i

ξi

s.t. 2yilz
T
l xi ≥ δil − ξi ∀i

ξi ≥ 0 ∀i (5.5)

This simple reduction motivated choosing the identity matrix as the regularization

point for P, i.e. the regularizer penalizes deviation from it. Similarly, in our opti-

mization procedure, the initial value for P is IL. Additionally, this turned out to be

an appropriate baseline in our experiments, corresponding to 1-vs-all linear SVM

classifiers for the action labels, which is a commonly used benchmark for multi-label

methods [52,62].

We further reduce the number of constraints by employing a one-slack formu-

lation instead [60]. The idea is to replace the N constraints on the hinge loss, one

for each of the training samples, with a single constraint on the sum of the hinge

losses for all the samples, hence we replace ξil with one slack variable per label ξl.

It can be shown that the solution to the one-slack formulation is extremely sparse

and is equivalent to the solution to the original problem if ξ∗l = 1
N

∑
i ξ
∗
il, where ξ∗

is the slack vector at the minimum solution [60].

We proceed to solve the one-slack formulation of Equation 5.3 using a cutting

plane approach [61]. At each iteration we find the violated constraints for all the

training samples, and we append them to the working set. This algorithm terminates
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Algorithm 1 Cutting plane algorithm for P
1: INPUT: V,Y, C, ε

2: W = ∅

3: repeat

4: P = {P : (pij = pji ∧ pij ≥ −1 ∧ pij ≤ 1) ∀ i, j ∧

2
N

pTl
∑

i cilyilvi ≥
1
N

∑
i cilδil − ζl ∀ c ∈ W}

5: {P, ζ} = arg min
P∈P,ζ>0

λ
1

2
‖P− IL‖2

F + C
∑
l

ζl

6: for l = 1 . . . L do

7: cil =


1 2yilp

T
l vi ≤ δil

0 otherwise

∀i

8: W =W ∪ {c}

9: until max
l

(
1

N

∑
i

cilδil −
2

N
pTl
∑
i

cilyilvi − ζl) ≤ ε

10: OUTPUT: P

in a number of iterations independent of the output space size [61], and in our

experiments we needed fewer than 50 iterations to converge and were faster than

the implementation from [1]. The process is detailed in Algorithm 1.

Solving Equation 5.3 we find Z, and we can then recover W = ZP−1. Similarly,

given a fixed W, we can turn F to an SVM-like formulation by first transforming

the feature vectors to vi = WTxi, where each vi is of size L, to get the equivalent

problem
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Algorithm 2 Cutting plane algorithm for Z

1: INPUT: X,Y, λ, C, ε

2: W = ∅

3: repeat

4: Z = {Z :
2

N
zTl
∑
i

cilyilxi ≥
1

N

∑
i

cilδil − ξl ∀ c ∈ W}

5: {Z, ξ} = arg min
Z∈Z,ξ>0

1

2
tr(R−1ZTZ) + C

∑
l

ξl

6: for l = 1 . . . L do

7: cil =


1 2yilz

T
l xi ≤ δil

0 otherwise

∀i

8: W =W ∪ {c}

9: until max
l

(
1

N

∑
i

cilδil −
2

N
zTl
∑
i

cilyilxi − ζl) ≤ ε

10: OUTPUT: Z

H ≡ min
P
λ

1

2
‖P− IL‖2

F+

C
∑
i

max
y

[
∆(yi,y)− (yi − y)TPTvi

]
. (5.6)

Under the same decomposable loss function ∆ previously introduced, we reformulate

the objective function equivalently in constrained form
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H ≡ min
P,ζ

λ
1

2
‖P− IL‖2

F + C
∑
i

∑
l

ζil

s.t. 2yilp
T
l vi ≥ δil − ζil ∀i, l

ζil ≥ 0 ∀i, l (5.7)

Equation 5.7 is a convex quadratic programming problem. To enforce P to be

a symmetric correlation matrix, we add the constraints pij = pji, pij ≥ −1, and

pij ≤ 1. We then transform the problem to a one-slack formulation as before,

replacing ζil with one slack variable per label ζl. The resulting optimization problem

is also solved using a cutting plane algorithm, where we iteratively find the violated

constraints for all the training samples, and append them to the working set. The

process is detailed in Algorithm 2.

Our alternating optimization approach is illustrated in Algorithm 3. We start

by initializing P to IL. We then proceed to alternate between fixing P and solving

for W, and then fixing W and solving for P.

5.4 Experiments

5.4.1 Setup

Given that there are no multi-label action recognition datasets, we set out to

relabel an existing datasets for our task. Datasets like KTH [5] and Weizmann [4]

feature only a single actor in isolated scenes and are therefore not suitable for a

multi-label setting. Similarly, the UT Interaction dataset [63] only features a single
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Algorithm 3 Learning Bilinear Multi-Label Classifiers

1: INPUT: X,Y, λ, C, ε, T

2: for t = 1 . . . T do

3: if t = 1 then

4: Set Pt = IL

5: else

6: Set vi = WT
t−1xi ∀i

7: Calculate Pt from Algorithm 1

8: Set R = PT
t Pt

9: Calculate Zt from Algorithm 2

10: Set Wt = ZtP
−1
t

11: if max |Zt − Zt−1| < ε then

12: break

13: OUTPUT: Pt and Wt

action between two actors. On the other hand, we considered the Collective Activity

dataset [2]. The dataset features multiple people in different situations, but in

most videos all the actors were performing the same action (e.g ., dancing), which

unfortunately also made it unsuitable for our task.

We set out to relabel the UCLA Courtyard dataset, which features two dif-

ferent bird’s eye viewpoints of the same courtyard at the UCLA campus [47]. The

dataset features six high resolution videos of many actors in a natural setting per-

forming a variety of actions on both the individual level and the group level. Each
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actor is annotated by one of 8 orientations, one of 7 poses, and one of 10 individual

actions: 1. riding a skateboard, 2. riding a bike, 3. riding a scooter, 4. driving a

car, 5. walking, 6. talking, 7. waiting, 8. reading, 9. eating, and 10. sitting. We

used the same set of labels for our multi-label experiments. The dataset was evenly

split (50-50%) for training and testing, maintaining similar class label distributions

for the two halves [47].

Similar to Amer et al . [47], we extracted and normalized Histogram of Oriented

Gradients (HOG) [22] features around motion-based STIP features and Histogram of

Optical Flows (HOF) [64] around KLT tracks from the bounding box of each actor,

and therefore the spatial and temporal characteristics were implicitly accounted for

through the feature descriptors.

Ultimately the dataset contains over 4.4 million frames, and therefore manually

relabeling the entire dataset is very time-consuming. We resorted to bootstrapping

the relabeling process: using the current annotations (pose, orientation, individual

action, group action, group orientation, etc.), we predict a new set of action labels

that include the current action label among others. For instance, a person labeled

as eating while facing another person, both part of a group labeled as sitting, is

relabeled as sitting, eating, and talking. We first ran the labels through a large

set of similar relabeling rules and then we manually inspected the outcome and

optimized the rules to correct any erroneous labels as necessary. This process was

repeated a few times to ensure high fidelity for the groundtruth labels. Figure 5.2

shows a sample frame with multi-label actions. Given the high resolution of the

dataset, we zoomed in on a few groups. While the labels for the top group did not
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change, other groups received additional appropriate action labels. Relabeling was

bootstrapped using rules that took into account all the dataset annotations (pose,

orientation, individual action, group action, group orientation, etc.) to predict new

action labels. In the resulting labels, 56.9% of all actors are performing two or more

actions at the same time and 4.9% are performing three or more actions.

5.4.2 Results

Since we initialize the label correlation matrix in our algorithm to the identity

matrix ID, the binary classifiers trained after the first iteration correspond to 1-vs-all

linear SVMs trained independently on the same features. This is equivalent to disre-

garding label correlations and just optimizing Equation 5.5. Independently training

label classifiers in a multi-label setting is an appropriate standard baseline [52, 62],

which in our algorithm corresponds to the output after the first iteration. This

allows us to evaluate the performance improvement through the iterations by the

optimization algorithm. Additionally, we implemented the multi-label approach of

Hariharan et al . [1] as a second baseline, where the label correlation matrix is esti-

mated offline from the training data as:
1

N

N∑
i

yiy
T
i . Our experiments verify that

our approach that discriminatively learns the correlations yields better classification

performance.

We report our quantitative results in Table 5.1. While we are using similar

features and data splits to Amer et al . [47], we are learning with an entirely different

label set, and therefore we cannot directly compare to their results. We include the
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numbers nonetheless due to the lack of multi-label action recognition datasets and

benchmarks. We report the per-class accuracies as well as the mean over all classes.

We also report the Hamming loss over all testing samples, which is a common

measure for multi-label classification.

As can be seen from the table, our baseline classifier performance is very

competitive. We attribute the significant improvement in the mean accuracies to

using the weighted hamming loss, in contrast to the Hamming loss (0-1) which

optimizes the total classification accuracy. The per-label accuracies for classes like

driving a car, which looks very unique compared to other classes, is already at 100%

after the first iteration. The algorithm converged after 5 iterations of alternating

optimization. The improvements, on average, are consistent through the iterations,

and more specifically, labels like reading and sitting received the highest gain through

the label correlations, presumably through the correlation with labels like eating.

Similarly the accuracy for riding a scooter also significantly increased, presumably

through the correlation with sitting. The Hamming loss also decreased through the

optimization. It did however slightly increase the last iteration, which again can be

attributed to using the weighted hamming loss, which further increased the mean

accuracy but slightly sacrificed the total accuracy (1 - Hamming loss).

We also visualize the final label correlation matrix P calculated by our algo-

rithm in Figure 5.3. Lighter shades, as seen on the main diagonal, denote positive

correlations, and darker shades denote negative (or inverse) correlations. Some of

the learned correlations are very intuitive. For example, walking and talking are

likely to co-occur at the same time, which is accurately reflected in the matrix. In
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Figure 5.3: A visualization of the final label correlation matrix P. Intuitively, walk-

ing and talking are positively correlated, while walking and waiting were unlikely

to co-occur in the dataset.

contrast, eating and biking are inversely correlated as expected.

5.5 Conclusion

We posed action recognition as a multi-label classification problem. Instead

of limiting each actor in a natural scene to a single label, we proposed a multi-label

setting that is more natural to the problem. Multi-label classification has been ei-

ther reduced to more common forms, such as multi-class classification, or treated as

a Markov Random Field labeling in a structured prediction setting, but both ap-
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proaches suffer from drawbacks. We instead extended recent work on max-margin

multi-label classification to the case where the label correlation matrix is not apriori

known, and we posed the multi-label classification and label correlation estimation

as a joint problem. We then devised an alternating optimization algorithm to min-

imize the coupled problem. Finally, given the lack of multi-label action recognition

datasets, we relabeled the UCLA Courtyard dataset for our task. We report state-

of-the-art results on the dataset using our approach. In future work we plan to

investigate integrating group activities into our framework.
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Chapter 5: Conclusion and Future Work

5.1 Conclusion

In this thesis we proposed models that integrate different useful cues to aid

activity recognition. While activity recognition has been typically approached in

isolation, we identify spatiotemporal and contextual cues that we model as latent

variables in a joint formulation. By optimizing the objective function for this for-

mulation, we can recover more accurate activity labels and simultaneously addi-

tional track-level and scene-level information. We tackled this problem through

a mathematical optimization approach based on dual decomposition, as well as a

probabilistic soft logic approach. Additionally, we proposed a model to cast action

recognition as a multi-label problem, where we jointly learn the pairwise action label

correlations.

While our work frees action recognition from some of the preprocessing steps

necessary in many pipelines (e.g . tracking), the proposed models still require bound-

ing boxes to be detected beforehand. This contributes to a solution that depends on

multiple stages of processing, where errors in a person detection subsystem, through

either false positives or false negatives, would propagate and negatively affect the

entire pipeline.
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Additionally, the proposed models were not adapted to an online setting. All

the frames of an entire video have to go through the pipeline at the same time, which

is a major limitation. A direct solution in this case would be to apply the models

on time windows, and propagate the solution forward. This might be an adequate

online adaptation in many cases, at the expense of a reduction in accuracy.

5.2 Future Work

The limitations mentioned in the previous section open the door for interesting

future extensions. Some of these extensions are very open-ended and will likely

require new datasets for a rigorous evaluation. A list of possible directions include:

• Adapting the joint models to an online setting. A trivial solution would be to

apply the model to time windows, propagating the solution forward. However,

a recursive formulation, for instance, that explicitly models the uncertainty in

the propagated solution from previous frames might perform better.

• Jointly modeling person detection, action recognition, and tracking. While

our work jointly models action recognition and tracking, recently Wu et al .

jointly modeled detection and tracking [65]. A system that integrates all three

problems in a single step is likely to outperform our approach, as well as

eliminate another stage in the pipeline.

• Explicitly modeling groups of people. Choi et al . looked at group discovery

very recently [66] by modeling inter- and intra-group interaction patterns. Ex-

plicitly integrating this problem in an action recognition system, where action
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classifiers can benefit from group labels and vice versa, is a possible research

topic. This can also be a viable extension to the multi-label formulation.

• Utilizing additional cues for action recognition. This includes jointly model-

ing object detection or recognition as a cue for action recognition, where for

instance holding a shovel is a good indicator that this person is digging. The

same goes for jointly modeling semantic segmentation and action recognition,

where standing on a crosswalk is a strong cue that the person is crossing the

street.

• Building large-scale approaches that jointly model the same cues. Deep learn-

ing models are a class of models that can leverage and continue to improve with

large amounts of data [67, 68], and they were recently shown to significantly

outperform many other approaches on a variety of recognition tasks [69, 70].

Training a deep model that integrates all these cues into a large-scale action

recognition system would be an interesting direction to investigate.
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