
VU Research Portal

FoxPSL: An Extended and Scalable PSL Implementation

Magliacane, S.; Stutz, P.; Groth, P.; Bernstein, A.

published in
AAAI Spring Symposium 2015 on Knowledge Representation and Reasoning
2015

document version
Peer reviewed version

Link to publication in VU Research Portal

citation for published version (APA)
Magliacane, S., Stutz, P., Groth, P., & Bernstein, A. (2015). FoxPSL: An Extended and Scalable PSL
Implementation. In AAAI Spring Symposium 2015 on Knowledge Representation and Reasoning

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

E-mail address:
vuresearchportal.ub@vu.nl

Download date: 21. May. 2021

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by VU Research Portal

https://core.ac.uk/display/303533279?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://research.vu.nl/en/publications/ae668f92-c8e2-4c3d-a114-a3bae1694df5

This is a postprint of

FoxPSL: An Extended and Scalable PSL Implementation

Magliacane, S., Stutz, P., Groth, P., Bernstein, A.

In: (Ed.), AAAI Spring Symposium 2015 on Knowledge Representation and Reasoning.

Published version: no link available

Link VU-DARE: http://hdl.handle.net/1871/52371

(Article begins on next page)

http://hdl.handle.net/1871/52371

FoxPSL: An Extended and Scalable PSL Implementation

Sara Magliacane
VU University Amsterdam

De Boelelaan 1081a, 1081HV
Amsterdam, The Netherlands

s.magliacane@vu.nl

Philip Stutz
University of Zurich

Binzmuhlestrasse 14, 8050
Zurich, Switzerland

stutz@ifi.uzh.ch

Paul Groth
VU University Amsterdam

De Boelelaan 1081a, 1081HV
Amsterdam, The Netherlands

p.t.groth@vu.nl

Abraham Bernstein
University of Zurich

Binzmuhlestrasse 14, 8050
Zurich, Switzerland
bernstein@ifi.uzh.ch

Abstract

In this paper we present foxPSL, an extended and scalable
implementation of Probabilistic Soft Logic (PSL) based on
the distributed graph processing framework SIGNAL/COL-
LECT. PSL is a template language for hinge-loss Markov
Random Fields, in which MAP inference is formulated as a
constrained convex minimization problem. A key feature of
PSL is the capability to represent soft truth values, allowing
the expression of complex domain knowledge.
To the best of our knowledge, foxPSL is the first end-to-
end distributed PSL implementation, supporting the full PSL
pipeline from problem definition to a distributed solver that
implements the Alternating Direction Method of Multipliers
(ADMM) consensus optimization. foxPSL provides a Do-
main Specific Language that extends standard PSL with a
type system and existential quantifiers, allowing for efficient
grounding. We compare the performance of foxPSL to a state-
of-the-art implementation of ADMM consensus optimization
in GraphLab, and show that foxPSL improves both inference
time and solution quality.

Introduction
Probabilistic Soft Logic (PSL) (Broecheler, Mihalkova, and
Getoor 2010; Bach et al. 2012; 2013) is a template language
for hinge-loss Markov random fields. Similar to other statis-
tical relational learning formalisms like Markov Logic Net-
works (MLN), in PSL the first order logic formulae repre-
senting the templates can be instantiated (grounded) using
the individuals in the domain, creating a Markov random
field on which one can perform inference tasks.

A key feature of PSL is the capability to represent and
combine soft truth values, i.e. truth values in the interval
[0,1], allowing the expression of degrees of relationships
within complex domain knowledge, such as the degree of re-
lationships. Given the continuous nature of the truth values,
the use of Lukasiewicz operators and the restriction of logi-
cal formulae to Horn clauses with disjunctive heads, Maxi-
mum a posteriori (MAP) inference in PSL can be formulated
as a constrained convex minimization problem. This prob-
lem can be cast as a consensus optimization problem (Bach
et al. 2012; 2013) and solved very efficiently with distributed

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

algorithms like the Alternating Direction Method of Multi-
pliers (ADMM), recently popularized by (Boyd et al. 2011).

The current reference implementation of PSL, described
in (Bach et al. 2012; 2013), is limited to running on one ma-
chine, which limits the solvable problem sizes. In (Miao
et al. 2013), PSL is used as a motivation for the develop-
ment of ACO, a vertex programming algorithm for ADMM
consensus optimization that works in a distributed environ-
ment. In that work, GraphLab (Low et al. 2010) is used as
the underlying processing framework. Here, we build on the
insights of (Miao et al. 2013), but instead of focusing on
the general problem of ADMM distributed consensus opti-
mization, we focus on designing an environment specifically
for supporting PSL. The result is foxPSL, to the best of our
knowledge the first end-to-end distributed implementation
of PSL that provides an environment for working with large
PSL domains. Our evaluations show that foxPSL’s ADMM
implementation is faster than ACO while offering an array
of additional features for the expression of PSL domains.

Like (Miao et al. 2013), we adopt distributed graph pro-
cessing for the basis of our implementation. Instead of
GraphLab, we implement ADMM consensus optimization
in SIGNAL/COLLECT (Stutz, Bernstein, and Cohen 2010),
which enables a natural and more extensible representation
of ADMM graphs. Furthermore, we provide a domain spe-
cific language that extends PSL with a type system, partially
grounded rules and existential quantification. Using these
additional language features we can optimize the translation
of PSL domains to ADMM, for example by providing type-
aware existential quantification and grounding.

Summarizing, our contributions are (i) a publicly re-
leased end-to-end PSL environment1 that (ii) supports a
broad range of extended PSL features and optimizations,
(iii) seamlessly parallelizes and distributes computations
and consistently outperforms the state of the art both in infer-
ence time and solution quality. In the following we describe
foxPSL and its features, present an empirical evaluation, and
conclude with a discussion of future work.

System Description
foxPSL is designed as a pipeline layered on top of the SIG-
NAL/COLLECT graph processing framework. In this section

1Apache 2.0 licensed, https://github.com/uzh/fox

Classes

Predicates
Rules

Knowledge
Grounded
Rules

Constraints Bipartite
Function
/Variable
Graph

InferencesConsensus
Optimization

Graph
ConstructionGrounding

Figure 1: The architecture of our PSL inferencing system is a pipeline that takes the rules, instance knowledge and metadata as
inputs and through a series of processing steps computes the inferences.

we describe the underlying framework and each stage of the
pipeline (see Figure 1) with its inputs and outputs.

Underlying Graph Processing in Signal/Collect SIG-
NAL/COLLECT (Stutz, Bernstein, and Cohen 2010)2 is a
parallel and distributed graph processing framework. Akin
to GraphLab (Gonzalez et al. 2012), it allows to formu-
late computations in terms of vertex centric methods. In
SIGNAL/COLLECT functions are separated into ones for ag-
gregating received messages (collecting) and ones for com-
puting messages sent along edges (signalling). In contrast
to GraphLab, SIGNAL/COLLECT supports different vertex
types for different processing tasks, which allows for a nat-
ural representation of bipartite ADMM consensus graphs.
Moreover, it provides configurable convergence detection
based on local or global properties.

PSL Input via foxPSL language The input to the system
is a description of individuals, predicates, facts and rules in
a domain-specific language for PSL. In the following, we
comment an example from the repository3.

In foxPSL, it is possible to explicitly list individuals in our
domain, and optionally assign them to a class. For example:

class Person: anna, bob
class Party: demo, repub
class Woman: anna
individuals: ufo

By convention individuals always start with a lower-case let-
ter. Our domain consists of two individuals of class Person
(anna, bob), two of class Party (demo, repub), one of class
Woman (anna) and one individual without any class (ufo).
Classes are not mutually exclusive and the same individual
can have multiple classes (anna). Besides explicitly men-
tioned individuals, foxPSL can automatically infer other in-
dividuals and their class from facts and rules.

For each predicate, we can specify the classes of its argu-
ments, enabling a more efficient grounding:

predicate: retired(_)
predicate: professor(Person)

2http://uzh.github.io/signal-collect/
3http://tinyurl.com/FoxPSLExample

In the example, the predicate retired takes one argument of
any class, while professor takes one argument of class Per-
son. In the grounding, the only individuals used to ground
professor will be those of class Person, greatly reducing
the number of grounded predicates.

As in standard PSL, we can define predicate properties
like functionality, partial functionality and symmetry, which
are translated into constraints on grounded predicates.

predicate [Functional]: votes(Person,Party)
predicate[Symmetric]: friends(Person,Person)

In the example, the functionality of votes means that the
votes for different parties that a person can cast must sum up
to 1. The symmetry of married means that for all individu-
als a, b, if married(a, b) = x then married(b, a) = x.

Once we defined the predicates, we can state some facts
about our domain and their truth values.

fact [truthValue = 0.8]: friends(bob, carl)
fact [truthValue = 0.9]: !votes(anna, demo)

In our domain, bob is a friend of carl with truth value
0.8. Although carl was not mentioned as a Person be-
fore, this is inferred from the friends fact. Moreover,
anna does not vote for demo with truth value 0.9, i.e.
votes(anna, demo) = 0.1.

The core of foxPSL is the definition of rules in the form :
B1 ∧ ... ∧Bn ⇒ H1 ∨ ... ∨Hm

where Hi for i = 1, ...,m and Bj for j = 1, ..., n are liter-
als. The restriction to this form is a constraint of standard
PSL that enables the translation to convex functions when
considering Lukasiewicz operators. For example:

rule [5]: votes(A,P) & friends(A,B) =>
votes(B,P)

rule [3, linear]: young(P) => !retired(P)
rule: professor(P) => EXISTS [C,S]

teaches(P,C,S) | retired(P)

Similar to standard PSL, each rule can have an associated
weight that represents how strict it is and associated distance
measure (e.g. linear, squared) that describes the shape of the
penalty function for breaking this rule.

In addition to standard PSL, we introduce the existential
quantifier EXISTS[variables], which can only appear in
the head, in order to preserve convexity. If the weight is not
specified, we consider the rule a hard rule, i.e. a constraint.

Grounding For each rule we instantiate each argument in
each predicate with all suitable individuals, creating several
grounded predicates from a single predicate. For example
votes(A,P) from the first rule produces 6 grounded predi-
cates: votes(anna, demo), votes(bob, demo), etc. Some of
these grounded predicates are user provided facts with truth
values (e.g. votes(anna, demo) = 0.1), but most of them
have an unknown truth value that we will compute.

We substitute the grounded predicates in all combinations
in each rule, generating several grounded rules. The same
substitution is done for all constraints. For example, the first
rule generates 18 grounded rules, e.g. votes(anna, demo)
&& friends(anna, bob) => votes(bob, demo). We also
ground the existential quantifiers by unrolling them to dis-
junctions of grounded predicates with the matching classes.

Graph Construction The grounding step produces a set
of grounded rules and constraints, each containing multiple
instances of grounded predicates. As defined in PSL (Bach
et al. 2012), each grounded rule or constraint is translated
to the corresponding potential of a continuous Markov ran-
dom field using Lukasiewicz operators. In particular, for a
grounded rule:

[weight] b1 ∧ ... ∧ bn ⇒ h1 ∨ ... ∨ hm
we can define the distance to satisfaction:

weight ∗max(0, b1 + ...+ bn − n+ 1− h1 − ...− hm)p

where p = 1 for rules with linear distance measures and p =
2 for rules with squared distance measures. Since the poten-
tials are convex functions and the constraints are defined to
be linear functions, MAP inference becomes a constrained
convex minimization problem. Following the approach de-
scribed in (Bach et al. 2013; Miao et al. 2013) we solve the
MAP inference using consensus optimization. We represent
the problem as a bipartite graph, where grounded rules and
constraints are represented with function (also called sub-
problem) vertices and grounded predicates are represented
with consensus variable vertices. Each function (grounded
rule or constraint) has a bidirectional edge pointing to every
consensus variable (grounded predicate) it contains.

Consensus Optimization with ADMM The function and
consensus variable vertices implement the ADMM consen-
sus optimization (Boyd et al. 2011). Intuitively, in each it-
eration each function is minimized separately based on the
consensus assignment from the last iteration and the related
Lagrange multipliers. Once done, the function vertex sends
a message with the preferred variable assignment to all con-
nected consensus variables. Each consensus variable com-
putes a new consensus assignment based on the values from
all connected functions, for example by averaging, and sends
it back. This process is repeated until convergence, or in the
approximate case, until the primal and dual residuals fall be-
low a threshold based on the parameters εabs, εrel.

Since each variable represents a grounded predicate, the
assignment to a variable is the inferred soft truth value for
that grounded predicate. At the end of the computation, the
system outputs all the inferred truth values.

Evaluation
We compare foxPSL with ACO, the GraphLab ADMM con-
sensus optimization implementation presented in (Miao et
al. 2013), measuring both the inference time and solution
quality. The comparison is based on the datasets used in
(Miao et al. 2013), which represent four synthetic social
networks of increasing size modelling voter behaviour. The
datasets contain from 4.41 to 17.7 million vertices. All eval-
uations are run on four machines, each with 128 GB RAM
and two E5-2680 v2 at 2.80GHz 10-core processors. All
machines are connected with 40Gbps Infiniband.

Both systems run an approximate version of the ADMM
algorithm, as described in (Boyd et al. 2011), with the same
parameters ρ = 1, εabs = 10−5 and εrel = 10−3. The
main difference is in the detection algorithm: while ACO
implements a special convergence detection that computes a
local approximation of the residuals in each consensus ver-
tex, foxPSL employs the textbook global convergence detec-
tion, efficiently implemented as a MapReduce aggregation.
The ACO convergence detection reduces the computation in
parts of the graph that have almost converged at the cost of
a coarser approximated solution. On the other hand, in cer-
tain cases, some local computations stop too soon, requiring
others to run for several iterations to compensate.

Inference Time Comparison
For each of the four datasets, we measure the inference time
at a fixed number of iterations for both systems. Figure 2
shows the results averaged over ten runs, limited to 10, 100,
and 1000 iterations. Since the ACO implementation per-
forms two extra initial iterations that are not counted in the
limit, the comparison is made with an iteration limit of 12,
102, and 1002 for foxPSL. We stop the evaluation at 1000 it-
erations, because foxPSL converges in that interval, although
ACO does not, running for several more iterations without
substantial improvements in quality.

The inference time of foxPSL is considerably better in all
considered iterations, as shown by the lower computation
times (y-axis) in Figures 2. Moreover, the computation time
seems to scale linearly with increasing dataset sizes (x-axis).

Solution Quality Comparison
We also compare foxPSL and ACO in terms of the solution
quality on the same evaluation runs discussed above. Since
PSL inference is a constrained minimization problem solved
with an approximate algorithm, we consider two quality
measures for solution quality: the objective function value
and a measure of the violation of the constraints.

In Table 1, we show a comparison of the solution qual-
ity for foxPSL and ACO at iteration 1000 from the previ-
ous experiments. The four parameters we compare are the
objective function value, the sum of violations of the con-
straints, and the number of violated constraints at tolerance
level 0.01 and at tolerance level 0.1. We estimate the optimal
objective function value as computed using lower epsilons
(εabs = 10−8, εrel = 10−8) with a sum of constraint viola-
tions in the order of 10−5. We show that foxPSL’s objective
function value is closer to the estimated optimal value than

(a) (b) (c)

Figure 2: Figures 2(a), 2(b) and 2(c), compare the average inference time between foxPSL and ACO. For each graph size there
were ten runs, with an iteration limit of 10, 100 and 1000 respectively. The error bars indicate the fastest and slowest runs.

foxPSL ACO
|vertices| OptV al ObjV al Σviol |viol@0.01| |viol@0.1| ObjV al Σviol |viol@0.01| |viol@0.1|

4.41M 4838.14 4810.36 7.77 20 4 4722.09 119.55 491 233
8.86M 9692.03 9679.13 13.82 18 3 9520.12 233.04 924 431
13.2M 14521.26 14449.47 21.14 42 6 14199.59 349.14 1387 640
17.7M 19425.71 19441.69 27.12 52 5 19119.38 472.49 1894 863

Table 1: Comparison of solution quality for foxPSL and ACO with iteration limit 100.

ACO’s for all datasets. The sum of the violations is lower in
foxPSL by one order of magnitude.

Besides the lower total violation of the constraints, Ta-
ble 1 also shows the number of constraints that are violated
by more than a certain threshold of tolerance. In particular,
in the ACO solution there are several hundred constraints
that are violated even while tolerating errors of 0.1, which is
sizeable considering that the variables are constrained in the
interval [0, 1]. In general, the violations of the ACO solu-
tion are larger and less spread across the constraints than the
ones found in the foxPSL solution, possibly due to the lo-
cal convergence detection of the former, which may be too
eager to stop computation on some subgraphs.

Limitations and Conclusions
In this paper, we introduced foxPSL, to our knowledge the
first end-to-end PSL implementation that provides a DSL
for specifying the problem definition and enables scaling via
optimized grounding and distributed processing.

Our current implementation has limitations. Our ADMM
algorithm uses a fixed step size, leading to an initially fast
approximation of the result and a slow exact convergence.
An improvement would be a variant with adaptive step
sizes. An additional improvement might be the use of asyn-
chronous execution and incremental reasoning when fact-
s/rules change – both endeavours we leave for future work.

Whilst developing foxPSL, we found that PSL provides a
powerful formalism for modelling problem domains. How-
ever, its power comes with numerous interactions between
its elements. Hence, the use of PSL would be immensely
aided by a DSL and end-to-end environment that allows to
systematically analyse these interactions. We believe that
foxPSL is a first step towards such an environment.

Acknowledgements We would like to thank Hui Miao for
sharing the ACO code and evaluation datasets, and Stephen
Bach for being able to use his optimizer implementations
in foxPSL. We also thank the Hasler Foundation and Dutch
national programme COMMIT for supporting this work.

References
Bach, S. H.; Broecheler, M.; Getoor, L.; and O’Leary, D. P.
2012. Scaling MPE inference for constrained continuous
Markov random fields. In NIPS 2012.
Bach, S. H.; Huang, B.; London, B.; and Getoor, L. 2013.
Hinge-loss Markov random fields: Convex inference for
structured prediction. In UAI 2013.
Boyd, S.; Parikh, N.; Chu, E.; Peleato, B.; and Eckstein,
J. 2011. Distributed optimization and statistical learning
via the alternating direction method of multipliers. Found.
Trends Mach. Learn. 3(1).
Broecheler, M.; Mihalkova, L.; and Getoor, L. 2010. Prob-
abilistic similarity logic. In UAI 2010.
Gonzalez, J. E.; Low, Y.; Gu, H.; Bickson, D.; and Guestrin,
C. 2012. Powergraph: Distributed graph-parallel computa-
tion on natural graphs. In OSDI 2012.
Low, Y.; Gonzalez, J.; Kyrola, A.; Bickson, D.; Guestrin,
C.; and Hellerstein, J. M. 2010. Graphlab: A new parallel
framework for machine learning. In UAI 2010.
Miao, H.; Liu, X.; Huang, B.; and Getoor, L. 2013. A
hypergraph-partitioned vertex programming approach for
large-scale consensus optimization. In IEEE Big Data 2013.
Stutz, P.; Bernstein, A.; and Cohen, W. W. 2010. Signal/-
Collect: Graph Algorithms for the (Semantic) Web. In ISWC
2010.

