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Abstract: The field of human activity recognition (HAR) using machine learning approaches has gained a lot of 

interest in the research community due to its empowerment of automation and autonomous systems in industries 

and homes with respect to the given context and due to the increasing number of smart wearable devices. However, 

it is challenging to achieve a considerable accuracy for recognizing actions with diverse set of wearable devices due 

to their variance in feature spaces, sampling rate, units, sensor modalities and so forth. Furthermore, collecting 

annotated data has always been a serious issue in the machine learning community. Domain adaptation is a field 

that helps to cope with the issue by training on the source domain and labeling the samples in the target domain, 

however, due to the aforementioned variances (heterogeneity) in wearable sensor data, the action recognition 

accuracy remains on the lower side. Existing studies try to make the target domain feature space compliant with the 

source domain to improve the results, but it assumes that the system has a prior knowledge of the feature space of 

the target domain, which does not reflect real-world implication. In this regard, we propose stacked autoencoder 

and meta-learning based heterogeneous domain adaptation (SAM- HDD) network. The stacked autoencoder part is 

trained on the source domain feature space to extract the latent representation and train the employed classifiers, 

accordingly. The classification probabilities from the classifiers are trained with meta-learner to further improve the 

recognition performance. The data from tar- get domain undergoes the encoding layers of the trained stacked 

autoencoders to extract the latent representations, followed by the classification of label from the trained classifiers 

and meta- learner. The results show that the proposed approach is efficient in terms of accuracy score and achieves 

best results among the existing works, respectively. 
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I. INTRODUCTION (HEADING 1) 

In recent times, manufacturing systems have seen strides 
of advancements, increased competitive performance, and 
efficient production, through the automation systems. 
Although many tasks concerning industrial systems have been 
auto- mated, some processes have limited flexibility as they 
heavily rely on humans [1]. Furthermore, with the emergence 
of Indus- try 5.0, human involvement in industrial processes 
is considered to be inevitable. Therefore, a lot of focus has 
been drawn to the applications that can help in optimizing the 
industrial processes, integration of human workers, and their 
flexibility concerning working conditions. The integration of 
human workers needs to be made through interfaces powered 
by software- or intelligence-controlled systems. Many 
researchers have considered the human activity recognition 
(HAR) system to be one of the prospects that can provide 
seamless integration with the industrial processes and 
manufacturing systems [2]. The HAR addition not only helps 
in improving the automatic assessment of integration for 
cyber physical systems (CPS) with humans through 
quantitative analysis but also helps in gaining insights 

regarding the bottlenecks in workflows such as monitoring 
activity duration for a specific activity [3]. This allows an 
industrial process to be evaluated from anthropocentric 
perspective [4]. 

In retrospective, the impact of HAR has been explored 
across variety of domains that include activity recognition for 
construction workers [5], ergonomic assessment in smart 
factories [6], and evaluation of assembly task analysis [7]. The 
afore- mentioned examples help in realizing the importance of 
HAR in the context of industrial workplaces for tackling 
unexpected accidents, detection of inefficient tasks, and 
analysis of the work process, in a timely manner. In order to 
build a robust and accurate HAR system, we need to have 
sufficient amount of labeled data, however the process for 
acquiring such data is time consuming and often expensive. 
An alternative is to consider existing publicly available 
datasets, but they cannot be used in a straightforward manner 
due to the domain differences. To address such difference, 
domain adaptation methods were proposed that aim to reduce 
the discrepancies between the source domain (training set) 
and the target domain (testing set), accordingly [8]- [10]. The 
domain adaptation concerning HAR infers the class labels for 
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the samples in the target domain by leveraging the class label 
data from the source domain. For instance, a model trained on 
the activities of a worker in an assembly line can be used to 
classify the activities for a worker in an automobile repair 
shop as both of the domains involve similar body postures and 
hand movement. Such type of adaptation across different 
domains is considered to be homogeneous as the labels and 
sensor modalities were the same. Earlier works mostly 
focused on the homogeneous domain adaptation while 
assuming that the feature space for both the source and target 
domains are same, i.e., number of features, sensor modalities, 
and so forth. However, with the recent advancements in 
microelectromechanical systems (MEMS), different types of 
sensors are used in wearable devices that vary from sampling 
rate to sensing units, thus, making it difficult for domain 
adaptation methods to train cross-domain HAR classifiers. 

Few works have been carried out on heterogeneous 
domain adaptation to address the limitations concerning its 
homogeneous counterpart. In contrast to homogeneous, 
heterogeneous domain adaptation assumes that both the 
source and target domains have varying feature spaces. 
Conventional heterogeneous domain adaptation methods try 
to align the heterogeneous input space in order to make the 
feature space homogeneous but in order to attain the task, the 
method requires additional information such as labeled 
samples in the target domain and instance correspondence 
[11]. Although, it helps in overcoming the heterogeneity 
challenge but in practical cases such information is not 
available to begin with. Recently some studies have taken a 
hybrid approach to heterogeneous domain adaptation such as 
[12] suggesting that the common segment of feature spaces 
are leveraged to transform them into homogeneous feature 
spaces (same dimensionality). The approach seems promising 
concerning HAR as most of the sensing modalities are similar. 
Earliest attempts made in heterogeneous domain adaptation 
was only to leverage the common intersection of feature 
spaces while ignoring/omitting its counterpart. Although it 
might work in some cases such as distinguishing walking from 
lying down and sitting but in complex cases it fails to achieve 
desirable results, for instance, walking vs walking downstairs, 
running vs jogging, and more. It is because of the ignorance 
of remaining features that are not common to both the 
domains. The studies [13] use both the common and different 
features to retain domain- specific information. The problem 
with the aforementioned study is they consider the original 
feature space for processing the common features that 
potentially might vary in terms of distribution, and they use 
hand-crafted features for filling out the missing feature space 
part. Similarly, the study [14] uses converter sub-networks to 
fill in or align the feature space for both the domains but it also 
relies on some domain-specific information to perform the 
task. Therefore, a dire need of heterogeneous domain 
adaptation method with unsupervised characteristics to 
transform the heterogeneous feature space. In this paper, we 
propose stacked auto-encoder and meta- learning based 
heterogeneous domain adaptation (SAM-HDD) for human 
activity recognition. Instead of using raw data we directly 
process the feature space using stacked auto- encoders to 
make the feature space homogeneous. We then train multiple 

streams with long-short term memory networks (LSTMs), 
Random Forests, and Boosting classifier, followed by a 
Bayesian learning based meta-learner for improving the 
recognition results. We test the proposed approach on two 
publicly available datasets to validate its efficacy. The 
contributions of this work are as follows: 

• We propose stacked auto-encoder based architecture for 
transformation of heterogeneous feature space to 
homogeneous. 

• We propose a Bayesian meta-learner to combine the 
classification probabilities from LSTM streams. 

• We report superior performance in comparison to the 
existing baselines. 

 
The rest of the paper is structured as follows: Section 2 

consolidates related works in the field of homogeneous and 
heterogeneous domain adaptation. Section 3 presents the 
details regarding proposed methodology. Section 4 provides 
quantitative results and Section 5 concludes the work along 
with future prospects. 

II. RELATED WORKS 

This section consolidates works concerning human 

activity recognition, transfer learning, and domain 

adaptation. One of the main characteristics for HAR is human 

behavior recognition by analyzing the measurements from 

inertial measurement units (IMUs). HAR has been proven to 

be effective when analyzing the work processes to improve 

productivity and implemented in workspaces to avoid 

occupational safety and health issues [5]-[7]. Human activity 

monitoring is of utmost importance in operator 4.0-compliant 

system as it notifies in timely manner if any anomalous 

activity is detected, or potential threat is sensed. With the 

emergence of wearable sensors, it’s not easy, affordable, and 

secure to acquire an individual worker's data including IMUs, 

heart rate, and others to monitor their health-specific 

information [15], [16]. Existing studies have extensively used 

machine learning approaches to recognize human activities 

from wearable sensors. The study in [17] uses accelerometer 

data from smartphones to monitor and classify human 

activities. The study in [18] mainly focuses on the assisted 

daily living for elderly by recognizing commute-based 

activities using smartphone embedded sensors. The study in 

[19] used passive infrared sensors to assess health anomalies 

in a smart home environment. All of the aforementioned 

works mainly rely on feature extraction and shallow learning 

techniques to recognize, assess, and classify human activities. 

Recently, deep learning techniques including convolutional 

neural networks (CNN) and LSTMs have been introduced 

that does not need hand-crafted features to be extracted, 

rather they extract the features automatically. Many 

researchers have opted for 1D-CNNs and LSTMs for 

recognizing and classifying human activities, since then [3]. 

However, these studies ignore the domain differences 

between different datasets, suggesting that the method is 

tailored to serve single environment context, device setup or 

user. Furthermore, the aforementioned studies require 
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enormous amounts of labelled samples which is hard to get 

for a new user or different devices. Shallow learning-based 

approaches can be applied for testing samples from other 

domains, but it has been proven by existing studies that the 

yielded performance is not acceptable for a real-world 

environment. 

Recently, transfer learning strategies were introduced to 

deal with the diversification of environment, device setup, 

and user differences. These strategies leverage the knowledge 

from source domains to handle domain adaptation for target 

domains. The transfer learning approach where labels for 

target domains are not used are considered to be unsupervised 

domain adaptation. To mention a few of them, Fernando et 

al. [8] leveraged the eigenvectors for creating domain- 

invariant features. Gong et al. [9] uses statistical and 

geometric properties to characterize domain shift in feature 

spaces. They termed their method as geodesic flow kernel 

(GFK) based domain adaptation for HAR. It should be noted 

that the aforementioned works consider homogeneous feature 

spaces rather than heterogeneous ones, thus they heavily rely 

on hand crafted features that can reduce class-wise 

discrepancies. Khan et al. [20] considered the use of 

convolutional neural networks that can extract features in an 

end-to-end manner, but the study still dealt with the 

homogeneous domains, therefore, it cannot handle diverse 

feature spaces. 

Heterogeneous domain adaptation studies address the 

limitations of its homogeneous counterpart; however, it is 

more challenging to implement and attain a good 

performance. The earlier ideas concerning heterogeneous 

domain adaptation were to augment the feature spaces of both 

domains so that they may be compliant in terms of 

dimensionality. The works [21], [22], mainly focused on the 

aforementioned idea to realize heterogeneous domain 

adaptation. Some of the heterogeneous domain adaptations 

were centered around text-analysis in cross language 

application. The studies in [11] used some prior information 

of instance-correspondence to align the feature spaces from 

the cross-domain datasets. However, the same cannot be 

performed in HAR as prior instance correspondences are not 

available. Recently, a study [13] proposed the use of limited 

labels from the target domain samples as a prior information 

to align the feature spaces. The study in [13] addressed the 

heterogeneous domain adaptation task by leveraging the 

commonalities in domain-specific feature spaces. It makes 

sense as most of the times, sensor modalities are the same 

such as accelerometer and gyroscope. The study [14] 

designed a converter sub-network to fill in the missing part 

of feature spaces for making both domains compliant. 

However, both of the approaches require some prior 

information from the target domain in order to comply with 

the dimensions of the feature space which is not readily 

available with new or limited amount of data in real-world 

environment. In this regard, this work does not consider prior 

information from the specific domains rather shares auto-

encoder weights from one domain to extract features from 

other domains and leverage the characteristics of both deep 

and shallow-learning algorithms to develop a meta-learning 

approach for labeling the target domain samples. 

III. PROPOSED WORK 

The abstract workflow of our proposed work is shown in 

Figure 1. The sub-sections will explain the working 

principles for each of the blocks in a comprehensive manner. 

A. Problem Definition 

We represent the source-specific and target-specific 

features with Xss and Xst, having dimensions ℝꞷ×ss and ℝꞷ×ts, 

respectively. The notation ꞷ corresponds to the features 

extracted from a single window length of sensor readings. 

The proposed study assumes the feature space to not be 

homogeneous, i.e., the number of features may vary in source 

and target specific domains, ss = ts. The study also assumes 

that the label information is only incorporated in the features 

belonging to the source specific domain, i.e., yss. The aim of 

this study is to infer the labels from the features extracted 

from target domain, i.e., yts. 

B. Stacked Autoencoder 

This work uses stacked autoencoder as a feature space 

transformation technique rather than a conventional feature 

extractor. The underlying theory behind stacked 

autoencoders is similar to that of principle component 

analysis (PCA), i.e., representing the original representation 

in a compressed form. The key difference between PCA and 

stacked autoencoder is the usage of linear and non-linear 

functions for representing the complex data, respectively. 

Existing studies have extensively used stacked autoencoders 

for feature extraction, transformation, detection, and 

classification tasks [23], [24]. Some studies also prefer to use 

the sparse autoencoders to improve the performance as the 

sparsity constraint enforces the activation of limited neurons. 

This strategy results in a kind of natural feature selection that 

most of the times improves the recognition performance [23]. 

However, in this study, the stacked autoencoders are not used 

for recognition, rather they are used for feature space 

transformation for creating a homogeneity between source 

and target domain. Therefore, we assume that the sparse 

stacked autoencoders could work in the capacity of 

discriminating representation that could extract a common 

subspace from source and target domain feature space, 

respectively. We adopt the sparse stacked autoencoder 

network architecture from the study [23]. The architecture of 

stacked autoencoder is such that the number of neurons is the 

same at input and output layers but gets significantly lower in 

the hidden layer (bottleneck). The function that the networks 

seek to learn for extracting discriminating representations is 

shown in equation 1. 

 

�̂� = 𝒇𝒘,𝒃(𝒙)  (1) 

where the notations w and b refer to the weights and biases 

associated with the input x and reconstructed output �̂� and f 
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refers to the activation function, accordingly. The network 

then computes the average activation over the training set for 

the kth hidden layer neuron as shown in equation 2.  

 

𝜶𝒌 =
𝟏

𝒌
∑ 𝒂𝒄𝒕(𝒙𝒏)𝒌

𝒌=𝟏               (2) 

The notation K refers to the total number of examples 

provided to the input layer and actk refers to the kth neuron 

activation for nth input value. In order to make the 

representation sparse, a sparsity constraint (fixed value) is 

introduced such that αk = α̅  . The value for the sparsity 

parameter has been selected as 0.05 in existing studies, 

accordingly. The sparsity term can be incorporated in the 

objective function as shown in equation 3.  

 

𝝆𝒔𝒑𝒂𝒓𝒔𝒆(𝒘, 𝒃) =  𝝆(𝒘, 𝒃) +  𝜸 ∑ 𝑲𝑳 (𝛼𝑘||�̅� )
𝒇𝟑
𝒌=𝟏  (3) 

 

In the above equation the cost function is denoted by ρ, the 

network is trained by minimizing the cost function with 

reference to the corresponding weights and biases. The term 

γ corresponds to the sparsity coefficient that controls this 

parameter. The notation f3 represents the number of neurons 

in the bottleneck layer and the KL represents the Kullback- 

Leibler divergence between the Bernoulli random variable �̅� 

and the mean of the average activation 𝜶, respectively. The 

KL divergence for the aforementioned parameters is defined 

in equation 4. 

 

𝑲𝑳 (𝛼𝑘||�̅� ) = (𝟏 − �̅� ) 𝒍𝒐𝒈
𝟏−�̅�

𝟏−𝛼𝑘
+ �̅� 𝑙𝑜𝑔

�̅�

𝛼𝑘
 (4) 

 

The KL divergence can also be referred to as relative entropy 

between the mean of a random variable and average of an 

activation function. The corresponding weights and biases 

are then updated using stochastic gradient descent (SGD) 

function, accordingly. Once, the sparse stacked autoencoders 

are trained on the source domain, the weights and biases for 

the encoder part are shared with the sparse stacked 

autoencoders for the target domain to transform 

heterogeneous feature space into a homogeneous one. The 

representation obtained from the bottleneck layer of the 

source domain would then be trained using different 

classifiers, accordingly. The details for the employed 

classifiers are provided in the subsequent subsection. 

 
 

C. Classification Methods 

As shown in figure 1, we use three different types of 

classification methods to train the transformed features 

extracted from stacked autoencoder's bottleneck layer. The 

three classification methods include eXtreme Gradient 

boosting (XGBoost), random forests (RF), and long-short 

term memory networks (LSTM) [13], [23], [24]. All three 

classifiers have different characteristics, such that two of 

them belong to the family of shallow learning methods while 

the third one uses deep learning architecture. Amongst the 

two shallow learning methods the XGBoost is categorized as 

boosting while the RF is categorized as bagging tree method, 

respectively. The boosting strategy mainly trains in a 

recursive manner suggesting that among many sub classifiers 

the weak classifiers are train recursively to transform into the 

stronger ones. On the other hand, bagging trees use multiple 

decision trees with random pruning and selective features. A 

maximum voting strategy is carried out amongst the bagging 

trees to select the classification label. Recently, deep learning 

strategies have gained a lot of interest in research community 

due to their end-to-end classification and promising 

recognition results. However, in this case, an end-to-end 

learning is not adopted due to the heterogeneity of the input 

feature space between two domains. The LSTMs make use of 

gates such as forget, cell, input, and output gate to update the 

learned values which then can be used for further 

classification. These three classifiers are trained 

simultaneously independent of each other so that a decision-

level fusion module can be applied, accordingly. 

D. Decision-Level Fusion 

The workflow for decision-level fusion using Bayesian 

meta-learner in the proposed work is shown in Figure 2. The 

classification probabilities from all three classifiers will be 

forwarded to the decision-level module that combines the 

aforementioned probabilities in a directed acyclic graph 

(DAG) manner to yield the final output label. We adopt the 

Bayesian meta-learner from the study [24], [25]. The 

computation for the fusion method is shown in equation 5. 

 

𝝈(𝑷𝒊|𝒇𝒆𝒂𝒕𝑺𝑨𝑬) =  
𝝈(𝑷𝒊)𝝈(𝒇𝒆𝒂𝒕𝑺𝑨𝑬|𝑷𝒊)

∑ 𝝈(𝑷𝒊)𝝈(𝒇𝒆𝒂𝒕𝑺𝑨𝑬|𝑷𝒊
𝒏
𝒊=𝟏

  (5) 

 

where σ refers to the classification probabilities obtained 

using the three classifiers, 𝜎(𝑃𝑖|𝑓𝑒𝑎𝑡𝑆𝐴𝐸)  refers to the 

probability when a particular classification label is likely to 

occur with the provision of stacked autoencoder feature 

vector. Based on the classification probabilities, a Bayes 

classification rules as proposed in [24] will be used to yield 

the final output label, accordingly. 

 

IV. EXPERIMENTAL SETUP 

This section mainly defines the experimental setup 

employed in this study. We employed two datasets, i.e., daily 

and sports activities (DSA) [27] and Opportunity (OPP) [28]. 

The reason for considering these datasets is that they both 

contain motion sensor data and have 4 common action 

categories, namely, lying, sitting, walking, and standing. In 

this study, we apply our cross-domain adaptation on two 

body parts, i.e., left and right wrist, which mimics the use of 

smartwatches, thus, makes it compliant with real world 

adaptation. In the experiments, we use one of the 

aforementioned datasets as the source domain and other as 

the target domain, respectively. The experiments are also 

conducted considering the intra-dataset, i.e., left - right 
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wrists, and cross-dataset, i.e., DSA - OPP. We implemented 

our method using keras, tensorflow, and sklearn in python. 

For the LSTM we use a single layer with 256 hidden units. 

The learning rate was selected to be 0.001, with ADAM 

optimizer and default parameters. We used five layers for the 

stacked autoencoder with filter size of 32, 16, and 8 for the 

encoding layers. For the RF and XGBoost we use the depth 

of 10 and 20, learning rate of 0.1 and 0.01, respectively. As 

the validation set is non-existent due to the consideration that 

labels are unavailable in the target domain, all the 

aforementioned parameter values are chosen, empirically. 

We consider 4 baselines for this study, i.e., support vector 

machine (SVM), domain-specific feature transfer (DSFT) 

[13], heterogeneous deep convolutional neural network 

(HDCNN) [20], and subspace alignment (SUB) [8]. We use 

the common feature space as HDCNN, SUB, and SVM can 

only handle homogeneous feature spaces. 

 

 
Figure 2 Workflow for decision-level fusion using Bayesian Meta-

learner. 

V. RESULT AND DISCUSSION 

In this section, we report the accuracy score on the target 

domain as reported in Table 1. The accuracy score represents 

the ratio of correctly classified samples over the total number 

of samples. The first segment of results shows the intra-

dataset cross variance on OPP dataset, i.e., right to left, and 

left to right wrist, the second segment shows the intra-dataset 

cross variance on DSA dataset in a similar manner, and the 

third segment illustrates the cross-data variance on OPP and 

DSA dataset, respectively. We also vary the sensor modality 

accordingly, i.e., from gyroscope to magnetometer. Our 

results are compared with the existing approaches such as 

DSFT, HDCNN, SUB, and SVM, accordingly. The results 

clearly indicates that the proposed approach outperforms the 

existing ones in all the domain adaptation tasks concerning 

the two datasets. Furthermore, it is also to be highlighted that 

the cross-dataset domain adaptation is the hardest task among 

all evaluated in Table 1, which is indicated by the lower 

accuracy scores. We believe that it is due to the heterogeneity 

in sensor modalities such as sampling rate, reading 

sensitivity, or value range. The said heterogeneity can be 

handled with SAM- HDD network if the data from 

heterogeneous devices can be used to train the stacked 

autoencoders for the source domain, respectively. Overall, 

we assume that the quantitative results suggest that the use of 

stacked autoencoder and decision- level fusion for the cross-

domain adaptation is progressive and contributes to the 

improved recognition performance, accordingly.  

VI. CONCLUSION 

This work presents a stacked autoencoder and meta-

learning based heterogeneous domain adaptation (SAM-

HDD) network for human action recognition from wearable 

sensors. The SAM-HDD learns to transform the feature space 

into latent representation via stacked autoencoders using the 

source domain data. The encoder shares parameters to extract 

the latent representations from target domain data, 

accordingly. 

Figure 1 Proposed Workflow for SAM-HDD Network 
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Table 1 Accuracy Score for the Proposed SAM-HDD and its comparison with existing methods 

Dataset Target Source xts xss DSFT HDCNN SUB SVM SAM-HDD 

OPP Right Left Gyr Mag 58.36% 65.42% 62.27% 61.36% 65.89% 
OPP Right Left Mag Gyr 55.48% 65.11% 62.05% 61.17% 65.54% 
OPP Left Right Gyr Mag 58.22% 66.63% 64.38% 53.85% 67.04% 
OPP Left Right Mag Gyr 55.27% 66.34% 64.09% 53.56% 66.79% 

DSA Right Left Gyr Mag 75.84% 62.47% 59.76% 60.42% 79.21% 
DSA Right Left Mag Gyr 78.94% 63.23% 60.48% 60.93% 81.10% 
DSA Left Right Gyr Mag 68.11% 67.34% 57.38% 56.87% 72.15% 
DSA Left Right Mag Gyr 66.48% 67.61% 57.66% 56.21% 71.45% 

Cross OPP Left DSA Left Gyr Mag 26.34% 39.76% 34.88% 21.05% 52.32% 
Cross DSA Left OPP Left Gyr Mag 45.41% 41.68% 31.32% 28.77% 48.89% 

Three different classification methods are employed namely, 

XGBoost, RF, and LSTM to train the network on latent 

representations followed by the training of a meta-learner that 

combines the classification probabilities of the three 

classifiers. The trained classifier and meta-learner is then 

used to classify action labels from the latent representations 

of the target domain dataset. We performed extensive 

evaluation on intra dataset domain variance and cross-dataset 

domain variance for the efficacy of the proposed approach 

and compared it with existing studies. The experimental 

results indicate that the proposed approach outperforms the 

existing ones in terms of accuracy score. It should be noted 

that unlike existing methods, the proposed approach does not 

rely on extracting common feature spaces or fill the feature 

spaces with the common sub- space as performed in existing 

studies. The proposed method has been evaluated on only two 

datasets and homogeneous labels which we consider as the 

limitation of this work. We intend to extend this work by 

considering more human activity recognition datasets for 

evaluating cross-domain adaptation and to use personalized 

models for coping with heterogeneous label spaces, 

accordingly. 
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