7 research outputs found

    Stacked Autoencoder and Meta-Learning based Heterogeneous Domain Adaptation for Human Activity Recognition

    Get PDF
    The field of human activity recognition (HAR) using machine learning approaches has gained a lot of interest in the research community due to its empowerment of automation and autonomous systems in industries and homes with respect to the given context and due to the increasing number of smart wearable devices. However, it is challenging to achieve a considerable accuracy for recognizing actions with diverse set of wearable devices due to their variance in feature spaces, sampling rate, units, sensor modalities and so forth. Furthermore, collecting annotated data has always been a serious issue in the machine learning community. Domain adaptation is a field that helps to cope with the issue by training on the source domain and labeling the samples in the target domain, however, due to the aforementioned variances (heterogeneity) in wearable sensor data, the action recognition accuracy remains on the lower side. Existing studies try to make the target domain feature space compliant with the source domain to improve the results, but it assumes that the system has a prior knowledge of the feature space of the target domain, which does not reflect real-world implication. In this regard, we propose stacked autoencoder and meta-learning based heterogeneous domain adaptation (SAM- HDD) network. The stacked autoencoder part is trained on the source domain feature space to extract the latent representation and train the employed classifiers, accordingly. The classification probabilities from the classifiers are trained with meta-learner to further improve the recognition performance. The data from tar- get domain undergoes the encoding layers of the trained stacked autoencoders to extract the latent representations, followed by the classification of label from the trained classifiers and meta- learner. The results show that the proposed approach is efficient in terms of accuracy score and achieves best results among the existing works, respectivel

    Deep Learning for Sensor-based Human Activity Recognition: Overview, Challenges and Opportunities

    Full text link
    The vast proliferation of sensor devices and Internet of Things enables the applications of sensor-based activity recognition. However, there exist substantial challenges that could influence the performance of the recognition system in practical scenarios. Recently, as deep learning has demonstrated its effectiveness in many areas, plenty of deep methods have been investigated to address the challenges in activity recognition. In this study, we present a survey of the state-of-the-art deep learning methods for sensor-based human activity recognition. We first introduce the multi-modality of the sensory data and provide information for public datasets that can be used for evaluation in different challenge tasks. We then propose a new taxonomy to structure the deep methods by challenges. Challenges and challenge-related deep methods are summarized and analyzed to form an overview of the current research progress. At the end of this work, we discuss the open issues and provide some insights for future directions

    人の行動分類のための教師なし転移学習

    Get PDF
    筑波大学 (University of Tsukuba)201
    corecore