2 research outputs found

    Scalable processing and autocovariance computation of big functional data

    Get PDF
    This is the peer reviewed version of the following article: Brisaboa NR, Cao R, Paramá JR, Silva-Coira F. Scalable processing and autocovariance computation of big functional data. Softw Pract Exper. 2018; 48: 123–140 which has been published in final form at https://doi.org/10.1002/spe.2524 . This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions. This article may not be enhanced, enriched or otherwise transformed into a derivative work, without express permission from Wiley or by statutory rights under applicable legislation. Copyright notices must not be removed, obscured or modified. The article must be linked to Wiley’s version of record on Wiley Online Library and any embedding, framing or otherwise making available the article or pages thereof by third parties from platforms, services and websites other than Wiley Online Library must be prohibited.[Abstract]: This paper presents 2 main contributions. The first is a compact representation of huge sets of functional data or trajectories of continuous-time stochastic processes, which allows keeping the data always compressed even during the processing in main memory. It is oriented to facilitate the efficient computation of the sample autocovariance function without a previous decompression of the data set, by using only partial local decoding. The second contribution is a new memory-efficient algorithm to compute the sample autocovariance function. The combination of the compact representation and the new memory-efficient algorithm obtained in our experiments the following benefits. The compressed data occupy in the disk 75% of the space needed by the original data. The computation of the autocovariance function used up to 13 times less main memory, and run 65% faster than the classical method implemented, for example, in the R package.This work was supported by the Ministerio de Economía y Competitividad (PGE and FEDER) under grants [TIN2016-78011-C4-1-R; MTM2014-52876-R; TIN2013-46238-C4-3-R], Centro para el desarrollo Tecnológico e Industrial MINECO [IDI-20141259; ITC-20151247; ITC-20151305; ITC-20161074]; Xunta de Galicia (cofounded with FEDER) under Grupos de Referencia Competitiva grant ED431C-2016-015; Xunta de Galicia-Consellería de Cultura, Educación e Ordenación Universitaria (cofounded with FEDER) under Redes grants R2014/041, ED341D R2016/045; Xunta de Galicia-Consellería de Cultura, Educación e Ordenación Universitaria (cofounded with FEDER) under Centro Singular de Investigación de Galicia grant ED431G/01.Xunta de Galicia; D431C-2016-015Xunta de Galicia; R2014/041Xunta de Galicia; ED341D R2016/045Xunta de Galicia; ED431G/0
    corecore