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Abstract

The Bag-of-Words (BoW) framework has been widely used in action recognition tasks

due to its compact and efficient feature representation. Various modifications have

been made to this framework to increase its classification power. Increased classifica-

tion power often results in increased complexity and reduced efficiency, highlighting the

compromise between computational cost and accuracy. This cost-to-accuracy balance

must be carefully considered to achieve real-time video-based action recognition.

Inspired by the success of image-based scale coded BoW representations, this research

investigates the potential of scale coded BoW representations for implementable real-

time video-based action recognition. Scale coding a BoW involves encoding extracted

multi-scale information into BoW representations by partitioning spatio-temporal fea-

tures into sub-groups based on the spatial scale from which they were extracted. For

video-based action recognition, a spatio-temporal Bag-of-Words (SC-BoW) was pro-

posed and experimentally evaluated.

Results showed SC-BoW representations to improve performance by 2% - 7% with

a low added computational cost. Notably, SC-BoW with dense trajectory features out-

performed more complex deep learning approaches. Thus, scale coding is a low-cost and

low-level encoding scheme that increases the classification power of the standard BoW

without compromising efficiency. Furthermore, the incorporation of scale-information

incurs a negligible additional computational cost, presenting an ideal cost-to-accuracy

balance. Thus, scale-coding a BoW has great potential to be suitable for accurate real-

time video-based action recognition. Future work includes scale-coding deep features

to exploit the desirable cost-to-accuracy trade-off of SC-BoW.
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Chapter 1

Introduction

1.1 Background

Action recognition aims to autonomously classify what is being done by observable

agents in a scene. Video-based action recognition is one of the most challenging problem

areas in computer vision. Action recognition is dependent on a multitude of high-level

visual clues (e.g., human pose, interacting objects, and scene class) - the identification

of which is already a complicated task. Furthermore, significant intra-class variations

occur due to changes in illumination, viewpoints, scale, and movement speed. Addi-

tionally, there is no precise definition of the temporal extent of the action (when the

action begins and ends) - a problem not faced in static object-based action recognition.

Finally, the high dimension and poor quality of video data add to the challenge of

developing robust and efficient recognition algorithms [12].

After video capturing, the first step of any action recognition task is to extract features

from the given data. For video-based action recognition, popular features include Dense

Trajectories [1, 13, 14], Space-Time Interest Points (STIPs) [7], and Scale Invariant

Feature Transforms (SIFT) [15, 16]. Various approaches use the Bag of Words (BoW)

framework to compactly present the extracted features for classification [1, 12, 17].

The general approach of this framework involves clustering locally extracted features

to form a vocabulary (”bag”) of visual ”words” [18]. Extracted features are compared

to this vocabulary to generate a frequency histogram. The histogram holds the count

of occurrences of each visual ”word” in the image/video. This histogram is the BoW
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representation of the image/video.

The BoW is a favored approach due to its simplicity, flexibility, and computational

efficiency. As a result, it has great potential for real-time video-based action recog-

nition. However, the standard framework lacks structure and discards all large-scale

spatial information which reduces classification power. Thus, many BoW variants have

been developed; aiming to increase classification power while leveraging the simplicity

and computational efficiency of the original framework [8, 12, 18–20]. This highlights

the computational cost vs. accuracy trade-off that needs to be carefully considered

for real-time video-based action recognition. The BoW framework and its variants are

formally discussed in Section 2.2.

1.2 Motivation and Problem Definition

Successful implementation of a real-time video-based action recognizer increases the

potential for real-time autonomous surveillance; this has various useful real-world ap-

plications. For example: autonomously finding and reporting instances of theft in public

spaces, real-time surveillance, intelligent surveillance, and smart shopping. Currently,

state-of-the-art action recognition algorithms revolve around two-stream Convolutional

Neural Networks (CNNs) [21]. However, these high performing recognition schemes of-

ten have high computational demands, making them unsuitable for real-world applica-

tion. Furthermore, deep learning algorithms require large amounts of labeled training

data (which may not be readily available in real-world circumstance), long training

times and have high hardware demands. To successfully apply action recognition in

real-world circumstances, algorithms that increase performance with low computational

demands are valuable.

The simple and compact representation offered by the BoW framework is beneficial

in action recognition tasks, which involve large sets of extracted features even for rel-

atively small datasets [1]. However, the traditional BoW model lacks discriminating

power when dealing with large amounts of data. This is a notable setback in the field

of action recognition, which requires a large number of features to be extracted for

unsupervised visual vocabulary creation [22]. Furthermore, the standard BoW frame-
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work discards all large-scale spatial information, including relative locations, scales,

and orientations of the features [23]. Although this makes the framework robust to

varying appearances caused by the factors mentioned above, Khan et al. showed that

scale variances within an image hold vital information and that purely scale-invariant

representations are sub-optimal [20]. The possibility of extending scale encoded BoW

representations to the spatio-temporal domain (for visual tracking and video-based ac-

tion recognition) is to be explored. This simple approach has the potential to overcome

the cost-to-accuracy trade-off, moving society closer to widespread practical realization

and implementation of autonomous surveillance systems.

1.3 Goals and Objectives

The ultimate goal of this research is to investigate scale coding a BoW as a possible

avenue for accurate real-time action recognition of video data.

Notably, the study has the following sub-objectives:

� Conduct a literature review of the existing action recognition algorithms and

tools, focusing on the Bag of Words framework and its subsequent variants.

� Investigate the relationship between algorithm performance and computational

cost.

� Propose an efficient framework for video-based action recognition that incorpo-

rates scale information into the final BoW representation of a given video.

� Experimentally evaluate the proposed framework on standardized datasets (specif-

ically the KTH and HMDB51 datasets) and compare performance to existing

action recognition algorithms to determine the validity and relevance of the pro-

posed algorithm in the current research space.

1.4 Contributions

This work contributes to the research space in the following manners:

� Identified the factors affecting the computational cost vs. accuracy balance for

video-based action recognition. Furthermore, the practical effects of these factors
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are observed through experimental evaluation. This evaluation provides a basis

for assessing and improving the efficiency of existing algorithms by stating the

factors to consider when developing or adjusting existing algorithms for real-time

action recognition of videos.

� Proposed a novel video-based action recognition algorithm by extending the scale

encoded BoW for image-based action recognition to the spatio-temporal domain.

This was found to improve the initial accuracy of extracted features.

� Proposed and evaluated parameter definition frameworks for the scale encoded

BoW, namely: static and dynamic scale parameter definition.

� The scale encoded BoW framework was adjusted to be easily incorporated into

any existing video-based action recognition algorithm that uses a BoW for clas-

sification. Furthermore, a novel approach to spatio-temporal pyramids was pro-

posed; extending the concept to 4 dimensions to include scale information. An

impressive improvement in accuracy was recorded. Most notably, the added com-

putational cost of this framework is negligible. The relationship between accuracy

and the key parameters of this novel framework were also investigated.

1.5 Dissertation Outline

� Chapter 2 presents a literature review covering the Bag of Words framework and

its existing variants for action recognition. An analysis of this framework and its

variants is conducted, highlighting the trade-off between computational cost and

accuracy. Pertinent visual tracking methodologies are also reviewed.

� In Chapter 3, factors influencing the cost vs. accuracy trade-off are identified.

The practical effects of these factors are experimentally evaluated using Dense

Trajectory features and the KTH and a reduced HMDB51 dataset.

� In Chapter 4, a novel approach that extends Khan et al.’s scale coded BoW to

the spatio-temporal domain is proposed and experimentally evaluated.

� Chapter 5 presents a scale coded BoW framework that can be easily incorporated

into any existing video-based action recognition algorithm that uses a BoW for

classification. Furthermore, the relevance of scale information is investigated; the
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adjusted scale coded BoW framework is used to incorporate scale information

into the more robust dense trajectory feature set.

� Chapter 6 concludes this work and outlines future work directions.
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Chapter 2

Literature Review

2.1 Introduction

Video-based action recognition is currently one of the most active spaces in computer

vision research. Initial approaches focused on holistic representations of an action. This

involved identifying a set of 2-D [24, 25] or 3-D [26] points located at the joints of the

person object. These points were tracked, thereby tracing the motion of the action via

space-time trajectories. Detection and tracking individual body parts still remains a

difficult task to accomplish for realistic video data. Thus, the research space shifted

focus onto extracting local spatio-temporal features [1, 7, 15, 16] for video classification.

Formation and extraction of spatio-temporal features extracts patterns of the changing

3-D plane as opposed to handling the action as a rigid 3-D object. As a result, the

challenge of detecting and modeling the human body object was avoided. To compactly

represent extracted features for classification, the BoW framework was often used.

Current state-of-the-art video-based action recognition algorithms are dominated by

deep learning methodologies: CNNs are used to effectively extract spatio-temporal in-

formation from videos [21, 27] and for classification [17, 28, 29]. Current trends revolve

around two-stream CNNs [27, 30] which fuses together two CNNs for spatial and tem-

poral information respectively. However, deep learning architectures are complex, have

high computational demands and require large amounts of training data. As a result,

machine learning algorithms can be more advantageous for small datasets such as the

KTH dataset. This was confirmed by Aslan et al. [31] who achieved 95.33 % on the

KTH dataset using a BoW and machine learning methods. Contrarily, the deep learn-
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ing algorithm by Baccouche et al. [32] achieved 94.39 % on the same dataset. This was

further proved in the conclusions of Chapter 5.

In this literature review, action recognition with the BoW framework and its vari-

ants are explored. Deep learning approaches were not thoroughly reviewed as the focus

of study is on investigating video-based action recognition with BoW representations.

Additionally, visual trackers are investigated in Section 2.5. Scale coding is reliant on

predefined bounding boxes. To maintain bounding boxes though subsequent frames,

an efficient and accurate visual tracker is required.

2.2 Bag-of-Words

The BoW framework, initially developed for text categorization applications, has been

adopted in visual tracking and action recognition tasks to form the Bag of Visual Words

(BoVW) framework [12, 18, 33]. This is alternatively referred to as the Bag of Features

(BoF) framework due to the clustering of extracted local features [34]. In recent years,

use of this framework and its variants have dominated the research space of visual-

based action recognition [18, 20, 33, 35, 36]. Although algorithms such as CNNs [23]

and Fisher Vectors (FVs) [37] have higher classification power, BoW is favored due to

its flexibility, simplicity, compact feature representation and computational efficiency

[36]. This is useful in action recognition tasks which involves large sets of extracted

features [1]. Additionally, a fast, compact feature representation algorithm makes the

BoW framework favorable for real-time applications.

The general process of this framework can be summarized in 3 steps:

1. Construction of Visual Vocabulary:

Features from all training set images are extracted and then clustered to a visual

vocabulary typically using K-Means Clustering or a Gaussian Mixture Model

(GMM) [12]; each cluster represents a visual word or term.

2. Histogram Generation:

Features extracted from a particular image are assigned to the closest words

in the visual vocabulary using relation algorithms such as Nearest Neighbors.
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The counts of each word that appear in the input data are recorded to create a

normalized histogram. This represents the term vector. This term vector is the

BoW representation of the image.

3. Classification:

Based on the output term vector, the input data is classified. A commonly used

classifier is the Support Vector Machine (SVM) with a non-linear kernel [22].

The output term vector discards all large-scale spatial information, including relative

locations, scales, and orientations of the features [38]. In this manner, the framework is

robust to varying appearances (caused by the aforementioned factors) of images of the

same class. Additionally, this allows for compact and computationally efficient data

representations.

2.2.1 Standard Scale Invariant Bag-of-Words Model

This section expands on the mathematical description of the standard bag-of-words

pipeline [8]. Features are extracted from some image or video frame via multi-scale

sampling. For a given bounding box B, the set of extracted features are defined as:

F (B) = {fsi |i ∈ {1, ..., N}, s ∈ {1, ...,M}}, (2.1)

Where:

i indexes the N feature sites defined by the sampling grid in bounding box B

s indexes the M scales extracted at each feature site

The histogram h(B) representing a given bounding box B as per the BoW framework

is given by:

h(B) ∝
N∑
i=1

M∑
s=1

cBOW (fsi ) (2.2)

Where:

cBOW is some coding scheme that maps the input feature space to the representation

space

With the standard BoW, the Euclidean distance between each extracted feature fsi ∈

F (B) and visual word wk, k ∈ {1, ..., q} in the visual vocabulary W = {w1, ...,wq} is

computed. The features are then matched to the nearest visual word (nearest neighbor
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assignment). The index of the visual word assigned to an extracted feature fsi is given

by:

ωsi = argmin
k∈{1,...,q}

d(fsi ,wk) (2.3)

Where:

d(a,b) is the function computing the Euclidean distance between a and b

The coding function for the standard BoW framework is summarized by Equation

(2.4)

cBOW (fsi ) = e(ωsi ) (2.4)

Where:

e(i) is a 1-D vector of length q with only one non-zero element at index i which is equal

to 1. The index i corresponds to the assigned codeword for a given extracted feature

fsi .

2.2.2 Analysis of Bag-of-Words

The standard BoW representation of an image or video discards all large-scale spa-

tial information (relative locations, scales, and orientations of extracted features) [38].

This strategy justifies the compact and computationally efficient nature of the BoW

framework. However, the exclusion of this information reduces the classification power

of the framework. Shi et al. [37] showed that FVs outperform BoW representations

as FVs offer a more complete representation of the dataset by including information

regarding the samples’ distribution with respect to words in the vocabulary. Similarly,

Loussaief et al. [23] found that CNNs outperform the BoW framework in classification

tasks due to their superior ability to extract features that contain relevant information

from the input data. However, FVs and CNNs are dense and high-dimensional, making

them computationally expensive. To address this concern, many variants of the BoW

framework exist. The implemented modifications in BoW variants work to overcome

the weaknesses of the standard BoW model.

2.3 Bag-of-Words for Video Data

For video-based action recognition, Peng et al. [12] defined the general pipeline for

the classification algorithm using the BoW framework. This is summarized in Figure
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Figure 2.1: The pipeline for video-based action recognition using the BoW Framework.

2.1 [12]. To increase classification power of the standard BoW framework, various

efforts and modifications have been made at each step of this pipeline. Peng et al. [12]

concluded that each step contributes to overall performance.

2.3.1 Feature Extraction

Feature extraction consists of a detector and descriptor. Detectors select key point

locations and scales in a video by maximizing some function or using a sampling strat-

egy. Descriptors describe various attributes about the selected location. Commonly

extracted descriptors are Histogram of Orientated Gradients (HOG) [2] and Histogram

of Optical Flow (HOF)[2]. These descriptors are computed by quantizing pixel gradient

information (HOG) and optical flow information (HOF) into histograms.

Current feature extraction approaches for video-based action recognition can be di-

vided into two categories: hand-crafted features and deep learning mechanisms. Hand-

crafted feature approaches involve manually processing raw pixels to formulate feature

sets. Deep learning methods automatically obtain features [21, 27].

The accuracy of the BoW algorithm is dependent on the way extracted spatial and

temporal information is represented i.e. how motion features are crafted. Thus, earlier

works focused on postulating powerful spatio-temporal features. Popular hand-crafted

features include: Dense Trajectories [1, 13, 14], Space-Time Interest Points (STIPs) [7]

and Scale Invariant Feature Transforms (SIFT) [39].
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Space-Time Interest Points

Laptev extended spatial interest points for still image-based classification to the spatio-

temporal domain for video-based classification to form STIPs [7]. Detection of STIPs

is illustrated in Figure 2.2. STIPs involve the detection of spatio-temporal corners

defined by local areas of large variation in all three dimensions: the 2-D spatial plane,

(x, y), and the 1-D temporal plane, t. These spatio-temporal corners are identified

as the local maxima of a corner detection function computed for all pixels across the

spatial and temporal scales. The corner detection function is derived by extending the

Harris-corner operator [40] to time. This is defined as

H = det(µ)− ktrace3(µ)

= λ1λ2λ3 − k(λ1 + λ2 + λ3)
3

(2.5)

Where:

µ is the spatio-temporal second-moment matrix

k is a constant. Laptev [40] set k ≈ 0.005.

λ1, λ2, and λ3 are the eigenvalues of µ. Spatio-temporal regions with significant eigen-

values mark an interest point.

Figure 2.2: Space-Time Interest Point detection of a walking person. Taken from [7].

Dense Trajectories

The extraction of dense trajectories involves densely sampling points at multiple spatial

scales. Thereafter, sampled points are tracked via an optical flow algorithm to form
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spatio-temporal trajectories. This is visualized in Figure 2.3. For feature formation,

dense trajectories fuse together five descriptors: trajectory shape, HOG, HOF and

Motion Boundary Histograms (MBH) in the horizontal (MBHx) and vertical (MBHy)

planes [1]. Features are compactly represented for classification using the BoW frame-

work.

Figure 2.3: Visualization of the extraction of Dense Trajectories. Taken from [1].

Scale-Invariant Feature Transform

SIFT is a popular feature to extract for visual classification tasks as it is robust to scale,

rotation, viewpoint, and illumination changes, is distinctive and efficient. Formation of

a set of SIFT features for a given image/video frame is summarized in four steps [39]:

1. Scale-space Peak Selection

Difference of Gaussian (DoG) images are computed in order to efficiently search

over all scales and image locations to identify potential interest points. These

interest points are identified as the local extrema of the DoG image.

2. Key-point Localization

The stability of all potential interest points is evaluated by fitting points to a

detailed model. Points that lie along edge or have low contrast are deemed to

be unstable. Unstable points are sensitive to noise and do not contain useful

information, thus, are removed.

3. Orientation Assignment

Orientations are assigned to key-points based on local image gradient directions.

As a result, the key-point descriptor orientation is represented relative to the

image orientation. This makes SIFT features invariant to image rotations.

4. Key-point Descriptor

In the previous steps, relative location, scale, and orientation was assigned to

each valid key-point. These parameters were assigned based on locally extracted
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image information; achieving invariance to the aforementioned parameters. In

this step, a descriptor for the local image region about each key-point must be

computed such that the descriptor is distinctive and invariant to the changes in

illumination and viewpoint. A 16 × 16 window around the key-point is divided

into 4 × 4 cells. An 8 bin HOG vector is computed for each cell. The resulting

HOG vectors for each cell in the window is concatenated and normalized. To

achieve illumination independence, a threshold of 0.2 is set. Any bin value in the

HOG feature vector greater that 0.2 is set to 0.2. Thereafter, the feature vector

is once again normalized.

2.3.2 Visual Vocabulary Generation

In this step, features are extracted from training data to form a codebook or visual

vocabulary. Two common approaches to this step are feature space partitioning and

feature probability distribution.

Feature Space Partitioning

Extracted features are clustered together; the center of each cluster represents a ”code-

word” or ”visual word”. Commonly used vector quantization techniques for this step

include k-means clustering [41], hierarchical clustering [42] and Random Forests (RF)

[43, 44]. The simplicity of k-means makes it one of the most popular choices for clus-

tering tasks.

Consider a set of training features, {f1, . . . , fq, . . . , fQ}, where fq ∈ RD . The aim is

to partition the feature space into K clusters, {d1, . . . ,dk, . . . ,dK}, where dk ∈ RD.

For each feature, fq, there is a set of binary indicator variables rqk ∈ {1, 0}. For a fea-

ture vector, fq, assigned to the cluster k, the variables are set as: rqk = 1 and rqj = 0

for j 6= k. To perform k-means clustering, values for rqk and dk must be found such

that the objective function is minimized. The objective function is defined as

Γ({rqk,dk}) =

Q∑
q=1

K∑
k=1

rqk||fq − dk||22 (2.6)

Uijlings et al. [45] evaluated the accuracy and efficiency of these quantization algorithms

with densely extracted HOG, HOF, and MBH descriptors. There is an obvious trade-

off between efficiency and accuracy; k-means clustering achieves the highest accuracy
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(77.46 %) at the slowest computational speed (108 fps), whereas RF achieves the lowest

accuracy (74.06 %) at the fastest computational speed (1910 fps) [45].

Feature Probability Distribution

The probability distribution of extracted features is captured using a generative model.

A typical method for this step is the Gaussian Mixture Model (GMM) [12, 41]. GMM

differs from k-means as it conveys both the mean information of codewords and the

shape of their distribution. As a result, GMM encodes more information into the rep-

resentation. As seen with FV encoding [37], this can result in better performance.

For GMM, the generative model is defined as

p(f, θ) =
K∑
k=1

πkG(f, µk,Σk) (2.7)

Where:

f is in the feature set F = {f1, . . . , fQ}.

K is the number of Gaussian models in the mixture.

πk is the density of the k−th model in the mixture.

θ = {π1, µ1,Σ1, . . . , πk, µk,Σk} represents the model parameters.

G(f, µk,Σk) is the D-dimensional Gaussian distribution. Maximum likelihood estima-

tion is used to learn optimal parameters for a given features set, F [41].

2.3.3 Feature Pre-processing

This step is responsible for dimensionality reduction of extracted features - a vital pro-

cedure for stable learning of features (unsupervised learning is done by k-means and

GMM). This is important in the case of low-level local descriptors which are usually

strongly correlated and highly dimensional. A popular method for this process is Prin-

cipal Component Analysis (PCA) [12, 41]. PCA is a statistical procedure that uses

orthogonal transforms to map extracted features to a set of principle components. The

number of principle components is usually less than the number of original feature

components; resulting in dimension reduction.
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2.3.4 Feature Encoding

The encoding scheme, cBOW , is responsible for the representation of extracted features.

The feature descriptors and codewords are used to form a coding matrix, with a length

equal to the number of codewords. The feature descriptors determine the occurrence

count of each codeword in the video; generating a coding vector (frequency histogram).

The length of this vector is equal to the number of codewords in the codebook. The

coding algorithm used affects the detection of codewords in the video [46].

Three popular encoding methods are vector quantization (also known as hard vot-

ing), Fisher Vector (FV) encoding [37] and Vector of Locally Aggregated Descriptors

(VLAD) [47]. Vector quantization methods were briefly discussed in Section 2.3.2. For

a vocabulary of K words and a D-dimensional feature descriptor, the dimension of the

output encoded vector of the aforementioned encoding schemes is summarized in Table

2.1.

Table 2.1: The output vector dimension for vector quantization, Fisher Vector and

VLAD encoding

Encoding Scheme Dimension

Vector Quantization [41] K

Fisher Vector [37] 2KD

VLAD [47] KD

Vector quantization is the standard way of producing the BoW representation of a

feature set and produces the most compact output vector from the three encoding

schemes. As mentioned in Section 2.3.2, k-means is the most commonly used vector

quantization method. Although more efficient, vector quantization methods like k-

means are outperformed by FV and VLAD encoding [45]. VLAD can be viewed as the

non-probabilistic/hard version of FV encoding [12, 47]. Thus, VLAD is simpler and

more efficient than FV encoding.
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2.3.5 Pooling and Normalization

Pooling

The responses of each codeword are integrated into one value by pooling [46] to obtain

a global representation p of a video. Furthermore, pooling is used to achieve repre-

sentations that are more compact, have increased robustness to noise and clutter and

are invariant to image transformations [48]. Common pooling methods include Sum

Pooling, Average Pooling and Max Pooling [12].

Consider the r × q binary matrix I; r is the number of feature extraction locations

sites and q is the number of codewords in the visual vocabulary W = {w1, ...,wq}. A

single n - dimensional binary column vector v is extracted from I. Each element in

v corresponds to the presence (1) or absence (0) of a visual codeword at a particular

feature extraction point. The pooling operation f reduces v to a scalar value f(v).

1. Sum Pooling [12]

fs(v) =

n∑
i=1

vi (2.8)

2. Max Pooling [48]

fm(v) = max
i

vi (2.9)

3. Average Pooling [48]

fa(v) =
1

n

n∑
i=1

vi (2.10)

An analysis of max pooling and sum pooling concluded that max pooling performs

better with sparse features [48].

Normalization

Normalization ensures that the global representation achieved by pooling, p = {p1, ..., pq},

is invariant to the number of feature descriptors. There are three common types of nor-

malization techniques [49]:

1. `1-Normalization [50]

The normalized form of p by the `1-norm, p̄`1, is defined as

p̄`1 =
p∑q

k=1 |pk|
(2.11)
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2. `2-normalization [51]

The normalized form of p by the `2-norm, p̄`2, is defined as

p̄`2 =
p√∑q
k=1 pk

2
(2.12)

3. Power Normalization [51]

The power normalization of p is defined as p̄p = {pp1, p
p
2, ..., p

p
q}, such that:

ppk = sign(pk)|pk|α (2.13)

Where:

k ∈ {1, 2, ..., q}.

α ∈ [0, 1] is the parameter for normalization.

The chosen normalization technique can affect the overall performance of a clas-

sifier. Wang et al. [14] found that normalizing using the RootSIFT [52] approach

as opposed to `2-normalization resulted in a 0.5% improvement.

4. RootSIFT: Hellinger distance [52]

The RootSIFT normalized form of p is defined as p̄r = {pr1, pr2, ..., prq}, such that:

prk =

√
pk∑q

k=1 |pk|
(2.14)

Where:

k ∈ {1, 2, ..., q}.

2.4 Bag-of-Words Variants

The thematic approach of BoW variants involves encoding additional information about

the input data into the final BoW representation, increasing the classification power of

the framework whilst leveraging the compactness and simplicity of the standard model.

Laptev et al. [2] encoded spatio-temporal information into BoW representations for

video-based action recognition by extending spatial pyramids used in image-based clas-

sification [53]. Li et al. [18] proposed a bag-of-words representation that encodes
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contextual information of extracted features into the final representation of the im-

age. This is referred to as the Contextual Bag-of-Words (CBOW) and was shown to

outperform the standard BoW framework in visual categorization tasks. Additionally,

the CBOW model was used by Zeng et al. [36] to develop a robust visual tracking

algorithm; addressing issues of occlusion and drifting. The tracking scheme utilizes

two bag-of-words that carry appearance information on the target object and its back-

ground. This displays the flexibility of the BoW model; with slight modifications, it can

be successfully applied to a variety of visual classification tasks. Nazir et al. [54] ex-

tended the BoW to a Bag of Expressions (BoE) by encoding neighborhood relationship

information between words in the spatio-temporal domain. This achieved state-of-the-

art accuracy on the KTH dataset.

Another common approach to encode relevant information into BoW representations

is to combine the framework with accurate, computationally expensive video classifi-

cation algorithms (such as FVs [17, 37], CNNs [23, 29] and dense sampling strategies

[1, 14, 55]).

2.4.1 Convolutional Bag-of-Features

As opposed to relying on compression techniques for model simplification and param-

eter reduction, Passalis et al. [34] combined CNNs with the BoF framework to form

the Convolutional Bag-of-Features (CBoF). It serves as a neural extension of the BoF

framework and maintained excellent classification accuracy. This new CNN architecture

uses Radial Basis Function (RBF) neurons to quantize image information for classifi-

cation [34].

A major problem faced with CNNs is the increasing complexity, thus computational

demand, when used in challenging classification problems. Thus, various efforts been

made towards reducing the complexity of CNNs through compression techniques [17,

19, 56, 57]. These techniques can be applied to BoW variants incorporating deep neural

networks to further increase computational efficiency for possible real-time applications.

Although dimensionality reduction techniques address concerns of memory demand and

computational cost, CNNs are slow to train and require large amounts of training data

which is not readily available. Furthermore, for the algorithm to effectively perform,
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the CNN must be trained with data relevant to the intended application. As a result,

the flexibility of the standard BoW algorithm is compromised when combined with

deep learning mechanisms.

2.4.2 Scale Coding

As previously mentioned in Section 2.2.2, the standard BoW framework discards all

scale information; locally extracted features that contain multi-scale information are

transformed into a single scale-invariant histogram representation. This provided a

simple and efficient solution to overcoming the inaccuracies caused by changes in scale.

However, Khan et al. argued that scale variances within an image hold vital informa-

tion and that purely scale-invariant image representations are sub-optimal [8]. This

holds true as BoW models that contain scale information (both absolute and relative)

in the final representation of an image were found to outperform scale-invariant repre-

sentations [20]. The math behind scale coding is explored in the below sections as per

Khan et al. [8].

General Approach

Scale coding a bag-of-words involves partitioning the generated visual vocabulary into

small-, medium- and large-scale visual words. For a given image, three histograms

are produced to represent the frequency of small-, medium-, and large-scale words

respectively. The final representation is formed by concatenating the three histograms.

Khan et al. proposed two scale coding approaches: absolute scale coding and relative

scale coding [8].

Absolute Scale Coding

This approach encodes the scale information originally extracted from a given image

into the final image representation. As illustrated in Figure 2.4, the scale of extracted

features is independent of the size of the bounding box and is defined as per the original

size of the image.
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Figure 2.4: Absolute Scale Coding. Taken from [8].

For absolute scale coding, the set of M feature scales S = {1, ...,M} are partitioned

into three sub-groups as follows:

Ss = {s|s ≥ ss, s ∈ S}

Sm = {s|ss < s ≤ sl, s ∈ S}

Sl = {s|sl < s, s ∈ S}

Where ss and sl are the predefined cutoff thresholds. The final representation for the

bounding box B consists of the concatenated partitions described above.

ht(B) ∝
N∑
i=1

∑
s∈St

c(fsi ) (2.15)

Where:

St is the set of sub-groups which the total set of extracted feature scales S are divided

into. t ∈ {s,m, l} for small, medium- and large-scale features.

Relative Scale Coding

In this representation, extracted scale information is encoded relative to the bounding

box of the object. This is illustrated by Figure 2.5. The difference between relative

scale coding and absolute scale coding is that the scale of each feature s multiplied by

the relative scaling factor, α, defined as

α =
Bw +Bh
w̄ + h̄

(2.16)
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Figure 2.5: Relative Scale Coding. Taken from [8].

Where:

Bw and Bh are the width and height of the bounding box B.

w̄ + h̄ are the mean width and height of every bounding box in the training set.

Thus, the relative feature scale is defined as:

ŝ = αs =
Bw +Bh
w̄ + h̄

s (2.17)

Similarly to absolute scale coding, the relative set of scale sub-groups Ŝt, t ∈ {s,m, l}

is partitioned as follows:

Ŝs = {ŝ|ŝ ≥ ss, ŝ ∈ S}

Ŝm = {ŝ|ss < ŝ ≤ sl, ŝ ∈ S}

Ŝl = {ŝ|sl < ŝ, ŝ ∈ S}

Similar to absolute scale coding (equation 2.15), the final relative scale coded represen-

tation of the image involves concatenating the scale partitions as per equation 2.18

ht(B) ∝ 1

|Ŝt|

N∑
i=1

∑
s∈Ŝt

c(fsi ) (2.18)

Where:

|Ŝt| is a normalization factor equivalent to the number of elements in the set Ŝt (in this

case 3). Normalization is required to as the number of scales that fall into each scale

sub-group varies with the size of the bounding box in relative scale coding.
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Scale coding is heavily reliant on accurate definition of the bounding boxes of objects.

These were pre-defined for testing and training in previous experimentation [8, 20].

For real-time video-based action recognition using the scale coding approach, a robust

real-time visual tracker is required.

2.5 Visual Tracking

A visual tracker is required to isolate a target object, specifically a person in the case

of action recognition, in the spatio-temporal domain. This is done by approximating

the trajectory of the target object in the spatial plane as it moves through a scene [58].

This is a challenging task due to abrupt object motion, partial occlusion, deformation,

motion blur, illumination variation, background clutter and scale variations.

A typical visual tracker consists of three components [36]:

1. Object Appearance Model

This evaluates the probability that a candidate is the target object. For complex

scenes, the appearance model is required to carry large amounts of information

in order to distinguish the tracked object from the background. Furthermore,

it should be able to adapt to variations over time. Thus, the appearance model

largely contributes to overall performance of the visual tracker.

2. Motion Model

This describes the movement of the object over the temporal plane. Both linear

[59, 60] and non-linear [9, 61, 62] models have been postulated.

3. Search Strategy

This determines the most likely position of the next object state. This strat-

egy determines size of the search space, thus largely contributes to the computa-

tional cost of the visual tracking algorithm. Implemented search strategies include

searching globally or locally using exhaustive or iterative methods.

Visual tracking algorithms can be broadly divided into two categories: generative

[63, 64] and discriminative tracking [4, 9, 62]. Generative tracking involves learning

an object appearance model and locating the target object by searching the areas that
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are most similar to the appearance model. Discriminative tracking treats visual track-

ing as a classification problem. The decision boundary separating background and

the target object is established by training a discriminative classifier (e.g. SVM) with

sample patches of both the target object and background. Although more robust to

background clutter and activities, this approach generally requires a large dataset to

achieve good performances. The visual tracking research space has largely been driven

by the emergence of correlation filters [4–6, 9, 62, 65, 66] which have proven to be ac-

curate and computationally efficient; making them suitable for real-time applications.

The general approach of correlation filter tracking involves predicting an optimal image

filter such that the filtration with the input image patch produces a desired response.

This response is typically Gaussian shaped centered at the location of the target ob-

ject. Visual tracking involves applying this learned filter to a given image patch and

evaluating the maximum value of the response to determine the new location of the

target object. The filter is trained with shifted instances of the target image patch and

is updated each frame; making the tracker robust to slight target position changes. Ma-

jority of the top-performing trackers are based on discriminative approaches involving

Kernelized Correlation Filters (KCF) [5, 62, 66].

2.5.1 KCF Tracker

The KCF tracker is widely used due to it’s simplicity and superior computational

efficiency. It still remains as one of the fastest tracking algorithms. The procedure is

summarized in Algorithm 1.

The KCF tracker models tracking as a classification problem f(x) = wTx; aiming to

find a function that minimizes the error over the input samples xi and their regression

scores yi. In order to allow for more powerful non-linear regression functions, the

”Kernel Trick” [67] is used. This involves mapping the inputs, xi, of a linear problem

to a non-linear feature space by some mapping function φ(x). This is an attractive

approach as the optimization problem remains linear; allowing for simple evaluation.

The mapped classifier, f(φ(xi), ω) is trained by minimizing the ridge regression error

defined as

ω = argmin
ω

∑
i

|f(xi)− yi|2 + λ‖ω‖2 (2.19)
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Algorithm 1: KCF Tracker [5]

Inputs:

x : training image patch of size M ×N

y : regression target (Gaussian shaped)

z : test image patch of size M ×N

p0: initial target position

Output:

pt: detected target position

Training:

1 Compute the Gaussian kernel correlation between x and itself, kxx, using

equation 2.22

2 Compute the DFT of the solution coefficients in the dual space, A, using

equation 2.21

Detection:

3 Compute the response, f(z), using equation 2.23

4 Maximize the response, f(z) , to find new position of target, pt

Update:

5 Update the model using equations 2.24 and 2.25
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Where:

xi is the cyclic shifted versions of the M × N input image patch, x, centered around

the target, i ∈ {0, 1, ...,M − 1} × {0, 1, ..., N − 1}.

yi ∈ [0, 1] is the matching score generated by a Gaussian function.

λ ≥ 0 is the regularization parameter.

The solution to Equation (2.19) can be expressed as a linear combination of the input

sample patches and is derived as:

ω =
∑
i

αiφ(xi) =
∑
i

αiκ(x,x’) (2.20)

Where:

αi represents the solution in the mapped feature space (known as the dual space).

κ(x,x’) is the kernel function defined as φT (x)φ(x’) = κ(x,x’).

The solution in the dual space is efficiently computer using equation 2.21

A =
Y

Kxx + λ
(2.21)

Where:

Discrete Fourier Transforms (DFT) are indicated by capitalization (A is the DFT of α,

Kxx is the DFT of kxx, Y is the DFT of y).

kxx is the kernel correlation of x with itself.

y is a vector with the elements yi

Using a Gaussian kernel, k(x,x’) = exp(− 1

σ2
‖x− x’‖2), the kernel correlation is com-

puted in the Fourier domain by element-wise products. This is given by:

kxx
′

= exp(− 1

σ2
(‖x‖2 − ‖x’‖2 − 2F−1(X̄ �X ′))) (2.22)

Where:

F−1 denotes the inverse DFT.

� denotes the operation of element-wise products.

X̄ denotes the complex conjugate of X.

The first frame is trained with the initial position of the target, p0. Subsequent frames

are trained on the detected position of the target, pt. The matching scores of all cyclic
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shifted versions of some candidate M × N image patch z is computed and pt is set

as the position that returns the maximum matching score i.e. the maximum of the

response f(z). The matching score function is given by:

f(z) = F−1(Â�K x̂z) (2.23)

Where:

Â are the learned coefficients.

x̂ is the learned object appearance model.

K x̂z is the DFT kernel correlation between elements of x̂ and z.

The learned coefficients and object appearance model are updated every frame by

Equations (2.24) and (2.25) respectively.

Ât = ηAt + (1− η) ˆAt− 1 (2.24)

X̂t = ηXt + (1− η) ˆXt−1 (2.25)

Where:

η is the fixed learning rate. This is typically 0.02.

Multi-Channel KCF

The standard KCF tracker can be easily extended to handle multiple channels by

adjusting Equation (2.22) :

kxx
′

= exp(− 1

σ2
(‖x‖2 − ‖x’‖2 − 2F−1(

∑
c

X̄c �X ′c))) (2.26)

Where:

c ∈ {1, 2, ..., C}. C is the total number of channels.

The input vector x = [x1, ...,xc] concatenates the vectors of each channel, xc.

2.6 Conclusion

BoW Variants exist to overcome the weaknesses of the standard frame work - specif-

ically, it’s weak classification power. The weak classification power of BoW is as a

result of the exclusion of valuable information (e.g. scale, orientation) in final repre-

sentations. This highlights the compromise between classification power and compu-

tational complexity; the latter being a vital consideration for real-time applications.
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Many BoW variants incorporate complex, information-rich strategies such as optical

flow, dense sampling and deep neural networks in attempt to encode more information

into BoW representations; leveraging the strong classification power of these strategies

while maintaining the simplicity of the standard BoW framework. A notable encoding

strategy is scale coding which incorporates extracted scale information into the final

BoW representation of an image. Scale coding overcomes the paradigm of computa-

tional efficiency versus accuracy; it is a relatively simple approach that outperforms

more complex state-of-the-art approaches. Furthermore, scale coding maintains the

flexibility of the BoW model and can be extended and combined with other approaches

(e.g. CNNs) to increase performance. However, scale coding has only been imple-

mented for image-based action recognition and requires pre-defined bounding boxes of

objects.
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Chapter 3

Computational Cost to Accuracy

Balance

3.1 Introduction

Many efforts have been made to reduce the complexity of existing high performing

algorithms for real-time video-based action recognition. Shi et al. [68] replaced dense

sampling with random sampling, thereby reducing the number of sampled patches to

process and increasing efficiency. In a further work, Shi et al. [69] increased accuracy

by increasing the sampling density. This was accomplished by using a Local Part Model

and performing sampling at lower spatial resolutions. Yeffet et al. [70] extended Local

Binary Patterns to the spatio-temporal domain (forming Local Trinary Patterns) to

efficiently encode extracted information for action recognition. Zhang et al. [71] re-

placed optical flow with Motion Vectors to increase efficiency. To boost performance,

the knowledge learned with optical flow CNN were transferred to motion vectors for

effective real-time action recognition.

Similarly, many efforts have been made to increase the classification power of simple,

computationally efficient algorithms, like the BoW framework, for accurate real-time

applications. As covered in Section 2.2, numerous variants of the BoW framework have

been developed; aiming to increase its classification power whilst leveraging its simplic-

ity and computational efficiency [12, 18–20]. This highlights the computational cost to

accuracy trade-off that must be carefully considered to achieve real-time video-based

action recognition.
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This chapter focuses on identifying the fundamental mechanisms that affect the cost-

vs-accuracy balance for video-based action recognition. By analyzing the BoW and its

variants, factors to consider when trying to develop and/or adjust existing algorithms

for real-time action recognition of videos are identified. The dense trajectories feature

framework [1] and the KTH [11] and a reduced HMDB51 [10] datasets were used to

experimentally evaluate the practical effects of these factors on the cost-vs-accuracy

balance.

3.2 Computational Cost vs Accuracy Balance

Upon reviewing the existing algorithms for action recognition, it was noted that im-

proving algorithm performance often resulted in increased computational demands and

complexity. Correspondingly, lowering the computational complexity for more efficient

computation often resulted in decreased algorithm performance. Thus, there exists

a trade-off between an algorithm’s computational cost and accuracy. This cost-vs-

accuracy paradigm can be stated as:

Remark 1 The more information extracted from input data, the higher the classifi-

cation power of the algorithm and the higher the computational cost. Thus, a balance

between classification accuracy and computation necessitates an implementable and ef-

ficient algorithm for action recognition.

In the ideal case, high performance is achieved at low computational costs. This balance

for video-based classification tasks, is defined as

β = a× fp (3.1)

Where:

a is the accuracy achieved by the algorithm. 0 ≤ a ≤ 1.

fp is the number of frames processed per second by the algorithm or computation task.

The higher the value of β, the more ideal the cost-vs-accuracy balance of the algo-

rithm or computation task.
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3.3 Factors Affecting Cost vs Accuracy Balance

This section identifies the factors affecting the computational cost vs accuracy paradigm

identified in Remark 1. These factors are often addressed or manipulated by BoW

variants in attempt to increase accuracy with low additional computational costs.

3.3.1 Sampling

Sampling is a vital step in any computer vision classification problem. Through sam-

pling, information, in the form of features, can be extracted from an image or video

frame. These feature extractions serve as inputs into the classification framework.

Patch sampling is critical in the BoW framework as the number of patches sampled di-

rectly correlates to the algorithm’s performance [55]; this complies with Remark 1. The

ideal sampler should focus on regions that provide the most information for classifica-

tion [16]. By focusing sampling on information rich patches and discarding insignificant

patches, more information can be obtained at a lower computational cost.

Sampling methods can broadly be defined into two categories: dense sampling [13, 55,

72] and sparse sampling. Sparse sampling methods can be roughly divided into three

categories: key-point-based sampling, random sampling and saliency-based methods

[15]. Key point-based sampling identifies the informative content of images as the re-

gion surrounding local key points. Random sampling randomly selected local patches

in an image for feature extraction. Saliency-based sampling samples points only in

informative image regions; all sampled points hold important information for classifi-

cation.

Dense sampling strategies are relatively popular due to its simplicity. Denser sampling

yields more information about input data; resulting in better accuracy than sparse sam-

pling methods but a higher computational cost. The general approach involves densely

sampling points in each video frame and tracking sampled points via optical flow-based

algorithms. A popular action recognition algorithm combining dense sampling and the

BoW framework is Dense Trajectories [1, 13, 14]. Ideally, each pixel should be sampled,

however this will result in large spatial complexity. Instead, patches are extracted from

an image by a sliding window of a fixed size. The size of this window is referred to as
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the sampling step-size. The step-size must be chosen such that spatial complexity is

reduced whilst keeping image information. In cases where information on the type of

scene is not provided and computational resources are limited, random sampling is the

best performing alternative to dense sampling [15, 68].

A popular action recognition algorithm combining dense sampling and the BoW frame-

work is Dense Trajectories [1, 13, 14]. The algorithm involves densely sampling points

in the spatial domain and tracking those points across the temporal domain; forming

a trajectory. Various descriptors are then calculated around this trajectory. Although

this approach has yielded competitive results [1, 13, 14], it is unsuitable for real-time

applications due to the large number of features generated; video frames are densely

sampled at multiple scales and five descriptors are computed for each sampled point. To

reduce computational demand and maintain a reasonable performance, the sampling

strategy can be changed; random sampling can be used [15, 68] and the number of

frames sampled can be reduced. Reznicek et al. [73] investigated the minimum number

of frames required to successfully recognize an action using the same BoW structure

and classifier as [1]. It was found that an average of 18 frames is required to obtain a

performance accuracy that is competitive with state-of-the-art action recognizers. This

was achievable in 0.72s. In some action cases, an increase in the number of video frames

processed resulted in a decrease in performance accuracy whilst the opposite held true

in other action cases. Additionally, defining the optimum temporal extent over which

to process a given number of frames is a vital factor - this is difficult to realize in

real-time computations. Furthermore, there exists significant differences between the

sizes of video sequences to recognize different actions. Thus, there are many additional

challenges to overcome in this approach. Comparably, Wang et al. [1] found that a tra-

jectory length of 15-20 frames was ideal and that performance begins to decrease after

20 frames. It can be concluded that an optimum number of video frames to process

exists. This parameter should be dynamically determined based on the input video

data as the optimum number of frames is different for every video/action class. Since

there is a degree of randomness, artificial intelligence algorithms would be a good fit

to tune this parameter. However, these are time consuming and would counteract the

speed increase brought about by reducing the number of video frames to process.
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In summary, random sampling provides the most favorable accuracy to computational

demand trade-off. Other factors to consider when determining the most effective sam-

pling strategy include the sample patch size, the sampling rate, and the number of

video frames to be sampled.

3.3.2 Optical Flow

Optical flow models the motion of pixels between subsequent frames. It is used to cap-

ture temporal information of videos and includes both foreground object motion and

background camera motion.

Considering dense trajectories, modifying the sampling strategy can greatly increase

the computational efficiency of the algorithm. However, calculation of dense optical

flow for computation of the trajectory shape, HOF and MBH descriptors was found

to be the most time-consuming process of the Dense Trajectories algorithm; making

up 52% of total computation time [1]. Although the optical flow algorithm used [74]

presents a good compromise between accuracy and speed, the speed is not sufficient for

real-time implementation.

To reduce computation time, optical flow can be replaced with a less computation-

ally expensive approach. This approach was adopted by Zhang et al. [71] who replaced

optical flow with Motion Vectors in their action recognition algorithm as Motion Vec-

tors require no additional computation to extract. This resulted in a processing speed

that was 27 times faster. However, Motion Vectors are coarser than optical flow and

contain a large amount of noise; the inclusion of noise reduces performance. Thus, Mo-

tion Vectors were enhanced using knowledge transfer techniques; increasing accuracy

of the algorithm whilst providing a fast enough processing speed for real-time action

recognition [71]. This, once again, highlights the compromise between computational

cost and performance accuracy as per Remark 1.

Computation of optical flow is extremely computationally expensive and is thus unsuit-

able for real-time applications. It can be replaced with less computationally expensive

alternatives (such as Motion Vectors); often resulting a decreased accuracy. Another

option is to avoid computation of optical flow by relying on descriptors that do not
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require optical flow for computation.

3.3.3 Saliency

A possible approach to achieve a favorable computation cost to accuracy balance is to

only extract important (salient) information from input data. By doing this, computa-

tional resources are not wasted on extracting and processing unimportant information.

However, determining which areas and features are important requires additional com-

putation and can result in an overall decrease of computational efficiency [75] or a

negligible increase [76].

The type of information extracted from sampled points is dependent on the descriptor

used to describe the attributes about the selected location. Dense trajectories extract

five descriptors: trajectory shape, HOG, HOF and Motion Bound Histograms in the

x- (MBHx) and y- (MBHy) planes. HOG is computed using the gradient intensities of

frame pixels, thus, represents static appearance information. HOF is computed using

optical flow, thus, captures local motion information. MBH is computed using the

derivative of optical flow. As a result, MBH removes camera motion and represents

local foreground object motion information. The descriptors are formed by quantizing

computed information into orientation bins. The magnitude is used as weighting.

3.3.4 Flexibility

The flexibility of the standard BoW algorithm is often compromised when combined

with more powerful and complex algorithms. This is observed with CBoF [34] which

combined CNNs with the BoW framework. In addition to increasing computational

demands, CNNs are slow to train and require large amounts of training data which is

not readily available. Furthermore, the CNN must be trained with data relevant to the

intended application for effective performance. As a result, the algorithm can only be

used for the intended application; compromising flexibility.

Although flexibility does not directly affect the cost vs accuracy balance, it allows

for further extension and easy integration into a variety of applications. This increases

the potential of improving the algorithm to obtain the ideal cost-to-accuracy balance.
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3.4 Experimentation

The effects of each factor presented in Section 3.3 is investigated using the popular

Dense Trajectories [1]. This section details the experimental setup. Experimental

parameters are set as per [1].

3.4.1 PC Specifications

Experimentation was conducted on a PC with the following specifications: Intel Core

i5 4th Gen., 1.7GHZ, 8G RAM. A single CPU core was used for computation.

3.4.2 Datasets

Wang et al. evaluated Dense Trajectories on 9 datasets [1]. Due to computational

resource constraints, only 2 of the 9 datasets were used for experimental evaluations -

the KTH1 [11] dataset and reduced HMDB512 [10] action dataset.

The KTH dataset contains six human action classes: walking, jogging, running, box-

ing, waving and clapping. Each action is performed by 25 subjects in four different

environments (outdoors, outdoors with scale variation, outdoors with different clothes

and indoors). Since the background is homogeneous and static in most sequences, the

dataset serves as a minimum baseline for evaluation of the action recognition algorithm.

As found in [11], samples are divided into testing and training sets based on the sub-

jects. The testing set consists of subjects 2, 3, 5, 6, 7, 8, 9, 10, and 22 (9 subjects total)

and the training set is made up of the remaining 16 subjects. The average accuracy is

taken over all classes.

The HMDB51 dataset contains 51 human action classes and is collated from a va-

riety of sources. For this experimentation, a reduced dataset of 11 randomly selected

action classes was used: brush hair, cartwheel, catch, chew, clap, climb stairs, smile,

talk, throw, turn, wave. This is a challenging dataset that presents additional problems

(e.g camera motion, occlusion and background activities) to overcome. It serves as an

evaluation of how robust the action recognition algorithm is to the aforementioned chal-

lenges. As per the original setup [10], each action class is organized into 70 videos for

1http://www.nada.kth.se/cvap/actions/
2http://serre-lab.clps.brown.edu/resource/hmdb-a-large-human-motion-database/
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training and 30 videos for testing. Performance is measured by the average accuracy

over all classes.

3.4.3 Dense Trajectories

Dense trajectories involve densely sampling points in the spatial domain and tracking

those points across the temporal domain; forming a trajectory. Five descriptors are

extracted: trajectory shape, HOG, HOF and Motion Boundary Histograms in the hor-

izontal (MBHx) and vertical (MBHy) planes [1].

Points are densely sampled with a sampling step-size of W = 5 on each spatial-scale

separately. There are a maximum of 8 spatial scales; the number of spatial scales is de-

pendent on the resolution of the video. Spatial scales are separated by a factor of 1/
√

2

[1]. Sampled points in homogeneous image areas can not be tracked and are therefore

removed based on the criterion presented by [77]. The threshold, T , is defined as:

T = 0.001×max
i∈I

min(λ1i , λ
2
i ) (3.2)

Where:

(λ1i , λ
2
i ) are the eigenvalues of the ithsampled point in the image I. As per Wang et al.

[1], a value of 0.001 was used since it presented a good compromise between saliency

and density.

Points are re-sampled and compared to the threshold T (see Equation (3.2)) every

R frames. R is the refresh/frame sub-sampling rate. Sampled points are tracked sepa-

rately on each spatial scale using a dense optical flow algorithm [74] to form trajectories.

This is defined as:

Pt+1 = (xt+1, yt+1) = (xt, yt) + (M ∗ ωt)|(xt,yt) (3.3)

Where:

Pi is a point in frame Ii.

ωt is the dense optical flow field for each frame, It, and is found with respect to the

next frame, It+1.

M is a 3 × 3 median filter kernel applied to the optical flow field. The same optical

flow implementation3 as [1] is used.

3https://docs.opencv.org/3.4/d4/dee/tutorial optical flow.html
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Descriptor Computation

From tracked points (see Equation (3.3)), five descriptors are extracted: HOG, HOF,

MBH in the x (MBHx) and y (MBHy) planes and the trajectory shape, TS, defined as

TS =
∆Pt, ...,∆Pt+L+1∑t+L−1

j=t ||∆Pj ||
(3.4)

Where:

∆Pt is the displacement vector for a given point, Pt = (xt, yt). ∆Pt = (Pt+1 − Pt) =

(xt+1 − xt, yt+1 − yt).

L is the length of the trajectory, counted in frames. This is set to L = 15 frames as

per [1]. Since a point is represented by two values (an x and y co-ordinate), the final

descriptor size is 30 (L× 2 = 15× 2).

In addition to trajectory shape, Wang et al. [1] embeds additional appearance and

motion information into the final representation by computing the remaining descrip-

tors (HOG, HOF and MBH) from a N ×N pixel × L frame spatio-temporal volume

surrounding the trajectory. This volume is divided into nT × nσ × nσ cells as illus-

trated in Figure 3.1. Dividing the spatio-temporal volume into cells embeds structural

information [1] into the final representation. The trajectory is described by computing

HOG, HOF and MBH descriptors for each cell and concatenating these descriptors

to form the final representation. The parameters defining the structure of the spatio-

temporal volume were set as per the default values [1]: N = 32, nσ = 2 and nT = 3.

The information extracted by the HOG, HOF and MBH descriptors are quantized into

8 orientation bins (nbins = 8) using the magnitude as weighting. An additional zero bin

is added for HOF to account for pixels with optical flow magnitudes falling below the

threshold defined in Equation (3.2) [2]. Thus, HOF has 9 bins (nbins = 9). The final

dimension of each histogram descriptor is nT × nσ × nσ × nbins. Thereafter, each his-

togram descripotr is normalized by its `2-norm (see Equation (2.12)). The dimensions

of all extracted descriptors are summarized in Table 3.1.

Bag of Words

Following [1], a vocabulary of 4000 words is separately constructed for each descriptor.

K-means clustering is used to cluster a subset of 100 000 randomly selected training
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Figure 3.1: HOG, HOF and MBH descriptors are computed along the trajectory in a

N ×N pixel neighborhood divided into nT × nσ × nσ cells.

Table 3.1: Dimensions of the descriptors extracted for dense trajectory features

Descriptor Dimension

Trajectory Shape 30

HOG 96

HOF 108

MBHx 96

MBHy 96

Total 426

features.

The feature descriptors are assigned to the ”visual word” with the closest Euclidean

distance. The count of visual word occurrences is represented in a histogram. Struc-

ture is added through spatio-temporal pyramids. Six different pyramids are used (see

Figure 3.2). A BoW is constructed for each cell of a given pyramid. Thereafter, a

global representation of the pyramid is found by summing the BoW histogram for

each cell and normalizing by the RootSIFT Norm [52], defined by equation 2.14: Each

spatio-temporal pyramid-descriptor pair forms a separate channel; there are 30 chan-

nels in total (6 pyramids x 5 descriptors). A multi-class, multi-channel non-linear SVM
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Figure 3.2: The spatio-temporal grids adapted from [1]. Top row from left to right:h1×

v1×t1, h3×v1×t1, h2×v2×t1. Bottom row from left to right: h1×v1×t2, h3×v1×t2,

h2× v2× t2.

with an RBF-χ2 kernel [11] is used for classification. For multi-class classification, a

one-against-rest approach is used. For multiple channels, the kernel is defined as [78]:

K(xi, xj) = exp(−
∑
c

1

Ac
D(xci , x

c
j) (3.5)

Where:

D(xci , x
c
j) is the χ2 distance between each training video xi and xj in each channel c.

Ac is the average of the χ2 distances between training samples in channel c.

3.4.4 Evaluation of Factors

To evaluate ’Saliency’, the computational cost and accuracy achieved by each descriptor

on each dataset is observed. In this manner, the information which is most important

can be determined. Computational cost was measured by the number of frames com-

puted per second - the higher this value, the lower the computational cost. Results are

summarized in Table 3.2.

To evaluate ’Sampling’, the accuracy and computational cost of the algorithm at dif-

ferent refresh rates(R) is observed. A refresh rate of 1 frame was used as a baseline
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for comparison. Following Remark 1, a refresh rate of R = 1 should yield the high-

est accuracy since the most information is obtained if the video is re-sampled every

frame. Uijlings et al.[45] found that a refresh rate of R = 6 frames has the best cost-to-

accuracy trade-off for dense computation of HOG, HOF and MBH based on the UCF50

dataset[79]. Thus, performance with R = 1 was compared to performance with R = 6.

Results are summarized in Table 3.3.

To evaluate ’Optical Flow’,its performance at each scale is considered in order to de-

termine if the information extraction abilities of this task is worth the computational

cost (it is responsible for 52% of the computation time [1]).

3.5 Results and Discussion

3.5.1 Descriptors

Observing the results in Table 3.2, the MBH descriptor has the best overall perfor-

mance and the highest computational cost; agreeing with Remark 1. For the HMDB51

dataset, MBH outperforms all other descriptors by over 10%. This is due to the fact

that the HMDB51 data samples include camera motion. Since MBH is computed using

the derivative of optical flow, it is robust to camera motion unlike the other descriptors.

However, in static scenery (KTH dataset), MBH only outperforms HOF by 1.7%. Since

HOF is more computationally efficient than MBH, it can be concluded that MBH is

unsuitable for real-time action recognition of static camera data (e.g CCTV footage).

Overall, trajectory shape has the best cost-to-accuracy balance.

Theoretically, HOG should have the lowest computational cost since it is the only

descriptor that does not rely on optical flow computation. However, HOG has a longer

computation time than HOF in experiments. This is due to the fact that optical flow

is part of the tracking algorithm therefore less additional computation is required for

HOF compared to HOG; HOG requires additional calculation of the gradient between

pixel points.
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Table 3.2: The effects of Trajectory Shape [1], HOG [2], HOF [2] and MBH [3] descriptors on the cost vs accuracy balance

Dataset Trajectory

Shape

HOG HOF MBH

KTH Computation Time (FPS) 8.16 1.11 1.71 0.61

Accuracy as per [1] (%) 89.8 87.0 93.3 95.0

β 7.33 0.97 1.60 0.58

HMDB51 Computational Cost (FPS) 2.48 0.11 0.14 0.07

Accuracy as per [1] (%) 28.0 27.9 31.5 43.2

β 0.69 0.03 0.04 0.03
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Table 3.3: Evaluation of the effect of the refresh rate on the cost vs accuracy balance for KTH and HMDB51 datasets using the Dense

Trajectory features

Dataset R = 1 frame R = 6 frames

KTH Computation Time (FPS) 0.25 0.3

Accuracy (%) 94.0 91.0

β 0.24 0.27

HMDB51 (reduced) Computation Time (FPS) 0.03 0.03

Accuracy (%) 78.48 81.21

β 0.02 0.02
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3.5.2 Refresh Rate

The accuracy achieved on the KTH dataset for R = 1 (94.0%) is lower than expected

(94.2% [1]). This might be due to the fact that Dense Trajectory computation was

recreated in Python 3.7 with the latest version of OpenCV, whereas the original code4

was created in C++ with OpenCV-2.4.2. As a result, the recreated code has a different

handling of the algorithm; explaining the difference in accuracy rates. As expected,

there is a decrease in accuracy (3%) when sub-sampling every 6 frames as opposed to

every 1 frame. This results in a 20% (0.05 FPS) increase in computation speed.

Comparatively, there is a negligible difference in computational cost for the more chal-

lenging HMDB51 dataset (for R = 6 frames, computation time was 0.001 FPS faster).

Most notably, accuracy increases by 2.73% when sub-sampling every R = 6 frames.

This contradicts theoretical predictions as a decrease in accuracy was expected.

The contradicting results obtained with the KTH and HMDB51 dataset show that

the effects of ’Sampling’ on the cost vs accuracy balance is data dependent. Unlike the

KTH dataset, the HMDB51 dataset includes unimportant information such as camera

motion, occlusion and background clutter. Sub-sampling every frame increases chances

that this unimportant information will be captured, which can decrease accuracy. This

highlights that ’Saliency’ of extracted features is the most vital factor to consider.

Based on these results, Remark 1 is adjusted:

Remark 2 The more salient information extracted from input data, the higher the

classification power of the algorithm and the higher the computational cost. Thus, a

balance between classification accuracy and computation necessitates an implementable

and efficient algorithm for action recognition.

3.5.3 Optical Flow

It can be seen that optical flow becomes noisier at smaller spatial scales (Figure 3.3)

which adversely affects performance. Removing multi-scale sampling would reduce the

overall computational cost of the Dense Trajectories algorithm and result in better

performance of the optical flow. However, Khan et al. [8, 20] proved that scale pro-

4http://lear.inrialpes.fr/people/wang/dense trajectories
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Figure 3.3: The computed optical flow for each spatial scale

vides vital information; a BoW incorporating extracted scale information into final

representations outperforms its scale-invariant counterpart. Since optical flow is com-

putationally expensive and unreliable at smaller scales, discarding its calculation has a

potential to be suitable for real-time applications.

3.6 Conclusions

For successful real-time video-based action recognition, the trade-off between perfor-

mance accuracy and computational cost must be carefully considered. In order to

identify the fundamental mechanisms affecting this cost-vs-accuracy balance, a sim-

ple and widely used framework (the BoW framework) and its variants were analyzed.

Four factors affecting this balance were identified: ’Sampling’ strategy, ’Saliency’ of

features, ’Optical Flow’ and overall algorithm ’Flexibility’. Experimental evaluation

found ’Saliency’ of extracted features to have the most notable affect on the cost vs

accuracy balance. Capturing unimportant information (e.g. occlusion, background ac-

tivities etc.) can decrease performance accuracy and wastes computational resources.

The saliency of extracted features is dependent on the ’Sampling’ strategy.

Exploring the effects of the identified factors on the cost-to-accuracy balance of complex

state-of-the-art deep learning architectures remains as future work. This will help move

the research space closer to creating algorithms that are simple yet powerful enough

for practical realization of real-time video-based action recognition.
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Chapter 4

Spatio-Temporal Scale Coded

Bag-of-Words

4.1 Introduction

The improved accuracy of a scale-encoded BoW [8] over its scale-invariant counter-

part showed scale to be salient information to extract for action recognition. As per

the conclusions of Chapter 3, the ’Saliency’ of extracted information is the most vital

factor in achieving an ideal cost-to-accuracy balance. Thus, encoding extracted scale

information into BoW representations of videos has the potential to overcome the cost-

vs-accuracy paradigm for video-based action recognition.

Scale coding involves encoding the spatial information of extracted patches into the

final BoW representation of an image. This is a relatively simple approach yet has out-

performed more complex approaches in image-based action recognition [8]. The sim-

plicity of the scheme allows for it to be easily incorporated into other methods; offering

the same flexibility as the standard BoW approach. Khan et al. [20] combined scale-

encoded BoW representations with CNNs to increase performance accuracy. Thus,

scale coding increases accuracy while maintaining the flexibility and computational ef-

ficiency of the original BoW framework. As a result, this algorithm has high potential

for successful real-time action recognition. However, this approach has only been im-

plemented for image-based action recognition. Further work must be done to extend

scale coding such that it can be use in video-based action recognition. The scale coded

BoW framework for image-based action recognition was discussed in Section 2.4.2.
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Various well-performing image classification algorithms that operate in a 2-dimensional

space have been extended to the third dimension of time for classification of video data.

Scovanner et al. [80] extended Scale-Invariant Feature Transforms (SIFT) [15, 16] to

form the 3D-SIFT descriptor for classification of video data represented by the BoW

approach. Other 3D extensions include extended SURF (ESURF) [81], local trinary

patterns [70] and HOG3D [82]. In a similar manner, extending scale encoded BoW rep-

resentations to the spatio-temporal domain for real-time action recognition of videos

will be investigated in this chapter.

4.2 Criteria for Real-Time Action Recognition

In this section, the criteria to evaluate whether the proposed action recognition ap-

proach operates in real-time is defined.

Real-time processing is defined as the completion of pre-defined tasks within a set

time frame [83]. The type of tasks and the length of this time frame is application

dependent [84]. In action recognition applications, the system is considered to perform

in real-time when the classification of the action from input data is relatively imper-

ceptible to the user. Thus, for video-based action recognition, the criteria for real-time

processing can be defined as:

tp ≤ tc (4.1)

Where tp is the processing time per frame and tc is the capturing time per frame.

Equation 4.1 can alternatively be stated as:

fp ≥ fc (4.2)

Where:

fp is the number of frames processed per second by the algorithm

fc is the number of frames captured per second
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Figure 4.1: The general pipeline for video-based action recognition with scale coded

BoW.

4.3 General Approach

The general pipeline of scale-coding a bag of words for video-based action recognition

is summarized in Figure 4.1. Scale coding is heavily reliant on pre-defined bounding

boxes for computation. Obtaining the bounding boxes of objects in real-time poses

many additional challenges. These include: correctly and completely bounding the

object and identifying which objects are important for classification..

The initial bounding box, B0, of the target object is identified by an object detec-

tion algorithm. This bounding box is then maintained through subsequent frames via

a visual tracking algorithm. For effective bounding box definition, the visual tracking

algorithm should be robust to occlusion, background activities and scale variations.

It should also be able to operate in real-time so that it does not hinder the overall

efficiency of the action recognition algorithm.

For multi-scale feature extraction, the target object is cropped from its background.

Features are extracted from this cropped image, It, on multiple scales. The area of the

cropped image, It, is determined by the bounding box Bt which would be defined by

the visual tracking algorithm. This process is done every R frames. R represents the

sampling refresh rate, and t is the frame number.

The extracted features are represented as a scale coded BoW. This is passed to a

classifier for action classification.
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4.3.1 Object Detection

For action recognition, the target object is a person. Thus, the object detection al-

gorithm needs to not only isolate an object from its background, but also ensure that

the target object is a person. Furthermore, the dimensions of initial bounding box B0

defined by the object detector, must comply with a set minimum value, dimmin.

Unlike the field of action recognition where machine learning algorithms (like BoW)

still remain competitive with state-of-the-art approaches, state-of-the-art object detec-

tion schemes are dominated by deep learning approaches. Since the performance of

the visual tracker largely depends on the initial bounding box, deep learning-based

object detectors are considered as they yield the most accurate results. As previously

mentioned, deep learning schemes require large sets of labeled training data and long

training times, making them difficult to implement in real-world circumstances. How-

ever, considering the widespread availability of pre-trained object detection models1

with person object detection, these setbacks can be avoided.

Three common deep learning-based object detectors are Region-based CNNs (R-CNNs)

and variants [85], Single Shot Detectors (SSDs) and the You Only Look Once (YOLO)

detector [86]. R-CNN approaches are two-stage detectors. The first stage consists

of the proposition of candidate bounding boxes. The second stage involves passing

these candidate regions to a CNN for classification. As a result, R-CNN approaches

are extremely accurate. However, they are extremely slow. Since the proposed action

recognition algorithm aims to operate in real-time, R-CNNs are an unsuitable choice

for object detection. SSDs and the YOLO detector use a one-stage detection approach

and model detection as a regression problem. Although less accurate than R-CNN

approaches, these are much more efficient. YOLO is the most efficient approach and

is able to operate in real-time. Furthermore, it was found to achieve the best accuracy

compared to other real-time detectors [86]. Thus, the YOLO object detector will be

used for the object detection step. Various iterations have been developed. The best

performing iteration was YOLOv3 [87] which operates at 22ms. Since the object de-

tection algorithm is only run on the first frame to identify the initial bounding box,

B0, this is an acceptable speed.

1https://github.com/onnx/models
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Person Object Isolation

Once objects in the frame are detected, additional processing is done to ensure the

detected objects represent a person and that the bounding box, B0, complies with the

minimum width and height, dimmin. This is summarized in Algorithm 2.

Algorithm 2: Person Object Isolation after Object Detection

Inputs:

bbox: An array holding the bounding box dimensions for all detected

objects

labels: The class labels of the object bounding boxes in bbox

dimmin : Minimum dimensions for bounding box

Output:

B0: Initial bounding box isolating the person in the frame

1 if ’person’ not in labels then

2 return None

3 else

4 i← index of ’person’ in labels

5 B0 ← bbox[i]

6 end

7 if width of B0 < dimmin then

8 diff ← dimmin - width of B0

9 p0 ← (x− diff

2
, y) // adjust the center of B0, p0 = (x, y)

10

11 end

12 if height of B0 < dimmin then

13 diff = dimmin - height of B0

14 p0 ← (x, y − diff

2
) // adjust the center of B0, p0 = (x, y)

15

16 end

17 return B0
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4.3.2 Visual Tracker

As mentioned in Section 2.5, most top-performing visual trackers are based on Corre-

lation Filters [4–6, 62, 65, 66]. The most widely used tracker is the KCF tracker [4, 5]

which is popular due to its computational efficiency and ability to accurately adapt to

small translation changes. However, the standard KCF tracker is unable to adapt to

target object scale changes. This is vital not only for practical visual tracking appli-

cations but also for the proposed action recognition algorithm; a scale encoded BoW

relies on extraction of accurate scale information. As highlighted by the conclusions of

Chapter 3, the inclusion of unimportant feature information reduces the performance

of the action recognition algorithm. Thus, a visual tracker that is able to adapt to

both translation and scale changes of the target object is required. Furthermore, this

tracking algorithm should be able to operate in real-time such that it does not compro-

mise the overall efficiency of the action classification algorithm. An appropriate visual

tracking model is the Discriminative Scale Space Tracker (DSST) [65].

The DSST learns two independent models to handle translation and scale variances

respectively. Both models involve the training of filters for detection. The translation

model uses Minimum Output Sum of Squared Error (MOSSE) filters [6]; this is known

as the MOSSE tracker. The MOSSE tracker localizes the target object in a new frame

by minimizing the sum of squared errors to determine the optimal filter. Once the

location of the translated target object is obtained, scale variations are detected by

learning a separate a 1-dimensional correlation filter.

Translation Model

Henriques et al. [5] presented the linear Dual Correlation Filter (DCF) tracker which

is the equivalent of the MOSSE tracker. The DCF tracker is based on the KCF tracker

[4]. It is a multi-channel extension of kernelized linear correlation filters. Henriques

et al. [5] evaluated their proposed multi-channel KCF and DCF tracker as well as the

MOSSE tracker based on a benchmark dataset compiled by Yi et al.[88]. To evalu-

ate which tracker yields the best cost-to-accuracy balance, Equation (3.1) was used to

compute β. These values are summarized in Table 4.1.

MOSSE is observed to have the best cost-to-accuracy balance due to its exceptional
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Table 4.1: Evaluation of cost-vs-accuracy for the KCF [4], DCF [5] and MOSSE [6]

visual trackers

Tracker Mean Precision (%) [5] Mean FPS [5] β

KCF 73.2 172 125.90

DCF 72.8 292 212.58

MOSSE 43.1 615 265.07

computational efficiency. However, its accuracy is much less favorable than the KCF

and DCF trackers. Since the proposed spatio-temporal scale encoded BoW is reliant

on accurate bounding box definition, the DCF tracker would be the best choice. Thus,

for the translation model of the DSST tracker, DCF will be used.

DCF is based on the multi-channel extension of the standard KCF tracker (see Section

2.5.1). Instead of a Gaussian kernel, a linear kernel is considered: κ(x,x′) = xTx′.

Similarly to the multi-channel KCF (Equation (2.26)), the kernel correlation for the

linear kernel is defined as

kxx
′

= F−1(
∑
c

X̄c �X ′c) (4.3)

Where:

The input vector x = [x1, ...,xc, ...,xC ] concatenates the vectors of each channel, xc.

c ∈ {1, 2, ..., C}. C is the total number of channels.

The Discrete Fourier Transform (DFT) of is indicated by a capital letter (the DFT of

x1 is X1).

The complex conjugate form of X is indicated by a bar, i.e X̄.

This defines the DCF tracker. It is trained in the dual space, α. The algorithm for

obtaining the new position of the translated object, pt, remains the same as Algorithm

1 except the kernel correlation computation in step 1 is done using Equation (4.3).

Scale Model

Scale variations are evaluated by learning a 1-dimensional correlation filter. This scale

filter, h, is applied to an image patch, It, centered at the location of the target object

determined by the translation model, pt; generating a correlation response. This scale
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filter is trained to produce a 1-dimensional Gaussian shaped response such that the

target scale is located at the maximum of this response. Similarly to the translation

mode, a multi-channel filter is used.

As per [65], the scale filter for channel c, is defined as

Hc =
Ȳ Xc∑C

k=1 X̄kXk + λ
(4.4)

Where:

Y is the DFT of the desired response of the filter. This is set to be 1-dimensional

Gaussian response.

λ is the regularization parameter of the scale filter.

To find the optimal filter, the numerator and denominator parts of Equation (4.4)

are trained separately. U c is the learned numerator for the cth channel. D is the

learned denominator. The filter is updated every frame t using the following equations.

U ct = (1− η)U ct−1 + ηȲ Xc (4.5)

Dt = (1− η)Dt−1 + η
C∑
k=1

X̄kXk + λ (4.6)

Where:

η is the learning rate parameter.

Xc is the DFT of the vector in the cth channel of the training sample, xt.

The training sample, xt = [x1t , ..., x
c
t , ..., x

C
t ], is constructed using the features extracted

at various scales from the image patch It at frame t. The size of the scaled image

patches, It,n, is defined as

sfnM × sfnN (4.7)

Where:

sf is the scale factor.

M ×N is the size of the image patch, It. n ∈ {−
S − 1

2
, ...,

S − 1

2
}. S is the size of the

scale filter.

To populate the scale training sample set, xt, the value xt(n) is the the C-dimensional
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Figure 4.2: Visualization of constructing the samples to update and train the scale

filter [9]

feature vector extracted from the image patch, It,n at the scale level n. Thus the size

of xt is C × S . This procedure is visualized in Figure 4.2. The correlation scores for

frame t, f(zt), are computed using the below equation.

f(zt) = F−1
(∑C

c=1 Ū
c
t−1Z

c
t

Dt−1 + λ

)
(4.8)

Where:

zct is the vector in the cth channel of the test sample, zt = [z1t , ..., z
c
t , ..., z

C
t ], constructed

in frame t. This is constructed in the same manner as the training sample, xt.

By maximizing f(zt), the target scale is found. Thus, the bounding box for the frame

t, Bt, is centered at pt and is of the size sf stM × sf stN . st is the target scale.

DCF-DSST

The algorithm for the visual tracker used in the proposed spatio-temporal scale encoded

BoW scheme is summarized in Algorithm 3. Variables for the translation and scale

models are denoted with the subscripts trans and scale respectively. Following [65],

PCA-HOG [89] features are extracted from the image patch, It, for sample construction.

As detailed in [6], the extracted features are always multiplied by a Hanning Window
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defined by:

Hann(v) = 0.5

(
1− cos(

2πv

S − 1
)

)
(4.9)

Where:

0 ≤ v ≤ S − 1.

4.3.3 Multi-Scale Sampling

For multi-scale sampling, the image patch, It, is cropped from the frame t. The area

of It is defined by the bounding box Bt. The number of spatial scales extracted is

dependent on the dimensions of the image patch, It. A maximum of 9 spatial scales

can be extracted. As per the image-based scale coding approach [8], consecutive spatial

scales are separated by a scale factor of
√

2. The definition of the spatial scale set is

outlined in Algorithm 4. The features extracted for classification are the same as the

features extracted by the visual tracker - HOG features with dimensionality reduction

by Principle Component Analysis (PCA-HOG) [89]. These features can be efficiently

computed and are robust to illumination and deformation. Features are sampled sep-

arately on each spatial scale s ∈ Sset.
Algorithm 4: Definition of the Spatial Scales

Inputs:

B0 : initial bounding box

dimmin: minimum dimensions of bounding box allowed

Smax: maximum number of spatial scales

Output:

Sset: the set of spatial scales

1 minSide← min(B0 width, B0 height)

2 layer ← 0

3 s← 1

4 while minSide ≥ dimmin and layer ≤ Smax do

5 append s to Sset

6 s← s×
√

2

7 minSide← minSide/
√

2

8 layer ← layer + 1

9 end

10 return Sset
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Algorithm 3: DCF-DSST Tracker: Iteration at frame t

Inputs :

It : Image patch

pt−1: previous frame target position

st−1: previous frame target scale

ytrans: regression target for translation model (Gaussian shaped)

yscale : regression target for scale model (Gaussian shaped)

Outputs:

pt: detected target position

st: detected target scale

Training:

1 Compute the Gaussian kernel correlation between x and itself, kxx, using

Equation (4.3)

2 Compute the DFT of the solution coefficients in the dual space, Atrans, using

Equation (2.21)

Translation Detection:

3 Construct the test sample, zt,trans, from It at pt−1 and st−1

4 Compute the correlation response, f(zt,trans), using Equation (2.23)

5 Maximize the response, f(zt,trans), to find target position, pt

Scale Detection:

6 Construct the test sample, zt,scale, from It at pt and st−1

7 Compute the correlation response, f(zt,scale), using Equation (4.8)

8 Maximize the response, f(zt,scale), to find target scale, st

Update:

9 Extract training samples xt,trans and xt,scale from It at pt and st

10 Update the translation model using Equations (2.24) and (2.25)

11 Update the scale model using Equations (4.5) and (4.6)
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PCA-HOG Feature Computation

Feature computation involves dividing It into a grid of k × k cells and generating a

HOG feature vector for each k × k cell. Computing HOG features in this manner not

only offers a more compact representation but makes the representation more robust to

noise. For each cell, the gradient intensity orientation θ(x, y) and magnitude r(x, y) are

computed at each pixel (x, y). In the case of color images, the θ and r values are taken

from color channel with the largest gradient magnitude. A bin value, b ∈ {0, .., l}, is

assigned to each pixel based on its gradient orientation, θ(x, y). b is found by Equation

(4.10) for contrast insensitive definition or by Equation (4.11) for contrast sensitive

definition [89].

Ba(x, y) = round(
l × θ(x, y)

π
) mod l (4.10)

Bb(x, y) = round(
l × θ(x, y)

2π
) mod l (4.11)

Where:

l is the total number of bins in the histogram.

The feature vector at each pixel, (x, y) is defined as

F (x, y)b =


r(x, y) if B(x, y) is equal to b

0

(4.12)

Where:

B(x, y) denotes either Ba(x, y) or Bb(x, y)

The HOG feature vector, FHOG = [f1, ..., fl], for the k × k cell is defined as

fb =

k−1∑
x=0

k−1∑
y=0

F (x, y)b (4.13)

The HOG feature vector used in this application is the concatenation of the contrast

insensitive definition (Equation (4.10)) with l = 9 and the contrast sensitive definition

(Equation (4.11)) with l = 18.

This 27-channel feature vector is block normalized by the `2-norm (Equation (2.12))

as shown in Figure 4.3. This generates 4 normalized histograms which are then con-

catenated together to form a 4 × (9 + 18) = 108-channel feature vector. Thereafter,
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the dimensionality of the feature vector is reduced with negligible loss of information

by applying PCA. This allows for more efficient computation without compromising

performance. Thus, the feature map of the image patch, It, at the spatial scale, s, con-

sists of 31-dimensional feature vectors, FHOG(i, j) : 18 contrast sensitive orientation

channels, 9 contrast insensitive orientation channels and 4 texture channels that reflect

the gradient energy of the cells surrounding (i, j) [89].

Figure 4.3: Generation of HOG features: For each block, the HOG feature vectors

for the highlighted k × k cell are sum pooled and divided by the `2-norm to form a

normalized HOG feature histogram.

4.3.4 Scale Coding

Similarly to the image-based scale coding approach [8], features extracted via multi-

scale sampling are partitioned into three groups based on the spatial scale from which

they were extracted: small, medium and large (see Section 2.4.2). A BoW histogram

is computed for each partition. The final representation is a concatenation of the

histograms of each partition. However, for extension of this encoding approach to the

spatio-temporal domain, the following must be handled:

� Size variations of the bounding box, Bt, over the frames

� Capturing temporal information

Absolute Scale Coding

Absolute scale coding is independent of the bounding box size. Thus, the spatio-

temporal extension remains largely the same as the original approach [8]. Sset is defined
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as per Algorithm 4. The scales are partitioned into three sub-groups as follows:

Ss = {s|s < ss, s ∈ Sset}

Sm = {s|ss ≤ s < sl, s ∈ Sset}

Sl = {s|sl ≤ s, s ∈ Sset}

Where:

ss and sl are the predefined cutoff thresholds.

Let F t,s be the extracted HOG feature map from the bounding box, Bt, at the spatial

scale, s ∈ Sset, on frame t. BoW frequency histogram is constructed for the feature

maps in each scale group. The final scale coded BoW is a concatenation of each of

these histograms. This is given by:

hv ∝
T∑
t=1

∑
s∈Sv

cBOW (Ft,s) (4.14)

Where: v ∈ {s,m, l}.

T is the total number of frames in the video sample.

cBOW is the BoW coding scheme defined in Equation (2.4).

Relative Scale Coding

In this representation, extracted scale information is encoded relative to the bounding

box of the object. Thus, relative scale coding is dependent on the size of the bounding

box. With relative scale coding the scale of each feature, s, is multiplied by the relative

scaling factor, α (Equation (4.15)) This factor is dependent on the dimensions of the

bounding box. Since the size of the bounding box, Bt, varies from frame-to-frame, the

relative scaling factor must be computed for each frame. This is defined as:

αt =
Bw,t +Bh,t

w̄ + h̄
(4.15)

Where:

Bw,t and Bw,t are the width and height of the bounding box Bt.

w̄ + h̄ are the mean width and height of all bounding boxes in the training set.

Thus, the relative feature scale for each frame is given by:

ŝ = αts =
Bw,t +Bh,t

w̄ + h̄
s (4.16)
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This forms a new spatial scale set, Ŝset = {Ŝ1∪ Ŝ2∪ ...∪ Ŝt}, where Ŝt = {αts|s ∈ Sset}

Similarly to absolute scale coding, the relative set of scale sub-groups Ŝv, v ∈ {s,m, l}

is partitioned as follows:

Ŝs = {ŝ|ŝ < ss, ŝ ∈ Ŝset}

Ŝm = {ŝ|ss ≤ ŝ < sl, ŝ ∈ Ŝset}

Ŝl = {ŝ|sl ≤ ŝ, ŝ ∈ Ŝset}

The final relative scale coded representation of the image involves concatenating the

scale partitions. This is given by:

hv ∝ 1

|Ŝv|

T∑
t=1

∑
s∈Ŝv

cBOW (Ft,s) (4.17)

Where:

|Ŝv| is a normalization factor equivalent to the number of elements in the set Ŝv.

Scale Partitioning Strategies

The scale partitions are defined by the cutoff thresholds, ss and sl. In the original

work [8], these are predefined parameters for a given dataset. Thus, all samples of

the dataset have the same cutoff thresholds. However, for the proposed video-based

implementation, the spatial-scale set, Sset is different for each video sample as is is

dependent on the size of the initial bounding box B0 (see Algorithm 4. Furthermore,

additional variations in scale (bounding box size) occur within a given video sample

as the visual tracking algorithm defining the bounding box over the temporal domain

is scale adaptive. Thus, to accurately capture scale information, the cutoff thresholds

should be dynamically set. The parameter setting scheme as per [8] will be referred

to as Static Scaling Parameter Definition. The proposed dynamic setting of the

cutoff thresholds will be referred to as Dynamic Scaling Parameter Definition

Where Q is the number of scale sub-groups, the number of required cutoff thresh-

old parameters required is Q − 1. The cutoff thresholds, sv, v ∈ {1, ..., Q − 1}, are set

as per Algorithm 5.
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Algorithm 5: Dynamic Scaling Parameter Definition

Inputs:

Q : number of scale sub-groups

Sset: the set of all feature spatial scales

Output:

s1, ..., sv: the cutoff thresholds

1 R← Sset // get total number of feature spatial scales

2

3 Sset ←sort(Sset)

4 for v ← 1 to Q− 1 do

5 append s to Sset

6 i← R
Q × v

7 sv ← Sset[i]

8 end

Temporal Pyramid Structure

The proposed algorithm excludes an optical flow algorithm as the target object is

identified through the visual tracking algorithm. Thus, to capture temporal information

and add structure to the scale coded BoW, temporal pyramids are used (Figure 4.4).

Three temporal cells are defined as

Tp = {t|(T
3
× (p− 1)) ≤ t < (

T

3
× p)} (4.18)

Where:

T is the total number of frames in the video sample.

t ∈ {1, ..., T}.

p ∈ {1, 2, 3}.

A scale coded BoW, SCBOWp , is constructed for each temporal cell using either the

absolute or relative scale coding scheme.

SCBOWp = hv ∝
∑
t inTp

∑
s∈Ŝv

cBOW (Ft,s) (4.19)

Finally, the scale coded BoW for each temporal cell is pooled together and normalized.
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Figure 4.4: Temporal pyramid for scale coded BoW.

4.4 Experimentation

4.4.1 PC Specifications and Datasets

The PC specifications are the same as stated in Section 3.4.1. To evaluate performance

of the proposed spatio-temporal scale encoded BoW, the KTH [11] and HMDB51 [10]

datasets are used. The setup is the same as stated in 3.4.2 except the full HMDB51

dataset is used for evaluation as opposed to the reduced version. The class distribution

in both datasets is balanced. The relatively simple KTH dataset is used as a mini-

mum baseline in order to evaluate the ability of the proposed algorithm to perform

action classification. This dataset is filmed from a static camera and contains scale and

translation variations of the target object. The more challenging HMDB51 dataset is

used to evaluate the robustness of the action classifier. In addition to target object

translation and scale variations, this dataset includes camera motion, occlusion and

background activities. For both datasets, performance is evaluated by computing the

average accuracy over all the classes.

4.4.2 Object Detection

The cvlib2 implementation is used. The YOLOv3 model used was trained on the COCO

dataset 3 and is able to detect 80 objects including a person.

The minimum required dimensions of the initial bounding box, B0, is set to dimmin =

24pixels. A 24× 24 bounding box ensures at least one feature map containing 2 PCA-

2https://github.com/arunponnusamy/cvlib
3https://cocodataset.org/#home
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HOG feature vectors can be extracted via multi-scale sampling. As shown in Figure

4.5, the person in the video is successfully detected and isolated by the initial bounding

box, B0.

Figure 4.5: Successful definition of the initial bounding box, B0, for video samples from

the a) ’brush hair’ class of HMDB51 [10] b) ’hand waving’ class of KTH [11].

4.4.3 Visual Tracker

The set of parameter values for implementation of the DCF-DSST tracker are summa-

rized in Table 4.2.

Table 4.2: Parameters for the DCF-DSST Visual Tracker

Parameter Description Value

Parameters for Translation Model (DCF) as per [5]

λtrans Regularization parameter for translation model 0.0001

ηtrans Learning rate for translation model 0.02

Parameters for Scale Model as per [65]

λscale Regularization parameter for scale model 0.01

ηscale Learning rate for translation model 0.025

S Number of scales 33

sf Scale Factor 1.02
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4.4.4 Bag of Words

PCA-HOG4 features are efficiently extracted from training samples (as covered in Sec-

tion 4.3.3) using a 4× 4 cell grid. K-means clustering is used to cluster a subset of 100

000 randomly selected training features to construct a BoW vocabulary of 4000 words.

The scale coded BoW is formed from the extracted features as outlined in Section 4.3.4.

Both the absolute and relative scale coding schemes are evaluated. Furthermore, the

effects of the proposed scale partitioning strategies (static and dynamic scaling param-

eter definition) are evaluated on the KTH dataset in order to determine which strategy

yields the best results. For static parameter definition, the cutoff thresholds are set as:

ss =
√

2, sl = 2.

To lower computation time, the scale coding process is parallelized such that each

scale sub-group, Ss, Sm and Sl, are computed on individual threads.

4.4.5 Classification

Similarly to [8], a one-vs-rest SVM is used for multi-class classification. Three SVM

kernels were considered:

1. A linear kernel defined as [78]

K(xi, xj) = xi • xj (4.20)

Where:

• denotes the dot product.

2. A χ2 kernel defined as [78]

K(xi, xj) = exp(− 1

A
D(xi, xj)) (4.21)

Where:

D(xi, xj) is the χ2 distance between each training video xi and xj .

A is a scaling parameter.

3. An rbf kernel defined as [90]

K(xi, xj) = exp(−γ‖xi − xj‖2) (4.22)
4https://github.com/uoip/KCFpy/blob/master/fhog.py
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The kernel type, A and γ values are hyper-parameters that are tuned using grid search

with cross validation. This involves randomly partitioning the training set into k-folds.

One fold is selected to be the validation set while the remaining k − 1 folds are used

as training. This process is repeated k times; alternating the fold selected to be the

validation. The accuracy values achieved are averaged to form a single estimation.

5-fold cross validation is used (see Figure 4.6). Each combination of hyper-parameter

values are evaluated and the combination returning the best score is selected.

Figure 4.6: 5-fold cross validation of the training set for hyper-parameter tuning.
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Table 4.3: Performance of the Spatio-Temporal Scale Coded BoW on the KTH dataset

Scale Coding Scheme Parameter Definition Scheme Hyper-parameters Accuracy (%)

Absolute Static kernel = ’linear’ 63.42

Dynamic kernel = ’linear’ 63.89

Relative Static kernel = ’linear’ 61.57

Dynamic kernel = ’linear’ 64.81

Table 4.4: Performance of the Spatio-Temporal Scale Coded BoW on the HMDB51 dataset with Dynamic Scale Parameter Definition

Scale Coding Scheme Hyper-parameters Accuracy (%)

Absolute kernel = ’rbf’, γ = 0.01 27.78

Relative kernel = ’rbf’, γ = 0.01 21.24
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4.5 Results and Discussion

4.5.1 Scale Partitioning Strategies

The effects of each scale partitioning strategy can be observed in Table 4.3. Dynami-

cally defining the cutoff thresholds, ss and sl, results in better performance compared

to the static strategy. Notably, the improvement in accuracy was much higher for

the relative scale encoding scheme (+3.24%) compared to the absolute scale encoding

scheme (+0.47%). This was expected as the set of extracted scales for relative scale

encoding, Ŝset, is dynamically created since it is dependent on the size of the bounding

box, Bt, in each frame. Whereas the set of extracted scales for absolute scale encoding,

Sset, is created on the first frame since it is only dependent on the initial bounding

box, B0. Thus, it is more difficult to predict the cutoff thresholds that will partition

extracted scales into scale sub-sets of equal size for the relative scale encoding scheme.

This results in a less accurate representation of extracted scale information; lowering

accuracy. It can be concluded that for video-based scale coding, dynamic definition

of the cutoff thresholds ensures that extracted scale information is more accurately

represented and thus results in a better performance.

4.5.2 Scale Coding Schemes

Observing the results achieved on the KTH dataset (Table 4.3), the relative scale coding

scheme (64.81 %) achieves a slightly higher accuracy than the absolute scale coding

scheme (63.89 %). The same outcome was observed in the image-based scale coded

BoW [8]; relative scale coding outperformed the absolute scheme by 0.7 %. This may

be because the relative encoding scheme accounts for the size of the bounding box, thus

encodes more information into the final representation compared to the absolute coding

scheme. As per Remark 2, this results in a higher accuracy. However, for the HMDB51

dataset, the opposite is observed (see Table 4.4). The absolute coding scheme (27.8 %)

outperforms the relative coding scheme (21.24%) by a relatively large margin of 6.56 %.

This may be due to the the visual tracking algorithm inaccurately defining the bounding

box, Bt, in each frame t, as the HMDB51 dataset contains occlusion, camera motion

and background activities. As per the conclusions of Chapter 3, capturing unimportant

information can reduce performance and wastes resources. Since the relative coding

scheme is heavily dependent on the bounding box, the errors of the visual tracker have a
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greater negative impact on the relative coding scheme compared to the absolute coding

scheme.

4.5.3 Computational Cost

The time taken to complete each task of the proposed scale coded BoW was computed

for 25 randomly selected video samples in each dataset. These values were averaged

and are presented in Table 4.5.

Table 4.5: The Computational Cost of Each Task in the Spatio-Temporal Scale Coded

BoW for the KTH and HMDB51 Datasets

Task KTH HMDB51

Object Detection 1.01s 1.81s

Feature Extraction 7.15s 7.73s

Scale Coding 5.44s 4.35s

Total Processing Time tp 13.60 s 13.89 s

Average Number of frames 335.95 417.95

Processing Frequency fp 24.70 fps 30.09 fps

Capturing Frequency fc 25 fps [11] 30 fps [10]

As per Equation (4.2), the proposed pipeline operates in real-time. Although by defini-

tion, the KTH dataset does not operate in real-time since the processing frequency (fp)

is slightly less than the capturing frequency (fc), the difference between these values is

small. Thus, processing is perceived to be in real-time. Furthermore, the hardware of

the PC on which experiments were conducted is outdated. Thus, the proposed action

recognition pipeline will easily operate in real-time on state-of-the-art PCs.

On average, formation of the SC-BoW for a vocabulary size of 4000 words operates

at 78.92 fps. This is relatively efficient (given the outdated hardware on which ex-

periments were conducted) and is done in real-time for the proposed pipeline. The

computation time of SC-BoW representations can be improved by computing the BoW

using the algorithm presented in [91].
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4.5.4 Comparison to Existing Methods

Observing the comparisons in Table 4.6 and Table 4.7, the proposed method is outper-

formed by most cited existing methods. However, the spatio-temporal scale coded BoW

outperforms the HOG/HOF feature-based algorithm proposed by Kuehne et al.[10] by

4.6% (see Table 4.7). Furthermore, the scale coded BoW outperforms the Local Part

Model [68] HOG feature set by 6.78% even though the scale coded BoW is a relatively

simpler approach. Thus, it can be concluded that the inclusion of scale information

in the BoW framework improves the action classification of the algorithm. The per-

formance of the proposed framework is lower than state-of-the-art real-time action

recognition approaches due to the weak HOG features used.

4.6 Conclusions

The scale coded BoW for image-based action recognition [8] was extended to form

the spatio-temporal scale coded BoW for video-based action recognition. This algo-

rithm successfully performs action recognition of videos in real-time. Additionally, two

strategies for setting the cutoff thresholds that define the scale set partitions were pro-

posed: Static Scaling Parameter Definition and Dynamic Scaling Parameter Definition.

Through experimental evaluation, it was found that the dynamic strategy defined the

scale partitions more accurately; yielding a better performance.

A large setback of the proposed algorithm is its dependence on the the performance of

the visual tracker. If the visual tracker fails; large amounts of unimportant information

will be captured. As per the conclusions of Chapter 3, capturing unimportant infor-

mation can reduce performance and wastes computational resources. Thus, it would

be beneficial to reduce the reliance of this algorithm on the visual tracker by either:

� Removing the need for a visual tracker by using alternative methods to define the

target object through subsequent frames.

� Remove dependence of the relative coding scheme on the definition of a bounding

box by using alternative cues to compute relative scale (e.g depth information).

Finally, it was observed that the spatio-temporal scale coded BoW improves the perfor-

mance of HOG features for action recognition. Applying this framework on more robust
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feature sets has potential to achieve state-of-the-art performance at a high computa-

tional efficiency. This overcomes the cost-vs-accuracy balance highlighted in Chapter

3.
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Table 4.6: Comparison to Existing Action Recognition Methods on the KTH dataset

Method Accuracy(%)

KTH [11] 71.72

Local Part Model [68] 93.0*

PSRM [92] 95.67*

Scale Coded BoW 64.81*

* Algorithms that operate in real-time

Table 4.7: Comparison to Existing Action Recognition Methods on the HMDB51

dataset

Method Accuracy(%)

HMDB51 [10] (Combined) 23.18

HOGHOF 20.44

HOG 15.47

HOF 22.48

Local Part Model [68] (Combined) 47.6*

HOG 21.0

HOF 33.5

HOG3D 34.7

MBH 43.0

Motion Vector CNNs [93] 55.3*

Scale Coded BoW 27.78*

* Algorithms that operate in real-time
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Chapter 5

Scaled Spatio-Temporal

Representations

5.1 Introduction

The experimental results obtained in Chapter 4 showed scale coded spatio-temporal

BoW (SC-BoW) representations to outperform more complex approaches on the HOG

feature set for video-based action recognition. This highlighted scale coding as a poten-

tial low-cost solution to increase performance; presenting a favorable cost-to-accuracy

balance. In this chapter, the potential of scale coding for real-time action recognition

of videos is further investigated.

The SC-BoW approach is formalized such that it can be easily incorporated into any al-

gorithm utilizing the BoW for feature representation. Furthermore, the spatio-temporal

pyramids commonly used to add structure to BoW representations of videos [2] were ex-

tended to incorporate scale information. In order to directly observe the performance

increase SC-BoW representations can achieve, the formalized scale coding scheme is

applied to the more robust dense trajectories feature set [1]. The performance gain

and computational cost increase incurred are analyzed in order to determine if SC-

BoW representations are a promising avenue for practical implementation of real-time

video-based action recognition.
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5.2 Adapted Spatio-Temporal Scale Coding

The relative scale coding scheme requires bounding box definition on each frame. As

a result, a visual tracker is needed. As per the conclusions of Chapter 4, reliance

of the scale coding scheme on a visual tracker poses many setbacks and can reduce

performance if the bounding box is inaccurately defined. Furthermore, majority of

existing action recognition algorithms do not isolate the object via bounding boxes. As

a result, incorporation of relative scale coding into existing algorithms is challenging

as it requires an additional scheme to establish the relative scale. The absolute scale

coding scheme is more flexible as it only requires multi-scale sampling and feature

extraction; these steps are a staple in high-performing action recognition approaches

[1, 12, 14, 68, 71]. Thus, for an adaptable scale coding scheme that can easily be

incorporated into any existing algorithm utilizing BoW representations, the absolute

scale coding scheme is used. The formalized scale coding scheme is summarized in

Figure 5.1.

Figure 5.1: The general pipeline for formation of scale coded BoW representations.

The absolute scheme, first defined in section 4.3.4, is generalized for a variable number

of partitions p. Let F i,t,s be the set of features extracted from a video at the pixel

i = (x, y), on frame t, at the spatial scale s ∈ Sset. Sset is the set of extracted feature
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scales. The scales are partitioned into p sub-groups as follows:

S1 = {s|s < s1, s ∈ Sset}

S2 = {s|s1 ≤ s < s2, s ∈ Sset}
...

Sp−1 = {s|sp−2 ≤ s < sp−1, s ∈ Sset}

Sp = {s|sp−1 ≤ s, s ∈ Sset}

Where:

s1, s2, ..., sp−1 are the cutoff thresholds.

1 < p ≤ |Sset|. |Sset| is the cardinality of Sset.

The cutoff thresholds are defined by dynamic scale parameter definition (see Algorithm

5). Dynamic definition yields a better performance compared to the static scheme as

per the experimental results of Chapter 4.

A BoW frequency histogram is constructed for the features in each scale sub-group.

The final scale coded BoW is a concatenation of each of these histograms. This is given

by:

hv ∝
(X,Y )∑
i=(0,0)

T∑
t=1

∑
s∈Sv

cBOW (Fi,t,s) (5.1)

Where:

v ∈ {1, . . . , p− 1, p}.

(X,Y ) is the maximum pixel value in the video. X is the video width in pixels. Y is

the video height in pixels.

T is the total number of frames in the video sample.

cBOW is the BoW coding scheme defined in Equation (2.4).

5.3 Scaled Spatio-Temporal Pyramids

In action recognition tasks involving BoW representations, spatio-temporal pyramids

[2] are commonly used to add additional structure and improve performance. Adding
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spatio-temporal structure to scale coded representations involves computing a SC-BoW

for each spatio-temporal cell (see Figure 5.2 (a)).

The spatio-temporal cell, c, is the union of a spatial cell division (this consists of a

division in the horizontal and vertical spatial plane respectively) and a temporal cell

division. Consider a spatio-temporal pyramid with Cx vertical spatial cells, Cy hor-

izontal spatial cells and Ct temporal cells. A single spatio-temporal cell is defined

as:

cpx,py ,pt ={x|( X
Cx
× (px − 1)) ≤ x < (

X

Cx
× px)}∪

{y|( Y
Cy
× (py − 1)) ≤ y < (

X

Cy
× py)}∪

{t|( T
Ct
× (pt − 1)) ≤ t < (

T

Ct
× pt)} (5.2)

Where:

X is the maximum pixel value in the x−direction.

Y is the maximum pixel value in the y−direction.

T is the total number of frames in the video sample.

px, py, pt represent the cell number in the x, y and t planes respectively.

The SC-BoW is thereafter constructed as:

SCBOWc = hv ∝
∑
c

∑
s∈Ŝv

c(Fc,s) (5.3)

Where:

Fc,s is the set of features extracted from spatio-temporal cell c.

c denotes the spatio-temporal partition cpx,py ,pt defined by Equation (5.2).

The SC-BoW for each spatio-temporal cell is pooled together and normalized to form

the final scale coded spatio-temporal BoW. This effectively extends spatio-temporal

pyramids to 4-dimensions as shown in Figure 5.2 (b).
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Figure 5.2: Scaled Spatio-Temporal Pyramids: (a)The first representation involves

computing a SC-BoW for each cell. (b)The second representation adds scale as a 4th

dimension and involves computing a standard BoW for each cell.

5.4 Experimentation

This section outlines the experimental setup for applying scale coding to dense trajec-

tory features. Following the original dense trajectories experimental conditions [1], the

algorithm is run on a single CPU core; the code is not parallelized.

5.4.1 Datasets

Performance evaluation of the scale coded dense trajectory feature set is done using the

KTH1 dataset [11] and a reduced HMDB512 [10] datasets. The setup of these datasets

is the same as outlined in Chapter 3, Section 3.4.2. Performance is measured by the

average accuracy over all classes.

Following the original setup [11], the KTH dataset is divided into testing and training

sets based on the subjects. The testing set consists of subjects 2, 3, 5, 6, 7, 8, 9, 10,

and 22 (9 subjects total) and the training set is made up of the remaining 16 subjects.

The average accuracy is taken over all classes.

The reduced HMDB51 dataset consists of 11 action classes: brush hair, cartwheel,

catch, chew, clap, climb stairs, smile, talk, throw, turn, wave. As per the original setup

1http://www.nada.kth.se/cvap/actions/
2http://serre-lab.clps.brown.edu/resource/hmdb-a-large-human-motion-database/
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[10], each action class is organized into 70 videos for training and 30 videos for testing.

5.4.2 Scale Coding Dense Trajectory Features

To produce scale coded dense trajectory feature representations, the feature extraction

process remains the same. Only the feature encoding stage is modified; this is the stage

where the BoW representation of the video sample is formed.

Feature Extraction

Dense trajectory feature formation involves densely sampling points and tracking sam-

pled points over the temporal domain via an optical flow algorithm to form a trajec-

tory. Points are re-sampled every R frames. Five feature descriptors are extracted

every frame: trajectory shape, HOG, HOF, MBHx and MBHy. The complete set of

extracted features for a given video sample is a concatenation of these 5 descriptors.

This is denoted as F = [F TS ,FHOG,FHOF ,FMBHx,FMBHy]. The dense trajectory

feature formation process was described in more detail in Chapter 3, Section 3.4.3.

The only additional information required to apply scale coding is the set of extracted

feature scales. This is obtained during the sampling stage. The sampling strategy used

involves sampling points from a frame t via a sampling grid. For dense sampling, a grid

spacing of W = 5 is used [1]. The dense sampling of points is done on multiple scales.

Each feature scale is separated by a factor of
√

2. The set of extracted scales, Sset, is

defined as per Algorithm 4 (Chapter 4, Section 4.3.3). The inputs to Algorithm 4 are

set as follows:

� The initial bounding box, B0, encapsulates the entire video frame. Let X ×Y be

the resolution of the video sample. Thus, the dimensions of B0 is X × Y .

� Wang et al. [1] set the neighborhood size for computing descriptors to 32 pixels.

Thus, the minimum dimension, dimmin, is set to 32 pixels. In this manner, the

dimensions of the sample patch on the smallest feature scale will be greater than

32 × 32. This ensures at least one set of descriptors can be extracted on each

spatial scale.

� Following the original setup [1], a maximum of 8 spatial scales are extracted,

Smax = 8.
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SC-BoW Representation

Following [1], k-means clustering is used to cluster a subset of 100 000 randomly se-

lected training features. A vocabulary of 4000 words is separately constructed for each

descriptor.

For a given video sample, the complete set of extracted features, F , is partitioned

into sub-groups based on the scale on which they were extracted. This process was

outlined in Section 5.2.

Figure 5.3: Scaled Spatio-Temporal grids: on each scale, 6 spatio-temporal pyramids

are constructed as indicated.

The standard dense trajectories algorithm uses 6 spatio-temporal pyramids to add

structure to BoW representations [1]. As outlined in Section 3.4.3, the pyramids are ex-

tended to 4-dimension in order to hold scale information. The 6 scaled spatio-temporal

pyramid structures used are illustrated in Figure 5.3. A BoW is constructed for each

scaled spatio-temporal cell. Thereafter, a global representation of the pyramid is found

by summing the BoW histogram for each cell and normalizing by the RootSIFT Norm
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[52].

The 6 scaled spatio-temporal pyramids are computed for each descriptor. Each pyramid-

descriptor pair forms a separate channel; there are 30 channels in total (6 pyramids x 5

descriptors). This forms the scale coded representation of the dense trajectory feature

set. Finally, a multi-class, multi-channel non-linear SVM with an RBF-χ2 kernel [11]

is used for classification. The multi-channel kernel is defined by Equation (3.5).

5.5 Results and Discussion

5.5.1 Performance Analysis

For the KTH dataset, experiments were run twice; setting the sub-sampling refresh

rate to R = 1 frame and R = 6 frames respectfully.

The time taken to obtain SC-BoW representations from extracted dense trajectory

features was recorded for 25 randomly selected video samples from the KTH dataset.

These values were averaged and are presented in Table 5.1. The average number of

extracted features clustered for each video sample was 6000. SC-BoW representations

were formed with 3 scale partitions.

SC-BoW representations were found to improve performance on the KTH by 2.76

Table 5.1: Computational Analysis of SC-BoW given a 4k-word vocabulary and 6000

extracted features

Task Computation Time (s) Computation

Frequency (FPS)

SC-BoW Formation 192.24 5.22

BoW Formation 186.65 6.10

Added Cost 5.59 0.88

% and on the reduced HMDB51 dataset by 3.64 % (see Table 5.2). The increase in

performance was accompanied by a 5.59s increase in computational time (Table 5.1).

For the standard dense trajectory algorithm, it was experimentally found that BoW

formation accounts for 2% of total computation time (9013s). Thus, incorporation of
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Table 5.2: Comparing Performance of Dense Trajectories with and without scale coding

for the KTH and reduced HMDB51 datasets

Description KTH (R = 1) KTH (R = 6) HMDB51

(reduced)

DT (%) 94.0 91.0 81.21

DT + SC-BoW (%) 96.76 93.24 84.85

Net Change (%) +2.76 +2.24 +3.64

SC-BoW increases computation time by 0.06%. This is a negligible increase in most

cases. Additionally, the added computation time can be further reduced by paralleliz-

ing the code and adopting the scaled BoW generation scheme proposed by Singh et

al. [91]. It can be concluded that SC-BoW representations increase accuracy with

negligible added computational cost; presenting an ideal cost-to-accuracy balance.

It can also be seen that the performance increase achieved by SC-BoW representa-

tions is similar for different sub-sampling rates. This shows that scale coding is not

influenced by the number of points sampled; it simply enhances performance of the

multi-scale extracted features.

The accuracy in each class for scale coded and non-scale coded dense trajectories was

recorded for both datasets. This is summarized in Figure 5.4 (KTH dataset) and Fig-

ure 5.5 (reduced HMDB51 dataset). For the KTH dataset, SC-BoW representations

improved the accuracy off all classes except ”running”. Observing the plotted con-

fusion matrices in Figure 5.6, it can be seen that ”running” had two false positives

for ”jogging” and ”walking”. These actions are very similar; they are differentiated

by temporal information: jogging is a faster walk, running is a faster jog. Thus, ex-

tracting additional temporal information could possibly better differentiate between

these classes. This can be done by extending trajectory length to L ≥ 15 frames or by

defining additional temporal divisions in the scale spatio-temporal pyramids.
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Figure 5.4: Plot comparing the class accuracies obtained on the KTH dataset for dense

trajectories and scale coded dense trajectories.

Figure 5.5: Plot comparing the class accuracies obtained on the reduced HMDB51

dataset for dense trajectories and scale coded dense trajectories.
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(a) (b)

Figure 5.6: Confusion matrix plot of the KTH dataset (R = 1) where (a) dense trajectory features were extracted. (b) scale coded dense

trajectory features were extracted.

(a) (b)

Figure 5.7: Confusion matrix plot of the reduced HMDB51 dataset (R = 6) where (a) dense trajectory features were extracted. (b) scale

coded dense trajectory features were extracted.

80



5.5.2 Number of Scale Partitions

To observe the effects of the number of scale partitions on performance, the achieved

accuracy for each partition, p ∈ {1, . . . , n}, was recorded. p = 1 corresponds to the

original algorithm with no scale coding. n is the maximum spatial scale and is de-

pendent on the resolution of the video sample. For the KTH dataset, n = 4. For the

reduced HMDB51 dataset, n = 6.

Table 5.3: The Effect of the Number of Scale Partitions on Accuracy

Scale Partitions KTH (R = 1) KTH (R = 6) HMDB51

(reduced)

1 94.0 91.0 81.21

2 94.91 91.39 82.2

3 96.76 93.24 84.85

4 90.27 89.35 82.99

5 - - 80.91

6 - - 77.57

Observing the results in Table 5.3 and Figure 5.8, there exists an optimum number of

scale partitions. For both the KTH and reduced HMDB51 dataset, this was found to

be p = 3. Similarly, Khan et al. [20] had found a negligible gain in performance be-

yond 3 scale partitions for image-based action recognition. However, in the video-base

approach, defining scale partitions beyond the optimum number can result in perfor-

mances lower than non-scale coded representations. Thus, the best practice is to form

SC-BoW representations with p = 3 partitions. In most cases, this will achieve the

optimal performance.

Additionally, it can be seen that the trend line for both sub-sampling rates on the

KTH dataset is similar; further solidifying that performance gain achieved through

scale coding is independent of the number of points sampled. The time take to com-

pute an SC-BoW for each number of partitions was recorded for four videos from the

KTH dataset (R = 1). Approximately 10k, 6k, 4k and 2k dense trajectory features

were extracted from the four videos respectively. This is summarized in Figure 5.9. It
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Figure 5.8: The effect of number of scale partitions on accuracy for the KTH and

HMDB51(reduced) datasets.

can be seen that the relationship between number of scale partitions and computational

cost is not linearly directly correlated. Even though a larger number of scale partitions

requires more BoW computations, the BoW computation time for each partition varies

depending on the number of features in the partition. The number of features in each

scale partition is dependent on various factors: the number of sampling scales, the

feature extraction algorithm and the video content.

5.5.3 Comparison to Existing Methods

Observing the values in Table 5.4, applying SC-BoW to dense trajectory features re-

sults in performance close to state-of-the-art. Notably, scale coded dense trajectories

outperformed complex deep learning approaches that use the popular two-stream CNN

network architecture [94]. This re-affirms the conclusions of Chapter 4; scale coding

shows better performance than more complex approaches. Furthermore, this illustrates

that deep learning approaches do not always outperform classical machine learning ap-

proaches. In smaller datasets, such as the KTH dataset, classical machine learning

approaches are much more valuable. This is favorable in real-world circumstances

where large amounts of training data are unavailable.
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Figure 5.9: The effect of number of scale partitions on computational cost for the KTH

dataset.

5.6 Conclusions

The encoding of scale information into BoW representations (SC-BoW) was formal-

ized; simplifying and generalizing the approach such that it can be easily adapted into

any existing video-based action recognition algorithms that use the BoW for feature

representation. Thus, SC-BoW maintains the simplicity and flexibility of the standard

BoW framework. The formalized SC-BoW approach was applied to the dense trajec-

tory feature set for experimental evaluation.

It was found that the performance of scale coding is independent of the number of

points sampled. However, performance is influenced by the number of scale partitions

defined. In most cases, 3 scale partitions yield the optimum performance.

Experimental results showed that SC-BoW representations improve performance of

the dense trajectory features with a negligible added computational cost; presenting

an ideal cost-to-accuracy trade-off. This re-affirms that scale is salient information to

extract for video-based action recognition. Furthermore, scale coded dense trajectories

produced accuracies competitive with state-of-the-art approaches. Notably, SC-BoW
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Table 5.4: Comparison to Existing BoW Action Recognition Methods on the KTH

dataset

Method Accuracy (%)

Sequential Deep Learning [32] 94.38

Spatio-temporal CNN [94] 95.86 ± 0.3

Local Part Model [68] 93.0*

BoE [54] 99.51

DT + SC-BoW 96.76

* Algorithms that operate in real-time

representations outperformed more complex deep learning approaches on the KTH

dataset.

It can be concluded that scale coding improves the performance of BoW representa-

tions whilst maintaining the efficiency and flexibility of the standard framework. Thus,

SC-BoW representations are a promising avenue for real-world action recognition prob-

lems.
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Chapter 6

Conclusions and Future Work

In this research, the potential of scale coding a Bag-of-Words (BoW) for real-time video-

based action recognition was explored. To develop practical real-time action recognition

algorithms, the trade-off between computational cost and accuracy must be carefully

considered. In the ideal scenario, high performance is achieved with minimal computa-

tional cost. To study this balance, existing BoW variants were theoretically analyzed.

These variants work to increase the discriminative power of the framework, often com-

promising the efficiency, simplicity and flexibility of the original framework as a result.

Four factors affecting the cost-vs-accuracy balance were identified: ’Sampling’ strategy,

’Saliency’ of features, ’Optical Flow’ and overall algorithm ’Flexibility’. To determine

the practical effects of the identified factors, experiments were conducted on the KTH

and a reduced HMDB51 datasets. It was found that the ’Saliency’ of extracted in-

formation is the most notable factor affecting the cost-vs-accuracy balance for video

classification algorithms; extracting only the important information from video samples

can yield the best performance at minimal computational cost. Based on the success of

scale encoded BoW representations for image-based action recognition, scale was noted

to be salient information to extract.

To make use of the salient extracted scale information, scale coded BoW represen-

tations were extended to form Spatio-temporal scale coded BoW (SC-BoW) represen-

tations for video classification tasks. A general pipeline that uses both relative and

absolute encoded SC-BoW representations was proposed and consists of the following

steps: i) Object Detection, ii) Tracking, iii) Feature Extraction, iv) Feature Partition-

ing, v) SC-BoW formation and vi) Classification. This pipeline was designed such that
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it operates in real-time. Experiments showed that SC-BoW improves performance by

4-7% on the given feature set (PCA-HOG) with low computational cost. Thus, SC-

BoW has a favorable cost-to-accuracy balance; highlighting SC-BoW representations

as a promising avenue for practical real-time action recognition of videos.

To further explore the potential of SC-BoW representations, the scale coding scheme

was applied to the popular and high-performing dense trajectory feature set. It was

found that SC-BoW representations improve performance with negligible added com-

putational cost; presenting an ideal cost-to-accuracy trade-off. Notably, scale coded

dense trajectories performed better than algorithms using the complex deep learning

approaches on the KTH dataset. This showed that deep learning approaches, although

powerful, are not always appropriate. Classical machine learning approaches are more

beneficial in tasks requiring efficient classification with limited training data. Further-

more, SC-BoW maintains the efficiency, compact feature representation and flexibility

of the standard BoW framework. Thus, scale coding a BoW has great potential to

perform accurate real-time action recognition of video data in real-world circumstances

where computational resources and training data are limited.

6.1 Scale Coding Best Practice

This section summarizes the recommended practice for forming scale coded BoW rep-

resentations for classification of video data.

� The relative scale encoding scheme encodes more information into BoW repre-

sentations, thus, results in better performance. However, the relative scheme is

reliant on visual tracker performance. Failed attempts of the visual tracker re-

sults in ill-defined bounding boxes. This causes unimportant information to be

captured; lowering performance and wasting resources. The absolute scale encod-

ing scheme is more robust and flexible; making it a better option for real-world

action recognition.

� Dynamic scaling parameter definition outperforms its static counterpart for both

the absolute and relative scale encoding schemes. Dynamically setting the cutoff

thresholds that define each scale partition was found to better represent extracted

scale information.
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� An optimum number of scale partitions exists; performance decreases if the num-

ber of scale partitions is set above or below this value. It was found that, in most

cases, partitioning the set of spatial scales into 3 sub-groups results in the best

performance.

6.2 Future Work

SC-BoW representation is a relatively low-level encoding scheme. Thus, it can be easily

incorporated into any existing algorithm that uses BoW representation for a low-cost

performance boost. Furthermore, it maintains the simplicity and flexibility of the orig-

inal framework. Similarly to the large number of variants of the BoW that have been

proposed in literature, there is room to do the same with SC-BoW.

Notable future work directions include:

� Improve the robustness of the relative scale coding scheme by defining a more

reliable relative scaling scheme. For example, depth information can be used in

place of bounding box size.

� Combine scale coding with deep learning algorithms. Possible approaches include:

forming SC-BoW representations from features extracted by CNNs as opposed

to hand-crafted features; extending the scale coded deep features for image-based

action recognition approach [20] to the spatio-temporal domain for video-based

action recognition; applying scale coding to the Convolutional Bag-of-Features

(CBoF) [34]; incorporating extracted scale information into the current state-of-

the-art two-stream CNNs algorithm.
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[9] M. Danelljan, G. Häger, F. S. Khan, and M. Felsberg, “Discriminative scale space

tracking,” IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE

INTELLIGENCE, vol. 39, no. 8, pp. 1561–1575, 2017.

[10] H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre, “Hmdb: A large

video database for human motion recognition,” in IEEE International Conference

on Computer Vision (IEEE, ed.), p. 2556–2563.
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Appendix A

Additional Results

A.1 Reduced HMDB51 Dataset

This section covers other representations of experimental results obtained.

Figure A.1: Confusion matrix plot of the reduced HMDB51 dataset with percentage

accuracy. Dense trajectory features were extracted with a sub-sampling refresh rate of

R = 6 frames.

98



Figure A.2: Confusion matrix plot of the reduced HMDB51 dataset with percentage

accuracy. Scale coded dense trajectory features were extracted with a sub-sampling

refresh rate of R = 6 frames.
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A.2 KTH Dataset

This section covers all the raw results obtained on the reduced KTH dataset.

Figure A.3: Confusion matrix plot of the KTH dataset. Dense trajectory features were

extracted with a sub-sampling refresh rate of R = 6 frames.

Figure A.4: Confusion matrix plot of the KTH dataset with percentage accuracy. Dense

trajectory features were extracted with a sub-sampling refresh rate of R = 6 frames.
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Figure A.5: Confusion matrix plot of the KTH dataset with percentage accuracy. Dense

trajectory features were extracted with a sub-sampling refresh rate of R = 1 frames.

Figure A.6: Confusion matrix plot of the KTH dataset with percentage accuracy. Scale

coded dense trajectory features were extracted with a sub-sampling refresh rate of R

= 1 frames.
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