205 research outputs found

    The 4th Conference of PhD Students in Computer Science

    Get PDF

    Dagstuhl News January - December 2006

    Get PDF
    "Dagstuhl News" is a publication edited especially for the members of the Foundation "Informatikzentrum Schloss Dagstuhl" to thank them for their support. The News give a summary of the scientific work being done in Dagstuhl. Each Dagstuhl Seminar is presented by a small abstract describing the contents and scientific highlights of the seminar as well as the perspectives or challenges of the research topic

    Topological Signals of Singularities in Ricci Flow

    Full text link
    We implement methods from computational homology to obtain a topological signal of singularity formation in a selection of geometries evolved numerically by Ricci flow. Our approach, based on persistent homology, produces precise, quantitative measures describing the behavior of an entire collection of data across a discrete sample of times. We analyze the topological signals of geometric criticality obtained numerically from the application of persistent homology to models manifesting singularities under Ricci flow. The results we obtain for these numerical models suggest that the topological signals distinguish global singularity formation (collapse to a round point) from local singularity formation (neckpinch). Finally, we discuss the interpretation and implication of these results and future applications.Comment: 24 pages, 14 figure

    Proceedings of the 5th International Workshop on Reconfigurable Communication-centric Systems on Chip 2010 - ReCoSoC\u2710 - May 17-19, 2010 Karlsruhe, Germany. (KIT Scientific Reports ; 7551)

    Get PDF
    ReCoSoC is intended to be a periodic annual meeting to expose and discuss gathered expertise as well as state of the art research around SoC related topics through plenary invited papers and posters. The workshop aims to provide a prospective view of tomorrow\u27s challenges in the multibillion transistor era, taking into account the emerging techniques and architectures exploring the synergy between flexible on-chip communication and system reconfigurability

    Simplicial Ricci Flow

    Full text link
    We construct a discrete form of Hamilton's Ricci flow (RF) equations for a d-dimensional piecewise flat simplicial geometry, S. These new algebraic equations are derived using the discrete formulation of Einstein's theory of general relativity known as Regge calculus. A Regge-Ricci flow (RRF) equation is naturally associated to each edge, L, of a simplicial lattice. In defining this equation, we find it convenient to utilize both the simplicial lattice, S, and its circumcentric dual lattice, S*. In particular, the RRF equation associated to L is naturally defined on a d-dimensional hybrid block connecting â„“\ell with its (d-1)-dimensional circumcentric dual cell, L*. We show that this equation is expressed as the proportionality between (1) the simplicial Ricci tensor, Rc_L, associated with the edge L in S, and (2) a certain volume weighted average of the fractional rate of change of the edges, lambda in L*, of the circumcentric dual lattice, S*, that are in the dual of L. The inherent orthogonality between elements of S and their duals in S* provide a simple geometric representation of Hamilton's RF equations. In this paper we utilize the well established theories of Regge calculus, or equivalently discrete exterior calculus, to construct these equations. We solve these equations for a few illustrative examples.Comment: 34 pages, 10 figures, minor revisions, DOI included: Commun. Math. Phy

    Approaches to Building a Quantum Computer Based on Semiconductors

    Get PDF
    Throughout this Ph.D., the quest to build a quantum computer has accelerated, driven by ever-improving fidelities of conventional qubits and the development of new technologies that promise topologically protected qubits with the potential for lifetimes that exceed those of comparable conventional qubits. As such, there has been an explosion of interest in the design of an architecture for a quantum computer. This design would have to include high-quality qubits at the bottom of the stack, be extensible, and allow the layout of many qubits with scalable methods for readout and control of the entire device. Furthermore, the whole experimental infrastructure must handle the requirements for parallel operation of many qubits in the system. Hence the crux of this thesis: to design an architecture for a semiconductor-based quantum computer that encompasses all the elements that would be required to build a large scale quantum machine, and investigate the individual these elements at each layer of this stack, from qubit to readout to control
    • …
    corecore