39,082 research outputs found

    Scale coding a bag of words for real-time video-based action recognition.

    Get PDF
    Masters Degree.University of KwaZulu- Natal, Durban.Abstract available in PDF

    Effective Surface Normals Based Action Recognition in Depth Images

    Get PDF
    International audienceIn this paper, we propose a new local descriptor for action recognition in depth images. The proposed descriptor relies on surface normals in 4D space of depth, time, spatial coordinates and higher-order partial derivatives of depth values along spatial coordinates. In order to classify actions, we follow the traditional Bag-of-words (BoW) approach, and propose two encoding methods termed Multi-Scale Fisher Vector (MSFV) and Temporal Sparse Coding based Fisher Vector Coding (TSCFVC) to form global representations of depth sequences. The high-dimensional action descriptors resulted from the two encoding methods are fed to a linear SVM for efficient action classification. Our proposed methods are evaluated on two public benchmark datasets, MSRAction3D and MSRGesture3D. The experimental result shows the effectiveness of the proposed methods on both the datasets

    A compact representation of human actions by sliding coordinate coding

    Get PDF
    Human action recognition remains challenging in realistic videos, where scale and viewpoint changes make the problem complicated. Many complex models have been developed to overcome these difficulties, while we explore using low-level features and typical classifiers to achieve the state-of-the-art performance. The baseline model of feature encoding for action recognition is bag-of-words model, which has shown high efficiency but ignores the arrangement of local features. Refined methods compensate for this problem by using a large number of co-occurrence descriptors or a concatenation of the local distributions in designed segments. In contrast, this article proposes to encode the relative position of visual words using a simple but very compact method called sliding coordinates coding (SCC). The SCC vector of each kind of word is only an eight-dimensional vector which is more compact than many of the spatial or spatial–temporal pooling methods in the literature. Our key observation is that the relative position is robust to the variations of video scale and view angle. Additionally, we design a temporal cutting scheme to define the margin of coding within video clips, since visual words far away from each other have little relationship. In experiments, four action data sets, including KTH, Rochester Activities, IXMAS, and UCF YouTube, are used for performance evaluation. Results show that our method achieves comparable or better performance than the state of the art, while using more compact and less complex models.Published versio

    Robust 3D Action Recognition through Sampling Local Appearances and Global Distributions

    Full text link
    3D action recognition has broad applications in human-computer interaction and intelligent surveillance. However, recognizing similar actions remains challenging since previous literature fails to capture motion and shape cues effectively from noisy depth data. In this paper, we propose a novel two-layer Bag-of-Visual-Words (BoVW) model, which suppresses the noise disturbances and jointly encodes both motion and shape cues. First, background clutter is removed by a background modeling method that is designed for depth data. Then, motion and shape cues are jointly used to generate robust and distinctive spatial-temporal interest points (STIPs): motion-based STIPs and shape-based STIPs. In the first layer of our model, a multi-scale 3D local steering kernel (M3DLSK) descriptor is proposed to describe local appearances of cuboids around motion-based STIPs. In the second layer, a spatial-temporal vector (STV) descriptor is proposed to describe the spatial-temporal distributions of shape-based STIPs. Using the Bag-of-Visual-Words (BoVW) model, motion and shape cues are combined to form a fused action representation. Our model performs favorably compared with common STIP detection and description methods. Thorough experiments verify that our model is effective in distinguishing similar actions and robust to background clutter, partial occlusions and pepper noise

    Log-Euclidean Bag of Words for Human Action Recognition

    Full text link
    Representing videos by densely extracted local space-time features has recently become a popular approach for analysing actions. In this paper, we tackle the problem of categorising human actions by devising Bag of Words (BoW) models based on covariance matrices of spatio-temporal features, with the features formed from histograms of optical flow. Since covariance matrices form a special type of Riemannian manifold, the space of Symmetric Positive Definite (SPD) matrices, non-Euclidean geometry should be taken into account while discriminating between covariance matrices. To this end, we propose to embed SPD manifolds to Euclidean spaces via a diffeomorphism and extend the BoW approach to its Riemannian version. The proposed BoW approach takes into account the manifold geometry of SPD matrices during the generation of the codebook and histograms. Experiments on challenging human action datasets show that the proposed method obtains notable improvements in discrimination accuracy, in comparison to several state-of-the-art methods

    Large-scale interactive exploratory visual search

    Get PDF
    Large scale visual search has been one of the challenging issues in the era of big data. It demands techniques that are not only highly effective and efficient but also allow users conveniently express their information needs and refine their intents. In this thesis, we focus on developing an exploratory framework for large scale visual search. We also develop a number of enabling techniques in this thesis, including compact visual content representation for scalable search, near duplicate video shot detection, and action based event detection. We propose a novel scheme for extremely low bit rate visual search, which sends compressed visual words consisting of vocabulary tree histogram and descriptor orientations rather than descriptors. Compact representation of video data is achieved through identifying keyframes of a video which can also help users comprehend visual content efficiently. We propose a novel Bag-of-Importance model for static video summarization. Near duplicate detection is one of the key issues for large scale visual search, since there exist a large number nearly identical images and videos. We propose an improved near-duplicate video shot detection approach for more effective shot representation. Event detection has been one of the solutions for bridging the semantic gap in visual search. We particular focus on human action centred event detection. We propose an enhanced sparse coding scheme to model human actions. Our proposed approach is able to significantly reduce computational cost while achieving recognition accuracy highly comparable to the state-of-the-art methods. At last, we propose an integrated solution for addressing the prime challenges raised from large-scale interactive visual search. The proposed system is also one of the first attempts for exploratory visual search. It provides users more robust results to satisfy their exploring experiences
    • …
    corecore